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all three risks, with special emphasis on credit risks. The model incorporates a decomposition of credit spreads
into two stochastic elements: the default process and the recovery process in the event of default. The model is
easily implementable as it uses observable inputs. By using a discrete time formulation the model is numerically
easy to employ, and also permits the pricing of debt with embedded options of American type. It also allows
for pricing contracts between parties with varying credit ratings such as swaps where each counterparty may
have different credit quality. These features impart a degree of generality and practicality to the model which
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Pricing Credit-Sensitive Debt when Interest Rates,
Credit Ratings and Credit Spreads are Stochastic

This paper develops a model for the pricing of credit-sensitive debt contracts. Over the past
two decades, the debt markets have seen a proliferation of contracts designed to reappor-
tion interest rate and credit risks between issuer and investors. Contracts including credit-
sensitive notes (CSNs), spread adjusted notes (SPANs), and floating rate notes (FRNs)
adjust investors’ exposures to three risks: interest rate risk, changes in credit risk caused
by changes in the credit rating of the issuer of the debt, and changes in credit risk caused
by changes in spreads on the debt, even when ratings have not changed. In the paper, we
develop a pricing model incorporating all three risks, with special emphasis on credit risks.
The model incorporates a decomposition of credit spreads into two stochastic elements: the
default process and the recovery process in the event of default. The model is easily imple-
mentable as it uses observable inputs. By using a discrete time formulation the model is
numerically easy to employ, and also permits the pricing of debt with embedded options of
American type. It also allows for pricing contracts between parties with varying credit rat-
ings such as swaps where each counterparty may have different credit quality. These features
impart a degree of generality and practicality to the model which should make it attractive

to academics and practitioners alike.



1 Introduction

This paper develops a model for the pricing of a wide range of risky debt contracts and
derivatives, including those whose terms are contingent on credit ratings. Over the past two
decades, the debt markets have witnessed a proliferation of contracts aiming to reallocate
interest rate and credit risk between issuers and investors. In the mid-1970s, new contracts
that modified investors’ interest rate exposure included various forms of floating rate notes
(FRNs). In the late-1980s, security designers attempted to modify investors’ exposure to
credit risk with event-risk protection. These experiments typically stated that a triggering
event (such as a ratings downgrade) would either give the investor the right to put the debt
back to the firm (event risk covenants) or enjoy increased coupon payments (credit-sensitive
debt). Finally, in the early 1990s, financial intermediaries began to sell credit-risk derivatives
whereby investors could modity existing credit exposures, just as other derivatives permitted
investors to modify the interest rate exposures of already-issued instruments. For example,
a financial intermediary might offer options on the credit spread of a particular issuer or a

ratings class (such as AAA corporates) against a reference Treasury.

Innovations in the new issue and derivative markets that are credit-rating-contingent
(event risk covenants, credit-sensitive debt, and credit risk derivatives) demand that credit
ratings be explicitly incorporated into pricing models. Yet fixed income pricing models
that explicitly reference credit ratings are useful for much more than pricing exotica. A
number of researchers have recognized that credit ratings and credit spreads provide useful
observable data upon which pricing models can be based that can value a wide range of fixed
income instruments. By definition, credit ratings, which are easily observed, published by a
handful of rating agencies, and carefully scrutinized by investors, reflect an assessment of the
likelihood of default. Credit spreads provide additional information regarding the expected

recovery rate in the event of default, as well as the market’s credit risk premium.

The literature on pricing instruments with credit risks has followed two related ap-

proaches:

e Models which assume a stochastic process for the value of the firm, and then treat risky

debt as an option (Merton [17], Longstaff and Schwartz [14] Black and Cox [5], Shimko,



Tejima and VanDeventer [21], and Nielsen, Saa-Requejo and Santa-Clara [18]).

e Models which assume stochastic processes for (a) the credit quality of each bond (Jar-

row, Lando and Turnbull (JLT) [13]) and (b) the recovery rate in the event of default.

In general, models for pricing risky debt can be expressed simply using the following

equation:
P(rt,.) = B(r,t) = 6(.)Q(.)B(r,t) (1)

where r is the riskless interest rate, ¢ is maturity, P(.) is the price of zero coupon risky
debt, B(.) is the price of riskless debt of the same maturity, (.) is the psuedo-probability of
default and 6(.) = 1 — 3(.) is equal to one minus the amount of the bond’s value recovered

in the event of default. As we shall see later, 3(.) is the recovery rate on default.

Models that treat the value of the firm as the underlying stochastic process write 6(.) and
Q(.) as functions of firm value and the debt claims issued by the firm. While this approach
is well-grounded in theory, it has the practical difficulty of being predicated on a difficult to
observe stochastic process, the value of the unlevered firm. Therefore, the second approach
has the potential to treat ()(.) and 6(.) as stochastic processes, utilizing the information

about these functions that is embedded in observed credit spreads and recovery rates, such

as in JLT.

Our model is an extension of JLT, and like that model relies on an observable bond
trait, credit ratings, to characterize the probability of default. In their model and ours, the
quality level of a bond passes from one level to another under a probablity law depicted by a
Markov chain. One of these quality levels or states is that of default. In the JLT model, on
default, the bond offers a specific payoft governed by a constant recovery rate. Therefore, the
JLT model is characterized by a variability in spreads which is driven purely by changes in
credit ratings. We enhance their model by making the recovery rate in the event of default
stochastic as well, thus providing a two-factor decomposition of credit spreads. This has the

following impact:

e One, it allows more variability in the spreads on risky debt. The standard Merton

model for risky debt does not appear to successfully generate the magnitude of credit



spreads usually observed in the market. By permitting the recovery rate to be stochas-
tic, our model generates spreads that are closer in magnitude and variablility to those

seen in the debt markets.

e Two, spreads are now a function of factors other than pure quality levels. In the
Jarrow-Lando-Turnbull model credit spreads change only when credit ratings change,
whereas in the debt markets we find that credit spreads change even when ratings
have not changed. Injecting stochastic recovery rates into the model provides this

extra feature.

e Three, we choose to make recovery rates correlated with the term structure of interest
rates. This results in a model wherein credit spreads are correlated with interest rates,

as 1s evidenced in practice.

e Four, in the Jarrow-Lando-Turnbull model (which is a model to explain average spreads
levels for each rating class), the debt of all firms in the same rating class will demon-
strate identical variability of credit spreads. In our model, by choosing different recov-
ery rate processes for firms within the same credit rating class, we are able to generate

variability of spreads which is firm specific, rather than rating class specific.

e Finally, making recovery rates stochastic enables the pricing of a wide range of spread-
based exotic debt and option contracts. Our model provides a means to price resetting
debt when the yardstick for the reset may be the riskless interest rate, the firm’s credit
rating, or its spread over Treasuries. This permits us to value risky debt when the
counterparties have different credit risks, for example, in the pricing of risky coupon
swaps. Our model’s explicit link to observable credit ratings and credit spreads is
critical. Not only does it make the implementation of the model feasible, but also it

permits us to value standard bonds, and credit-contingent instruments.

In section 2, we present stylized facts about interest rates, credit spreads, and recovery
rates that underlie our model. In section 3, we develop the pricing model. In section 4, we
use the model to price different debt claims, presenting illustrative examples of pricing, as
well as a more detailed discussion of the pricing of a particular credit-sensitive note. Section

5 concludes.



2 An Empirical Overview

According the the published definitions of rating categories given by the major rating agen-
cies, credit ratings primarily reflect the likelihood of default. For example, Standard and
Poor’s notes that “likelihood of default is indicated by an issuer’s senior debt rating,” and
goes on to define the various rating categories by using language reflecting the firm’s “ca-
pacity to pay interest and repay principal.” The rate that might be recovered in the event
of default is at most a secondary consideration; for example, Standard and Poor’s explains
that all firms in default receive D ratings, regardless of their outlook (or presumably the
expected recovery rates bondholders might expect). Ratings are an easily observable trait
in that most firms are rated by one of the major agencies. For example, Standard and
Poor’s rates approximately 4000 domestic and international corporate issuers. We exploit
the breadth of ratings and their institutional definition to provide a useful characterization

of the probability of default.

Credit spreads for a particular rating category reflect not only expectations of the prob-
ability of default, but also expectations of recovery rates. Credit spreads by rating category
are reported in the press, and firm-specific credit spreads can be calculated from the prices
of the firm’s traded obligations. Because defaults are relatively rare, meaningful recovery
rates can be calculated only on a market-wide basis. Recovery rates are typically reported
as the percentage of a defaulted bond’s principal value received by the bondholder following
a bankruptcy or reorganization proceeding. Credit ratings are increasingly being used as
an indicator of credit quality. Lucas [15] reports that more and more debt issues contain

downgrade trigger clauses for determining coupon and collateral levels.

Because our model uses credit ratings, default probabilities, credit spreads, and recovery
rates extensively, it is appropriate to summarize stylized empirical facts about these traits
of the fixed income market, as well as the relationships among them. Specifically, we sketch
empirical relationships between the term structure, risky debt yields, credit spreads and
recovery rates on risky debt. Our data consists of monthly observations, from 1976 through
1991, of the yield on constant-maturity Treasuries of maturity 2,5,10 and 30 years and the
yield on corporate bonds for four credit rating levels: AAA, AA; A and BAA. Spreads for all

four rating levels are computed as the yield spread over the 30 year constant-maturity yield.



The data was obtained from Moody’s Bond Service. Recovery rate data for four classes
of debt (secured, senior, senior-subordinated and subordinated), is obtained from Altman’s
studies [1] of risky debt. We also refer to Duffee’s [8] recent work, which provides more

extensive evidence about default risk and Treasury yields.

Table 1 presents descriptive statistics for Treasuries, corporate bonds, and credit spreads.
Note that the standard deviation of Treasury yields increases with maturity, whereas that of
the corporates increases with a fall in credit rating. Spreads also show greater variability for
lower-rated bonds. Duffee finds similar results in his examination of individual bonds from

the Lehman Brothers dataset from 1985 to 1994.

Table 2 presents the correlations between Treasury yields and corporate bond yields.
Table 3 presents the correlation of the spreads with Treasury yields as well as with other
spreads. AAA spreads show little correlation with the level of riskless rates, whereas BAA
spreads appear to have a strong positive correlation with the level of Treasury yields. We
also see that credit spreads are correlated across rating categories, but this relationship is

strongest for nearby credit ratings

Table 4 presents the correlation of changes (first differences) in spreads with those of the
changes in other variables in our study. Using aggregate data, changes in spreads for all
but AAA issuers appear to be weakly negatively correlated with contemporaneous changes
in Treasury yields. Using firm-level data and controlling for bond maturity, Duffee finds a
stronger result. In his sample, he finds a statistically significant negative relationship be-
tween changes in credit spreads (measured relative to the appropriate Treasury) and contem-
poraneous changes in equivilent-maturity Treasury yields, expecially for lower-rated issues.
As might be expected, changes in spreads are strongly correlated between adjacent credit

ratings.

Table 5 presents the relationship between credit spreads and the recovery rates on de-
faulted debt. Recovery rates, taken from Altman [1] reflect the percentage of face value
received by bondholders when a bond defaults. In our model, we relate the variability of
credit spreads to the variability in expected recovery rates. In particular, increasing recovery
rates should result in decreasing spreads as the capital at risk is reduced. The evidence in

Table 4 suggests that this relationship is borne out in the data: contemporaneous credit



spreads and recovery rates are strongly negatively correlated. Furthermore, this correlation
is strongest between lower-rated issues and the least senior debt issues. However, Table 5
represents limited data (annual observations for the period 1985-91), and though it bears
out what is a simple theoretical proposition, no conclusive empirical implications can be
drawn. Because spreads are in turn correlated with interest rates from Table 2, this gives
us reason to allow for a correlation between recovery rates and interest rates. However, our
data here is limited and consists of simply annual observations from 1985-91, and as such,
much more empirical work is required on the observed behavior of recovery rates in order
to make definitive assumptions. Meanwhile, our model provides a normative stance on the

behavior of recovery rates, and their impact on credit spreads.

Rating agencies routinely publish statistics on rating changes, or the transition prob-
abilities of moving from one rating to another. Duffee analyzes whether these transition
probabilities are related to changes in 10-year Treasury yields. For financial service firms,
utilities (except those rated A), and industrial issuers (except those rated AA and A), he
found no significant relationship between changes in Treasury yields and one-year transition
probabilities. For AA-rated industrials and A-rated industrials and utilities, he found sig-
nificant relationships with interest rate changes. For the industrials, increases in Treasury

rates were associated with upgrades.

Our current model allows us to incorporate many of these stylized features of the credit
market. Specifically, we generate stochastic credit spreads by incorporating stochastic re-
covery rates, which are correlated with the level of riskless rates. A firm’s credit rating
(or probability of default) is also stochastic with changes in ratings are represented by the
market-wide transition probabilities. In the current model, the statistical transition proba-
bility matrix is constant; but, as we shall see, the risk-neutral transition matrix will be time

varying.

3 Model

The pricing model for CSNs falls into two segments: one, the term structure model, and two,

the default model. For the term structure model, we adopt the one factor Heath-Jarrow-



Morton ([10]) (HJM) model in discrete time. This is a parsimonious model as it requires
just one parameter, volatility. It can also be used to match the existing term structure of

zero coupon bonds.

Default is parameterized as a combination of the probability of default and the recovery
rate in the event of default. As mentioned earlier, the probability of default is given by a
bond’s rating, and the recovery rate is reflected in the credit spread for that rating. Therefore,
we will use the terms “default risk” and “credit rating change risk” synonomously, and the
terms “recovery rate risk” and “spread risk” interchangeably.! The model considers both
default risk and spread risk. For the default model we assume that the credit rating of risky
debt follows a Markov chain. The probabilities of moving from one credit rating to another
are specified by a transition probability matrix, which is easily estimated. This model has
been posited by Jarrow, Lando and Turnbull ([13]) (JLT), and is easily adapted to suit our
valuation goals. Thus, our modeling approach involves an amalgam of existing models, as
well as an extension to stochastic default recovery rates, as in Jarrow and Turnbull [12],

which may be correlated with the term structure of interest rates.

Our modelling approach is a standard contingent claims one. The two components are
the term structure model and the default risk model. We shall obtain the risk-neutral
probabilities for the evolution of the term structure of interest rates, and then ascertain
the risk-neutral probabilities of the default process. The combination of the two provides a

stochastic framework for the arbitrage-free pricing of risky debt.

3.1 The Term Structure Model

Our model is a discrete time version of the Heath-Jarrow-Morton [10] (HJM). A full expo-
sition of this type of model is provided in Amin & Bodurtha [3], and the model here is a

modest version of their framework. We write the forward rates process in discrete time as

ft+n0,T)=ft,T)+ at,TVh+ o(t, T)X1Vh, YT >t

INormally, spreads are functions of both the probability of default and the recovery rate. Here we employ
a restricted definition of spread risk, denoting spreads conditional upon no change in the probability of
default.



where X is a standard Normal variate and h is the discrete time interval. f(t,7T) is the one
period forward rate at time ¢ for one period starting at time T, a(t,T) is the time varying
drift term for the forward rate process, and o(t,T') is the volatility coefficient. Therefore,

the instantaneous spot rate is

1) = J(01) = J(0,0) + X fa(h, 1+ (b0 X,V

When o is scalar constant, this model exactly mimics that of Ho & Lee [11]. The price of a
zero-coupon bond paying $1 at time ¢ with maturity 7 is given by

P(t,T) = exp —if(t,ih)h

i=0

= exp —_Z_: [ 0,ch) g(a(jh,ih)h—I-U(jh,ih)Xl\/%)] h

Defining a riskless money market account B(%) as the numeraire for pricing bonds, we can

write:

B(t) = exp ' r(ih)h

= exp hz: [ 0,ch) —I—Z (jh,ith)h + o(jh, zh)Xl\/ﬁ)] h

We assume the existence of a risk-neutral measure under which we can evaluate our
random variable X;. We also assume the market for riskless and risky interest rate claims

is complete. Define

Z(.T) =

Under the risk-neutral measure, the discounted prices of assets must follow martingales

(Harrison & Kreps [9]), and so
Z(t+hT)
Z(t,T)

where F denotes the expectation taken under risk-neutrality at time ¢. (Throughout the rest

E — 1 (2)

of the paper, we shall assume that E(.) ~ E;(.)). Making the necessary substitutions into

9



the no-arbitrage condition (2) above, we can solve for the values of the drifts that satisfy
this condition:
ro fo

> alt,ih)h = %logE exp | —h Z (t,ih)X4(2 )\/% (3)

£41 i=£+1

K3

By substituting the drift [a(.)] into the original process, we obtain the risk-neutral evolution
of the term structure. This transformed process can then be used to carry out the valuation
of any contingent claim written on stochastic interest rates. Such a tree makes numerical
implementation economical and practical. Another specification with mean reversion is
o(.) = oexp[—A(T — t)]. Here, we obtain a Gaussian interest rate process with mean
reversion at rate A, akin to that specified by Vasicek [26]. This is the process used in the
paper. Other forms may also be used, and to the extent they are not dependent on the
state variables f(.), we can attain a path-independent implementation. Because we model
changes in discrete time, it is easy to impose any type of boundary conditions called for by

embedded option features in the risky debt product.

3.2 The Default Model

The default segment of the model consists of two parts: the default process and the recovery
rate process. The default process is similar to that adopted in Jarrow-Lando-Turnbull [13],

while the recovery rate process comprises the innovation of the paper.

3.2.1 Default Process:

As in Jarrow, Lando and Turnbull [13], we assume that the credit rating of the bonds follows
a discrete-time, discrete-space Markov chain. As reported in the Standard and Poor’s Credit
Review, we assume that there are eight possible credit rating levels (AAA, AA, A, BBB,
BB, B, C, and D), although, we may specify any number of rating levels. We index the
rating levels by ¢ = 1..K. In our specific case, K = 8. The rating D (i = 8) stands for the

default category. The transition probability matrix for moving from state ¢ to state 7 in time

10



interval h is denoted P, and is depicted below:

P11 P12 . .o o o .. D18
P21 P22 .. .o .o .o .. Dog
Py =Apabimrc = *)
P P2 oo oo o .o .. D78
0O 0 00 000 1

The last row in this matrix indicates that when the bond passes into default it stays in
default, i.e. the state is absorbing. This matrix P is obtained using historical data on rating
changes and defaults. The transition matrix over the period nh is simply P", which follows
from an elementary result (the Chapman-Kolmogorov equations) in the theory of Markov

chains. The matrix P" represents the n-period cumulative probability of default.

For each of the eight states, the bond markets assign maturity-specific spreads over the
risk free rate at which risky bonds will be traded.? For instance, at a rating of AA, the
market may require a spread of 200 basis points for a bond of maturity 5 years. The term
structure of forward credit spreads for each of the eight ratings is thus obtained from market
data. Denote s;(T') as the credit spread on a T-maturity forward one period bond of current

rating ¢. The term structure of forward credit spreads is specified by the spread matrix

{Si(T)}izl..K,t<T-

The matrix P above is the statistically observed transition probability matrix. For the
pricing of risky debt to satisfy no-arbitrage conditions, we need to employ the risk-neutral
transition probability matrix. We assume the existence of a transition probability matrix @),
which we shall denote as the equivalent probability measure matrix. Under the ¢} measure,
assume that the prices of risky bonds follow a martingale. Since () is an equivalent measure
we require that any cell {7,7} in ) must be zero for any cell in P that is zero. It is assumed
(as in Jarrow, Lando and Turnbull [13]) that the elements of @, ¢;;,7,j = 1..K, bear the

following relationship to the elements of the P matrix:

¢; = 7w()pij, ViFEy

?In reality, the full term structure of credit spreads is rarely available. The Wall Street Journal reports
a given spread for maturities out to 10 years, and another one for longer maturities.

11



g = 1— Z Qi (5)
=1

It can be easily shown that the relationship between the P and () matrices is given by the
following expression:

Q = I+ Diag[l](P — 1) (6)

where Il is the vector of 7(7),7 = 1..K. The terms x(¢) may be thought of as a risk adjustment
for default risk premia. On account of the multiplicative relationship of II between P and
(), we are able to ensure that the measures are equivalent, as sets of measure zero under P

will also be sets of measure zero under ().

Before we proceed to compute the elements of ¢) we introduce a simplifying assumption,
that is, the process driving the term structure and that driving the default process are
independent. Therefore the values in the matrix P are not functions of f(t,7T),VT > t.
We also note that whereas the matrix P is time homogenous, the matrix () is not, as the
risk premium adjustment 7 (2) will be a function of time. Therefore we obtain a series of )

matrices, Q(t),t = 1..T.

Let us define a stochastic cashflow vector €' € R¥, which provides us the payoffs on a
one dollar zero coupon bond at its maturity in each state 2,0 = 1..K. Standard and Poors
adopt 8 rating levels: AAA, AA, A, BBB, BB, BBB, C and D where D is default. ' will be

written as

—_ = = = e e

B
The vector above shows that in all states except default (¢ = 8, state D), the bond pays

off its promised amount, one dollar. In state D, the bond only pays off 3, which is the

stochastic recovery rate on the defaulted bond, given that it defaulted prior to maturity. It

12



is not necessary for the bond to default at maturity only, as the Markov chain computes the
cumulative probability of default upto maturity. We assume here that if default occurs, the
bondholder will receive an amount (3, the recovery rate. This recovery rate is stochastic and
is correlated with the spot rate process. Making the recovery rate process correlated with
the term structure enables us to inject a macroeconomic influence on default spreads within

the model.

3.2.2 Stochastic Recovery Rates:

The stochastic recovery rate determines the level of credit spreads in each period. This is
because the forward credit spread must be a function of the amount recovered on default in
the specific forward period. Thus, we establish a simple link between stochastic spreads and
recovery rates. The stochastic recovery rate also provides the link between our model and

that of the Merton type, because recovery rates are directly linked to the value of the firm.

Permitting recovery rates to be stochastic in our model is important for the following

reasoIns:

1. Credit spreads fluctuate when either (i) the probability of default changes or (ii) the ex-
ante recovery rate conditional on default changes. The model therefore incorporates a
two-factor stochastic model for changes in credit spreads. Therefore, when the recovery
rate is stochastic, credit spreads may change even when the credit rating of the firm

has not. This is clearly realistic.

2. In a model where only credit ratings change but not recovery rates, all firms within
the same rating class will demonstrate identical variability in credit spreads. In our
model, by choosing different recovery rate processes for individual firms, we allow for

a wide range of spread behavior within the same rating class.

3. Making recovery rates stochastic injects additional variability into the model spreads.
This is critical as models such as the standard Merton model have been found to

generate smaller and less variable spreads than those observed in practice.
4. Empirically, credit spreads are found to be correlated with the term structure of interest

13



rates (see Tables 3-5). This may be because both the probability of default and the
recovery rate on default may depend on existing macroeconomic conditions. It is
sufficient to make one of the above two factors correlated with interest rates. To see
this, notice that analogous to equation (1), the price of a credit-sensitive bond is equal

to the price of a default-free bond less an adjustment for default risk. Thus,
P(r, X t) = B(r,t)— (1 = 8(r, X, 1))Q(r, X, 1) B(r,1)

where both the recovery rate [(.) and the default probability Q(.) depend on the
interest rate r and an additional state variable X, which accommodates the riskiness
of the debt. The term (1 — 3(.))Q(.) is responsible for the magnitude and variability
of credit spreads. In order for spreads to be correlated with the term structure of
interest rates (r), clearly there is no need for both 4 and ) to be correlated with
r, and the spread term could be keyed off the composite term F(r,1)Q(X,t). This

approach greatly simplifies the model analytics while retaining a key empirical feature.

5. Finally, stochastic recovery rates enable the pricing of several new forms of risky debt

such as spread adjusted notes and various kinds of spread options.

We are now in a position to establish a bivariate process in spot rates and recovery rates.
Assume that the initial recovery rate is 5(0). We also assume that recovery rates obey the
following stochastic process:
1— Bt -
Bt+h) = (1 + %)()exp(aﬁ)(g\/ﬁ))
It is easily checked that if 3(0) € [0,1], then §(¢) € [0,1],V¢.? Allowing X; and X, to be

correlated, we can estimate the parameters of the joint covariance matrix as follows:
o? pPoas 0123 POROA
poso o poACR O

1—B(t+h) B(1)
Alt) = log( Ty 1_%)) = 55 XyVh, Vi

R(t) = r(t+h)—r(t)=K(t)+oX1Vh

where

3This is one simple form of the recovery rate process which retains the feature that recovery rates must
lie between 0 and 1, and also provides numerical tractability. This is without loss of generality as other
modelling choices are not precluded in the model.

14



and K (t) is a scalar constant.® Specification of the processes [R(t), A(t)] permits the easy
estimation of the parameters for the original processes [r(t), 3(1)]. Normally, in discrete time,
we would need to specify this bivariate process on a bivariate tree (4 branches emanating

from each node).

However, since in our model the recovery rate enters as a linear scaling of cashflows (C'),
we can see that F,3[C(8)] = E.[C(FE(S | r))]. Therefore, we apply the law of iterated
expectations and use only a univariate tree in r(t) (only 2 branches emanating from each
node), where we also obtain at each node the expected value of 3(t) given the value of r(t)
at that node. Therefore, we set up a binomial lattice in r(#), with X; taking on values of
(41,-1) with equal probability. At each node in the tree, in addition to r(t), we also compute
the expected value of 3(t), which is given as

BIB(t) | r(h)] = B3] = p=2[r(t) — E[r(1)]

where

€ ~ Z\;(O,l)
1 €
w0 - ]

Elr(t)] = f(0,0)+ > a(jh,t)h

i=0

sl = [~ i+t

In this fashion we are able to set up the entire binomial tree in two state variables.®

4To see this note that

1
a(jh,t+h)h =Y a(jh,t + h)h+ cX1Vh.

0 j=0

B

RS

r(t+h)_r(t):f(o,t+h)_f(0at)+

J

"We are grateful to George Constantinides for suggesting the use of the law of iterated expectations in
simplifying the exposition of the bivariate tree in interest rates and recovery rates as a simpler univariate
tree.
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3.2.3 Default along the Sample Path:

In their paper, Jarrow, Lando and Turnbull [13] assume that in the event of default prior to
maturity, the claimholders would receive the recovery amount at maturity of the bond. This
elegant assumption simplifies the risky term structure and the necessary computations quite
considerably as the risky bond price is simply the state price times the expected cashflow
in each state at maturity. However, it is tenable only under the assumption of constant
recovery rates. Here, since we relax that assumption, we are not able to assume a single
cashflow at maturity. Now, the time of default is important as it determines the recovery
rate to be applied. A similar assumption to JL'T was made by Longstaff and Schwartz [14].
However, under the assumption in this paper, the risky zero coupon bond will not generate

a cashflow only at maturity, but may do so at several possible points along the sample path.

Let the current time be £. Define as before that ¢;x(mh) is the cumulative probability of
default at time (¢ + mh) Also note that 3(mh,n) is the recovery rate in the event of default
at time (¢ + mh) at the nth node. We introduce a new variable ¢’ (mh) which represents
the one period probability of default over the period from [t + (m — 1)h] to [t + mh]. Using
standard Markov chain analysis, it can be shown that the probability of default in the period
indexed by m without default having occurred earlier (or the first passage time probability)
is

1 — qir((m — 1)h)]qglx"(mh)

The cumulative probability of default ending in the period indexed by m is given by:
gixc(mh) = qixc((m — Dh) + [1 = girc((m — 1))]gi (mh) (7)

Therefore, the one period probability of default in the period indexed by m is

qQ o QiK(mh) - QiK((m - 1)h)
K 1 — qu((m — 1)h>

(8)

We now use these definitions to compute the expected cashflows over time from a zero coupon

risky bond.
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3.2.4  Computing Sample Path Cashflows:

We begin by examining the expected cashflows that will be generated by the risky zero
coupon bond at each discrete time point in the sample path. Assume that the risky zero
bond has a one dollar face value and this cashflow is due at time T > ¢t + h. Since the bond
can default prior to T, it is possible for the bond to generate cashflows prior to maturity.
The expected cashflows at each state prior to maturity (7 < T') will then be the recovery
rate [3(7)] times the first passage probability of early default at time 7. Denote the expected
cashflow in the time period indexed by m as C'(m). For all time periods including maturity,
the expected cashflows from the one dollar risky zero coupon bond with maturity 7" are as

follows:

qi]"(mh)ﬂ(mhv n)v m = % +1
C(m) = [1 = qx((m = 1h)]gx(mh)s(mh,n), ;
[1 = gix((m = L)AL = g8 (mh)(1 = B(mh,n))], m =%

The first line in the equation above is the expected cashflow when default occurs in the first
time period from the valuation date. The third line provides the expected cashflow on the
terminal date, given that no default has occured prior to maturity of the bond; and finally,
the second line depicts expected cashflows in periods intermediate to the initial period and

maturity.

3.2.5 Computing Default Risk Premia [x(.)]:

The expected value of all the risky cashflows discounted back along the term structure tree
must be consistent with the prices in the initial term structure of interest rates and spreads.
This leads to the following condition for the price of the risky zero-coupon bond promising

to pay one dollar at maturity.

" m—1
S |E [exp |~ Y S(1im)| Clm)
m=f41 =t
L1
= exp |—h X (f(th) + s | x 1, vi (10)

j:

=
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Equation (10) is simply the condition that, under the risk-neutral measure, the expected
risky cashflows discounted at riskless rates must be equal to the value of expected riskless
cashflows discounted at risky discount rates. Separating the last period’s cashflows we can

rewrite the above expression as

5 E (exp {hmzzlf(t,jh) C(m))
m=f+1 j=t
v B (exp 5> f<t,jh>] 1= gl — DIl — g7 ﬂ(f,nm)

|
= exp |[=h Y (f(t,jh) +si(jh))| . Vi (11)
=
Define the state price at the nth node of the binomial tree at time ¢ to be w(t,n). The

state prices are computed from the term structure model in Section 4.1. Incorporating this

definition, the equation above is as follows:

b3 (gl = g~ DI = (0= B ]

— exp {hz (f(t.jh) + sioh))] Vi (12)

Re-arranging and solving for ¢%(mh) gives us the following equation:

T A-B+C

Q?K(z) - D (13)
where
A = 5 [i w(mh,n)[1 — qix((m — 1)h)]q5 (mh)B(mh,n)
m=++1 =1
B = exp|—h 5 (f(t,gh)+ SZ(Jh))]
C = iw(%,n)[l — qm(% —1)]



D= Sl it (e - B, e (14)

From the above expressions, it is clear that D > 0, because the state prices w(¢,n) > 0 by
definition, and ¢;x(.), 5(.) € [0,1]. For similar reasons, A > 0, B > 0,C > 0. We can also
see that A — B4 C > 0 since it is equal to ¢%(.) D > 0. The fact that ¢;x > 0 follows from
equations (7) and (8). From equation (8) we can see that since ¢;x(mh)—q¢x((m—1)h) >0
(the cumulative probability of default must be increasing), the default probabilities will
always lie in the range [0,1] as required. Finally, having computed q?K(%) we obtain the

cumulative probability of default using equation (7):

T T T T

%’K(z) = QiK(z - 1) + [1 - %K(z - 1)]9?1((%)

Once we obtain the risk-neutral probabilities of default ¢;x(.), the risk premia can be com-

puted using the following equation:

(i) = 22U, (15)

They can be then be used in conjunction with the no-arbitrage term structure to compute

the prices of several kinds of risky debt.

Whereas in the current model structure, we use a statistical transition matrix, which is
assumed to be time homogenous, no such restriction is necessary. It is possible to estimate
the P matrix for several time periods. Then, instead of employing the one period P matrix

raised to the required power, we can use the time-specific matrix, in equation (15).

Finally, the model may be enhanced to place more structure on the Markov chain for
credit ratings. In the current version of the model, the initial Markov chain (P) is obtained
empirically. By positing a functional relationship between the probabilities in the transition
probability matrix, it may be possible to express them as a function of a few state variables.
This will allow fitting the Markov chain to a cross-section of risky debt prices. Whereas this

approach will be more useful remains an empirical question.
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3.3 Interpreting Default Spreads

Our model provides for risky term structures, stochastic credit ratings, and stochastic
spreads. Default spreads are a function of the probability of default as well as the amount
lost when default occurs. In other words, stochastic forward spreads are a function of the
risky ratings (embodied in the Markov chain) and stochastic recovery rates (implemented

on the bivariate tree).

The cumulative risk-neutral probability of default for any rating ¢ after a period T' is
given by the ¢;xth element of the Q(7T') matrix. The risk-neutral probability of default in
forward period T' in rating ¢ is then given by % At each node (7T, 1,n) on the
tree we also know the spot rate r(7,[,n) and the recovery rate at the two attached nodes in
the next period F(T + h,l,n). The one-period forward spread s;(7,1,n) at node (T,1,n) on

the tree is then computed from the following equation:

¢it(T + h) — qix (T)
1 —qx(T)

exp[—hs;(T,l,n)]=FE ll — (1 —=8(T + h, l,n))] , Vi

which gives the solution as follows:

¢it(T + h) — qix (T)
1 —qx(T)

(T, 1n) = —%log (E [1 _ (1— B(T + h, z,n))D Wi (16)

This equation simply expresses the forward spread as a function of the stochastic recovery
rates in the future time period. These simple computations on the bivariate tree allow us to
express the entire spread structure as well. The expression for spreads also clearly defines
the joint impact of default probabilities and recovery rates on the determination of spreads.
Ay increase in the risk-neutral probability of default will increase spreads, and any increase
in the recovery rate will decrease spreads. Moreover, since we know that 3(.), ¢ix(.) € [0, 1]
and also ¢ (T + h) > qix(T), it is clear that the spreads s;(.) will always also be greater

than zero, which is desirable.

Our model is now complete. We are able to represent on a bivariate tree, stochastic
interest rates, recovery rates and spreads, as well as embed changing credit ratings in the
model. Our model provides risk-neutral valuation, free of arbitrage for any credit-sensitive

instrument whose payoffs can be expressed as a function of any of these stochastic variables.
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As summary, a schematic of the model is presented in Figure 1. The figure depicts
the various elements of risky debt prices which must be consistent with each other. The
three key elements of the model are the HJM term structure, the default process provided
by the Markov chain for credit ratings (P), and the stochastic recovery rate process. The
term structure and recovery rates are correlated with coefficient p. The interaction of these
three components in a risk-neutral pricing environment must be consistent with the observed
term structure of credit spreads. The risk-neutral drifts on the term structure dimension
are obtained as desscribed in Section 4.1. The term structure and recovery rates processes
are combined on a bivariate tree upon which we impose the risk-nuetral default process
Markov chain (). The statistical transition probabilities P are converted into risk-neutral
probabilities () so as to be consistent with observed spreads using a risk premium adjustment
7(.) and the stochastic recovery rate process. This entire structural scheme is then used for

the pricing of risky debt.

4 Applications of the Model

This model can be used to value a broad variety of debt contracts, including plain vanilla
debt, callable debt, floating-rate notes, bonds with credit-risk puts, credit-sensitive notes,
spread-adjusted notes, credit-risk derivatives, and swaps. In this section, we use the model to
price some of these instruments, and discuss its use in pricing one credit-contingent contract,

credit-sensitive notes.

4.1 Categorizing Risky Debt

It is useful to categorize debt instruments on the basis of the risks borne by investors.
Consistent with the model developed, we identify exposure to shifts in the riskless term
structure, changes in the probability of default (change in firm rating), and changes in
the recovery rate (credit spread conditional on rating). If we then list a variety of debt

instruments, we can see how they have varying sensitivities to these different risks.
Plain-vanilla (fixed rate) risky debt is subject to all three risks as the promised coupons of
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the corporate coupon bond are fixed and do not adjust with any of the risk factors. Typical
floating rate notes (FRNs), where the coupons vary with the risk-free rate, protect the holder
from changes in the risk- free rate, but leave the holder exposed both to changes in credit
rating and changes in the appropriate spread conditional on credit rating. Instruments that
try to eliminate investor’s exposures to all of these risks include auction- rate notes, whose
coupons are reset each period to those prevailing in the market in an attempt to trade at par
on each reset date. In theory, the auction rate process is designed to provide the holder with
adjustments in the promised coupons so that changes in any of the three risks are perfectly

offset.

The other instruments shown in the table below provide investors with protection against
some but not all of these risks. Credit-sensitive notes, which are discussed in detail in
the following section, pay off cashflows which are based on a prespecified schedule of fixed
coupons contingent on the credit rating level at each reset date in the future. While they
provide holders with protection against changes in rating, they do not provide them with
any protection against changes in the spreads conditional on those ratings. Spread adjusted
notes (SPANs) are instruments where the underlying riskless rate is fixed, but the spread
over this rate is adjusted to prevailing spreads in the market, based on a predetermined
credit rating. Because the spread over the fixed rate changes for both rating changes and
changes in the appropriate spread given any rating level, these instruments are subject only

to interest rate risk.

The features of these instruments are summarized in the following table:

Price Sensitivity to
Security Interest | Recovery Rates | Probability of Default
Rate Risk | (Spread Risk) (Default Risk)
Plain Vanilla Debt Yes Yes Yes
Swaps Yes Yes Yes
FRN No Yes Yes
Auction Notes No No No
CSN Yes Yes No
SPAN Yes No No
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4.2 Applications of the Pricing Model - Pricing Stylized Securities

To provide the reader with the sensitivities of values to changing model parameters, we use
the model to price a variety of instruments listed in the preceeding table, with the results
provided in Figures 2 and 3. In all cases, we assume that debt has a maturity of five years.
In Figure 2, we plot the prices of risky debt of various types against the level of the short
rate. The credit rating assumed for the debt is A. Pure risky debt is assumed to carry a
coupon of 9%. The FRN is assumed to pay the short-term rate plus 90 basis points. The
SPAN is based on a floor riskless rate of 8% plus the stochastic spread. And finally, the CSN
has a coupon schedule for each of the 7 non-default ratings as follows: (8,8.1,8.5,9,10,10.5).

As can be seen only the FRN shows little sensitivity to the change in the term structure.
This is because the coupon adjusts with the changing short rate. The value of the FRN is
not totally immune to changes in interest rate levels, because some effect of changing interest
rates enters the valuation of the FRN through the correlation between the spreads and the

term structure.

In Figure 3, prices are plotted against changes in the initial recovery rate, which is the
proxy for the level of spreads in the economy. Here, the instrument with low sensitivity is

the SPAN as its cashflows adjust with changing spreads.

The pricing of swaps where the counterparties to the swap have differential risk ratings is
possible in our model because we include spreads for all possible credit ratings. We assume
that in the event of default by any party to the swap, the other party is still obliged to make
good on his payments, and that the payments due are net (not gross) payments. In practice,
there are several possible settlement scenarios based on default, and our aim here is not to
analyze each one in detail, but merely to provide an indicative example. Let us assume a
swap where we contract to pay fixed, and receive floating payments at the riskless rate plus
60 basis points. We also assume that our current rating is A (¢=3) and that of the payer of
the floating rate is AAA (¢=1). We compute swap values over a range of interest rates and
recovery rates. We also assume that the fixed rate can be one of three values: 9.0,9.5 and
10.0 percent per annum. The maturity of the swap is 5 years. Figure 4 presents the value

of the three swaps for varying interest rates, and Figure 5 provides the same analysis for
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different recovery rates. In Figure 4 it is easily seen that as interest rates increase the swap
which is net negative NPV becomes positive in value, since the magnitude of the floating
rate payments increases. Of course the swap value is declining in the fixed rate. In Figure
5 we notice that there is a mild decrease in value of the swap to the payer of the fixed rate
when the recovery rate increases. This is because as the recovery rate increases, it benefits
the party with the better credit rating, as his expected losses are reduced. The effect here
on prices is minimal however, because of the small difference between the creditworthiness
of the parties to the swap. In Figure 6, we assume the same scenarios as in Figure 5, but
amend the credit rating of the fixed rate payer is BB (¢ = 5). The slope of the lines is higher

in comparison to those in Figure 5 as the difference in credit ratings is larger.

4.3 Analyzing Credit Spreads

In Section 4.3, we depicted an analytic expression (equation 16) for forward credit spreads.
This equation established the influence of both default probabilities and recovery rates on
the magnitude of spreads. In this section, we examine the impact of changes in these two

factors on spreads.

The results are presented in Table 7, and show the spreads for a range of recovery rates,
and default probabilities. The results clearly demonstrate that credit risk is sensitive to
both the factors, and that spreads do vary a lot even when the probability of default is held
constant. Therefore, allowing recovery rates to be stochastic provides the extra degree of
volatility we observe empirically when spreads seem to vary even when the rating of a bond
has not changed. Our model provides a simple way to capture this feature in the realm of

practical application.

4.4 Application of the Model - Pricing Enron’s Credit-Sensitive
Note

Credit-sensitive notes (CSNs) are innovative debt instruments which would be difficult to

price using many of the extant models. A CSN is a debt instrument whose payoff is con-
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tractually linked to the credit rating of the issuer. A typical CSN would be issued with a
fixed rate schedule, such that the issuer would promise to pay predetermined coupons on
the CSN based on current credit rating. Were the issuer’s credit rating not to change, these
fixed interest payments would not change. However, if the issuer’s credit rating deteriorated
or improved, its coupon payments would increase or decrease, respectively, according to the
preset schedule. Therefore, the payoff on a CSN varies only with credit rating changes and
not with interest rates or spreads. In this sense, they make for interesting study, as pure

credit-contingent instruments.

CSNs enjoyed brief notoriety beginning in May 1989 when Enron Corporation publicly
offered the first CSN.® In the period 1989-90, there were several issues amounting to a

cumulative issue size of about $2.3 billion. See Table 6.

Comparing a CSN to a traditional FRN reveals the salient differences. On a traditional
FRN, the issuer pays a fixed spread over a Treasury yield or LIBOR, and the promised
coupon adjusts for changes in interest rates. The FRN investor is protected against riskless
interest rate changes, but bears all of the risk of changes in the issuer’s credit rating or
changes in the spread for each ratings category. In contrast, with a CSN, changes in interest
rates do not affect the coupon paid; coupons are adjusted only due to changes in the issuer’s
credit rating. For example, on the Enron issue, the initial coupon was set at 9.5%, and
were Enron’s credit rating not to change, this coupon would remain unchanged. However, if
Enron’s rating were to fall from Baa to Ba , the coupon would rise to 12%. Conversely, were
its credit standing to improve to A, the coupon would fall to 9.4%. The holder of the CSN
bears not only interest rate risk (as the owner of a fixed-rate obligation), but also “spread
risk,” i.e., the risk that the change in yield for a change in rating matches the market rate
for that credit spread. Therefore, it is easy to see that pricing the CSN requires analysis

wherein we cannot assume that interest rates, credit ratings or credit spreads are constant.

5While the Enron issue was the first public offering, a variant of the CSN structure is reported to have
been used extensively in revolving credit facilities by banks. In these transactions, interest rates are keyed
off of the levels of accounting variable such as interest coverage and leverage.
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S&P Rating AAA  AA A BBB BB+ BB BB- <=1B
Promised Enron Coupon (%) 92 93 94 9.5 120 125 13.0 14.0
Yield on Corporate Bonds (%) | 9.33 9.62 10.10 10.44 - 11.88 - 1291

CSNs were created as a reaction to increasing investor concern about event risk in the
late 1980s. The junk bond era was nearing its end, and credit spreads reached historically
high levels. Moreover, the differential in spreads between investment grade and junk debt
had also widened. Therefore, the CSN provided a natural hedge to investors against credit
rating downgrades, by imposing the cost of rating declines on the issuer in a precommitted
agreement. The cost to the issuer would be offset by potential gains from improvements
in credit ratings. Unlike the FRN, by establishing an aggressive rate schedule on issue of
the CSN, the issuer was able to credibly signal its view of better prospects. Therefore,
the CSN could provide a mechanism for firms to credibly signal their prospects of credit
improvements. In theory, they might also lead to lower agency costs of debt. Any risk-shifting
by management in an effort to transfer value from the debtholders to the equityholders will
be reflected in the credit rating, and the concurrent increase in the coupon transmits these
transfers back to the debt holders. The issuer of the CSN bears downgrade risk, in exchange

for the potential upside gain, signaling opportunities, and lower financing costs.

Based on its apparent alternatives, it is unclear whether the CSN was attractive to Enron,
at least on the basis of its price. The initial coupon Enron would pay were its credit not to
change was lower than the rate it would have paid on a fixed-rate obligation, consistent with
other researchers’ findings.” If Enron’s credit improved, it would pay slightly less than better-
rated fixed-coupon issuers would have paid. However, if its credit worsened, it committed

itself to paying substantially more than lower-rated fixed-rate issuers would have promised

to pay.

Inputs to the model to value the Enron CSN were obtained from several sources. The
initial forward rate curves for May and June 1989 was obtained from the McCulloch and

Kwon [16] database. The volatility of the forward rate was estimated using a time series of

"Ogden and Moon [19] find that issuers of reset notes and credit sensitive notes pay initial coupons below
those associated with fixed rate bonds of similar characteristics. They do not examine the full schedule of
payments.
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data from this same database. Recovery rate data was obtained from the published tables
in Altman’s study [1]. The correlation (17%) between the term structure and recovery rates
was computed with the same data as described so far. The term structure of spreads for
June 1989 was obtained from Standard and Poors [24]. Finally, the Markov probabilities
of going from one rating level to another were taken from the ratings transition matrices
published in the Standard & Poor’s Credit Review of January 25, 1993. The ratings matrix
also includes non-rated issues. These were apportioned to the lowest three rating classes
equally, assuming that the large proportion of unrated firms are drawn from sub-investment

grade issues.®

The Enron CSN issue was offered on May 31, 1989 for par (settlement on June 15). Using
data as of this date, the model produces a value of 100.4, reasonably close to the offering
price quoted at the beginning of of the selling period. By the end of June 1989, the model
suggests that the price should have risen to 104.0, based on changes in interest rates over
that month. According to Moody’s Bond Record, the closing price for June 1989 was 103.91,
including accrued interest. Thus, the model appears to be able to produce prices that closely

resemble traded prices for a complicated credit-sensitive instrument.

The Enron CSN is substantially more valuable than risky debt, as evidenced by the fact
that at the end of June, the bond’s actual and model price were approximately 104, but
BBB-rated debt with a coupon of 9.5% would have sold for 107.9. The skewed nature of
the rate schedule offered by Enron can explain the reason why CSN investors would demand
materially lower returns than investors in a similarly-rated 9.5% fixed-rate note. In the
event of worsening ratings, the CSN coupon would rise substantially. But in the event
of ratings deterioration, it would decline slowly. FEffectively, Enron provided substantial
downside protection to the investors without demanding much ‘give-back’” in the event of

improvements in credit ratings, and thus, the embedded rating option was quite valuable.

8The application of the model to pricing actual issues of exotic risky debt is simple and feasible. The model
was implemented on a Pentium 60 Mhz PC and generated the CSN price in about 1 minute. Programming
of the model was undertaken using Mathematica [27] which is run through an interpreter, and run times
would be much faster if a compiled language such as C4++ were used instead.

27



4.4.1 Fitting Parameters to Match Market Prices

Using historical data to estimate parameters, we priced the Enron CSN and obtained prices
which were different from market values. Alternatively, it is possible to imply the parameters
from market prices. As an example, let us assume that we obtained and fit the term structure
parameters to the existing prices of riskless bonds. To imply the default probabilities and

recovery rate levels, we can use the price of the Enron CSN.

Figure 8 demonstrates that a wide range of possible values of default probabilities and
recovery rates would match the prices of Enron’s credit sensitive note. In the figure, we
plot the price of the CSN for varying levels of the recovery rate () and what we denote
the Q-scale. The Q-scale is a multiplier attached to the P matrix governing the ‘speed’ of
default. This is carried out as follows. If for example, we need the 2 period probability of
default, we raise the one period P matrix to the power of 2. If we wish to increase the 2
period rate of default, we can also do this by raising the P matrix to a power greater than 2.
On the other hand, if we wish to reduce the rate of default, we raise this matrix to a power
less than 2. If we wish to leave the probability of default unchanged, the Q-scale is equal to

unity.

We carried out this exercise and computed values depicted in Figure 8. Several pairs
of recovery rate values and Q-scale values cover a wide range of possible CSN prices, and
demonstrates the ease with which this model may be used to fit parameters to observed risky

debt prices.

5 Conclusion

This paper highlights three sources of risk in pricing credit-sensitive debt: interest-rate risk,
default risk, and recovery-rate (spread) risk. The innovation of the paper is the recognition
that spreads and recovery rates are stochastic, and may be correlated with the term structure.
This simple enhancement has several modeling benefits: (i) it provides greater variability in
spreads, in line with that observed in practice, (ii) it enables a stochastic decomposition of

credit spreads into likelihood of default and recovery on default, (iii) it allows spreads to vary
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even when the firm’s rating class does not change, (iv) it injects correlation between spreads
and the term structure of interest rates, (v) it enables firm and security-specific features of
spreads to be accommodated, and (vi) it enables the pricing of a wide range of spread-based

exotic debt and options.

As a practical contribution, the paper uses a discrete-time model that is easily imple-
mentable using ordinarily observable inputs. The model is capable of pricing a wide range
of credit-sensitive exotica, and is also useful to price a broad range of risky debt contracts.
We demonstrate this by using the model to price an actual credit-sensitive note using data,

and find that the model produces values quite close to those observed in practice.
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Table 1: Descriptive Statistics
This table presents descriptive statistics for yields on Treasuries, yields

on corporate bonds and the spreads between corporate yields and the
30 year constant-maturity Treasury bond. Data covers the period 1976-
1991.

Descriptive Statistics
Variable Mean Median Std-dev Min Max
Treasuries
CMT-2 9.26 8.67 2.62 4.36  16.46
CMT-5 9.56 8.85 2.35 5.84  15.93
CMT-10 9.77 9.03 2.16 6.84  15.32
CMT-30 9.81 9.01 1.97 7.27  14.68
Corporates
AAA 10.50 9.62 2.00 7.92  15.50
AA 10.80 9.83 2.12 8.12 16.00
A 11.20  10.10 2.27 8.37 16.50
BAA 11.80  10.70 2.35 8.80 17.20
Spreads
AAA 0.66 0.67 0.31 -0.20  1.61
AA 1.03 0.98 0.38 0.39 201
A 1.46 1.34 0.58 0.54  3.27
BAA 1.96 1.88 0.64 0.92  3.76

Table 2: Correlation of Corporate and Riskless Yields
This table presents the correlation of corporate yields and yields of

constant-maturity Treasuries. The data spans the period 1976-1991.
Corporate Yields

Rates AAA AA A BAA
Treasuries

CMT-2 0.92 092 0.90 0.90
CMT-5 0.97 097 095 0.95

CMT-10 099 0.98 097 0.97
CMT-30 099 0.98 097 0.97
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Table 3: Correlation of Spreads with Yields and Spreads
This table provides the correlation coefficient of the spreads with the

other variables in our analysis. The data is monthly and covers the

period 1976-1991.

Credit Spreads over CMT-30s

Rates AAA AA A BAA
Treasuries

CMT-2 0.01 0.25 0.35 0.44
CMT-5 0.03 0.28 0.40 0.48

CMT-10 0.04 0.30 0.42 0.50
CMT-30 0.02  0.29 0.42 0.49

Spreads

AAA 1.00  0.89 0.80 0.77
AA 1.00 0.95 0.93
A 1.00 0.97
BAA 1.00

Table 4: Correlations of Changes in Credit Spreads with Changes in Other Vari-

ables
In this table we present the correlation of changes in credit spreads

with changes in the Treasury and corporate yields. The data spans the
period 1976-1991, and is monthly.

Changes in Credit Spreads
Changes in | AAA  AA A BAA
Treasuries
CMT-2 -0.16 -0.31 -0.38 -0.42
CMT-5 -0.25 -0.38 -0.46 -0.49
CMT-10 -0.32  -0.48 -0.55 -0.56
CMT-30 -0.39 -0.52 -0.59 -0.60
Spreads
AAA 1.00  0.79 0.70 0.67
AA 1.00 091 0.85
A 1.00  0.91
BAA 1.00
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Table 5: Correlations between credit spreads and recovery rates
This table presents the correlation between recovery rates and default

spreads. The data is annual for the period 1985-1991. The data was
obtained from Altman [1].

Spreads over CMT-30s
Debt Class AAA  AA A BAA
Recovery Rate
Secured -0.40 -0.30 -0.30 -0.20
Senior -0.20 -0.20 -0.10 -0.20
Senior Sub. -0.30  -0.50 -0.50 -0.60
Subordinated -0.40 -0.70 -0.80 -0.80

Table 6: Fixed Rate Credit-sensitive Note Issues
The table summarizes public offerings of CSNs.

Date Issuer S&P Rating Maturity — Size
at issue in years  ($ MN)
05-31-89  Enron Corp. BBB- 12 100
12-06-89  Potlatch Corp. A- 20 100
04-27-90  Auburn Hills Trust (Chrysler guarantee) BBB- 30 1000
05-21-90  Unisys Corp. BBB 7 300
06-05-90  Morton International AA- 30 200
06-06-90  Georgia Pacific BB+ 7 300
06-06-90  Georgia Pacific BB+ 12 300
Total 2300
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Table 7: Spread Sensitivity to Changes in the Probability of Default and Changes

in Recovery Rates
This table presents an analysis of how forward credit spreads (for a 10

year maturity) change when the two spread components, (a) default
probabilities and (b) recovery rates change. The spreads are computed
using equation (16) . We use a range of recovery rates (0.20, 0.34,
0.50), and a range of default probabilities, at 75%, 100% and 125% of
the empirical risk-neutral probabilities,which are presented below, for
cumulative default at 9.5 and 10 years. Therefore the default prob-
abilities are scaled by the probability multipliers 0.75, 1.0 and 1.25
respectively in the table. Sensitivity to both factors exists, as is quite
apparent from the table, and this is presented for each rating level.

Rating — | AAA AA A BBB BB B C
Cum.Prob 10yr 0.1283 0.1565 0.1998 0.261 0.3648 0.5035 0.7667
of default 9.5yr 0.1215 0.1482 0.1894 0.2475 0.3465 0.4795 0.7358

Spreads

Prob Multiple | Recov rt | AAA AA A BBB BB B C
0.75 0.20 0.0039 0.0049 0.0063 0.0087 0.0130 0.0198 0.0367
0.75 0.34 0.0032 0.0040 0.0052 0.0072 0.0107 0.0163 0.0302
0.75 0.50 0.0024 0.0030 0.0040 0.0054 0.0081 0.0123 0.0228
1.00 0.20 0.0054 0.0068 0.0090 0.0126 0.0197 0.0326 0.0853
1.00 0.34 0.0044 0.0056 0.0074 0.0103 0.0162 0.0268 0.0698
1.00 0.50 0.0034 0.0042 0.0056 0.0078 0.0122 0.0203 0.0523
1.25 0.20 0.0070 0.0089 0.0119 0.0171 0.0285 0.0537 0.4223
1.25 0.34 0.0058 0.0073 0.0098 0.0141 0.0234 0.0440 0.3320
1.25 0.50 0.0044 0.0055 0.0074 0.0107 0.0177 0.0331 0.2391
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Figure 1: Schematic of the Model
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Figure 2: Risky Debt Prices for Varying Interest Rates
The plot here consists of risky debt prices of pure debt, Floating Rate

Notes, Spread Adjusted Notes and Credit-sensitive Notes. It is appar-
ent that the FRN is insensitive to interest rates. All debt is assumed to
have a maturity of 5 years, and an A rating. Pure risky debt is assumed
to carry a coupon of 9%. The FRN is assumed to pay the riskless rate
plus 90 basis points. The SPAN is based on a floor riskless rate of 8%
plus the stochastic spread. And finally, the CSN has a coupon schedule
for each of the 7 non-default ratings as follows: (8,8.1,8.5,9,10,10.5).
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Figure 3: Risky Debt Prices for Varying Recovery Rates
The plot here consists of risky debt prices of pure debt, Floating Rate

Notes, Spread Adjusted Notes and Credit-sensitive Notes. It is appar-
ent that the SPAN is insensitive to recovery rates, or spreads. All debt
is assumed to have a maturity of 5 years, and an A rating. Pure risky
debt is assumed to carry a coupon of 9%. The FRN is assumed to pay
the riskless rate plus 90 basis points. The SPAN is based on a floor
riskless rate of 8% plus the stochastic spread. And finally, the CSN
has a coupon schedule for each of the 7 non-default ratings as follows:

(8,8.1,8.5,9,10,10.5).
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Figure 4: Swap Prices for Varying Interest Rates
The plot here consists of swap prices at various interest rates for three

swaps where the fixed leg is the pay side at 9.0, 9.5 and 10.0 percent.
The swap maturity is 5 years, and coupons are semi-annual. The receive
side is floating at the riskless rate plus 60 basis points. The credit rating
of the floating rate payer is AAA and that of the fixed rate payer is A.
The initial recovery rate is 40%, and the initial spot rate is 6%. The
values presented are the swap NP Vs from the point of view of the payer

of the fixed rate.
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Figure 5: Swap Prices for Varying Recovery Rates
The plot here consists of swap prices at various recovery rates for three

swaps where the fixed leg is the pay side at 9.0, 9.5 and 10.0 percent.
The swap maturity is 5 years, and coupons are semi-annual. The receive
side is floating at the riskless rate plus 60 basis points. The credit rating
of the floating rate payer is AAA and that of the fixed rate payer is A.
The initial recovery rate is 40%, and the initial spot rate is 6%. The
value presented are the swap NPVs from the point of view of the payer
of the fixed rate.
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Figure 6: Swap Prices for Varying Recovery Rates
The plot here consists of swap prices at various recovery rates for three

swaps where the fixed leg is the pay side at 9.0, 9.5 and 10.0 percent.
The swap maturity is 5 years, and coupons are semi-annual. The receive
side is floating at the riskless rate plus 60 basis points. The credit rating
of the floating rate payer is AAA and that of the fixed rate payer is
BB. The initial recovery rate is 40%, and the initial spot rate is 6%.
The value presented are the swap NPVs from the point of view of the
payer of the fixed rate.
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Figure 7: Enron CSN Prices for varying Recovery Rates
Presented in this graph are CSN prices for varying recovery rates, for

the mid-June 1989 issue of Enron Corp. Enron issued these notes pay-
ing semi-annual interest off a coupon schedule depending on the current
rating of the company. The June 1989 forward rate curve from McCul-
loch and Kwon was used. Interest rate volatility was 0.0156, recovery
rate volatility 0.0063, correlation between the term structure and re-
covery rates was 0.17, and the mean spreads for each credit rating were
(0.0082, 0.0101, 0.0131, 0.0175, 0.0255, 0.0375, 0.0675, 0.1). The cur-
rent rating of the company is BBB. The graph also shows prices of
corresponding risky and riskless coupon debt. The coupon is 9.5%.
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Figure 8: Enron CSN Prices

Presented in this graph are CSN prices for varying recovery rates and
default probabilities, for the mid-June 1989 issue of Enron Corp. Enron
issued these notes paying semi-annual interest off a coupon schedule de-
pending on the current rating of the company. The June 1989 forward
rate curve from McCulloch and Kwon was used. Interest rate volatil-
ity was 0.0156, recovery rate volatility 0.0063, correlation between the
term structure and recovery rates was 0.17, and the mean spreads for
each credit rating were (0.0082, 0.0101, 0.0131, 0.0175, 0.0255, 0.0375,
0.0675, 0.1). The current rating of the company is BBB. The graph
axes are as follows: Beta depicts the variation in the recovery rate, and
QQ-scale stands for the multiplier of the rate of bankruptcy. The ()-scale
is a convenient way of modifying the default probabilities. At a Q-scale
value of 1, the P matrix is unaffected. When Q-scale is greater than 1,
it means that we accelerate the speed at which bankruptcy occurs by
a factor of the QQ-scale. Similarly, when the Q-scale is lower than 1, it
means that the probability of default reduces.
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