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of this class of products. It is shown that the price of the credit
risk option is the expected fonvard value of a put option on a
risky bond with a credit level-adjusted exercise price. Stripping
of credit risk from the total risk of the bond is enabled by
employing a stochastic strike price for the credit risk option. The
article provides a framework for trading and hedging credit risk.

This article models the pricing of derivatives on cred-
it risk, instruments proposed in 1992 by the International

Swap Dealers Association that have started attracting mar-
ket attention. The exact structure of the instruments contin-
ues to evolve today.

We develop a framelWrk to understand the key features

pricing of corporate default risk is
receiving increasing attention in the finance
literature. A number of articles have
attempted varied approaches to pricing

risky debt ~see, for example, Jarrow, Lando, and
Turnbull [1994], Jarrow and Turnbull [1994], Kim,
Ramaswamy, and Sundaresan [1993], Longstaff and
Schwartz [1993], Nielsen, Saa-Requejo, and Santa-
Clara [1993], and Shimko, Tejima, and van Deventer
[1993]). These authors price bonds with default risk,
options on these risky instruments, and options
whose payoffs are subject to credit risk.

My research models the pricing of options on
the credit risk of corporate debt, separately from its
interest rate risk. This results in a compound option
pricing problem where, in a world with stochastic inter-
est rates, the exercise price of the option is stochastic.

Credit risk derivatives are instruments, usually
options, whose payoffs are linked to the credit char-
acteristics of a particular asset. Widespread trading of
such instruments would enhance the efficiency of the
credit markets substantially, and prompt active arbi-
trage of credit risk separately from term structure
risk, which, is generally absent from the markets
today. Such instruments let fund managers, banks,

and corporations increase or reduce their exposure to
credit risk, off-balance sheet.

The concept of credit risk derivatives was
introduced in 1992 at a conference of the
International Swap Dealers Association (ISDA). A
number of Wall Street firms have begun experiment-
ing with credit risk derivatives (and Bankers Trust has
already begun selling such contracts). The need for
such financial instruments cannot be understated.
Altman [1991] estimates the default rate for high-
yield debt at 6.26% in the first half of 1991. Even
insured paper is at risk. For example, in 1991,
Moody's downgraded structured securities backed by
letters of credit from Credit Suisse.

Credit risk derivatives are not entirely new
instruments. Bond insurance, sureties, and financial
guarantees constitute a substantial market in the
municipal bond area. AMBAC has been insuring
municipal bonds since 1971. Yet options on corpo-
rate credit risk have, until recently, seen little growth,
compared to the municipal market.

There are several possible reasons for this.

Empirical evidence in the muni market clearly
shows that the issuer is able to lower the cost of
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financing with the use of bond insurance (see
Hsueh and Chandy [1989] and Jaffe [1992]). It is
unclear whether this is true for corporate issuers.
There is a very high demand for bond insurance,
since municipalities need to raise large amounts
of funds, and would find it impossible to do so
without backing issues with insurance.!
Corporate debt issuers have been able to raise
funds quite adequately, partly because even junk
bonds have a clientele.
Suppliers of muni credit insurance have found the
business very profitable, as default rates have been
less than 0.5% of new issues each year, and capital
requirements have been low thus far. On the
other hand, corporate debt has evidenced greater
default rates.
Corporate bond insurance may also be unattrac-
tive since the cost of buying insurance is amor-
tized by the issuer over the life of the issue, and it
reduces the value of bond callability. Flexibility of
capital structure is valuable for corporations, and
hence the cost of insurance in terms of reduced
callability may outweigh its benefits.

able to buy counterparty lines of credit when they
need them.

And in recent times credit enhancement has
been shown to be a valuable corporate strategy. A
case in point is the establishment of AAA sub-
sidiaries by investment banks (see Figlewski [1994]).
These subsidiaries will be well-positioned to com-
pete with the large insurers for the corporate bond
insurance business. Credit risk will be priced by
market forces, and should enhance the efficiency of
the credit markets.

Credit risk derivatives may be employed
when market players wish to exploit inefficiencies
in the market when there is imperfect correlation
between stock prices and interest rates. According
to my model, for instance, when interest rates and
stock prices are negatively correlated, corporate
debt values are higher than when the correlation is
positive. Credit spreads in the market may not cor-
rectly reflect the correlations between stocks and
the term structure. This may allow investors to hold
a package comprised of a corporate bond and a
credit risk derivative, which costs less than equiva-
lent riskless debt, yet offers identical risk/return
characteristics.

Municipal bond insurance has been valued so
far using actuarial methods. Here instead I present a
contingent claims approach to valuing derivatives on
credit risk. We will call these derivatives credit risk
options (denoted hereafter as CROs). The model pro-
vides a framework for pricing default risk, and then
describes some of the interesting features of derivatives
on credit risk and their hedging. Our valuation meth-
ods allow for stochastic asset values and interest rates,
and permit any specification of default behavior. The
framework is applicable to OTC contracts as well as
bond insurance.

The generic form of the CRO (on any under-
lying risky debt instrument) is a contract in which the
writer of the CRO agrees to compensate the buyer
for a prespecified fall in credit standing (not necessari-
ly default) of the issuer of the underlying credit instru-
ment. Thus, the CRO protects its buyer against the
loss in value of a bond should its yield rise above, or
its rating fall below, a trigger or "strike" level. This
strike level is usually specified as the acceptable default
spread on the bond.

While bond insurance in the muni markets is
purchased by the issuer of debt, options on corporate
debt are often bought by the holder of debt from
investment banks, in specifically structured over-the-
counter contracts. As competition grows in the muni
bond insurance business, large monoline insurers are
entering the market for corporate bond insurance,
realizing it is a lucrative market to be tapped.

Wide availability of credit risk options will
bring several benefits. If credit risk can be hedged,
issuers of risky debt may realize cost savings in financ-
ing. Spahr, Sunderman, and Amalu [1991], for exam-
ple, find that over the period 1970-1985 corporate
bond insurance could have been offered by a third-
party insurer at lower cost than the prevailing market
default risk premium.

As banks hit capital adequacy barriers, they
may demand credit risk hedges. Large banks are find-
ing that their positions in swaps and commercial paper
are stretching their credit limits. Pension funds will be
able to access higher net yields with no additional
credit risk. Low-rated corporate issuers will find it
easier to access the capital markets, and traders will be
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I. THE MODEL

First we review the pricing of CROs in the
Merton [1974] framework, where interest rates are
treated as constant. For easy reference, the notation
used is provided in Exhibit ~.

A recent approach ror the pricing of credit
risk is the instantaneous! default risk approach,
where the bond defaults with Poisson probability.
Other approaches revolve around modeling the
process for credit spreads themselves. While the for-
mer seems to be adopted when valuing high-yield
bonds, the latter is bette~ for better-quality debt.
Yet another approach is to value bonds off the risk-
less interest rate process and provide for credit rat-
ings to follow a Markov process (Jarrow, Lando, and
Turnbull [1994]). The approach I follow allows the
specification of stochastic processes for interest rates
and firm values, and the discrete time application

EXHIBIT 1
NOTATION

Volatility of stock return

Face value of debt outstanding

Market value of debt outstanding

Fintl value at time T w

Finn value at time T B

Volatility of return on V

Risk-free interest rate

Credit spread for a given debt rating

Cont~{uous dividend payout rate
Conti4uous coupon rate on debt

On exercise of the CRO, payoffs are com-
puted as follows: compute the price of the bond at
prevailing default-free interest rates plus the strike
default spread. This is the "strike price." The payoff
of the CRO is the amount by which the strike
price excee!ds the then-prevailing market price of
the bond.2

A credit risk option is a compound option
with a stochastic exercise price. This is because it is an
option on risky debt, which is itself an option on the
value of the firm's assets. Given that interest rates are
stochastic, so will be the strike price of the CRO.

CROs are different from other options on
debt. Whil~ debt options usually price the interest
rate risk of the bond, CROs price only the credit
risk. Therefore CROs strip away credit risk from cor-
porate debt.3

Embedded options on credit risk are especial-
ly relevant when considering floating-rate contracts
where the degree of interest rate risk is less than that
of fixed-rate debt. Callable floating-rate notes may
be exercised by the issuer when its credit rating
improves, and puttable notes may be exercised by
the holder when the rating of the issuer declines.
These and other similar contracts are termed "step-
ups," and are nothing more than options purely on
credit risk.

Merton [1974] was the first to suggest a con-
tingent claims approach to pricing risky debt, under
the assumption of constant interest rates. The frame-
work we provide for pricing derivatives on risky dis-
count or coupon debt assumes that interest rates are
stochastic. Implementation of the methodology
requires parameter inputs for the value and riskiness of
the firm 's as~ets, which are not directly observable or
traded. The model can be used to obtain implied val-
ues of these unknown parameters using available secu-

rity prices.
The behavior of CROs varies dramaticalily,

depending oln specific contract terms and conditions,
and the moclel is general enough to accommodate a
wide range of such features. For instance, if the CRO
is written as a European option, and the firm defaults
prior to its maturity, the option value depends very
much on wnether it kicks in or dies out on default.
The model is also able to handle varied specifications
of default behavior.

P(V, K, Tw' cr, r)

K(.)

B-S call opfi~alue on V with

strike ~. maturity T w' volatility 0",

interesf rate r

B-S Pft option value on V with

strike f' maturity T w' volatility 0",

interest rate r

C;RO strike price (stochastic)
R = R(r, rd' r*, rc> Interest rates set
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Therefore the strike price is the price of a bond dis-
counted at the riskless interest rate plus the strike
credit spread (r*), for the remaining maturity of the
bond (T B -T w). Thus, the effective exercise price (K)
is given by

allows imposition of any form of default and
boundary conditions.

The maturity of the risky bond occurs at time
Tn and that of the CRO at time T w' Of course, 0 <
T w < Tn' We assume that the process followed by the
value of the firm V is:

.
K = Fe-(r+r )(TIl-TW)dV = (aV -rcF)dt + aVdz

(1)

where

a
rd

rc
F
0'

= r -rd;

= rate of continuous dividend payments;
= rate of continuous coupon payments;
= face value of the debt; and
= volatility coefficient of the firm value process.

In the case of a coupon bond, the strike price will be
the sum of a series of terms of the type above, one
for each future cash flow. In that case, F in the
expression is replaced by the amount of the future
payment, either coupon or principal, and Tn is the
payment date.

In this section, where interest rates are assumed
to be constant, the exercise price K is also constant.
When interest rates (r) are stochastic, so is the exercise
price. The payoffs at the maturity of the CRO (i.e., at
T w) are given by:

The solution to Equation (1) for initial value
V(O) is:

02

2
max (0, K -Bw)V(t) = V(O)exp + crZ(t)

02

2
rcFeXD + crZ(t) x

where Bw is the value of a bond at time T w condi-
tional on the fact that the value of the firm at that
point in time is V w. This equation expresses the
CRO as a compound option on firm value.

Under the standard put-call parity relationship,
we can write

J: 

exp[ -(a -~) s -az(s)] ds

Bw = PV(F) -P{Vw' F, TB -Tw' cr, r)

= v w -c(V w' F, T B -T w' 0', r)
(2)

where PV(F) is the present v,.lue at T w of the future
bond payments, P[.] is the put option formula of the
Black-Scholes equation, and C[.] is the call option
formula. We ascertain the value of V W at which

K-Vw + C(Vw' F, Tn -Tw) = 0

Call this value V*. This is the cutoff value of V below
which the CRO will be exercised.

For simplicity let us assume a zero-coupon
bond and no dividend payout on the equity of the
firm; that is, rc = rd = O. The CRO value is computed

by discounting the expected payoffs taken under the

and Z(s), as before, is a standard Wiener process.
Credit options are options on debt for which

the underlying stochastic process is not the interest
rate but the value of the firm. Hence, in order to
compute the CRO value we need to estimate the
parameters that define the evolution of the firm value.
The value of the firm (V) and the volatility of firm
return (0') are not always ascertainable, but it is possi-
ble to back out these values from observable data in a
parsimonious way. Alternatively, the models in this
article can be used in conjunction with observed
prices to infer the necessary parameters.

Valuation of the CRO requires computation of
the strike price. This is the value of the bond at time
T w if the crfdit rating is at the exercise level.
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EXHIBIT 2
SIMULATIONS OF 'V ARYINC CREDIT SPREADS

T w Risk Spread r* in basis pts.
(yrs.) 50 100 150 200

1 0.095 0.026 0.008 0.003

-~1 ~.~4! _(~'!l, I: (1.6) (0.5)
2 0.202 0.117 ; 0.073 0.047

..Q~2! gg..5~ I II ~(~2] ~(~'~l
3 0.281 0.218 !, 0.175 0.142

.~1~.?~ \1~.!~; 1.1 (10.0) (8.3)
4 0.334 0.303 " 0.279 0.259

"

(12.8) (11.7), I! (11.1) (10.4)

risk-neutra~ measure. The CRO will be exercised
whenever t~e value of the firm V is less than the cut-
off value V.~i

Taki g the appropriate integrals, we obtain the
expression fC r the value of the CRO at date 0:

CRO(V,ld.,r,r*, TI3' Tw,F) =

-rTW ft.

I[K 

-Ve(r-0'2/2)TW+xO'~e

::(Ve(r-Or/2)TW +xo[i:;

F, Tn -1 Tw, 0", f)] cj>(x) dx (3)

where

K = ~ exp[-(r + r*)(TB -Tw)]

and

Computation of CI~O values for stock value S = 25. The param-

eters varied are the time to maturity of the CRO (T w)' and the
credit risk spread (rO). The parameter values are as follows:

Debt amount F = 50
Stock return volatility per year O"S = 0.35
Riskless interest rate r = 0.10

Average debt maturity'(yrs.) T 11= 5
Computed value of the firm is V = 65.46 and value of firm
volatility is 0" = 0.14. Hence the computed debt-equity ratio is

1.62. Figures in the table are computed CRO values. Figures in
parentheses represew: CRO premiums in basis points per year.-log(V* IV) -(r -02/2) Tw

-of[;
x[V*]

and cjI(.) is t e probability density function of the stan-
dard normal distribution. Equation (3) is an ordinary
integral exp ession in x, and is easily evaluated using
numerical integration.

We c n provide a few examples of these com-
putations to demonstrate interaction of the variables
in the mode. We assume a simple firm with equity S
= 25, and d bt of face value F = 50 with a remaining
maturity of lve years (T B = 5). The risk-free rate is
10% (r = O. 0). The current (instantaneous) volatility
of stock re urn is 35% (os = 0.35). We compute

CRO values for various values of tHe credit risk spread
r*, and the RO time to maturity (T w).

CRO prices are computed in two steps. First,
we compute the implied values of V and 0" using the
model with thie known values of equity (S) and stock
volatility (0"). These two parameters map easily into
the firm value parameters (V, 0"). Second, we apply
the valuatio for the CRO in Equation (3).

Samp e results are portrayed in Exhibit 2, where
the values in parentheses are basis points per year.

Resu ts are developed assuming different spreads

over AAA rates. For instance in Exhibit 2, assume that
AAA paper is trading at th~ risk-free rate (0 bp over

!I

Treasuries).5 Suppose BAA paper I! trades at a spread of
100 basis points over AAA paper li(it usually does trade
50-150 basis points over AM). The buyer of the CRO
holding AAA paper (of the firm depicted in Exhibit 2),
and wanting two-year protection against a fall in its
credit spread below that of BAA, would need to pay
$0.117 or 1.0.5 basis points per year for this protection.
The buyer is unprotected against the drop from AAA to
BAA, but any further drop in rating is insured against.

In this way, CROs c~n be l\used to design floors
on credit losses. If the buyer of t

t' e CRO is willing to

live with a further 50 basis poin of deterioration in
spreads, another year of protect~,~ n is possible at the
same cost (note that three~year ~rotection at 150 bp
also costs 10 bp per year). Hence, such instruments are
valuable in matching investor risk appetite and investor
holding-period horizo~s. Moreover, I! the cost of ad~tion-
al two-year protection from 150 \'p to 100 bp is only
3.5 bp. This seems like a worthwhile trade-off for an
investor to make.

These instruments should enhance the effi-
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where for all t 5; T, f(t, T) denotes the instantaneous
~ ..

Since the firm value process and the term
structure of forward rates share the Wiener process zl'
this provides a model where stock prices and interest
rates are correlated. This form of the model is dis-
cussed in Amin and Jarrow [1992]. The instantaneous
spot rate is denol:ed r(t), and is expressed in terms of
the forward rates as r(t) == f(t, t). Default-free bond
prices in this model obey the equation:

ciency of the credit markets. The valuation scheme
uses parsimonious data, and observable market vari-
ables to value CROs. The procedure is also simple,
and easy to extend. It has one particularly interest-
ing advant~ge. Since the model values do not
depend on the absolute size of the firm but rather
on its debt-equity ratio, standardized tables for differ-
ent values of the debt-equity ratio, stock value,
volatility, and time to maturity can be developed
and used whenever required.

The value of the CRO falls with a decrease in
the debt-equity ratio, because there is more equity to
back risky debt. Increases in r* reduce the CRO value
because the ~ffective credit-adjusted exercise price is
lower, hence making the option more out of the
money. At lower stock values, the debt-equity ratio is
higher. For ~gh debt-equity ratios, the CRO premi-
um in basis p<i>ints per year first increases with increas-
ing T w' but then decreases, if r* is low; otherwise, the
required basis points per year premium required
increases wi~h the period of protection required.
Hence, insurance on an annual cost basis is costly for
investors with long horizons.

where P(t, T) is the time t price of a discount bond
maturing at time 'T. Ito's Lemma provides (for a proof,
see HJM):

dP(t, T) = [r(t) + b(t, T)]P(t, T)dt +

a(t, T}P(t, T}dzl (t) (6)

II. MULTIFACTOR MODELS AND
STOCHASTIC INTEREST RATES

where

The analysis so far has assumed a single stochas-
tic process for the value of the firm, which means
there is not much flexibility to allow a wide range of
default spreadS in the model. To enhance the model to
encompass stochastic interest rates in addition to
stochastic asset values, we can write the firm value
process as follows: a(t, Y)dy]2

dV = ~Vdt + 01 Vdzl + °2Vdz2
(4) To allow risk-neutral pricing of claims in this

framework, we start by assuming the existence of a
risk-neutral probability measure Q, such that the dis-
counted values of all assets follow martingales. This
will ensure pricing using no-arbitrage conditions as
shown by Harrison and Kreps [1979]. Since equity
(S) is a call option on firm value maturing at time
Tn' with a strik(~ price equal to the face value of
debt, we can write the value of risky debt in the
firm as:

where Z = (Zt' z2) is a vector Wiener process. The

coefficients defining the variance of this Wiener pro-
cess are (Ot' °2)' and Z is assumed to follow indepen-
dent Browniaij motions.

To allow for stochastic interest rates, we impose
the term strlficture model of Heath, Jarrow, and
Morton (HJM) [1992] on the asset process. The law
of motion for forward rates is given by

df(t, T)I = a(t, T)dt + cr(t, T)dz1 (t)
(5) B(O, T B) = V(O) -S(O) =

12 CREDIT RISK DERIVATIVES
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Eo ous dividend payouts at the rate rd" With this addi-
tion, the value of risky debt is valued using the

equation:

(7)
1

P(O, TB)

Detailed c3mputations (along the lines of Amin and

Jarrow [19911]) provide the solution to this expression: B(O, Tn) = V(O)[1 -<I>(k) e-rdTB

FP(O, TB)<I>(k -'II)B(O, IrB) == V(O)[l -«I>(k)] -

FP(O, T n)<I>(k -'If) (8) k = log[V(O)jFP(O, TB)] -rd TB + 1/2",2

'" (12)
k =1 ~~)/FP(O~ TB)] + 1/~

(9)

Example

(10) This parsimonious model is capable of generat-
ing several risky debt term structures. To illustrate, let
us assume that the prices of riskless discount bonds at
time 0 satisfy the equation:

where <1>(.) is the cumulative normal density function.

Implementation
P(O, T) = exp[-(0.06 + O.OOST -0.0001 T2)T]

(14)

The polynomial assumed above is a simple way of
generating a realistic term stru~ture. The instanta-
neous interest rate is 6% (when 1 = 0). When T = 1
the zero-coupon rate is 6.49%1! The riskless term
structure, embodying the yield~1 Y(T), for different
maturities T, is defined by ":

To iijlplement the model for various term
structures f4r risky debt, we make some simplifica-
tions. They rre intended to make computation easier,
yet permit a I varied set of default spreads.

First, ! we simplify the volatility process for the
term structqre by assuming that it stays constant, i.e.,
O'(t, T) = O'.! This makes the term structure model iso-

morphic to ~hat ofHo and Lee [1986]. Hence:

-f~ crdu = -O'(T -t)

and

With this initial term structure of interest rates, and
suitable parameter values for !the processes V and f(t, T),
we can compute risky debt prices I(B(O, T B)] for various
debt maturities using Equati<!>n (1 ~~.

The term structure of ris~ debt with stochas-
tic interest rates, Y B(T B)' is then ~pressed as follows:

and

a2T3

3

-
TB

In Exhibit 3, we plot yield curves Y B(.) and
against time for different values of parameters.Y(.Seco~d, we assume that the firm has continu-
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EXHIBIT 3
RISKLESS AND RISKY TERM STRUCTURES

y

T

T

or

0.06,,"

y

T 'I'

Yield curves for six different term strUctures of credit spreads, all using the fundamental parameters: V(O) = 100, F = 75, rd = 0, r. = 0.01,

T B = 5. Reading top to bottom, left to right, the six panels are generated with the following parameter sets for (°1' °2' cr): (0.05, 0.2,

0.02), (0.3,0.01,0.02), (0.1,0.2,0.02), (0.1,0.3,0.03), (0.1,0.1,0.05), (0.1,0.2,0.05). The initial riskless term ~tructure is an upward-
sloping one. Note that for ease of reading, the horizontal axis has been placed at a yield of 100/0.

The curve Y B(;) always lies above the curve Y(.) as it
is the risky debt term structure. The distance between
the two curves represents the default spread for each
maturity, and thus essentially represents the term
structure of cre it spreads.

The m del can generate many different
shapes for the credit spread term structure. Note in
Exhibit 3 that we are able to generate wide spreads
at the short e d of the term structure, with narrow
spreads at the long end; alternatively, we can get
narrow spread at the short end and wide spreads at
the long end The shape of the spread curve is
affected by th choice of the three parameters (°\'

°2' 0"). The parameter °2' which governs the volatil-
ity of fluctuations in firm value that are independent
of interest rate movemerlts, affectf the spread curve
across all maturities. The parametJr °1' which deter-
mines the correlation between changes in firm value
and interest rates, impacts spreads only at the short
end of the time spectrll1m, and the parameter 0",
which measures yield v1latility, impacts only long-

maturity spreads.

Derivatives on Risky Debt -Pricing CROs

Pricing options on risky d~bt is a compound
option problem because risky debt itself contains an

$i'IUN(; 1')9514 CREDIT RISK DERIVATIVES



the values V wand P w from the equations above, and
the maturity term T B is replaced by T B -T w. We
denote this risky debt price using the notation:

B[Vw' Pw] = BijTw' TB; !Ill' ZJ

We now turn to the computation of the exercise
price of the CRO. The value of the CRO is that it
provides protection to the buyer of the option against
a fall in credit rating of the bond below a given level.

As an example, say the current default spread
for AA bonds over the riskless rate for a bond of
maturity TB -Tw is 100 basis points. The buyer of
the CRO receives compensation in the event that the
date T w price of the risky bond falls below the price
of a bond priced at the riskless yield plus 100 basis
points. We denote the "strike credit spread" r* =

0.0100. Depending on the out,ome of the Wiener
process ZI as of time T w' we obtain a different riskless
bond price, which translates into a different riskless
yield at T w. Thus, we get a range of strikes K(.) cor-
responding to each outcome of ZI. The stochastic
strike price of the CRd is

option on firm value. In our framework, as interest
rates are treated as stochastic, we have two compo-
nents of option value corresponding to the two
sources of risk: firm risk and interest rate risk. While
some derivatives on risky debt, such as the call feature
on corporate bonds, derive value from both sources of
risk, credit risk options are specifically written on the
firm risk component of the corporate bond stripped
of the interest rate risk. Therefore, when pricing cred-
it risk options (CROs), we need to adjust the strike
price to reflect this feature.

We first review some of the notation used. As
before, the underlying risky bond matures at time T B'
and the CRO on this bond matures at time T w.
Assuming constant firm value volatility, the date 0 for-
ward values for the riskless bond and firm value as of
time T ware as follows:

Pw = P(TW,TB,Zt)

a2Tw TB(TW -TB) -
2

P(O, Tn) eXD

P(O~~

=1 FxK(Tw,TB,Zt,F,r
Vw = V(1fW,Zl,Z2) = V(O)M(TW,Zl) X

I(TB-Tw),

1 IdgPw + r
exp

(TB -Tw)
exp

+ 0222]°IZ (16)

where

M(T-1,Z1) = T""~ ~ \ X
1

For each outcome of ZI' we invert the price
P(.) to obtain the riskless yield, then add on the spread
r*, and compute the strike K(.). The term in brackets
in Equation (17) is the riskless yield plus the strike
credit spread r*. This tetm is the risky yield, which is
then used to compute tpe exercise price by discount-
ing the face value of the bond for the remainingImaturity period. ' I

The price of the ,CRO is then obtained by tak-
ing the necessary expectation under the risk-neutral
measure Q: I

2T3cr w
~ 2T3

CJ W
-ZI ~

1

CRO = CRO[bl' b2' 0',1 T w' T B' ~(O), P(O, .), F, rd' r*]and (Zt. Z2) are the outcomes of random variables

(Zt. Z2).
-B(Tw. Tn). 0]]= EQ[max[K(TW.ITu' ZtThe ~ate T w price of risky debt for each real-

ization of (ZIt Z2) is then given by Equation (11)
where the terms V(O) and P(O, Tw) are replaced by P, r*) -~~ max[K(T w' T J Z=
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B(T w' T~, O]c!>(ZI)c!>(Z2)dZ2dZI (18)

where cjI(.) is the standard normal density function.
The last line follows from the fact that (ZI' Z2) are

orthogonal.
Computing the integral in Equation (18) is dif-

ficult, as it is an extremely complex function involving
integrating twice over the cumulative normal distribu-
tion function. It also takes considerable computing
time. A discrete time approach where the time T w
distributions of ZI' Z2 are approximated using a bino-
mial distribution provides very fast and accurate
results. For any number n of discrete points used to
approximate the probability distribution, we use the
,following scheme. The ith outcome of the random
variable Z (denoted Zi) takes the value

options on options. The value of the CRO includes
time value from the underlying bond (which contains
an option on firm value) and time value from the
option on this bond.

If the CRO maturity is very short, then the
maturity of the underlying forward risky bond (which
is also an option) is long, and while the underlying
instrument has high time value, the CRO itself has
very little. The converse occurs when the CRO
maturity is long, and the forward risky bond's maturi-
ty is short. The highest total time value seems to be
attained when b(:>th option components have average
time value.

The thref~ volatility parameters have different
impacts on the prices of CROs. Increases in the riski-
ness of firm value caused by higher values of °1 or °2
will increase the value of the CRO. Increase in the
volatility of intf:rest rates through the parameter cr
causes the value of the CRO to fall. This is because
when interest r~tes are uncertain, the expected dis-
count rate is higher, thus reducing the present value of
the CRO.

n -2iZj = --~-, Vi = G..n

with probability

1lI. A GE~.I.. DISCRETE TIME APPROACHProb. =
I

n
where = "n choose i," i.e., the number of com-

i

The discrete time model we develop in this
section provides far richer features than the continu-
ous time methocls. It enables 1) the simple handling of
coupon bonds, ~~) the pricing of debt with embedded
derivatives with American features, 3) an easy model-
ing of the bankl.uptcy process as any function of the
state variables in the model, and 4) time- and state-
dependent volatility functions.6

Our model is a discrete time version of HJM
augmented for a risky asset process. A full exposition
of such a model is provided in Amin and Bodurtha
[1994], and the model here is a modest version of
their framework. As in the previt>us section, we write
the forward interest rate process in discrete time as

f(t + h, T) = f(t, T) + a(t, T)h +

O'ZI.Jh. "IT ~ t

where Z, is a ~;tandard normal ,variate, and h is the
discrete time interval. Therefore, the instantaneous
spot rate is

binations of n things taken i at a time. It is easily
checked that this provides the outcomes of a random
variable with mean zero and variance 1 for n steps in the
binomial tree. The use of binomial probabilities ensures
convergence in the limit to the normal distribution.

The method provides rapid computational
speed. For maturities of the order of T B = five years,
even small values of n = 5 provide high levels of accu-
racy. For longer maturities, n = 30 is sufficient to

obtain accurate values, although computing perfor-
mance is impaired somewhat.

In Exhibit 4, we provide a plot of CRO values
for each of the default spread scenarios we developed
in Exhibit 3. A value of r* = 0.0100 corresponding to
100 basis points is used. We set Tn = 5, and the plots

depict CRO values for varying maturity T w.
Notice that the CROs tend to be valued high-

est at middle maturities. This is because they are

SI'ltlN(; 1'/'/516 CIU;DIT RISK DERIVATIVES



EXHIBIT 4
PRICES OF CREDIT RISK OPTIONS

CRO CRO

TW 2

1.

TW

CRO

'IW

'IW

CRO values for six different term structures of credit spreads, all using the fundamental parameters: V (0) = 1 OO,~I = 75, rd = 0, r* = 0.01,
T B = 5. Reading top to bottom, left to right, the six panels are generated with the followillg parameter sets fo (51, 52, cr): (0.05, 0.2,

0.02), (0.3, 0.01, 0.02), (0.1, 0.2, 0.02), (0.1, 0.3, 0.03), (0.1, 0.1, 0.05), (0.1, 0.2, 0.05). The initial riskless te structure is the same as
that used in Exhibit 3.

r(t) = f(t, t) = f(O, t) +

P(t, T) = eXD
t

--I
h
L[<X.(jh,t)h + crzl.J"h]
j=O

T
h

-L
.t
1=--

h

Since cr is scalar constant, this model is similar to that
ofHo and Lee [1986]. The price of a riskless bond at
time t with maturity T is given by

f(o.lih) += e~
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We define the risky firm's asset process in dis-
crete time as follows:

log~~-~ = [r(t) + ~(t)]h + ~FhZ2(t) (19)
V(t)

By substitutin!: these drifts [a(.), ~(.)] into the origi-
nal processes, 'lie obtain the risk-neutral evolution of
the firm's risky assets with stochastic interest rates.
This transformed process can then be used to carry
out valuation of any contingent claim written on the
firm value.

This scheme is easy to implement on a bivari-
ate tree. As disc;ussed in Arnin and Bodurtha [1994], it
is desirable to have path-independence on the tree
such that an up move on the tree followed by a down
move results in the same value as a down and then up
move. This reduces the number of nodes on the tree
by a huge order of magnitude, allowing more time
steps, and better convergence of the discrete time
model to the c4~ptinuous time one.

The forward rate process above is path-inde-
pendent (because we assume the special case of the
Ho-Lee [1986] model, which is known to be so), but
the firm proce:;s is not, as it contains r(t) in the drift
term (see Eqilltion (19», which is state-dependent.
However, as shown in Arnin and Bodurtha [1994], by
embedding r(t) instead in the risk term Z2' and modi-
fying the probability measure, we can attain path-

independence!
We transform the correlated random vari-

ables Zt' Z2 to a pair of orthogonal random vari-
ables Y t' Y 2 fclr easy implementation. It can be ver-
ified that the !;imple restatement below provides an
equivalent ris)~-neutra) pricing process with path-

independence.

where Jl(t) is the excess of the drift over the riskless
rate under the risk-neutral measure, and 0 is the
volatility coefficient. It is assumed here that Jl(t) sub-
sumes an adjustment for risk neutrality, as well as for
all continuous payouts of the firm, such as interest and
dividend payments.

For simplicity, and to enable the numerical
tractability of a path-independent model, we
assume that the total payouts of the firm are pro-
portional to firm value at any time. The case where
non-proportional payouts are made leads to a path-
dependent model, which is no more complex con-
ceptually than the path-independent one, but
requires far more computing time. 22 is a standard
normal variate, and the correlation between 21 and
22 is denoted p.

We assume the existence of a risk-neutral
measure under which we can evaluate our random
variables 21, 22. Under the risk-neutral measure,
the discounted prices of assets must follow martin-
gales (Harrison and Kreps [1979]), so we compute
the drift terms that satisfy the martingale condi-
tions to be

f(t + h, T} = f(t, T} + a(t, T)h +

crY1.Jh. 't:IT ?: t (22)

!.-t
~~

'i/(t)
log

h
L a(t, T)h =

.I1=-+1
h

=

~(t)h -to o.Jh[ pYt + ~--=7Y2 (23)

1
-log 1:.
h

T
--1
h

-h 1 crZ1 (ih).Jh
.t1=-+1

h

(20)
m = -r(t).Jh

c~~=:=; ';="

exPI

(24)

where the valLles of Y l' Y 2 and probabilities on the
bivariate tree are given by

J.1(t) = -~logE(exp[o.JhZ2(t)])
h (21)
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Under this scheme the expected values and variances
and the correlation of Zl' Z2 correspond to those of
the original system as required. Starting with terminal
values for the risky debt in the firm, we compute
current values using backward recursion on the
bivariate tree.

Since the framework is a discrete time one, it is
easy to impose any boundary conditions required. The
condition we impose is that whenever the firm value
V(t) falls below a certain cutoff level f3, bankruptcy
will be declared and the debt will be worth only a
fraction 1 of its face value. Alternative definitions of
default may be employed, such as cutoff debt-equity
ratios, or any other function of the state variables.

In our numerical example, we impose
bankruptcy whenever the value of the firm's assets
drops below a value of f3 = 40. If this happens, the
debt is worth a fraction (1 = 40%) of its face value.

For illustrative purposes, the debt is assumed to have a
maturity of ten years, with a face value of 50, and a
coupon of 12%. The initial value of the firm is 100.
The stochastic framework for interest rates is that of
Ho and Lee [1986], and the initial forward rate term
structure is set up by the function:

ture is negative, risky debt prices will rise.
We now proceed to value credit risk options on

the risky debt values shown in Exhibit 5. For simplicity,
we price the CRO in such a way that any fall in credit
rating below the risk-free level is compensated for by
the option (i.e., strike level r* = 0). The results are
depicted in Exhibit 6. The maturity of the CRO is
taken to be five years, and the underlying corporate
bond is of maturity ten years. The parameters are the
same as those used in Exhibit 5. As is expected, the val-
ues of the CRO mirror those of risky debt. Here the
CRO is assumed 1:0 be American in nature; i.e., it may
be exercised at an1' time prior to maturity.

The graphs emphasize some intuitive relation-
ships. The value of the CRO decreases as the recovery
rate (y) increases. As volatility (of assets (~) or interest
rates (cr)) increas'~s, the value of the option (CRO)
naturally rises. Finally, as the correlation (p) between
the changes in the firm's assets and interest rates
increases, the value of protection from the CRO
increases as well. "'Xlhen the correlation is negative, the
volatility from th,~ assets is damped by the offsetting
volatility from tht~ term structure of interest rates. As
the correlation moves into the positive range, the
effect of asset volatility is compounded, leading to
higher option values.

Iv: HEDGING C:REDIT RISK OPTIONS

£(0, t) = 0.1 + 0.005t -0.0001 ~

Here the instantaneous forward rate at time 0 is 0.10,
and at one year is 0.1049. Interest rate volatility is
given by 0" = 0.005, and firm value volatility is 0 =

0.20. In Exhibit 5, we plot the risky debt price for
different values of the recovery rate 'Y, interest rate
volatility 0", firm value volatility 0, and correlation p
between firm value and the term structure.

Risky debt prices are naturally increasing in the
recovery rate 'Y. As firm volatility 0 increases, risky
debt value drops; the same occurs when interest rate
volatility 0" increases. As the combination of 0" and 0
interacts through the correlation p, increasing correla-
tion naturally reduces the price of risky debt. When
correlation between firm values and the term struc-

A natural question is how CROs would be
hedged. Since replication is possible, any position in
CROs could be notionally offset by a portfolio of
stocks and bonds, assuming no shprt-selling and bor-
rowing constraints. Replication isl costly, given trans-
action costs, ho'wever, so writers of CROs could
delta-hedge using positions in put options on the
firm's stock (\vhlch track the CIRO better), rather
than short-sell tlie stock. Note ~hat even with put
options, rebalancing of the hedge portfolio is still
required, making the hedging or CRO portfolios a
non-trivial exerci:,e.

In the theoretical model, pond values are less
sensitive to stock values when firms are doing well,
and more sensitive when they a~ doing badly; firms
with higher debt:-equity ratios display greater CRO
sensitivity to changes in firm value and stock value.
This matches similar regularities i~ empirical data.8
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EXHIBff 5
PRICES OF RISKY DEBT WITH DEFAULT BOUNDARY IN

DISCRETE TIME

EXHIBIT 6
PRICES OF CREDIT RISK OPTIONS WITH DEFAULT

BOUNDARY IN DISCRETE TIME

CroPr

Risky debt prices with the paramete~: firm value = 100, debt
face value = 50, coupon = 1~/o, (J = 0.005, ~ = 0.25, correlation

between interest rates and firm value = 0.5, debt maturity = 15
yea~, recovery rate on default = 40%. The equation for the ini-
tial forward rate curve is f(t) = 0.1 + 0.005t -0.OOOlt2. Graphs

are plotted for various values of1, (J, ~, and p. (J on the graph is
shown times 100.

CRO prices with the parame'te~: firm value = 100, debt face
value = 50, coupon = 12%, <1 = 0.005, ~ = 0.25, correlation

between interest r:ltes and firm value = 0.5, debt matUrity = 15
yea~, recovery rate on default =, 40%. The equation for the initial
forward rate curve is f(t) = 0.1 + 0.005t -O.OOOlr2. The maturity

of the CRO is five yea~. Graphs are plotted for various values of
y, 0, ~, and p. 0 on the graph is shown times 100.

In Exhibit 8, with values plotted for varying
interest rate levels, once again the put option va~ue
tracks that of tae CRO well. Yet it should be clear
from the graph~i in Exhibits 7 and 8 that the CRO is
by far the moiit convex of all the securities. This
implies more rrequent hedge rebalancing will be
required, imposing greater transaction costs.

One simple way of hedging the CRO is to
use a put option and riskless debt in some combina-
tion to eliminal:e both firm risk and interest rate risk
in an instantaneous fashion. Cho~e the number of
puts (denoted ]~~ such that the entire sen!ttivity of
the CRO to firm risk is removed, and then use a
certain amount of riskless debt (Nb) to eli~inate the
remaining interest rate risk. The hedge must satisfy
the equations:

There are two sources of risk in the CRO: the
riskiness of the firm's assets and the riskiness of interest
rates, meaning that at least two hedge instruments will
be required. In Exhibits 7 and 8, we plot the values of
risky debt, risk-free debt, the CRO (American), stock
in the firm, and call and put options (European) on
the stock, when there is default risk. In Exhibit 7 val-
ues are plotted for varying firm value V, and in
Exhibit 8 for varying levels of the instantaneous inter-
est rate roo

The graphs indicate which corporate securities
best mimic the behavior of the CRO. For instance,
notice that the put option value closely tracks that of
the CRO for changes in firm value. This suggests that
buying puts may provide a simple way to hedge the
exposure of the CRO to variations in firm value.
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EXHIBIT 8
PRICES OF CORPORATE SECURITIES WIlli

DEFAULT BOUNDARY IN DISCRETE TIME

(FOR VARYING INTEREST RAn:S)

EXHIBIT 7
PRICES OF CORPORATE SECURITIES WITII DEFAULT

BOUNDARY IN DISCRETE TIME (FOR VARYING FIRM VALUE)

Prices of various corporate securities with the parameters: firm
value = 100, debt face value = 50, coupon = 12%, (J = 0.005, ~ =

0.20, correlation between interest rates and firm value = 0.5, debt
maturity = 10 years, recovery rate on default = 400/0. The equa-

tion for the initial forward rate curve is f(t) = 0.1 + 0.005t -

0.0001 c2. The maturity of the CRO, calls, and puts is five years.
The strike level of the CRO is r. = 0, and that of the calls and

puts is 50. The CRO is American-style, and the calls and puts are
European. The default boundary is at V = 40.

Prices of various corporate securities with the parametetS: firm
value = 100, debt face value = 50, coupon = 12%, cr = 0.005, ~ =

0.20, correlation bet'Neen interest rates and firm value = 0.5, debt
maturity = 10 years, recovery rate on default = 40%. The equa-

tion for the initial forward rate curve is f(t) = ro + 0.005t -

O.OOOl~. The maturity of the CRO, calls, and puts is five yeatS.
The strike level of the CRO is r. = 0, and that of the calls and

puts is 50. The CRO is American-style, and the calls and puts are
European. The default boundary is at V '" 40.

aCRO = N ~ Hedging 'Nith puts and risk-free debt is the
P aV simple way to make up the correct hedge. This fol-

lows immediately from the fact that risky debt is val-
+ Nb aBOND ued as the differc~nce between a riskless bond and a

af af put on firm value. Similarly, a derivative written on

risky debt shares the same char~fteristics. A similar
hedging approacb is suggested by fhance [1990].

av

~

aCRO = N apUT
p-af

These equations may be solved for (Np' Nb) to obtain
the local hedges.

In Exhibit 9, we present a numerical example
of the required holding of puts and risk-free debt
needed to hedge the CRO. The analysis is carried out
for a range of firm values and interest rates. The values
in the table provide the CRO price, and the amount
of the hedge required.

~

v: CONCLUDIr-lG COMMENTS

The stochastic interest rate models for the pric-
ing of derivatives on risky debt appear to allow for all
plausible shapes of default spread curves. CROs enable
splitting away and pricing the risk of default only.
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