Auction Theory: A Survey with Applications to
Treasury Markets

BY SANINV RAMIAN DAS AND RANGARAJAN K, SUNDARAM

This paper describes basic auction concepts, and provides a summary of the theosy in
this area, particularly as it relates to Treasury auctions, _

I INTRODUCTION

Auctions are among the oldest market mechanisms for price discovery, dating back
at Jeast two millenia. The list of commodities sold by auctions today is long; it
inciudes, among other things, artwork, agricuitural produce, antiques, and mineral
rights. Qur focus in this paper is on one of the largest and most important auction
markels in the world, that for US Treasury bills {T-bills).

US TREASURY AUCTIONS

For several decades now, the US Treasury has used auctions as a means of testing
the pulse of the short term interest rate market. A large number of auctions are
conducted every year. Three— and six~month T-bills are auctioned every Monday,
while ane-year T-bills are auctioned every four weeks. Longer-term securities such
as T-notes and T-bonds are also auctioned: for instance, two~—year and five—year
T-notes are auctioned every month, while other maturities (such as three—year,
ten—year, and thirty-year securities) are auctioned guarterly.! The fotal annual
volume of Treasury securities auctioned has increased steadily from a level of
$670 biflion in 1981 te $1.70 triflicn in 1991, and reached $2.0 trillion in 1995.2
From an analytical standpoint, Treasury auctions share a number of features
in common with other auction markets. The asymmetry of information between
bayer and seller is, for instance, central; without this, the auctioneer could simply
sell to the buyer with the highest valuation. However, Treasury auctions are also
characterized by a number of institutional features that distinguish them from other
auction markets, and that may render many of the standard analyses inapplicable.
First, Treasury auctions are preceded by forward trading among potential buyers
in the security to be auctioned. Trading in this forward market commences on

! Although out discussion in this paper is couched in terms of T-bills, it also applies equally (o these
longer-term instruments. .

2Treasury bills are also auctioned in other economies, but in some gases they are issued at a fixed
discount. Without exception, however, T-bills are issued for 3 and 6 month maturities. (To be precise,
in the US dollar markeis they are issued for 9 days and 182 days respectively.)
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the date the auction is announced, with settlement taking place on the date the
securities are issued. The presence of this forward market (known as the “when-
issued” market) implies that traders could enter the auction with prior short or
“long positions. In turn, this could affect their bidding strategies and, thereby, the
outcome of the auction. :

Second, Treasury auctions are followed by trading in an active resale (or “sec-
f}ndary”) market. As Bikhchandani and Huang [2] argue, this creates an important
information linkage that affects bidding behavior and prices in the auction. How
does this linkage work? The majority of bidders in the auction are primary dealers
and large financial institutions whose information about interest rates is typically
better than that available to investors in the secondary market. However, the public
information available to buyers in the resale market includes information from the
Treasury on the bids submitted in the auction. To the extent that these bids are
relective of the bidders’ private information, the resale price will be affected by
the bids. This now creafes an incentive for participants in the auction to signal
their private information to secondary market participants through their bidding
strategies.

Third, academic theory has mostly focussed on single-unit auctions, or on
multiple-unit auctions in which each bidder is entitled to at most one unit of the
commodity being auctioned. As pointed out by Wilson [33] and Back and Zender
(11, itis notall clear to what extent the intuition gained in this case can be profitably
transferred to the study of divisible~-good auctions, such as the treasury auction.

Fourth, T-bill auction markets are characterized by the presence of two dif-
ferent classes of bidders, called “noncompetitive” and “competitive” bidders, re-
spectively. Noncompetitive bidders, who are usually individual investors, submit
sealed bids that specify only the quantity they desire. Competitive bidders, who
are designated primary dealers and large financial institutions, submit sealed bids
t%lat are price-quantity pairs. Since multipie bids are permitted, each competi-
tive bidder effectively submits a demand schedule. Noncompetitive bidders are
guaranteed the quantity they bid for. The total quantity submitted by the non-
competitive bidders is subtracted from the amount offered by the treasury, and the
remainder is distributed to the competitive bidders on the basis of their bids. The
price charged the noncompetitive bidders is the quantify-weighted average of the
price paid by the competitive bidders. l

THE MAIN QUESTIONS

The behavior of bidders in an auction is obviously affected by the rules governing
the auction (the auction “form” or “mechanism”). A principle aim of auction theory
is to identify the auction mechanism that maximizes the expected revenue of the
seller. This problem is usualiy stated in 2 more constrained form. As with optimal
contracts in principal-agent models, optimal auction forms sometimes have very

complex and unintuitive forms. Therefore, the aim is often only to identify the
best of a given set of auction forms.

In the case of Treasury auctions, two auction forms are usually considered:
discriminatory auctions (DA’s) and uniform-price auctions (UPA’s). In a DA,
winning bids are filled at the bid price; that is, the demands of the bidders are
met by étartir;g with the highest-price bidder down, until the entire quantity is
exhausted. In a uniform-price auction, winning bidders pay a flat price, cdiled the
stop-out price for each unit they receive. The stop-out price is simply the lowest
winning price, i.e., the maximum price at which the aggregate demand® equals
or exceeds the available supply of T-bills. Since the 1970, the Treasury has
relied almost entirely on the DA format; however, beginning in 1992, it also began
experimenting with the UPA format in the sale of two-year and five-year notes.

Since bidders will aiter their behavior depending on whether they are facing
a DA or a UPA, it is not immediately apparent which auction form will generaie
higher expected revenue for the Treasury. Going back at least to Friedman [6], one
strand of academic opinion has argued strongly in favor of the UPA format. The -
early {informal) arguments offered in support of this position were that discrim-
inatory auctions discourage relatively uninformed bidders because the “winner’s
curse” becomes more severe.® Bidding therefore becomes concentrated among a
few large bidders; in turn, this makes collusion easier and more profitable.

In the early 19803, game-theoretic models of auctions provided formal support
to this position. Milgrom and Weber [17] showed that in the auction of an indivis-
ible good, the expected revenues of the seller were higher in a UPA than in a DA,
The Milgrom-Weber model has subsequently been extended in many directions
but the basic result appears quite robust. For example, Bikhchandani and Huang
[2] show that the same result obtains even if a secondary market, with a non-trivial
information linkage to the primary market, is appended to the model.

Recently, however, Back and Zender [1] have shown that the assumption of
indivisibility of the good being auctioned is critical to the Milgrom-Weber result.
Back and Zender analyze a very general divisible good auction model and demon-
strate that uniform-price auctions can have very undesirable equilibria; and that as
a consequence, the UPA is no longer unambiguously superior (theoretically speak-

ing) to a DA, Building on this work, Wang and Zender [32] show that a ranking
of the two auction forms in divisible-good auctions is, in general, impossible:
they consider a class of divisible-good auctions, and prove that in this class, there
always exist equilibria of the DA that dominate some equilibria of the UPA, and -

3Recalt that each of the competitive bidders submit a demand schedule. The aggregate demand
schedule is simply the sum of these schedules ples the total quantity demanded by the noncompetitive
bidders. ’

*See section 2 for a description of the winner’s curse.

>That divisibie and indivisible good auctions are very different from the seHer's viewpoint was
pointed out as early as 197% by Wilson [33]. However, Wilson was not concerned with Treasury
auctions, and did not analyze the UPA vs. DA issue ina div%si%:imgoeé auction framework.



vice versa. Empirical studies of the debate have also been ambiguous in their con-
clusions; some studies of Treasury (and foreign exchange) auctions have indicated
that the UPA may be superior to the DA, but this is contradicted by other studies.

In summary, the one clear conclusion to have come out of the recent theoretical

studies is that no useful lessons on Treasury auction format can be gained from
the study of auctions of indivisible goods. Much work, however, remains to be
done. The identification of the “better” auction format is obviously harder than
was originally realized, but may not be as hopeless as the Back—Zender and Wang-
Zender results indicate. For one thing, not all of the equilibria in these papers are
equally plausible. Thus, one can ask if there exists a strategically salient class
of equilibria that could be used as the basis for comparison of the two auction
forms. Second, the auction market is enly one in a chain of linked markets; as
we have explained above, it is preceded by the when-issued market, and followed
by the secondary market. From a theoretical standpoint, the importance of the
when-issued market and its effect on bidding behavior in the auction market fs
little understood.® Finally, the presence of noncompetitive bidders in the auction
process creates “noise” that affects the actions taken by the competitive bidders;
itis yet to be analyzed if this noise is a £ood thing, from the Treasury’s viewpoint.

THE STRUCTURE OF THIS PAPER

The remainder of this paper is organized as follows. In Section 11, we describe
the auction framework involving a single unit of an indivisible good, and provide
a detailed summary of the basic results in this area. There are at least two good
reasons for beginning with this model. First, many of the modelling issues and
analytical techniques involved in Treasury auctions also arise in indivisible-good
auctions; however, the latter framework is a simpler one and, therefore, offers
a better setting for understanding these. Second, the results on the ranking of
different auction forms are unambiguous in the case of indivisible-good auctions.
To fully appreciate the difference between divisible and indivisible good auctions,
it is necessary to understand why this is the case.

In section IlI, we examine the extension of the basic maodel undertaken by
Bikhchandani and Huang [2]. The most important generalization Bikhchandani
and Huang consider is the addition of a secondary market. Their main result (from
our perspective) is that this leaves unaitered the ranking between UPA’s and DA’s.

Section IV turns to an examination of divisible-good auctions. The material
presented here focusses on two papers: Wilson [331, who first pointed out the dif-
ference between divisible and indivisibie good auctions, and Back and Zender [1].

Section V presents a brief review of the empirical work that has been done on
Treasury auctions. Section VI concludes.

However, see Vishwanathan and Wang [30] for 2 recent contribution in this direction,

LA BRIEF REVIEW OF AUCTION THEORY

This section provides a brief review of the main concepts and results (‘)f auction
theory. Our exposition here draws on the work of M(l:Afee and McMiilan {14'],
and Milgrom and Weber {17]. Although T-bill auctxon-s are more compiex in
somé important ways than the standard models we exams.ne herfa, there are sufﬁ«
ciently many similarities in the modelling and analytical issues involved that this
constitutes an excellent starting point for further study.

Two assumptions will be maintained throughout this section. First, we will t%eat
the auction as a mechanism for selling. Second, we will assume that‘ tEwj object
being auctioned is a single unit of an indivisible good. :ic first assumgat:on is made
solely for expositional convenience; in practice, auctions are also widely used as . .
mechanisms for buying, and with minor {mostly notational) ch'anges, the resuits
reported here apply equaily to this case also. The second ass&sn-&pt{oa is, on the othf?r
hand, a much more serious one. ls principal virtue is that it §1mphﬁes aixz.xiys;s
considerably. However, it also means that the seller cannot auctlon‘ “sf{afes in the
good; in particular, it Jeaves open the question of how much o‘{. the 11’1t!31t1€{ﬂ gained
here can be legitimately transferred to the study of T-bill auctions. We will return
to this issue again in a later section. ' '

Auction theory is concerned primarily with answering two questions. First, why
is an auction used instead of some other selling or buying procedure? Second, tiilere
are a great many varieties of auctions that one sees in practice. Whaf determines
which auction form Is chosen in a given situation? It is these questions that we
shall be concerned with in the sequel. Our analysis proceeds in several steps.

We begin with a discussian of the key feature of auctions—t}'le abilit.y of the
seller to pre-commit {¢ a set of rules and theréby to extract max1ma§‘ gains from
trade—that make them attractive mechanisms from the seller’s viewpoint. Follow-
ing this, we provide a categorization of the most commonly used auctign fO}milS.

The remaining subsections are devoted to the second of the two questions raised
above: what determines the specific auction form used in a given circumstance?
Of course, the answer to this question will depend on the maintained‘backgroand
assumptions concerning the environment in which buyers and seller .mtﬁ:rac:i. Ys/e
list the alternatives faced by the modeiler in this situation, and identify a specific
subset of assumptions that we call the benchmark model. The subsections that
foilow then examine the impact of weakening or otherwise altering these assump-
tions.

¥

PRE-COMMITMENT AND INFORMATIONAL ASYMMETRY

Classical economic theory regards as indeterminate cutcomes in markets in which
there is monopoly on one side of the market (a single seller)- an§ oligopoly on t'he
other (2 smali set of potential buyers). Auction theory, which is concerned ?leh
the same setting, resolves the indeterminacy by viewing the seller as e'ss'ermgliy
a Stackelberg leader who has the ability to pre-commit to a set of policies (i.e.,



the choice of auction form, rules of the auction, etc.). Such pre-commitment is a
key aspect of auction markets. Credible pre-commitment gives the seller a first-

mover advantage; in particular, it enables the adoption of procedures that induce.

the bidders to bid in desirable ways, .

The ability to pre-commit does not, however, imply that the seller extracts all
possible gains from trade. The bargaining ability of the seller is limited by a
second key aspect of auction markets, viz., the fact that the seller does not know
the buyers” true valuations of the object being auctioned. If such informational
asymmetries were not present, the seller could simply offer it to the bidder with the
highest valuation at a price just below that bidder’s valuation, and threaten to refuse
to sell if this offer is rejected. Pre-commitment would make this threat credible,
so the selier would realize virtually all of the gains from trade. When information
is asymmetric, however, the seller’s ability to exploit competition amongst the
buyers is more limited. Certainly, the seller cannot always drive the price up to the
highest valuation, because he is not aware of this valuation. The question of which
auction form is “optimal” from the seller’s viewpoint is, therefore, non-trivial, and
the central one that auction theory attemnpis to answer.

CATEGORIES OF AUCTIONS

There are four basic types of auctions:

1. English Auctions: In an English auction, the price is raised successively
untilonly one bidder remains. Alsosometimes called the oral or ascending-
bid auction, the English auction is perhaps the mast commonly used auction
form in praciice.

2. Dutch Auctions: Dutch auctions are the converse of English auctions. Ina
Dutch auction, the auctioneer calls out an initial hi gh price and then lowers
the bid successively until some bidder accepts the current bid. Dutch
auctions are used in various markets arcund the world, but are not as
popular as English auctions,

3. First-Price Sealed Bid: Potential buyers in a first-price sealed bid auction
submit sealed bids. The item being auctioned is awarded to the buyer
who submits the highest bid at the price bid by him. First-price sealed
bid auctions are commonly used by governments in awarding procurement
contracts.

4. Second-Price Sealed Bid: Once again, buyers submit sealed bids, and the
item is awarded to the buyer who submits the highest bid. However, the
price the winner pays is equal not to his own bid, but to the second-highest
bid. Second-price sealed bid auctions have useful theoretical properties,
but are not widely-used in practice. '

A number of variations on these basic forms are commonly employed. For
example, the seller may impose a “reserve price” and discard all bids below this

price. The seller may also charge the bidders an entry fee for the right to participate
in the auction. The price to be paid by the winning bidder may depeqd not only
on the bids received in the auction, but also on something correlated with the true
value of the item (such as royalties).

MODELLING ISSUES

Whether a particular auction form emerges as optimal will depend at ie‘as‘t in part
on how uncertainty is modelled, and there are at least four separate decisions that
the modeller is faced with in this context. .__. .

First, there is the question of the various players” attitudes to risk. Should the
buyers be modelled as risk-neutral or risk-averse? What abo_ut the seller? ,

The second decision concerns the relationship between different buyers’ valu-
ations of the object.” Is it reasonable to model them as being independent, or as
being correlated in some degree? Two polar extremes can be identified:

o The Independent Private-Values Model: In this model, it is fxssumed that
bidder i’s valuation v; is a draw from a probability distribution F;. Only
bidder i observes the value of u;, but the distribution F; is itself comr@"n
knowledge among all the players. Any one bidder’s v‘aluation is statisti-
cally independent of any other bidder’s valuation. '1"?115 modeI- is a good
approximation of situations in which bidders are buying for their own use
and not for resale (for example, antiques or artwork).

s The Common-Value Model: In the common-value model, it is assumed
that the item being bid for has a single objective, but unknown, Vi.il-ﬂe
V. The bidders’ valuations v; are independent draws from a probability
distribution G {-{V), which is presumed to be common knowledge. T.he
common-value model may be applied to markets in which the.comm.od;ty
is being purchased primarily for resale (for example, the auction of mineral
rights or Treasury bills).

¢

Of course, many real-world auctions may consist of aspects of both models si-
muitaneously. To handle such possibilities, Milgrom and Weber (1982) develop 2
general model of which the independent private-values model anc‘l the common-
value model are both special cases. Their model, which uses the notion of affiliated
distributions, is described in & later subsection.

Thirdly, there is the question of whether bidders may be modelled as essen-
tially identical (up to informational differences), or whether one should admit th.e
possibility of different “types” of bidders. The first case, the case of symmetric
bidders, is significantly easier to handle analyticaily. The second, that of asym-
metric bidders, allows for a richer scenario such as the existence of systematic cost
differences between bidders. . o '

Finally, there is the issue of whether payment by the winning bidder to the seller
should be made to depend on variables other than the bids themselves. In some



situations where the only observable variables may be the bids themselves, this
is not a relevant issue. In others, it is an important consideration. In auctions of
publishing rights, for example, the final payment typically depends on the winning
bid, as well as royalties based on the actual sales of the book.

THE BENCHMARK MODEL

Our analysis of the optimality of different auction forms begins in this subsection
with what is perhaps the simplest framework for the analysis of this question, It
is based on the following four assumptions:

1. All the bidders are risk-neutral, as is the seller.

2. The independent private-values model holds: Bidder i’s valuation v is a
draw from a distribution F;, and the draws are statistically independent.

3. The bidders are symmetric, so F; = F; for all 7, j. Denote the common
distribution by F.

4. The final payment from the winning bidder to the seller depends on the
bids alone.

Following McAfee and McMillan (1987), we will refer to this mode as the “bench-
mark model.” Subsequent to the analysis of the benchmark model, we will examine

the impact of weakening or otherwise replacing each of the four assumptions in
furn.

Throughout this paper, we use the concept of a Bayes-Nash eguilibrium to
analyze any given auction model. That is, it is presumed that all of the following
are common knowledge among the seller and the bidders: the rules of the auction
chosen by the seller, the number of bidders r, the probability distribution governing
the valuation v; of each player i, and the attitude to risk of each player. In addition,
each player also knows his own true valuation. Based on his information, each
player i chooses a “strategy” oy, i.e., a rule that decides the amount o; (v;) that
should be bid by player i as a function of his valuation V. An equilibrium is a
vector of strategies (o4, ..., o,) such that for all / » given that players j # i have
adopted the strategy oy, player i can do no better than to adopt ;.

One final observation is useful in simplifying the material that follows. Under
all circumnstances (i.e., regardless of assumptions concerning risk-aversion or the
relationship between different players’ valuations, ete.) the outcome undera Dutch
auction must necessarily be identical to that under a first-price sealed bid auction.
This follows simply because bidders in either of these auction forms must choose
how high to bid without knowing the others’ decisions; in either case, moreover,
the winning bidder pays an amount equal to his bid. In the formal analysis that
follows, therefore, we ignore the Dutch auction altogether,

Returning to the main question: Which auction form—English, Dutch, first-
price, or second-price—should a seller use if the conditions of the benchmark
model are met? The surprising answer is: It does not matter. Under some weak

technical conditions, ail four auction forms have the same revenue implications!
This result is called the Revenue Equivalence Theorem:

THEOREM 2.1. (Revenue Equivalence Theorem) Suppose that the a_ssumptions
of the benchmark model hold. Then, under some technical conditions on the
distribution F, the expected revenue to the seller is the same under all four auction
forms.

Sketch of Proof.  The following notation will come in useful. Recall that F de-
notes the common distribution from which the » bidders” valuations are drawn: Let
f denote the density of F. Let vy, ..., v, Tepresent the actual vect?r of vah'jatlgns,
and let v}, ..., v} denote the valuations arranged in a non-increasing fash;o.n. In
statistical terminology, v} is called the /-th order statistic, i = 1, ..., n. Finally,
define f— Pt
fon
1t will be assumed in the proof that J () is a strictly increasing function (the meaning
of this assumption will become clear shortly).® The Revenue Equivalence Theorem
will be proved by showing that under all four anction forms, the expecte'd revenue
to the seller is precisely the expectation of J(v]) with respect to the distribution
of v, _

Consider the English auction first. In this case, the second-to-last bidder drops
out of the auction as soon as the item exceeds his own valuation. Consequently,
the highest-valuation bidder receives the item, but pays an amoun.t equal to the
second-highest valuation. Thus, the expected revenue of the seller is equal to the
expectation of v3. This expectation can also be expressed in terms of v] as follows.
The winning bidder earns a rent of (v} ~ v). It can be shown (se‘e McAfee and
McMillan [14] for references) that the expected value of this rent is given by the
expectation, with respect to the distribution of v{, of

T = - D

Y- FOD) ¢
fon

The amount the seller receives is, by definition, the valuation of the winning bidder
minus the rent of the winning bidder. This difference is precisely expressiog (2.1).

Now consider the second-price sealed bid auction. We claim that in this case
it is a dominant strategy for each bidder to simply bid his true vahfation. Tf) set
this, note that the amourt bid only affects the probability with wh;.ch t.he bidder
wins; the amount the winning bidder pays in a second-price auction is beyc?nd
his control. If bidder { were to bid less than his frue valuation, then the auction

"That is, v} is the highest valeation, v} is the second highest, and so on. ) _

EThe technical conditions referred 1o in the statement of the theorem are precisely that F admits a
density f, and that J (-} is a stricily increasing function. For sufﬁc_ient conditions on F that will result
in J{-) being a strictly increasing function, see McAfee and McMillan [14].

.



outcome is affected only if the new bid is lower than the bid submitted by another
bidder, say j, and as a result j wins the auction. Since rents from winning are
non-negative, lowering his bid below his valuation clearly cannot make bidder i
better off. If bidder { were to bid more than his true valvation, then the outcome
of the auction changes only if there is another bidder (say j) whose bid is above
{’s valuation, but below the new bid. In this case, the new higher bid causes i to
win, but now he also has to pay more than the item is worth to him. Consequently,
this also cannot make bidder { better off than simply bidding his true valuation.
Of course, if all bidders bid their true valuation, then—for the same reasons as
in the English auction——the expected revenue of the seller is again given by the
expectation of (2.1).

The proof that the seller’s expected revenue under a first-price sealed bid auction
is also equal to (2.1) is more complex. Unlike the case with English and second-
price auctions, Nash equilibria in a first-price auction are not dominant strategy
equilibria, and are therefore more difficult to identify. Let B(.) be the (common)
bidding strategy used by all bidders j # i; that is, bidder j bids B(v;) is his true
valuation is vj. Assume that B(-) is a monotonically increasing function (i.e., that
bids increase if the valuation is higher). Consider bidder i’s best-response. If
bids b;, then the probability of winning is given by

Prob[b; > B(v;), j # i] = [F(B 1 (®m: )]

Thus, bidder i’s expected surplus from bidding &; is given by

mi(u) = (v; — b)[F (B~ (by))]" ™! (2.2)

Bidder i’s optimal bid b; must therefore satisfy om; (v;)/3b; = 0. It follows that
when we differentiate r; with respect to v;, we obtain
dri(vi)  3m{v;) 4 dmi(u) db;  Omi{w;)
dv; du; b, dv; By

=[FBT'GH (23)

At a symmetric Nash equilibrium, player i’s optimal strategy will be the same as
the strategy B(-) chosen by j # i. If B(-) represents a Nash equilibrium strategy,
therefore, we must have b; = B(y;). Substituting this in (2.3), we obtain the
coendition that
i (Vi)
dv;

[F( 3] ' (2.4)

Let v, denote the lowest possible valuation. A bidder who has the valuation v, must
earn zero surplus (i.e., we must have m; (v;) = 0). Using this boundary condition,
and integrating in (2.4), we obtain:

7 () == 7 () + / J[F(x)}"“E dx = f W[F(x)}"-1 dx (2.5)

vy vy

By equating (2.5) with the definition (2.2) of , and invoking the Nash equilibrium
condition b; = B(v;), we finally obtain:

/ ! [F(e)" ldx
[F (o)t

Note that B(-) is indeed an increasing function as was assumed earlier in the proof,

Since B(-) is increasing, the bidder with the highest valuation v} wins the
auction. From the point of view of the seller, therefore, the expected revenue
from the auction is equal to the expected value of B(v}). Tt can be shown (see
McAfee and McMillan [14] for references) that for any v, B(v), as given by (2.6)
is actually the expected value of the second-order statistic, conditional on the first-
order statistic being v. Therefore, the expected revenue to the seiler is simply the
expected value of the second-order statistic, which, as we have already mentioned,
is simply the expectation of the expression (2.1).

Since the Dutch auction is strategicaily equivalent to the second-price auctlon,
the proof of the Revenue Equivalence Theorem is complete. o

B(v) =v; — 3 (2.6)

It is very important to be clear about what the Revenue Equivalence Theorem
asserts. The theorem claims only that the ex-ante expected revenue to the seller
is the same in all four auction forms. It does not suggest that the realizations
themselves always coincide. In the notation of the theorem, the revenue of the
seller under the English or second-price auctions is equal t¢ v}, whereas under the
first-price auction, it is equal to B(vy). Of course, B(v}) need not coincide with
v3. However, the expectation of B(v]) equals that of v3, so that on average the
seller’s revenue is the same.

Buiiding on this point, Vickrey [29] shows that the variance of the seller’s
revenue is smaller in an English or second-price auction than in a first-price or
Dutch auction. Therefore, if the seller were risk-averse (rather than risk-neutral
as we have assumed), he would prefer the English or second-price auctions to the
first-price or Dutch,

Several other remarks are in order before moving to extensions of the Bench-
mark model:

1. The Revenue Equivalence Theorem is devoid of any empirical content,
since it asserts essentially that “anything is optimal.” We will see in the
subsection following that this is no longer the case when we alter the
“assumptions of the benghmark model.

YExpression {2.5) makes it easy to calculate the equilibrivm bids in closed form in some cases. For
instance, if F is uniform on [0,1], we get

By} = M
"

However, for mosi forms of F, this is a non-(rivial task.



2. Auction outcomes in the benchmark model are always Pareto-efficient,
since the bidder with the hi chest valuation receives the object.

3. An increase in the number of bidders increases the revenue of the seller
on average. This is intuitive: when the number of bidders increases, the
second-highest valuation also increases on average. Indeed, it can be shown

that as n becomes unboundedly large, the price approaches the highest
possible valuation.

THE OPTIMAL AUCTION IN THE BENCHMARK MODEL: A COMMENT

The Revenue Equivalence Theorem only compares the expected revenue across the
four standard auction forms. It is a natural question to ask whether there are other
(perhaps more complicated) auction forms that yield a higher expected revenue
under the assumptions of the Benchmark Model. The answer is a qualified yes.
Using the Revelation Principle, it can be shown (see, e.g., Harris and Raviv [9])
that if the seller’s own valuation of the object is given by ug, then the auction that
produces the highest expected revenue has the following implications:

H every bidder’s valuation v is such that satisfies J (¥) < vg, 'O then
tk}e item is not sold to anybody. Otherwise the itent is sold to the
bidder with the highest valuation v at a price of B{(v).

t

Thus, the optimal auction involves the seller effectively setting a reserve price of
JYvg). Since J {v) < v, this reservation price raises the possibility that the
outcome of the optimal auction could be Pareto-inefficient: it is possible that for
all i we have J(v;) < vg, but there exists J such that v; > vg. Note, however.
that if the reservation price is not binding, then the optimal auction has the samei

oufcome on average as ali the auction forms of the previous section, and is also
therefore, Pareto-efficient.

BEYOND THE BENCHMARK MODEL

In this section, we examine the effect of dropping in turn three of the Benchmark
Model’s four assumptions. The last assumption—that of independent private-
values—is the subject of the next subsection. It is presumed throughout this
subsection, that when the modification of one assumption is being discussed, the
Benchmark Mode!’s remaining three assumptions continue to hold. We begin with
the assumption of risk-neutrality of the buyers.

17} is the function defined in (2.0.

Risk-Averse Buyers

Regardless of his attitude to risk, it is optimal for a buyer in an English auction to
remain in the bidding until the price exceeds his personal valuation. Since the seller
can always choose to sell using an English auction, it follows that, ceteris paribus,
the seller is no worse off if the buyers are risk-averse rather than risk-neutral.

In fact, the seller can do strictly better. It can be shown that, with risk-averse
bidders, the first-price sealed bid auction generates higher revenues on average
than the English or second price auctions. The reason is not far to seek. Under
the strategies described in the Benchmark Model, a typical bidder earns a positive
rent if he wins, and zero rent if he does not. -By increasing the size of his bid by
a “small” amount, he can increase the probability of winning. Although this will
decrease his rent if he wins, a risk-averse bidder will nonetheless find the trade-off
worthwhile since it smooths his utility.

Even the first-price auction is not the optimal auction in this case. It is possible
to design auctions with even greater expected revenues. Unfortunately, the optimal
auction with risk-averse bidders lacks the simple form that obtains when bidders
are risk-neutral; instead it involves a complex scheme which requires subsidizing
high bidders who lose and penalizing all low bidders (see Maskin and Riley [12]
for details).

Asymmetric Bidders

In the Benchmark Model, we assumed that bidders were symmetric, so that we
had F; = F for all i.!" If we allow for asymmetric bidders, then the F;’s need no
longer coincide; as a consequence, it turns out ornce again that révenue equivalence
also breaks down.

To understand why this is the case, note that the effect of asymmetry on bidders
in an English auction is minimal. It remains optimal for a bidder to stay in the
bidding until the price exceeds his private valuation. Thus, the revenue the seiler
obtains is equal to the second-highest valuation;'? moreaver, the bidder with the
highest valuation receives the object, so that outcomes in an English auction remain
Pareto-efficient.

In a first-price sealed bid auction, it continues to remain an equilibrium for
each player to bid his estimate of the second-highest valuation conditional on his
information (which is his own valuation). However, the situation is no longer sym-
metric: bidder i°s estimate uses the distribution functions F; for j # i. Therefore,
two bidders who have the same valuation v could differ in their estimate of the
gap between their valuation and the second-highest valuation. In turn, this implies
that the winner in a first-price sealed bid auction need not necessarily be the bidder

Recall that F; denotes the distribution from which bidder i s valuation is drawn in the independent
private-values model.

20f course, the expectation of this second-highest valuation is more difficult to compute when the
F;’s differ. -



with the highest valuation, so outcomes could be Pareto-inefficient in this case.
it also implies that the revenue implications of the first-price auction could differ
from that of the English auction.

Unlike the earlier cases, however, no ordering between these auctions is possible
in general. There are examples in the literature in which the expected revenue under
the English auction is higher than under a first-price auction, and examples in which
itis lower. Norare any of the basic auction forms optimal. Myerson [18] has shown
that the optimal auction with multiple types of bidders is a discriminatory auction
in which the seller sets a different reserve price for each type of bidder.

Payments That Do Not Depend Only on the Bids

There are many real-world auctions (such as book publishing, the music industry,
and in some mineral-rights auctions) in which payment by the winning bidder to
the seller depends (usually via a royalty), on information about the value of the
good that is revealed after the auction. Notationally, we can represent the total
payment by the winning bidder as

p=5b+rb, 2.7

where b is the winning bid, r is the royalty rate, and # the value of the commodity
that is unknown at the time of the auction, but that is revealed subsequently.

If the distribution of § is exogeneous to the model (in particulaz, if it cannot
be affected by actions of the seller or the winning bidder), then it can be shown
(see, e.g., McAfee and McMillan {13]) that the expected revenue of the seller is
an increasing function of the royalty rate r. The optimal royalty rate is therefore
100%. In reality, however, the distribution of 7 is not likely to be exogeneous,
but to be influenced by the winning bidder’s actiops. (Book sales, for instance,
depend on the publicity and other promotion provided by the publisher.) In this
case, the optimal royalty rate is less than 100%.

AFFILIATION AND THE COMMON-VALUES MoDzEL

What happens if the assumption of independent private valucs in the Benchmark
Model is replaced by the other polar extreme, the common-value model? As in any
auction model, bidders in a common-value model base their bids on their estimate
of the item’s value. This raises the paradoxical possibility that winning could be
bad news: a bidder wins if and only if every other bidder estimated the common
value to be lower. This phenomenon has been labelled the winner’s curse 13

130 express the winner’s curse in statistical terms, suppose that the signal x; about the common value
v has the property that a larger signal x; implies a larger true vaiue of v, {This would be the case, for
instance, if the distribution of signals f(x;}v} possessed the monotone likelihood ratio property.) Let
x{ denote the largest of the signals xy, ..., x,. Then, it is the case that EQlxf} = Eqwlry, ..., )

A rational bidder in a common-values auction anticipates the winner’s curse
effect, and takes this into account in deciding his bidding strategy. Milgrom and
Weber [17] describe the equilibrium strategies for a common values model unfier
each of the four basic auction mechanisms.!* They show that of the four auction
forms, the English auction now provides the highest expected Tevenue, followed
by the second-price auction, and then by the Dutch and first-price auctions. (The
last two, of course, continue to remain equivalent.) ‘

These results are not unintuitive. The process of bidding in an English auctzor‘l,
for instance, provides information to the bidders, and the incorporation gf this
additional information into the bidding strategy reduces the impact of the winner’s
curse. There is no corresponding effect in the other three auction forms.

The full model considered by Milgrom and Weber is actually significantly more
general than either the independent private-values model, or the common valure
model; indeed, it contains both as special cases. Since their model forms m.uch of
the basis of modern auction theory, we shall describe it in a little more detail here.

The valuation v; of bidder { in the Milgrom—Weber model is a function of 1
“information variables” x = (xy, ..., X,) and m other variables s = (51, ... Sm )t

vy = Yy (S, X).
Bidder i observes the realization of x;, but may not observe the realization of Xj
for j £ i, or the realization of any of the variables 51, ..., Sm- Tpus, it is poss;‘b]e
that player i does not know with certainty the true worth (to him) of the object
prior to the auction. - . .
All bidders are assumed to be risk-peutral. In addition, bidders are symmerric:
there exists a function v: R™* — R, such that

vi (8, X) = v{s, X, (X }ji)-
< .
Finally, let z == (s, x), and let & denote the joint distribution of z. The most
important assumption of the Milgrom—Weber model lies in the assumption that
the random variables z are affiliared. In mathematical terms, affiliation means that
the density g of G satisfies the condition that'>

glzvzglz nz) = glz)gi) forall z, 2. (2.8

Affiliation implies that valuations are positively correlated, i.e., thgt 2 high v_a_il-xa—
tion by one bidder makes high valuations by other bidders more likely. Densities
exhibiting affiliation possess a number of strong properties. For instance:

Mywe do not describe equilibria of the common-values model in this section, since the next section
{on the Bikhchandani-Huang paper) is concerned with a similar, but more gene):ai, mot?ei. o

BThe notation v and A stand for coordinate-wise maximum, and coordinate-wise minimum,
respectively.



THEOREM 2.2. (Properties of Affiliation) Let y;, ..., yi be a vector of affiliated
random variables.

1. Lethy, ..., hy be non-decreasing functions. Then, the variables hy(y,),
-y Be(ye) are also affiliated.

2. Let H:R* > R be non-decreasing. Let constants (a;, b;} be given for
i=1,...,k where a; < b; for all i. Then, the following function h* is
itself a non-decreasing function of its arguments:

A a1, b1y ... ap, be) =EHW,...,m)a <y < b; foralli]

For a list of the many other properties of affiliated random variables, we refer the
reader to Milgrom and Weber [17].
It is not very hard to see that both the independent private-values model and the

common value model are actually special cases of the Milgrom—Weber framework.
To obtain the former, we take

1. m=0.
2. vi(s,x) = foreachi.
3. C@)=F(x) x--x F(x,).

(The tast condition is the statement of independence in values.) It is not very hard
to check that the distribution G, thus defined, is affiliated.
Similarly, to obtain the common-value model, we define

]

1. m=1.
20 vi(s1, %1, ..., X) = 5 Tor ail £,

Thus, the common value v is given by s,. Sufficient conditions for the Jjoint density
of (81,3, ...%,) to meet the requirement of affiliation are that (i} conditional on
sy, the signals x;, ..., x, be independent, and (i) the conditional density gix;|s;)
have the monotone likelihood ratio property.

Two resuits that Milgrom and Weber {17] prove in this model are of particular
interest for us, First, they show that the ranking

English > Second-Price > First-Price = Dutch

continues to hold in this more general setting. The inequalities are typically,
though not always, strict: we already know that equality obtains throughout for
the special case of the independent private-values model. Second, no matter what
the auction form chosen, the seller’s expected revenue increases if he releases any
prfvate information he possesses about the item’s true valuation {assuming that
this can be done in a credible fashion). The basis for both results is the effect on
the winner’s curse. If buyers are uncertain about their true valuation, then any

information they obtain from cbserving the bids of others will reduce the winner’s
curse; thus, the English auction does better than the others. The credible release of
private information by the seller also reduces the winner’s curse; this encourages
bidders to bid more aggressively, increasing the seller’s revenues on average.

LESSONS FOR T-BILL AUCTIONS?

Treasury Bill auctions share several features in common with the auction forms
discussed above. They are commeon value auctions, in which (to a first approxima-
tion) bidders can be regarded as symmetric and risk-neutral. Moreover, payments
to the seller in Treasury Bill auctions depend only on the winning bids.

However, there are also differences. As we mentioned in the Introduction, the
T-Bill auction market is actually the middle of three linked markets; it is preceded
by the when-issued market in which potential bidders can trade forward in the
security that will be auctioned, and is followed by an active secondary market.
Moreover, even when viewed in isolation, T-Bill auctions are essentially divisible
good auctions, whereas the material of this section has focussed on auctions of an
indivisible good. Bids in a T-bill auction are not just prices, but are price-quantity
pairs; each bidder specified the amount he is willing to buy at different prices.
Thus, effectively, bidders in a T-Bill auction submit demand curves.

The chief question in the study of T-Bill auctions is whether Uniform-Price
Auctions (UPA) generate a greater expected revenue for the seller than Discrim-
inatory Auctions (DA). In a UPA, each bidder pays the same price for the units
ke buys; this price, called the stop-out price, is the maximum price at which total
demand exceeds supply. Ina DA, each bid is filled at the bid price for that unit; the
seller begins with the highest price bidder and works down the dernand curves till
the entire quantity is exhausted. In notational terms, if b; (p) denotes the quantity
demanded by bidder / at the price p, and p* denotes the stop-out price, then the
bidder in a discriminatory auction pays ¢ '

o
pue+ [ b,
o
while the bidder in a uniform-price auction pays p*b; (p*).

A little reflection shows that the indivisible-good analog of the UPA is the
second-price auction, while that of the DA is the first-price auction. As we have
seen above, the second-price auction does strictly better than a first-price auction
in common value auctions of indivisible goods, since it reduces the impact of
the winner’s curse. Thus, if we ignored the differences mentioned above, we
would conclude that a second-price auction {i.e., the UPA) would generate greater
revenues for the Treasury than the first-price auction (i.e., the DA). Indeed, invoking
precisely this reasoning, a number of authors (e.g., McAfee and McMillan [14],
Bikhcharndani and Huang [2], or Smith [24]) have recommended in recent years
that the Treasury switch from discriminatory to uniform-price auctions.



The validity of this result clearly depends on the legitimacy of identifying
T-Bill auctions with the auction models studied here. In at least one direction,
the difference may not matter. Bikhchandani and Huang [2] show that when a
secondary market is appended fo the auction market of this section, then—even
in the presence of information linkages between the markets that affect auction
behavior in a nen-trivial way—it is the case that the UPA dominates the DA in
terms of expecied revenue for the seller.’® We review their results in the next
section,

Unfortunately, the decision to treat a divisible-good auction as an indivisible-
good auction is not a legitimate one. That this could be problematic was pointed
outa number of years ago by Wilson [33] in his analysis of the auctions of shares.
Wilson’s work has been reinforced and extended recently by Back and Zender [1].
The main thesis of the Back~Zender paper is that with divisible goods, the use of
uniform-price auctions gives rise to the possibility of trplicit collusion among the
bidders, and could lead to a drastic reduction in revenue from the discriminatory
auction scenario. We return to this issue in Section 4.

I1. AUCTIONS WITH RESALE MARKETS

Bikhchandani and Huang [2] study a common-value model in which a secondary
(resale) market is appended to the primary auction market. They assume that
bidders in the primary market have better information on average than investors in
the secondary market.!” Prices in the secondary market will, in such a situation,
be affected by the information revealed in the process of bidding in the auctjon,
and this feads to interesting trade-offs facin g both the bidders and the seller in the
auction market.

Consider the bidders first. The information linkage between the markets prompts
bidders to use their bids as signalling mechanisms with a view to increasing the
secondary market price. Thus, ceteris paribus, they would like to increase their
bids (which increases seller revenue). However, higher bids also exacerbate the
winner’s curse effect, which could [ower expected profits for the bidders. .

The seller faces a similar problem. From the material of the previous section,
we have seen that it is in the seller’s interest to reveal his private information
concerning the item’s true value, since this reduces the impact of the winper’s
curse and therefore leads to higher bids. However, when there js a secondary
market whose price is affected by the information contained in primary market
behavier, the release of information by the seller reduces the buyer’s incentive to
send “high” signals and thus drives bids down.

‘$Bikhchandani and Huang actuatly consider the auction of & units of an indivisible good rather than
Onie unit as we have assumed here. This difference is not, however, very significant, since they assume
that ezch bidder is entitfed to at most one unit of the geod.

TThis is a plausible assumption in the Treasury auction scenario, where auction market bidders are
primary dealers and Iarge financial institutions.

The presence of these trade-offs makes the auction problem \fvith resale fnarkets
materially different from those without such markets. In .partzcuEar, the issue of
which auction form is superior from the seller’s viewpoint ne?ds t(? be v131‘ted
afresh; nor is it apparent whether the seller should release any }.)rwate‘mformanoz}
he has about the good’s frue value. Under some technical conditions, Bikhchandani
and Huang [2] establish the following results:

1. In both the discriminatory (first-price} and uniform-price (secoz}d-pnce)
auctions, the seller’s revenues are higher in the presence of th_e mforma—
tion linkage with the secondary market-than when this information linkage
is absent, Therefore, ignoring the information linkage can cause an un-
derestimation of the seller’s expected revenues, regardless of the auction
mechanism used.

2. The uniform-price auction generates greater expecte_d revenues th'an the
discriminatory auction even in the presence of the information linkage
between the primary and secondary markets. _

3. The release of private information by the seller could su?rlnetlmes decrea'tse
expected revenues. However, there are sufﬁciem- cond‘mons us?des which
expected revenues increase with the release of private information.

In the subsections that follow, we turn to a more detailed ook at the first two
results,

STRUCTURE OF THE MCDEL

The Bikhchandani—Huang (henceforth, BH) model has n symmetric bi{?ders ar‘1d
k identical items for sale. It is assumed thatn > & > 1. Aith(.augh multiple units
may be available for sale, it is assumed that each buyer is entitled to at most one
unit of the good. Thus, bids continue to b\e prices, rather than demand schedu]ejs
which specify the quantity demanded at any price. The common-values model is
operative. Finally, it is assumed that jtems are for 100 percent re.sale.. _
Let v denote the true value per unit of the good. Seller {’s private mf{}rmats@
signal concerning v will be denoted x;,i =1, ....n. l-_‘et X =& .. ._,x,,). Itis
assumed that x; lies in some interval {x;, x5 ] for each i. After the auction market
is over, but before the resale market, additional partial infarmgtion may become
available on'the good’s true value. Let p denote this Erzfom?anon. FmaiEy,' let f
denote the joint density function of (p, v, X). Two assumptions are made in this

context:

1. The density f is affiliated in (p, v, X), and is symmetric in iis last
arguments. '



2. E(w|p)# EQ]| p, X). That is, given p, the bidders’ private information
has value. ¥

The straregy for a generic bidder (say,i}is, as earlier, a function B; mappingi’s
private information into a bid B; (vi). Since there are £ items for sale, the k highest
bidders all win. Bidders are risk-neutral: they choose their strategies to maximize
their expected profits from the auction. A symumetric Bayesian-Nash equilibrium
Is a vector of strategies (B, ..., By} such that for each bidder i, given that bidder
J # i is using the strategy By, it is optimal for / to adopt the strategy B;.

To make the notion of an equilibrium more formal, we must define players’
payoftf functions in more detail. To accomplish this, we must first describe (a) the
auction form under consideration, and (b) the price formation process in the sec-
ondary market.

Concerning (), we focus on two auction forms: first-price or discriminatory
auctions in which each winning bidder pays the amount he bid, and second-price
ot uniform-price auctions in which all winning bidders pay an amount equal to the
highest losing bid. Concerning {(b), it is assumed that following the auction, the
seller releases information about the & winning bids and the highest losing bid.

Some. additional notation will be useful in what follows. Since the model
is symmetric, it makes sense to focus on symmetric equilibria, i.e., equilibria in
which all bidders use the common strategy B. We sharpen this further by restrictin 4
attention fo strategies B that are strictly increasing and differentiable. To identify
and analyze such equilibria, we examine the optimization problem faced by a
typical bidder, say bidder 1. ’

Let y; denote the j-th order statistic of the signals xz, ..., x, of the remaining
(n— 1) bidders. Suppose all bidders apart from bidder 1 are following the strategy
B. Suppose bidder 1 gets the signal x; = x, subrnits a bid b, and wins. If investors
in the secondary market believe that i is also using the strategy B, the secondary
market price wiil be

HBTHB) 1 p)

]

Elv|x =B~ (b), B~ (B(y)),
o BTYB W, p]
= E[Ui.ﬁ} »""-B_l(b)syl,-"!yk:p} (3’1)

Finally, fet r*(x’, x, ¥) denote the expected resale price conditional on x; = x and
Y =y, given that secondary market buyers believe bidder 1’s signal was actually
X'

-"*(x’,xs}’) = E["(x!:}’l, s Yks P) ix] =X, Vi 7’-}’}' (3'2)

Note that, by affiliation, both r and r* are increasing in their arguments (see the
second part of Theorem 2.2), '

¥ This condition would be violated, for instance, if v = P, L&, if observing p also revealed the true

value of v. I this condition is violated, the BH model reduces simply to the common value mode} of
Milgrom and Weber. .

EGUILIBRIUM IN DISCRIMINATORY AUCTIONS

The central result that Bikhchandani and Huang prove about discriminatory aue-
tions is the following:

THEGREM 3.1. Under some technical conditions, there is a symmetric equi-
librium in increasing, differentiable strategies of the discriminatory auction. At
each possible vector of signals, the equilibrium bids are larger than they would
have been in a standard common-value auction.

Before describing the proof of the theorem,‘ it is necessary to clarify the “tech-
nical conditions” under which the result holds. The random variables zy, . . ., zp,
are said to be information complements with respect to another random variable
w if it is the case that

82 .
¢ 1,z 20, PF#F L f=1...,m,
82,’82.'}'
where ¢(zy,...,2) = Fijw | 21,...,2n]- The proof of the theorem requires
that xq, ..., x,, p be informaticn complements with respect to v. What does this

condition achieve? The responsiveness of the secondary market price to player
1’s submitted bid is measured by r]'(x’, x, y), the partial of r* with respect t'o
its first argument. The condition of information complemen‘tarity states th.at _this
responsiveness increases with a bidder’s information realization. Thus, a bidder’s
incentive to signal increases with his realization under this circumstance.

Sketch of Proof.  Suppose all bidders apart from 1 are using f%]e strategy fB>
where B is strictly increasing and differentiable. If x; = x and bidder I submits

a bid of b, his expected profits are
<
7(b | x) = E[(r(B71 (), ¥1. .- .» Yu» P) — DY lizbiyy | X1 = x]

where 1,5, is the indicator function that takes on the value 1if g > v, a:?d zftro
otherwise. Let Fi(y | x} and fi(y | x) denote, respectively, the distribution
function and density of v, given x; = x. Some manipulation shows that we have

Bh)
w(b|x)= f [F*(B7I(b), x, y) — b] fily | x) dy. (3.3)

xp

For B to constitute a symmetric equilibrium strategy, it is necessary that the above
functioft be maximizedat b = B(x). Taking the first-order condition with respect
to b in (3.3) and evaluating it at b = B(x), we obtain the following necessary
condition for a symmetric equilibrium B:

0 = [r*x,x)— B file | 0)[B' ]!
x| 0) + (BT f e DG D dy, (34

XL



where r;'“ deno.tes the partial of r*(x’, x, y} with respect to its first argument.
Rearranging this, we obtain the ordinary differential equation {ODE):

B'(x) = [r*{x, x, x) — B(x)]—;f;—gi—%% + f rf‘(x,x,y);%}}w dy. (3.5)

The boundary condition for (3.5)is B(xy) = r*{xy, x1, x.).21° Using this to solve
the ODE (3.5), we obtain

B(X)mr*(x,x,x}"“fi'(uix}dz - de
5 () -+ G w Lulx), @36
where
1y =r¥(u, u, u) 3.7
h(u) wf ritu,u, y) fily L w) dy (3.8)
T fils | 9)
L = — e 1
{u|x) exp{ an) ds}. 3.9)

Of course, expressions (3.6)-(3.9) have been derived using necessary conditions
for an optimurn. To complete the proof, it remains to be shown that (i) the strategy
B as defined by (3.6)~(3.9) does, in fact, maximize expected profits for player
when all the other players use B, and (if) B is an increasing function. Indeed
there is also a third condition: for B to be an equilibrium bid, it must satisf);
B(x) < r*(x, x, x) since the expected profit for a bidder must be non-negative in
equilibrium. Allthree conditions can be verified using the condition of information
?omplementarity. The details are lengthy and are omitted. The interested reader

-is referred to Theorem 1 of Bikhchandani and Huang [2].

Finally, it is shown in Milgrom and Weber [17] that, when ¢ and L are defined

exactly as in (3.7)-(3.8), the strategy

X

BLx) =r*(x,x,x)<~—f L | x)dt(u) 3.103
XL

constitutes an equilibrium of the common-value model with affiiated private sig-

nals. It is immediate from a comparison of (3.6) and (3.10), that the former is
strictly larger by the amount

T h(u)
X f;%(”-} u)

Nate the intuitively appealing feature that the magnitude of this difference depends
(i'hrough h) on r[, the responsiveness of secondary market price to the submitted
bid; and that if 7§ = 0, we have () = B{)) O

dL{u}x).

19q: ; .
Since bidders must earn positive expected profits, we must have h(x) < r* (x,x,x)atalix, and in

particularatxp. Ifb{x;) < r*{xy, xp, xp), then by raising the bid at x, i
X, Llob{x; ) +efores
small, expected profit can be made strictly ;'.msitive. b uifcienty

Bikhchandani and Huang also show that a stronger result than Theorem 3.1 can
be proved under strengthened hypotheses. Namely, if secondary market beliefs are
monotone in the sense that they are increasing in the bids submitted in the primary
market, then the strategies defined by (3.6)-(3.9) describe the only symmetric
equilibrinm in increasing strategies. Appealing to this result, we will refer in the
sequel to “the” symmetric equilibrium of the discriminatory auction.

EGUILIBRIUM IN UNIFORM-PRICE AUCTIONS

- 1In a uniform-price auctions, the k highest bidders win, and each pay an amount

equal to the highest losing bid. Bikhchandani and Huang show that at any sym-.
metric equilibrium of the uniform-price auction, the seller’s expected revenues
are greater than at the symmetric equilibrinm of the discriminatory auction. The
intuition behind this result is simple. In the standard common value problem (i.e.,
one without a secondary market), we have already seen that the winner’s curse
is weakened in a uniform-price auction leading to more aggressive bidding and
greater revenues for the seller. The presence of a secondary market only intensifies
this effect: the uniform-price auction format makes it cheaper to submit high bids
in order to influence the secondary market price.?

What do the equilibrium strategies in a uniform-price auction look like? Sup-
pose all bidders but bidder 1 use the bidding strategy B. Continuing with the
notation introduced at the top of this section, if bidder 1 receives the signalx) = x
and submits the bid b, his expected profit is

B .

E010= [ PETOx)-BOIAY DD, (D
XL

For B to be a symmetric equilibrium strategy, it is necessary that b = B(x)

maximize {3.11). The first-order conditions for a maximum are

0= [F{x,x,x) = B fulx | x)+ f (e, x, y) fely | x) dy. 3.12)

It is seen that the solution to (3.12) is given by

_ hix)
B(X)—-I’ (x,x,x)+m. (3.13)

where hi(x) is exactly as defined in (3.8). Therefore, if a symmetric equilibrium
exists, it must have the form (3.13). It must be stressed that we are only work-

#This last point raises an interesting issue. The more responsive secondary market price to primary
market bids, the greater the incentive to bid high in a uniform-price auction. (The price a bidder
pays in such an auction is beyond his coatrol, but & large bid can increase the profits from winning.)
Bikhchandani and Huang provide an example to show that eguilibriz may fail to exist altogether in
uniform-price auctions because of this problem.



ing with necessary conditions. For the reasons mentioned in the fast footnote,
equilibria may fail to exist altogether.

COMPARISON OF AUCTION FORMS

Since.any symmeiric equitibrium of the UPA must be of the form (3.13), the
necessary conditions suffice for the comparison of equilibrium revenues received
by the seller under the two auction forms. Taki Ng expectations in (3.13} and (3.6),
Bikhchandani and Huang establish one of their central results (see their Theorem
4) that the uniform-price auction remains superior to the discriminatory auction
even in the presence of the secondary market.

The Bikhchandani-Huang paper clearly established the importance of i ncluding
secondary markets in any analysis of Treasury auctions. Nonetheless, their result
on the superiority of uniform-price auctions is of limited value in the design of
Treasury auctions. As we will see in the next section, when th item being auctioned
is a divisible good (as in a Treasury auction) the intuition gained from the study
of indivisible-good auctions is no longer applicable.

IV. AUCTIONS OF DIVISIBLE GOODS

Treasury-Bil} auctions are essentially auctions of divisible goods, in which bidders
compete for shares of the quantity being auctioned. It is a natural question to ask
whether the analysis of indivisible-good auctions has any implications for thijs
case. In particular, is it the case that uniform-price auctions (UPA’s), which are
the analogs of second-price auctions, always lead to greater expected revenue
for the seller than discriminatory auctions (DA’s) which are the analogs of the
first-price auctions?

The answer, in a nutshell, is no. A significant difference between the second-
price auction of an indivisible good and the uniform-price auction of a divisible
g004, is that the latter gives rise to the possibility of implicit collusion among the
bidders, that could reduce the seller’s revenues dramatically. This was originally
pointed out by Wilson [33]. Building on Wilson’s analysis, Back and Zender 1
have recently carried out an elaborate comparison of UPA’s and DAs in general
divisible-good auctions. We present a summary of their results here.

AN EXAMPLE

We begin with a simple, but elegant, example due to Wilson [33] that iliustrates the
possibility of implicit collusion in uniform-price auctions. The example compares
a uniform-price auction for a divisible-good (Wilson calls this a “share auction™)
to an auction where the same good is treated as indivisible {2 “unit auction” in
Wilscn’s terminology). The main result is that the revenue obtained by the seller

in the former case could be as low as one-~half the revenue obtained in the lafter
case.

ExampLE 4.1. Consider a common-value auction in which one unit of a good
is being sold. Suppose further that all # bidders an.d the seller know t‘hat the
true post-auction valuation of the good is v = 1. Finally, assume th&ft if there
are two or more bidders submitting the highest bid, then the winner is chosen
randomliy with all of the highest bidders being equi.proba%.)le. S
Consider first the case where the item being auctioned is an m‘dlwmbl.e good.
1t is easy to see that in any symmetric equilibrium ofa secondjpnce auction, the
selling price must be b = 1.2' Consequeitly, the seller receives the full value
d.
! tti!;)fres(zxpposc the itemn being auctioned is a divisible good, and the seller uses
a uniform-price auction. Each bidder submits a demand schedule B; .(p) which
specifies the fraction of the total quantity he is wi%ling t{i buy at the pncze; p. The
sale price p* is then defined as the price p at which ¥ |, B.; (py=1.
We claim that it is a2 symmetric equilibrium for all # bidders {o adopt the
following strategy: '

: I 2p ' @.1)
Blpy= oy e Ty

To see this, suppose all bidders but 7 adopt this strategy, af:d cor.lsiderl L’s best

response. If bidder [ submits the schedule B; (p), the resulting price will be the

value p% which satisfies

Bi(p")+ (n - DHB(p" =1

The consequent profit earned by i is .
2p°

A—pHBp) =0 =PI — (- DB PN =1 - p")w;w.

A simple calculation shows-that bidder i’s profit is m.aximized a.tt pb = 1'/2.
Another simple calculation shows that p® = 1/2 is precisely the price ;hat arises
if { aiso submits the schedule B(p) given by (4.1). Therefor.c, th‘e strat‘eg;e's in
(4.1) describe an equilibrium; the revenue the seller receives in this equilibrium

is p' = 1/2. O

Y 3uppose some bidder (say, i) faces a situation where the highest bid from fhe'remam;;ig {zn ;hliz
bidders is b* < 1. If i submits a bid b; < b*, the maximum surpiﬂs'that could arise is (1 — ”)./ - T
can be improved on by bidding b* + ¢ for ¢ sufficiently sma]ll. Incidentally, note that the selling price

i = 1 in an Eaglish auction or a first-price auction also. .
mg:’ig definition is iicomp]eie. If demand curves are disco_minuf)us, it is possibie that to:a} den;z;z:
at any price below p* exceeds the available supply of ore unit, wt.nle total deman:ud at any price ane v
p* is less than unity, Moreover, p* may not be unigue. ’rhﬂ.St.‘: are importani consxéira!xgns ir; éeﬁ rd,
bui are not relevant for this particular exampie, since the equilibrium we stedy has p* uniguely defined.



At first sight, it may appear that the driving feature of Example 4.1 is the
assumption of a degenerate distribution for the post-auction value v, but this is
incorrect. Back and Zender [1} have shown recently that even in a much more
general setting, there always exist equilibria in uniform-price auctions of divisible
goods in which the equilibrium price is less than the lowest possible post-auction
price. Even more importantly, they show that there may exist equilibria of the
discriminatory auction which strictly dominate these equilibria of the uniform-
price auction. Thus, unlike the case with indivisible goods, uniform-price auctions
are not necessarily superior to discriminatory auctions from the seller’s viewpoint.
We describe the Back—Zender results in more detail below.

THE BACK-ZENDER MODEL

Back and Zender consider 2 model with the following structure. There are 1 > 1
buyers and a single seller. The auction involves a quantity ) (normalized to unity)
of a perfectly divisible good. The post-auction value of the good is a random.
variable v that takes values in the interval fur, vg]. Prior to the auction each
bidder observes a signal x; that is correlated with v. The joint distribution of v
and x = (xy, ..., x,} is common knowledge to all the players in the game.

The seller sets a reserve price Pr = 0. After observing his signal x;, each
bidder i submits a demand curve B; (+]x}, which specifies for each P = pr,
the quantity B;(p|x;) demanded by {. A strategy for player i in the auction is,
therefore, the specification of a demand curve for each possible value of x;, Let

B(lx) = mei B; (pix;) denote the aggregate demand that arises under the vector
of signals x,

The Stop-Out Price .

The stop-out price p" is defined as the maximum price at which demand equals
or exceeds supply. Thus, given a vector of strategies ((B;(-|-)), the stop-out price
that results from the vector of signals x is

pHx) = PL if B(plx) < 1forall p > p,
max{p: B(pix) = 1) if B(plx) = 1 for some p > oL

Quantity Allocation

If total demand at the stop-out price p*(x) exactly equals the available supply of
unity, then each bidder receives the quantity he demanded. It is possible, however,
that because of “flats™ in the demand curve, the total demand at p* may exceed
supply. In this case, the supply is distributed pro-rata among the bidders according
to the following rules. Fix x, and for notational simplicity, let p* = p*(x). Let

ABp*Ix;) = Bi(p*|x:) — lim B;(plx;)
plpt

be the flat in bidder i’s demand curve at p*. The flat in the aggregate demand
curve is

AB(plx) =Y ABi(pix:)-
i=]

The ffaction of the flat in the aggregate demand curve that cannot be filled is

_ B(p*ix) ~1 8}
A(x}mmax{ ARG .

Since the available amount is issued pro-rata, the amount received by bidder i is
Bf(x) = Bi(plx;) — Mx)AB;i (plx:).

Seller Revenues in UPA and DA

Ina unifbrm—price auction, each bidder pays the stop-out price fo‘r each unit Fhat
he receives; thus bidder i pays a total of p*(x)BF(x). In a discriminatory m‘;ctlonf
each bidder pays the entire area under his demand curve out to p*; thus, bidder :
pays ’

(o]

PEB @+ [ Bipindp.

prx)

Equilibria in the Uniform-Price Auction.  The central result tha‘t Back and Zender
derive concerning uniform-price auctions is that there are ?contmuum of symmet-
ric Bayesian-Nash equilibria in which the stop-out price is less t.han vL, althoug%x
vy is the lowest possible post-auction price. In order to app_rer:{at.e fully the dif-
ference between divisible-good and indivisible-good auctions, it is necessary to
understand intuitively how this result could be true. . ' . '

The key lies in the best-response problem faced by bidders in untfe;m~Pr1ce
auctions of a divisible good. The marginal cost curve facing such any such.bldder
is endogeneous: it is determined by the residual supply curve aftgr subtractmg the
total demand curve of the other bidders. Now, if the total demand curve submz?ted
by the other bidders is suitably steep, then marginal cost es‘calates very rapidly
for the last bidder. Thus, it is possible that the equilibria which result from such
strategies could also result in the auction price being ‘bglow' Fhe good’s value.
The following resuit is proved simply by formalizing this intuition. (See also the
remark foilowing the proof.)

THEOREM 4.2,  Assume that the seller’s reserve price p; satisfies p; < 1.;1,.
Then, for any p* € [pr, vy there is an equilibrium in which the stop-out price
is p* regardless of the value of x. : '

Proof.  Pickany p* € [pr, v, ], andlet p'bedefinedby p’ = [(n—1vy+p*]/n.



Consider the following strategies:

1
T PL=p=p*
Bi(plx;) = L * ’ 4.2
np—ptp—p P TPEF 2
0, p>r.

Note that the right-hand side of this expression does not depend on x;, so the
strategies are effectively independeat of xj. Note also that impy pe B;(p) == 1/n,
so the demand curve has a flat of [1/(n — 1)] — {1/n] at p*.

Suppose all bidders j # { adopt the strategy (4.2). The residual supply curve
s{p) is defined as the quantity bidder i would obtain, if his demand were to make
the stop-out price equal to p. This curve is easily defined at all points except at p*.
At p*, the demand curves specified by {4.2) have a fiat, and so therefore, will the
supply curve. Some messy computation using the pro-rata rule shows that hidder

¢ can obtain any quantity g ¢ [0, 1/n] at this price, and the residual supply curve
therefore is:

s(py = 0, p=<p*
s{p) € [0,1/n], p=p*
_ {vg—pY . , (4.3)
s(p) = n%(vﬁ_p}, PP <p=p '
s{p) = 1, p>p

Now observe the foilowing:

s Siflce the total quantity demanded by the remaining n — 1 bidders at the
price p* equals unity, no bid below p* can be successful.
¢ At a price of stop-out price of p*:

»

1. 'The maximum quantity that / can obtain is 1/n.

2. Therefore, if p* is the best price for bidder { , he will want this maxi-
mum guantity.

3. In this case, his demand must satisfy limy 5« B;(p) = 1/n.

Ifthe realized post-auction price turns out to be v, bidder i will receive
a profit of (v — p*)/n.

® Atany price above p*, no bidder j s i has a flat. Thus, even if ’s demand

were 1o push total demand above unity, each bidder j # i would receive -

his full requested amount (see the pro-rata rule). Therefore, i cannot gain
by pushing dernand above unity at any price above p*.

e Finally, bidder i can obtain the entire quantity available by submitting a
demand of unity at the price p’.2 For any realization v of the post-auction

23C]ear§y any bid above p’ is senseless.

price, this would result in a profit of (v — p'). A simpie calculation using
the definition of p’ shows that, regardless of the value of v € [y, vyl
this profit is dominated by (v - p™)/n. Therefore, by 2(d) above, it is
suboptimal for / to make the stop-out price p’ or higher.

Sumrﬁing up, bidder i’s best-response problem is to find the best stop-out price
p € [p*, p']. The quantity obtained at the stop-out price p € (p*, p']is

1 fvy — pF
qi(p) = ~ (M)
n DV ‘:‘“_‘p

Therefore, if the realized post-auction price were v and bidder i chose the stop-out
price p, the profit realized by i would be

E _ — *
(v — pai(p) = - ((y fi(iﬁp £ })'

For p* < p, it is easy to check that—regardless of the value of v—this quantity
is decreasing in p. The quantity received by i as p | p* tends to 1/n. Thus, the
maximum profit i could receive by selecting p € (p*, p') is (v — p*}/n.

Since this is precisely the profit received by { by submitting the demand curve
(4.2) (again, see point 2 above), it follows that (4.2) is a best-response for bidder
i, when all the other players are also using this strategy. Since this strategy does
not depend on {’s signal, by symmetry it is an equilibrium of the auction game.
Of course, this implies that p* is an equilibrium price.”* : 0

Equilibria of Discriminatory Auctions.  1tis obvious that, ceteris paribus, abidder
in a discriminatory auction would wish to submit a flatter demand curve than
in a uniform-price auction. Back and Zender show that, under relatively weak
conditions, there is an equilibrium of the discriminatory auction in which each
bidder submits a totally flat demand curve, with each bidder bidding for the entire
quantity at a single price.

THEOREM 4.3.  Suppose that the firsi-price unit auction™ has a (possibly mixed-
strategy) equilibrium {py, ..., pn). Then, it is an equilibrium of the discrim-
inatory auction for bidder i to demand nothing at any price above p;, and to
demand the entire quantity at any price below p;.

Proof.  See Theorem 2 of Back and Zender [1]. O

24 A perusal of the proof shows that s best-response is forced 1o the point p* precisely by the way
the residual supply curve behaves for p > p*. The steep slope in this supply curve increases i’s
marginal cost rapidly; consequently a lower price works out better,

*Recall that “unit auction” refers to the case where bidders are only allowed to bid for the entire
quantity.



Comparison of the Auction Forms. Unlike indivisibie-good auctions, divisible-
good auction models have a large number of possible equilibria. In the case of
uniform-price auctions, we described 2 continuum of equilibria, but it must be
remembered that even these are only one class of equilibria; other equilibria may
also exist. A similar remark applies to discriminatory auctions.

If the comparison is limited to the classes of equilibria shown to exist in the
two auction forms, then (under some additional conditions concerning the sig-
nals) Back and Zender [1] provide a parametrized family of examples where the
discriminatory auction never does worse, and sometimes does better, than the
uniform-price auction.

There are at least two ways of interpreting these results. The less controversial
is to treat the central message of the paper as pointing out that there are impor-
tant differences between divisible-good and indivisible-good auctions, and that
one should not use the latter framework to draw conclusions about the former.
A stronger interpretation would be that discriminatory auctions are, in general,
superior to uniform-price auctions in the case of divisible goods. Although some
have drawn such a conclusion, this does not seem warrented. Even if it were
true within the Back-Zender equilibria that discriminatory auctions dominated
uniform-price auctions, one is stil] faced with the problem of explaining why these
equilibria are strategically salient. This is not an easy task; equilibria such as those
in Theorem 4.2 appear to require a considerable amount of coordination among
the bidders, most notably concerning the stop-out price p*.* More work appears
to be needed to resolve this issue.

OTHER WORK

Wang and Zender [32] study a model similar to that of Back and Zender. Their
focus is on equilibria in continuously differentiable strategies.”” They show that
a continuum of such equilibria exist under both the UPA and the DA formats;
however, all but one equilibrium of the discriminatory auction format disappear
when the seller imposes a reserve price.

A comparison of the seller revenues under the two formats reveals an interesting
picture. When all bidders are risk-neutral, it is shown that the setler’s revenue in the,
unique surviving equilibrium of the DA dominates all but onee of the continuum
of equilibria of the UPA format. When bidders are risk-averse, however, the
equilibrium under a DA dominates some of the equilibria under a UPA, but it may

“80f course, it could be argued that since Treasury auctions take place repeatedly, there is enough of
2 tinle element to enable bidders to coordinate their sirategies by trial and error. This is an inadequate
defence, If the time element is really itnportant, then we should be analyzing the repeated game, not
the static game, and now new, more salient, equilibria could arise,

2 A recent paper by Viswanathan and Wang [30] studies a divisible-good zuction mode! with when-

issued and secondary markets, Unfertunately, this paper came to our attention too late for 2 summary
fo be included here.

also be dominated by some of the latter, Thus, an unambigucus ranking of auction
formats according to seller revenues is impossible.

V. EMPIRICAL TESTING OF AUCTION MODELS

Empirical examinations of Treasury auctions have tended to focus mostly on one
of three issues: (i) the revenue generation ability of the auction format (seller’s

. perspective), (ii) the examination of whether bidders demonstrate rational bid-

ding strategies (the buyer’s perspective), and (iii) the degree of n‘zar}ipulabiisty of
the auction, and the impact of auctions on other market traded instruments (the
market’s perspective). Our brief empirical summary follows this framework.

UNIFORM-PRICE VS. DISCRIMINATORY AUCTIONS

Bolten [3] represents one of the earliest tests of revenue generation. -}"I-is arfa[)(s:s
aiso atternpts to understand the effects of competitive and IlO{hCOE‘I?Ci]tE\:’ﬂ bidding
demand. Bolten tests the effect of the non-competitive bzdders- moving to the
secondary market. His results show that if the non-competitive bldde.rs stay t.hen
revenue from the UPA increases, but if they leave, then revenue deglmgs. -,Gwen
that the non-competitive bidders are likely 1o stay, the practical implication of the
test would appear to be that the UPA would do better than the DA,

The auction process drew renewed attention recently when the Salomon scarlidai
broke in May 1991 (sec Jegadeesh [10] and Jordan and .Forda-n {11} f(?r a analysis of
this episode). In 1992, this prompted the Treasury to experiment with the UPA as
an alternative mechanism in the issue of Treasury securities. A number of recent
studies have since focussed on the UPA vs DA question, but with mixed resuits.

Simon {22] argues that the UPA costs the Treasury money; he ﬁr&ds that the
markup of auction yields over when-issued yields is much higherwhen theTreas_:ury
used the UPA rather than the DA, Umtauf [28] and Tenoric [27] stuc%y Mexican
Treasury auctions and Zambian foreign exchange auction.s, respe.{:twely. ’I‘l?e
Mexican Treasury switched from a discriminatory to a uniform-price format in
1990. Zambia’s avction of US dollars followed a uniform-price fcirmat up fo
1986, and a discriminatory format thereafter. Both studies report higher seller
revenues under the UPA. (Mester {15] also suggests that the UPA may prove to be
mildly better for revenue generation.) In addition, Umlauf assert§ that the UPA
format lowered bidder profits substantially as it hampered cotlusion. H:owever,
the lack of a competitive secondary market in either case, and the relative ¥ack
of sophistication in the two markets, make it difficult to draw any conclusions
concerning the US Treasury auction format.



TESTS OF BIDDER EFFICIENCY

In one of the few tests of bidder efficiency, Scott and Wolf [21] empiricall y examine
two dealers A and B. A is a smali dealer in T-Bills and B is a big dealer. They
assume that the dealers have quadratic utility functions for wealth. The data used is
74 consecutive weeks of forecasts and bids of these 2 dealers. Each dealers is asked
to provide the fo!léwing forecasts before each auction: (i) a discrete probability
distribution of stop out prices, and (ii) point estimates of post-auction opening
selling prices. Using this information, Scott and Wolf solve for the bids that
maximize the dealers’ utility. They also compute a mean-variance efficient frontier
of bids. They then compare the profits made from points on the efficient frontier
with actual profits. While the actual bidding was different from the computed
efficient bid, it was not si gnificantly so. The evidence in favor of or against bidder
efficiency is quite inconclusive. Technically, a problem here is that both frontier
and actual bids are drawn from the same subjective decision maker. It is therefore
even more surprising that they are different. It is thus hard to justify either bidding
efficiency or inefficiency.

Simon [23] undertakes a more recent study of bidder efficiency. Using intra-day
quotes he examines the risks and rewards of Treasury coupon auctions for bidders
who face different trade-offs between the winner’s curse and quantity risk. The
data indicates that markups of treasury auction average rates over bid when issued
rates averages 3/8 of a basis point. Bidders often established fong positions in the
security in the when-issued market when they could have obtained the paper in the
auction more cheaply, suggesting a degree of bidder inefficiency and also a degree
of information asymmetry prior to the auction. -

Cammack [5] undertakes a study of the information aggregation properties of
auctions and bidder efficiency. She finds that bjdders rarely agree on the value of
the bill in the auction, making the common value format particularly interesting.
Auction prices are lower than secondary market prices, reflecting information

asymmetry in the absence of a full market and the lack of agreement on price
amongst bidders.

OTHER WORK

Inarecent paper, Sundaresan [26] finds that the auction markets were very different
in the period 198083 as against the behavior in 1984-91. This is possibly on
account of the fact that the Fed had widely divergent methods of interest rate
management during these periods. In the earlier period, they managed money
supply, leading to a sharp increase in the volatility of interest rates. After 1983,

they switched to managing the leve! of the short rate by fargeting the Fed funds ~

_rate. This has led to far less volatile interest Tates.

A salient feature of the data appears to be that the bid-cover ratio (or the ratio of

total bids to the amount of the issue) bears an inverse relationship to the dispersion
of winning bids. This is not, perhaps, surprising. The greater the number of bids,

the smalier the percentage of bidders who win. This means that they are likely to
fall under a smaller portion of the distribution of bids, and therefore be bunched
together. It is also noticed that the dispersion of bids E.s. related to‘-she level of
vields, which is, as is well known, related to the volatility of the interest rate.
The bid-cover ratios tend to be higher for auctions of short maturity debt', and the
percentage of the issue sold to competitive bidders increases as the maturity of the
debt increases. ' 7

Sundaresan also finds a strong relationship between the repo markets and auc-
tion activity, Prior to the auction, substantial pre-trading of the issue occurs in

- the when-issued market. As a consequence of this trading, several short positions

are established, and are often hard to fulfill &n delivery date, reéuiting‘ in §hon
squeezes. This forces the shorts to pay high premia for' thfz sec:ur{ty wh.]ch Is e
flected in the repo market rates. Sundaresan reports a &gnzﬁcz?nt jump in premia
for borrowing securities in the 10 day window around the auction. ‘

Finally, Wachtel and Young [31] investigate the impact of auction announce-
ments on the interest rate markets, and finds little impact. Hence, the announce-
ments of auctions contain little information of surprise value to the market regard-
ing the supply of treasury securities.

VI. CONCLUDING COMMENTS

In summary, the implicétions of the theoretical and empirical work so far seems
to indicate that the following important issues are raised by the evidence from the
auctions markets:

1. On a theoretical level, the modelling of T-bill auctions must account for
several market stages: the when-issued market, the auction jtself, tha? repo
market and the post-auction secondary market. One mode} attempting to
do so is the recent work of Viswanathan and Wang [30}. ‘

2. Models of the auction with indivisible units or single units seem to give
results that are quite the opposite to those of muijti-unit ausztie-)ns. Her?ce,
the only viable models should be those permitting the submission of price-
quantity schedules as bids. ‘ .

3. In understanding the winner’s curse, a simple comparison of the prices
pre-auction with those post-auction will not provide correct' results: .Tins
is because of price distortions caused by different pre-auction positions,
bidder risk heterogeneity, and squeezes.

4. Auctions are hot completely ‘common-value’ in form. This is because The
bidders in the game have different objectives and prior positions off Wh'ICh
they frade in the auction. Understanding this aspect from a mod_elimg
view poing is necessary, though probably impossible to account for in any
framework of the Treasury markets. -



5. Finally, the liquidity effects of auctions are an important effect on the
markets. Auctions punctuate the time line of the debt markets by changing
the mix of off-the-run and on-the-run bonds.
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