
Text and Context:
Language Analytics in

Finance

Text and Context:
Language Analytics in

Finance

Sanjiv Ranjan Das
Santa Clara University

Leavey School of Business
srdas@scu.edu

Boston — Delft

Foundations and Trends R© in Finance

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

S. R. Das. Text and Context:
Language Analytics in Finance. Foundations and TrendsR© in Finance, vol. 8,
no. 3, pp. 145–260, 2014.

This Foundations and TrendsR© issue was typeset in LATEX using a class file designed
by Neal Parikh. Printed on acid-free paper.

ISBN: 978-1-60198-910-9
c© 2014 S. R. Das

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, mechanical, photocopying, recording
or otherwise, without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen-
ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for
internal or personal use, or the internal or personal use of specific clients, is granted by
now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The
‘services’ for users can be found on the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system
of payment has been arranged. Authorization does not extend to other kinds of copy-
ing, such as that for general distribution, for advertising or promotional purposes, for
creating new collective works, or for resale. In the rest of the world: Permission to pho-
tocopy must be obtained from the copyright owner. Please apply to now Publishers Inc.,
PO Box 1024, Hanover, MA 02339, USA; Tel. +1 781 871 0245; www.nowpublishers.com;
sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to
now Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com;
e-mail: sales@nowpublishers.com

Foundations and Trends R© in Finance
Volume 8, Issue 3, 2014

Editorial Board

Editor-in-Chief

George M. Constantinides
Booth School of Business
University of Chicago
United States

Editors

Francis Longstaff
Co-Editor
University of California, Los Angeles
Sheridan Titman
Co-Editor
University of Texas at Austin

Editorial Scope

Topics

Foundations and Trends R© in Finance publishes survey and tutorial
articles in the following topics:

• Corporate finance

– Corporate governance

– Corporate financing

– Dividend policy and
capital structure

– Corporate control

– Investment policy

– Agency theory and
information

• Financial markets

– Market microstructure

– Portfolio theory

– Financial intermediation

– Investment banking

– Market efficiency

– Security issuance

– Anomalies and
behavioral finance

• Asset pricing

– Asset-pricing theory
– Asset-pricing models
– Tax effects
– Liquidity
– Equity risk premium
– Pricing models and

volatility
– Fixed income securities

• Derivatives

– Computational finance
– Futures markets and

hedging
– Financial engineering
– Interest rate derivatives
– Credit derivatives
– Financial econometrics
– Estimating volatilities

and correlations

Information for Librarians

Foundations and Trends R© in Finance, 2014, Volume 8, 4 issues. ISSN paper
version 1567-2395. ISSN online version 1567-2409. Also available as a com-
bined paper and online subscription.

Foundations and TrendsR© in Finance
Vol. 8, No. 3 (2014) 145–260
c© 2014 S. R. Das
DOI: 10.1561/0500000045

Text and Context:
Language Analytics in Finance

Sanjiv Ranjan Das
Santa Clara University

Leavey School of Business
srdas@scu.edu

Contents

1 What is Text Mining? 3

2 Text Extraction 7
2.1 Using R for text extraction 8
2.2 Using the text mining package tm 11
2.3 Term Document Matrix (Indexing) 13
2.4 Visualizing Text . 15
2.5 Using Twitter Feeds . 16
2.6 Using Facebook Feeds . 21
2.7 Alternate Programming Languages 23

3 Basic Text Analytics 25
3.1 Dictionaries and Lexicons 25
3.2 Mood scoring using Harvard General Inquirer 31
3.3 Stemming and Stop Words 35
3.4 Text Summarization . 37

4 Text Classification 41
4.1 Bayes classifiers . 43
4.2 Support vector machines 48
4.3 Word count classifiers, adjectives, and adverbs 52
4.4 Fisher’s discriminant-based word count 52

ix

x

4.5 Vector distance classifiers 53

5 Metrics 55
5.1 Confusion Matrix . 56
5.2 Accuracy . 58
5.3 False Positives . 59
5.4 Sentiment Error . 60
5.5 Disagreement . 61
5.6 Correlations . 61
5.7 Phase lag metrics . 62
5.8 Readability . 64

6 Applications and Empirics 69
6.1 Predicting Market Movement 71
6.2 Predicting risk, volatility, volume 80
6.3 Text Mining Company Reports 81
6.4 Text Mining Public Data and Network Modeling 86
6.5 News Analytics . 91
6.6 Commercial Vendors . 96

7 Text Analytics – The Future 103

8 Appendix 109

Acknowledgements 115

References 117

Abstract

This monograph surveys the technology and empirics of text analytics
in finance. I present various tools of information extraction and basic
text analytics. I survey a range of techniques of classification and pre-
dictive analytics, and metrics used to assess the performance of text
analytics algorithms. I then review the literature on text mining and
predictive analytics in finance, and its connection to networks, covering
a wide range of text sources such as blogs, news, web posts, corporate
filings, etc. I end with textual content presenting forecasts and predic-
tions about future directions.

S. R. Das. Text and Context:
Language Analytics in Finance. Foundations and TrendsR© in Finance, vol. 8,
no. 3, pp. 145–260, 2014.
DOI: 10.1561/0500000045.

1
What is Text Mining?

Howard: You know, I’m really glad you decided to
learn Mandarin.
Sheldon: Why?
Howard: Once you’re fluent, you’ll have a billion
more people to annoy instead of me.

“The Tangerine Factor”
The Big Bang Theory, Season 1, Episode 17

If you consider all the data in the universe, only some of it is in
numerical form. There is certainly a lot more text.1 If you read a finan-
cial news article, the quantity of text vastly outnumbers the quantity of
numbers. Until recently, financial analysis was just based on numbers.
Usage of text required human coding of attributes into numerical form
before yielding to analysis. This was a slow process, and not exhaustive,
given how much textual data is at hand. We are entering the age of

1We may also consider images, sound clips, and videos as data, in which case,
numerical data comprises a very small portion of human expression and experience.
See Mayew and Venkatachalam [2012] for the use of speech analysis in deciphering
the emotive content of voice communications by managers of firms.

3

4 What is Text Mining?

Big Text, and this monograph describes the current landscape of text
analytics.

Text is versatile. It contains nuances and behavioral expression that
is not possible to convey using numbers. Behavioral economics makes
a case for considering these nuances that permeate human activity, in
economics and finance. Advances in computer science have made text
mining possible, and finance is replete with applications, and offers
substantial payoffs for profit-making ideas using text mining tools.

There are several benefits to enhancing quantitative financial anal-
ysis with text mining analytics. First, text contains emotive content
that may be useful in assessing sentiment in markets. There are several
articles in mainstream journals that deal with this topic, both theoret-
ical and empirical [for example, Admati and Pfleiderer, 2001, DeMarzo
et al., 2003, Antweiler and Frank, 2004, 2005, Das and Chen, 2007,
Tetlock, 2007, Tetlock et al., 2008, Mitra et al., 2008, Leinweber and
Sisk, 2010].

Second, text contains opinions and connections that may be har-
vested and assessed for trading rules, or to corroborate other news,
or for risk assessment. Many papers examine these issues as well, and
present the benefits of such analysis, as in Das et al. [2005], Das and
Sisk [2005], Godes et al. [2005], Li [2006], Hochberg et al. [2007].

Third, many facts do not lend themselves to quantitative expres-
sion. They may be intrinsically qualitative and better expressed in the
form of text. Of course, most qualitative phenomena may be expressed
as numerical quantities on a discrete support, but such abstraction re-
sults in a loss of holistic meaning. For example, a trading algorithm
may examine a news report to determine a buy or sell signal, and text
mining tools can use past data on news and trading outcomes to deter-
mine the best course of action in a seamless, efficient manner. Coding
text using quantitative variables, i.e., dummy variables for the vari-
ous attributes of text is clunky, spawns too many variables, and is less
accurate.

Fourth, numbers tend to aggregate and summarize underlying phe-
nomena, of infinite variety, and the nuances are better expressed in
text, which is disaggregated. Numbers are not raw, original data, but

5

quantifications of characteristics of markets, often first expressed in tex-
tual form. For this reason, it is likely that text (such as news streams)
contains information that is more timely than numerical financial infor-
mation, and better suited to predictive analytics. There is evidence that
textual information may be used to predict markets, as in Antweiler
and Frank [2004], Tetlock [2007], Leinweber and Sisk [2010]. Analyzing
large bodies of text enables operationalization of the wisdom of the
crowds as discussed in the excellent book by Surowiecki [2004].

The benefits of text mining are easy to see without defining it for-
mally, but it’s time to attempt a formal definition. Text mining is the
large-scale, automated processing of plain text language in digital form
to extract data that is converted into useful quantitative or qualitative
information. Hence, text mining is automated on big data that is not
amenable to human processing within reasonable time frames. It entails
extracting data that is converted into information of many types. Text
mining may be simple as in key word searches and counts. Or it may
require language parsing and complex rules for information extraction.
It may be applied to structured text, such as the information in forms
and some kinds of web pages, or it may be applied to unstructured text,
a much harder endeavor. Text mining is also aimed at unearthing un-
seen relationships in unstructured text as in meta analyses of research
papers, see Van Noorden [2012].2

A subfield of text mining is “news analytics.” Wikipedia defines it
as - “... the measurement of the various qualitative and quantitative
attributes of textual (unstructured data) news stories. Some of these
attributes are: sentiment, relevance, and novelty. Expressing news sto-
ries as numbers permits the manipulation of everyday information in a
mathematical and statistical way. News analytics are used in financial
modeling, particularly in quantitative and algorithmic trading. Further,
news analytics can be used to plot and characterize firm behaviors over
time and thus yield important strategic insights about rival firms. News
analytics are usually derived through automated text analysis and ap-

2See the article by Gary Belsky, “Why Text Mining may be The Next Big
Thing” in TIME:
http://business.time.com/2012/03/20/why-text-mining-may-be-the-next-big-
thing/print/.

6 What is Text Mining?

plied to digital texts using elements from natural language processing
and machine learning such as latent semantic analysis, support vector
machines, ‘bag of words’, among other techniques.”

In the ensuing chapters we will examine several topics in financial
text mining. In Chapter 2 we examine how text is extracted from var-
ious web sites and services. Chapter 3 deals with the basics of text
analytics such as dictionaries, lexicons, mood scoring, and summariza-
tion of text. This is followed by the analytics of text classification in
Chapter 4. The performance of text analytic algorithms is assessed us-
ing a range of metrics in Chapter 5. A survey of the empirical literature
on text mining in finance and the commercialization of textual analyt-
ics is discussed in Chapter 6. Finally, we end with a look at the future
of text analytics in Chapter 7.

2
Text Extraction

Amy: Did you hold the baby?
Sheldon: I did.
Amy: And how did it make you feel?
Sheldon: Looking into the blank, innocent eyes of a
creature that couldn’t begin to comprehend anything
I was saying ... basically another day at the office.

“The Cooper Extraction”
The Big Bang Theory, Season 7, Episode 11

A substantial part of text mining comprises text extraction from
unstructured text documents or web pages. We note that the title of
this section is information extraction, which refers to organized data
that is created after processing the text download. This means that we
undertake a two part process, downloading textual data first, and then
cleaning up and organizing unstructured text into structured text or
numerical data arranged in tables.

Downloading text from the internet is called "web-scraping" and
there are a host of tools available for this procedure. In the next few
paragraphs we will review a few of the common approaches used to

7

8 Text Extraction

download text from web pages, and perform rudimentary clean up.
This list is by no means exhaustive.

2.1 Using R for text extraction

The R programming language is increasingly being used to download
text from the web and then analyze it. The ease with which R may
be used to scrape text from web site may be seen from the following
simple command in R:

> text = readLines (" http : // on l i n e . wsj . com/news/
␣␣ a r t i c l e s /SB100014240527023041797045794591
␣␣61537152946?mod=WSJ_Home_l a r g eHead l in e&
␣␣mg=reno64−wsj ")

Here, we downloaded the headline article about the Malaysian plane
crash from the Wall Street Journal. (Note: the character t in the code
above stands for whitespace.)

The function readLines() reads in an entire page from the web,
and stores each line as a character array. In fact readLines() is ag-
nostic about whether the file is a web page, i.e., resident on a server,
or a file on your disk. If you have a file on your drive, you may use the
function in the same way, making to sure to point to the file location
there. To figure out how many lines the page has issue the command:

> length (text)
[1] 1855
Let’s examine the top 11 lines of the web page:
> head (text , 1 1)
> head (text , 1 1)
[1] "<!DOCTYPE␣html>"
[2] "<!−−␣TESLA␣DESKTOP␣V1␣−−><!−−LOCAL−−>"
[3] "<html␣ itemscope=\" \ " ␣ itemtype=\" http : //schema . org/

NewsArtic le \ " ␣xmlns=\" http : //www.w3 . org/1999/xhtml\ " "
[4] " ␣␣␣␣␣␣ lang=\" en−US\ " ␣data−env=\"prod\ " ␣data−s i t e=
␣␣\ " wsj \ " ␣data−r eg i on=\"na , us\ " ␣data−l ayouttype=
␣␣\ " a r t i c l e \ ">"
[5] "<head>"
[6] " ␣␣<meta␣http−equiv=\"X−UA−Compatible\ " ␣ content=

2.1. Using R for text extraction 9

␣␣\ " IE=edge\ ">"
[7] " ␣␣<meta␣http−equiv=\" Content−Type\ " ␣ content=
␣␣\ " text/html ; cha r s e t=UTF−8\">"
[8] " ␣␣<t i t l e >Malaysian␣PM␣Says␣Malaysia ␣ A i r l i n e s ␣ F l i gh t
␣␣370␣Ended␣ in ␣ Indian ␣Ocean␣−␣WSJ. com</ t i t l e >␣␣ "
[9] " ␣␣<meta␣name=\" dj . asn\ " ␣ content=\" ip−−27\" ␣>"
[1 0] "<meta␣name=\" user . type \ " content=
\ " nonsubsc r ibe r \ ">"
[1 1] "<meta␣name=\" user . exp\ " content=\" default\ " ␣>"

This produces the usual html code we see at the top of a web page.
Suppose we just want the sixth line, we do

> text [6]
[1] " ␣␣<meta␣http−equiv=\"X−UA−Compatible\ "
content=\" IE=edge\ ">"

And, to find out the character length of the sixth line we use the func-
tion

> l ibrary (s t r i n g r)
> s t r_length (text [6])
[1] 55

We have first invoked the library stringr that contains many string
handling functions. In fact, we may also get the length of each line in
the text vector by applying the function str length() to the entire
text vector.

> text_l en = s t r_length (text)
> text_l en [5 5]
[1] 123
> text_l en [6]
[1] 55

We see that some lines are very long and are the ones we are mainly
interested in as they contain the bulk of the story, whereas many of the
remaining lines that are shorter contain html formatting instructions.
Thus, we may extract the top three lengthy lines with the following set
of commands.

> r e s = sort (text_len , de c r ea s ing=TRUE,

10 Text Extraction

index . return=TRUE)
> idx = re s$ i x [1 : 3]
> text = text [sort (idx)]

The first command above sorts the file by text length of each line, and
the second command retrieves the line numbers of the three longest
lines. The sort option index.return=TRUE returns into object res two
lists, one the sorted values res$x and the index of the sorted values
res$ix. The third command restricts text to the three longest lines.

In short, text extraction can be exceedingly simple, though getting
clean text is not as easy an operation. Removing html tags and other
unnecessary elements in the file is also a fairly simple operation. We
undertake the following steps that use generalized regular expressions
(i.e., grep) to eliminate html formatting characters.

> text = paste (text , c o l l a p s e=" \n ")
> text = s t r_replace_a l l (text , " [<>&; , .] " , " ␣ ")

This will generate one single paragraph of text, relatively clean of for-
matting characters. Such a text collection is also known as a “bag of
words”.

The XML package in R also comes with many functions that aid in
cleaning up text and dropping it (mostly unformatted) into a flat file.
This may then be further processed. Example code for this is as follows.

require (RCurl)
require (XML)

txt = getURL(" http : //www. t h e s t r e e t . com/ s to ry/
12538792/1/
jim−cramers−madmoney−recap−the−enemy−i s−us . html?
puc=yahoo&cm_ven=YAHOO" , . encoding = "UTF−8")

page1 = htmlTreeParse (txt , u s e I n t e rna l = TRUE)

c l e an tx t = xpathApply (page1 , "//body// t ex t ()
[not (ance s to r : : s c r i p t)] [not (ance s to r : : s t y l e)]
[not (ance s to r : : n o s c r i p t)] " , xmlValue)

2.2. Using the text mining package tm 11

write . table (c l eantxt , " c l ean . txt " , col .names =
FALSE, quote = FALSE, row .names = FALSE,
sep = " \ t " , f i l eEncod ing = "UTF−8")

This code downloads Jim Cramer’s page and strips it of all html tags
and generates a clean text file that is saved to the hard drive as
clean.txt. Later in this article, we present an example in which this
clean text is presented as a visualization.

The XML package also provides functions that extract tables in html
pages. See readHTMLTable(). Table information is closer to the goal of
information extraction rather than mere text extraction.

2.2 Using the text mining package tm

The R programming language supports a text-mining package, suc-
cinctly named tm. Using functions such as readDOC(), readPDF(), etc.,
for reading DOC and PDF files, the package makes accessing various
file formats easy.

Text mining involves applying functions to many text documents. A
library of text documents (irrespective of format) is called a “corpus.”
The essential and highly useful feature of text mining packages is the
ability to operate on the entire set of documents at one go. For example,
let’s invoke the tm package and create a corpus.

> l ibrary (tm)
> text = c ("INTL␣ i s ␣ expected ␣ to ␣announce␣good
␣␣␣ ea rn ings ␣ r epor t " ,
"AAPL␣ f i r s t ␣ quarte r ␣ d i s appo in t s " , "GOOG␣announces
␣␣␣new␣wa l l e t " ,
"YHOO␣ascends ␣ from␣ old ␣ways ")
> text_corpus = Corpus (VectorSource (text))
> text_corpus
A corpus with 4 text documents
> writeCorpus (text_corpus)

The writeCorpus function in tm creates separate text files on the
hard drive, and by default are names 1.txt, 2.txt, etc. The simple

12 Text Extraction

program code above shows how text scraped off a web page and col-
lapsed into a single character string for each document, may then be
converted into a corpus of documents using the Corpus() function. It
is easy to inspect the corpus as follows:

> in sp e c t (text_corpus)
A corpus with 4 text documents

The metadata c o n s i s t s o f 2 tag−value pairs and
a data frame
Ava i l ab l e tags are :

create_date c r e a t o r
Ava i l ab l e v a r i a b l e s in the data frame are :

MetaID

[[1]]
INTL i s expected to announce good earn ings report

[[2]]
AAPL f i r s t quarte r d i s appo in t s

[[3]]
GOOG announces new wa l l e t

[[4]]
YHOO ascends from old ways

This output shows that the corpus is a “list” object in R. To access
individual documents, grab the required item in the list, i.e.,

> text_corpus [[3]]
GOOG announces new wa l l e t

In order to see how a function may be applied across all documents
in the corpus, see the following command, for example.

> text_upper = tm_map(text_corpus , toupper)
> in sp e c t (text_upper)
A corpus with 4 text documents

2.3. Term Document Matrix (Indexing) 13

The metadata c o n s i s t s o f 2 tag−value pairs
and a data frame
Ava i l ab l e tags are :

create_date c r e a t o r
Ava i l ab l e v a r i a b l e s in the data frame are :

MetaID

[[1]]
INTL IS EXPECTED TO ANNOUNCE GOOD EARNINGS REPORT

[[2]]
AAPL FIRST QUARTER DISAPPOINTS

[[3]]
GOOG ANNOUNCES NEW WALLET

[[4]]
YHOO ASCENDS FROM OLD WAYS

This is the power of processing text within a corpus, i.e., the ability to
apply functions directly across all documents. You can easily see that
this operation is possible to compute in parallel across many machines
in a cluster or cloud.

An important step in some procedures for text mining is to “stem”
words so that similar words are not treated as different words. For
example, “quote” and “quotation” should be treated the same. In order
to make them the same, we need to stem these words using a stemmer,
of which a very popular one is that of Porter [1980]. Application of the
stemmer would reduce both words to the value “quot”.

2.3 Term Document Matrix (Indexing)

An essential output from a corpus is the “term document matrix” or
TDM for short. This is a table that provides the frequency count of
every word (term) in each document. The number of rows in the TDM

14 Text Extraction

is equal to the number of unique terms, and the number of columns is
equal to the number of documents.

> tdm = TermDocumentMatrix (text_corpus)
> in sp e c t (tdm)
A term−document matrix (19 terms , 4 documents)

Non−/ spar s e e n t r i e s : 19/57
Spar s i ty : 75%
Maximal term length : 11
Weighting : term frequency (t f)

Docs
Terms 1 2 3 4

aapl 0 1 0 0
announce 1 0 0 0
announces 0 0 1 0
ascends 0 0 0 1
d i s appo in t s 0 1 0 0
earn ings 1 0 0 0
expected 1 0 0 0
f i r s t 0 1 0 0
from 0 0 0 1
good 1 0 0 0
goog 0 0 1 0
i n t l 1 0 0 0
new 0 0 1 0
old 0 0 0 1
quarte r 0 1 0 0
report 1 0 0 0
wa l l e t 0 0 1 0
ways 0 0 0 1
yhoo 0 0 0 1

> dim(tdm)
[1] 19 4

2.4. Visualizing Text 15

This is an interesting TDM as each word (term) appears just once.
The TDM is a matrix object in R and hence is available for any sort
of matrix manipulation that may be required. It is the starting point
for different kinds of textual analyses that we will consider later on in
this article.

2.4 Visualizing Text

A popular approach to visualizing text is the representation of terms in
a “word cloud”. We use the facile wordcloud package in R. There are
three steps here: extract text, construct a term document matrix, and
generate the word cloud. Example code based on Bloomberg’s markets
page is as follows:

> l ibrary (RCurl)
Loading r equ i r ed package : b i t ops
Warning message :
package "RCurl " was bu i l t under R ve r s i on 2 . 1 5 . 2
> l ibrary (XML)
> txt = getURL(" http : //www. bloomberg . com/
news/markets/ ")
> mypage = htmlTreeParse (txt , u s e I n t e rna l=TRUE)
> c l e an tx t = xpathApply (mypage , "//body// t ex t ()
[not (ance s to r : : s c r i p t)] [not (ance s to r : : s t y l e)]
[not (ance s to r : : n o s c r i p t)] " , xmlValue)

> l ibrary (s t r i n g r)
> c l e an tx t = paste (c l eantxt , c o l l a p s e=" \n ")
> c l e an tx t = s t r_replace_a l l (c l eantxt , " \n " , " ␣ ")

> l ibrary (wordcloud)
Loading r equ i r ed package : Rcpp
Loading r equ i r ed package : RColorBrewer
> w = s t r_spl i t (c l eantxt , " ␣ ")
> w = w [[1]]
> idx = which(w!=" ")

16 Text Extraction

> w = w[idx]
> words = unique (w)
> wcount = NULL
> for (j in 1 : n) {
+ count = length (which(w==words [j]))
+ wcount = c (wcount , count)
+ }
> wc_sort = sort (wcount , de c r ea s ing=TRUE,

index . return=TRUE)
> wcount = wc_sort$x
> words = words [wc_sort$ i x]
> wordcloud (words , wcount)

This set of code generates a visual word cloud shown in Figure
2.1. The size of each word reflects the frequency with which it appears
on the web page. We have used the XML package, the string handling
package stringr, and the wordcloud package. A visual depiction of
text in this manner provides a good summary of the content at a first
glance. In ensuing sections, we will describe other approaches to making
meaning of text using a computational approach.

Word clouds are useful ways of summarizing text. But, they are
also useful in detecting errors in parsing or classifying text. In later
sections of this manuscript, we will explore the mood scoring and clas-
sification of text and news into bullish, neutral, and bearish signals.
Many techniques use words and their positive and negative connota-
tions. Sometimes these may be misinterpreted because in finance they
are used differently, or they are taken out of context. Using the R pack-
age wordcloud allows for a visual screen to see whether the scoring of
text maps well into the visualized word picture.

2.5 Using Twitter Feeds

Twitter is an increasingly popular source for sentiment mining in fi-
nance. We will later explore the literature on using Twitter for trad-
ing. Twitter provides an API for downloading tweets into R using the
OAuth protocol, and in R this is handled in the ROAuth package. The

2.5. Using Twitter Feeds 17

IndustryGained

M
ut

ua
lTrading

Currencies
YellenTradebook

Apple

Personalities

onEast,
Debt

Li
ce

ns
in

g

Sustainability

Room

Africa

Magazine

BNA

Prices

Biggest
Amid

Political

Le
ad

er
s

U.S.

hour

Li
veWith

Japan

Markets
Set

Crisis

India

S
to

ck
s

Link

In

the

Enterprise

Asia

Deals

Grid

TV

Company

S&P

Watchlist
M

id
dl

e
Professional

Municipal

Currency
Money

Now

of
Financial

Stock
Real

Treasuries

Bonds

Solutions

Capital

Loot

Center

Slideshows

Economy

Policy
EstateG

lo
ba

l

SEF

Service

European

Calendar

Shows

2
Asia−Pacific

Commodities

Funds

S
up

po
rt

Surveillance

Europe
1

to Ventured

Blog:

Says

G
ov

er
nm

en
t

B
lo

g

»

Finance

Data

3

Press

La
w

&

Content

Rally

Anywhere

The
Philanthropy

500
R

at
es

CustomerEnergy

D
iv

er
si

ty

Pursuits

Top

Careers

Emerging

Since

Headlines

News

Bloomberg

hours

Sports
Blogs

Visual

Russia

Media

New

Billion

Health

Search

Radio

for

Indexes

and

in
as

Videos

B
rie

fs

Futures

About

Europe,

Te
ch

ago

Australia

BestProducts

Inclusion

Corporate

Gain

M
ar

ke
t Updated

S
cr

ee
ne

r

M
ob

ile

Americas

Schedule

minutes

Figure 2.1: Word cloud generated from Bloomberg’s Markets main page.

functions that download and process information from Twitter reside
in the twitteR package.

The process for connecting R to Twitter involves some complicated
handshaking, and the brief code is provided here, though you need to
first set up a developer’s account on Twitter. This is easy to do, and
free. The program code for setting this all up is then given by:

> l ibrary (twitteR)
> l ibrary (ROAuth)
> l ibrary (RCurl)
> download . f i l e (url=" http : // cu r l . haxx . se/
␣␣␣ca/ ca c e r t . pem" , d e s t f i l e=" ca c e r t . pem")
> cKey = " xxxx "
> cSec r e t = " xxxx "
> reqURL = " https : //api . tw i t t e r . com/
␣␣␣oauth/ r eque s t_token "
> accURL = " https : //api . tw i t t e r . com/

18 Text Extraction

␣␣␣oauth/ ac c e s s_token "
> authURL = " https : //api . tw i t t e r . com/
␣␣␣oauth/author i z e "
> cred = OAuthFactory$new(consumerKey=cKey ,

consumerSecret=cSecret ,
requestURL=reqURL , accessURL=accURL ,
authURL=authURL)

> cred$handshake (c a i n f o=" ca c e r t . pem")
To enable the connect ion , p l e a s e d i r e c t
your web browser to :
https : //api . tw i t t e r . com/oauth/author i z e ?
oauth_token=KExaICHYtTpISKEaUuGnXxWlzXoVdkoXC
When complete , r ecord the PIN given to you and

provide i t here : xxxxxx

> registerTwitterOAuth (cred)
[1] TRUE
> save (l i s t=" cred " , f i l e=" twitteR_c r e d e n t i a l s ")

The cKey and cSecret are obtained from your account on the Twitter
developer web site. Enter those values instead of the xxxx shown in the
program above.

When you issue the cred$handshake() command, R will prompt
for a pin code, which is also obtained from the developer site. Once
that is entered, your R session is then connected to Twitter. The
oauth token above is randomly generated each time. At the end of
the program, the credentials are saved for repeated use. This set of
handshaking commands is somewhat laborious, but subsequently, the
use of Twitter is rendered fairly straightforward and simple once the
set up is done. Then the entire startup process is then as follows:

> l ibrary (twitteR}
> load (" twitteR_c r e d e n t i a l s ")
> registerTwitterOAuth (cred)
[1] TRUE

2.5. Using Twitter Feeds 19

There are various functions that make extraction of data from
tweets very simple. First, users enter hashtags for topics, stock tick-
ers, etc. One can extract tweets that contain a specific hashtag. For
example, to pull all tweets that contain the ticker for Apple Computer,
issue the command:

> atweets = searchTwit te r ("#AAPL")
> atweets
[[1]]
[1] " jopocop : ␣#Apple ’ s ␣#A7␣Proces sor ␣Truly
‘ Desktop␣Class ’ , ␣#iOS␣Apps␣Don ’ t ␣Take␣ Fu l l
Advantage␣ v ia ␣@TechNewsTube
#aapl ␣ http : // t . co/CO1DjHozFI "

[[2]]
[1] " jopocop : ␣#Apple ’ s ␣#Cyclone␣mi c r oa r ch i t e c tu r e
d e t a i l e d ␣ v ia ␣@TechNewsTube␣#aapl
http : // t . co/1PuzxRhznw"

[[3]]
[1] " jopocop : ␣What␣CIOs␣need␣ to ␣know␣about
#Of f i c e365 ␣and␣#Of f i c e ␣ f o r ␣#iPad␣http : // t . co/
ayLkSUHzTw␣ via ␣@Appy_Geek␣#msft ␣#aapl "

[[4]]
[1] " jopocop : ␣#iPhone6␣#phablet ␣ concept ␣ i s
imposs ib ly ␣ th in ␣and␣ impos s ib l e ␣ to ␣ bu i ld
http : // t . co/p4Bn7sXD3a␣ v ia ␣@Appy_Geek␣#aapl "

[[5]]
[1] " jopocop : ␣ I f ␣you␣use ␣#Facebook␣a␣ lo t , ␣ t h i s
t e r r i f i c ␣#iPhone␣tweak␣ i s ␣a␣must−have
http : // t . co/smWY2fQKhG␣ via ␣@Appy_Geek␣#fb ␣#aapl "

[[6]]
[1] " jopocop : ␣#AppleID␣#Phishing ␣Scam␣Won’ t

20 Text Extraction

Take␣Fake␣Data␣http : // t . co/dIWvXorz6A
via ␣@Appy_Geek␣#aapl "

Here atweets is a list object containing the most recent 25 tweets (by
default). One may then proceed to text analyze these tweets.

To get a list of friends for any user, proceed as follows:

> me = getUser (" s rdas ")
> me$getFr i ends (n=4)
$ ‘2303751216 ‘
[1] " FiveThirtyEight "

$ ‘144592995 ‘
[1] " Rbloggers "

$ ‘107563743 ‘
[1] " p r o f k e i t hd e v l i n "

$ ‘579299426 ‘
[1] " s t e v en s t r oga t z "

And, my tweets are really easy to access, as follows:

> mytweets = userTimel ine (" s rdas " ,n=3)
> mytweets
[[1]]
[1] " s rdas : ␣Want␣a␣Job?␣Learn␣Front−End␣Developing .
http : // t . co/ j jP69 f02gg ␣ v ia ␣@ozy "

[[2]]
[1] " s rdas : ␣How␣Your␣Tweets␣Reveal ␣Your␣Home
Locat ion ␣> ; @TechReview␣http : // t . co/tpF4mJMRmZ"

[[3]]
[1] " s rdas : ␣RT␣@hnycombinator : ␣ L e s l i e ␣Lamport
awarded␣Turing␣Award␣http : // t . co/ZvusRRVdak
(cmts␣http : // t . co/BsRfS62qPJ) "

2.6. Using Facebook Feeds 21

There are many other useful functions in the twitteR package. Since
the returned results are in the form of lists, it is easy to convert them
into a corpus.

2.6 Using Facebook Feeds

As with Twitter, Facebook is also accessible using the OAuth protocol
but with somewhat simper handshaking. The required packages are
Rfacebook, SnowballC, and Rook. Of course the ROAuth package is
required as well.

To access Facebook feeds from R, you will need to create a de-
veloper’s account on Facebook, and the current URL at which this
is done is: https://developers.facebook.com/apps. Visit this URL
to create an app and then obtain an app id, and a secret key for ac-
cessing Facebook. The commands to complete your handshaking with
Facebook are as follows:

l ibrary (Rfacebook)
Loading r equ i r ed package : h t t r
Loading r equ i r ed package : r j s on
Warning message :
package ‘ Rfacebook ’ ␣was␣ bu i l t ␣under
R␣ ve r s i on ␣ 2 . 1 5 . 3
>␣ l i b r a r y (SnowballC)
Warning␣message :
package␣ ‘ SnowballC ’ was bu i l t under
R ve r s i on 2 . 1 5 . 3
> l ibrary (Rook)
Loading r equ i r ed package : t o o l s
Loading r equ i r ed package : brew
> l ibrary (ROAuth)
Loading r equ i r ed package : RCurl
Loading r equ i r ed package : b i t ops
Loading r equ i r ed package : d i g e s t
Warning messages :
1 : package ‘ RCurl ’ ␣was␣ bu i l t ␣under

22 Text Extraction

R␣ ve r s i on ␣ 2 . 1 5 . 2
2 : ␣package␣ ’ d i g e s t ’ ␣was␣ bu i l t ␣under
R␣ ve r s i on ␣ 2 . 1 5 . 2
>␣app_id ␣=␣ " xxxx "
>␣app_s e c r e t ␣=␣ " xxxx "
>␣ fb_oauth␣=␣fbOAuth (app_id , ␣app_s e c r e t ,
␣ extended_permi s s i ons=TRUE)
Copy␣and␣ paste ␣ in to ␣ S i t e ␣URL␣on␣Facebook
␣App␣ Se t t i n g s : ␣ http : // l o c a l h o s t :1410/
When␣done , ␣ p r e s s ␣any␣key␣ to ␣ cont inue . . .
Waiting␣ f o r ␣ au then t i c a t i on ␣ in ␣browser . . .
Authent icat ion ␣ complete .

The last command requires some handshaking through the developer
web site, which is easy to do. The code here is standard and is directly
taken from the user manual of the Rfacebook package. One may save
the authorization file for reuse as follows:

> save (fb_oauth , f i l e=" fb_oauth ")
> load (" fb_oauth ")

For example, one may extract the news feed for the Bloomberg
News page on Facebook as follows:

> bbn = getUsers (" bloombergnews " , token=fb_oauth)
> names(bbn)
[1] " id " "name" " username "

" f i r s t_name" " l a s t_name"
[6] " gender " " l o c a l e " " category "

" l i k e s " " p i c tu r e "
> page=getPage (page=" bloombergnews " , token=fb_oauth)
100 pos t s
> names(page)
[1] " from_id " " from_name"

" message " " c r ea ted_time "
[5] " type " " l i n k "

" id " " l i k e s_count "
[9] " comments_count " " share s_count "

2.7. Alternate Programming Languages 23

> page [1 : 5 , 3]
[1] " Sa l e s ␣ o f ␣co−ops␣and␣condominiums␣ in ␣ the ␣ f i r s t
quarte r ␣jumped␣35␣ percent ␣ from␣a␣ year
e a r l i e r ␣ to ␣ 3 ,307 . "
[2] " Scrut iny ␣ o f ␣high−f r equency ␣ t rad ing ␣ i s
i n t e n s i f y i n g , ␣with␣ f e d e r a l ␣ i n v e s t i g a t o r s ␣ examining
whether␣ f i rms ␣ v i o l a t e ␣U. S . ␣ laws ␣by␣ ac t ing ␣on
nonpubl ic ␣ in fo rmat ion . "
[3] "Nobody␣ l i k e s ␣\ " patent t r o l l s , \ " ␣ even␣ i f
they ’ re ␣not␣ qu i t e ␣ sure ␣what␣ they␣ are . ␣ "
[4] " In ␣a␣ saturated ␣ c o f f e e ␣market , ␣ the ␣company
i s ␣ t ry ing ␣ to ␣ en t i c e ␣more␣ customers ␣ to ␣add␣a␣ pastry
or ␣ c r o i s s a n t ␣ to ␣ t h e i r ␣ l a t t e ␣ o rde r s . ␣ "
[5] "The␣ f i r s t ␣phase␣ o f ␣Obamacare␣ended␣ yesterday
much␣ the ␣same␣way␣ i t ␣began . "

In this code, we see the attributes of the user bbn obtained using the
names(bbn) function. We also download the 100 most recent posts
on this page and can examine its attributes and then print the top
5 messages as well. These messages may then be subjected to text
mining using the analytics we subsequently explore later in this article.
For example we may score the mood of the text.

2.7 Alternate Programming Languages

R is one of the languages of choice for text mining (and data science
in general), but it is certainly not the only one. (I have often used C,
Java, and Python instead of R, depending on the computing environ-
ment.) R is certainly easy to use. The readLines function is so simple
to run, is versatile, and is part of the main distribution, one is up and
running without needing the installation of any additional packages for
web scraping. The scraped text is tokenized in R automatically making
manipulation extremely facile. As we have seen, the tm package is re-
plete with all the functions needed for a corpus-based view of language
analytics. And because R is a full-fledged econometrics environment,
extracted textual data may be instantly visualized, quantified, and ana-

24 Text Extraction

lyzed statistically, and inference engines may be built within the same
environment. An excellent reference book for machine learning in R
that includes use of the tm package is Conway and White [2012].

Python is probably the most other preferred text mining lan-
guage. It’s use is growing exponentially, along with R, since both
languages are widely used by major tech firms such as Google and
Facebook. In fact, the triumvirate of C, Python, and R forms the
bulk of Google’s computing stack. Web crawling in Python uses the
urllib and urllib2 packages, which require a few more lines of code
than does R’s readLines. But the web scraping package Beautiful
Soup (http://www.crummy.com/software/BeautifulSoup/) is a use-
ful tool for grabbing data for further analysis in Python.

Python has the text mining package that is useful for generating
term document matrices. These may then be analyzed in Python or
imported into R for further processing. Conceptually this package is
similar to the tm package in R, and hence, programmers in one language
may seamlessly move from one environment to the other. Overall, both
Python and R are more or less the same in functionality, and both
contain many tools for text analytics. These two languages are easier
to work with than C and Java.

A less functional but more user-interface driven tool for text mining
is SAS Text Miner. It allows extracting text and uncovering themes
within text. Textual data can be scored numerically and then combined
with numerical data for further analysis in SAS. If one is already a SAS
user, then it may be helpful to use this utility.

3
Basic Text Analytics

Sheldon: Everyone at the university knows I eat
breakfast at 8:00 and move my bowels at 8:20.
Leonard: Yes, how did we live before Twitter?

“The Monopolar Expedition”
The Big Bang Theory, Season 2, Episode 23

In this new age one may frankly say, “I tweet, therefore I am.” In
this chapter, I present the basic ideas of text analytics, and demonstrate
using examples, how one may determine text sentiment. This sentiment
may then be used for prediction. In ensuing chapters, we will assess the
value of this approach in prediction in finance.

3.1 Dictionaries and Lexicons

3.1.1 Dictionaries

Webster’s defines a “dictionary” as “a reference source in print or elec-
tronic form containing words usually alphabetically arranged along
with information about their forms, pronunciations, functions, etymolo-
gies, meanings, and syntactical and idiomatic uses.” Computerized text

25

26 Basic Text Analytics

mining uses all these features of a dictionary, from mere word counts
to parsing into nouns, adjectives, verbs, etc., or connotations of words,
such as good versus bad, positive versus negative, and so on.

The fact that dictionaries are available in electronic form has
made text analytics extremely facile. Programs are able to sweep
through large bodies of text and produce summaries and senti-
ment in mere seconds using specific dictionaries that are adapted
to the particular text analytics under consideration. For exam-
ple, in order to score an article as being optimistic or pessimistic
about the economy, a special dictionary containing words with opti-
mistic and pessimistic tags is required. The Harvard General Inquirer
(http://www.wjh.harvard.edu/ inquirer/) is one such dictionary.
We will see an example of the use of this later on in this manuscript.
The advantage of an external dictionary such as the Harvard Inquirer is
that its composition is beyond the control of the researcher, and hence,
the results are less likely to be manipulated to match the textual data
set being used.

A cause and consequence of the increased use of dictionaries by text
analysis software is the explosion in the types of electronic dictionaries.
We have standard dictionaries, essentially electronic versions of the
original paper tomes, and these may be accessed online, for example
dictionary.com, and www.merriam-webster.com. On the other hand,
specialized dictionaries deal with specific subject matter such as the
computer dictionary at http://www.hyperdictionary.com/computer
that contains about 14,000 computer related words, such
as “byte” or “hyperlink”. Or a math dictionary, such as
http://www.amathsdictionaryforkids.com/dictionary.html or a
medical dictionary, see http://www.hyperdictionary.com/medical
for words like “aneurism”.

Internet lingo dictionaries may be used to complement standard dic-
tionaries with words that are not usually found in standard language,
for example, see http://www.netlingo.com/dictionary/all.php for
words such as 2BZ4UQT which stands for “too busy for you cutey”
(LOL). When extracting text messages, postings on Facebook, or stock

3.1. Dictionaries and Lexicons 27

message board discussions, internet lingo does need to be parsed and
such a dictionary is very useful.

Associative dictionaries are also useful when trying to find context,
as the word may be related to a concept, identified using a dictionary
such as http://www.visuwords.com/. See Figure 3.1 for a screenshot
of the interlinkages for the word “sentiment”. This dictionary doubles
up as a thesaurus, as it provides alternative words and phrases that
mean the same thing, and also related concepts.

Value dictionaries deal with values and may be useful when only
affect (positive or negative) is insufficient for scoring text. The Lasswell
Value Dictionary1 may be used to score the loading of text on the
eight basic value categories: Wealth, Power, Respect, Rectitude, Skill,
Enlightenment, Affection, andWell being. Within these eight categories
is a large listing of subcategories. These are described on the home page
of Harvard Inquirer.

3.1.2 Lexicons

A “lexicon” is defined by Webster’s as “a book containing an alphabet-
ical arrangement of the words in a language and their definitions; the
vocabulary of a language, an individual speaker or group of speakers,
or a subject; the total stock of morphemes in a language.” This suggests
it is not that different from a dictionary. And a “morpheme” is defined
as “a word or a part of a word that has a meaning and that contains
no smaller part that has a meaning.”

In the text analytics realm, we will take a lexicon to be a smaller,
special purpose dictionary, containing words that are relevant to the
domain of interest. For example, if we are analyzing discussion group
data on cancer to understand the concerns of patients, we will construct
a lexicon that contains words that are related to medicine and cancer
in particular, but we may also include words that are reflective of the
stress and emotions that cancer patients experience. To take another

1This is part of Harvard Inquirer. For the structure and description of this dic-
tionary, see http://www.wjh.harvard.edu/∼inquirer/lasswell.htm.

28 Basic Text Analytics

Figure 3.1: Visuwords: An online graphical associative dictionary.

3.1. Dictionaries and Lexicons 29

example, if we are looking at stock chat rooms to tease out market
sentiment, then we will include finance related words as well as words
that reflect optimism and pessimism.

The benefit of a lexicon is that it enables focusing only on words that
are relevant to the analytics and discards words that are not. Another
benefit is that since it is a smaller dictionary, the computational effort
required by text analytics algorithms is drastically reduced. We will
discuss this in greater detail when we look at various algorithms for
text classification.

3.1.3 Constructing a lexicon

There are many approaches used to construct a lexicon. A first ap-
proach is to do this by hand. This is an effective technique and the
simplest. It calls for a human reader who scans a representative sam-
ple of text documents and culls important words that lend interpretive
meaning. For example, if a message about stocks says “I am bullish on
this stock” then the word “bullish” is likely to be a good candidate for
the lexicon.

A second approach is to use the term document matrix discussed
earlier. Scan the entire corpus of sample text, and then examine the
term document matrix for most frequent words, and pick the ones that
have high connotation for the classification task at hand. For example,
in a data set like CrunchBase (http://www.crunchbase.com/) that
is based on reported new venture financings, the words “funding” or
“round” may appear many times in the term document matrix, and
may be suggestive of positive fortunes for a startup firm. These words
would be extracted by hand and included in the lexicon.

A third approach to constructing a lexicon requires pre-classified
documents in a text corpus. We analyze the separate groups of docu-
ments to find words whose difference in frequency between groups is
highest. Such words are likely to be better in discriminating between
groups. We will visit this idea more formally later.

If the lexicon is used for classification, it may be further enhanced to
include a flag for each group in the classification. For example, if news
articles are being used to gauge economic sentiment, then the words

30 Basic Text Analytics

in the lexicon may be tagged to suggest their primary connotation as
positive or negative.

Lexicons are often described as word lists. In finance, researchers
have begun compiling word lists that are used for specialized purposes.
Das and Chen [2007] constructed a lexicon of about 375 words that are
useful in parsing sentiment from stock message boards. This lexicon
also introduced the notion of “negation tagging” into the literature.
Thus the word “good” is treated as having a positive connotation in
the lexicon, but the phrase “... not good...” appearing in a sentence
suggests that the word good should be treated with the opposite sign
for sentiment. Hence, in their algorithm, when a negation word such
as “not”, “never”, etc., appears in a sentence, the words after it are
tagged negatively, for example, “good_n”, and then the lexicon also
contains these additional negated word with the opposite sign. Hence,
the lexicon doubles in size after negation tagged words are inserted.
However carrying these additional negation tagged words speeds up
text processing as the text may be altered to add a negation tag to each
word in a sentence, where appropriate, and then all that is needed for
a word count of sentiment is to match words to the negation enhanced
lexicon.

In recent work, Loughran and McDonald [2011] created tools for
textual analysis that include word lists. They tested standard lexicons
and found them to be unsuitable for financial text. In fact, word lists for
other disciplines lead to misclassification of financial documents. Taking
a sample of 50,115 firm-year 10-Ks from 1994 to 2008, they found that
almost three-fourths of the words identified as negative by the Harvard
Inquirer dictionary (see Section 3.2 below) are not typically negative
words in a financial context.

Therefore, they specifically created separate lists of words by
the following attributes of words: negative, positive, uncertainty,
litigious, strong modal, and weak modal. Modal words are based
on Jordan [1999]’s categories of strong and weak modal words.
Strong modal words are emphatic such as always, highest, must,
and will. Weak modal words express uncertainty such as depend-

3.2. Mood scoring using Harvard General Inquirer 31

ing, might, and possibly. These word lists may be downloaded from
http://www3.nd.edu/∼mcdonald/Word_Lists.html.

As textual analysis becomes more widespread, word lists will be-
come more specialized. These are critical ingredients in textual analysis.
In the next section we will show how to mood score a body of financial
text.

3.2 Mood scoring using Harvard General Inquirer

In this section we explore the mood scoring of text to generate an
optimism or pessimism score. In order to do this we may directly use a
word list of positive or negative words, but here we show how to create
a lexicon of such words from a standard dictionary, in this case the
Harvard Inquirer.

The following news report from Bloomberg about the patent law
suit between Apple and Samsung is an interesting document to mood
score.

> text = readLines (" http : //www. bloomberg . com/news/
pr in t/2014−04−14/samsung−c a l l s−one−of−i t s−own−at−2−
b i l l i o n −apple−patent−t r i a l . html ")

We then eliminate all lines with html code that is for markings and so
on, and contains text that we are not interested in.

> text = text [setd i f f (seq (1 , length (text)) ,
grep ("<" , text))]
> text = text [setd i f f (seq (1 , length (text)) ,
grep (">" , text))]
> text = text [setd i f f (seq (1 , length (text)) ,
grep ("] " , text))]
> text = text [setd i f f (seq (1 , length (text)) ,
grep (" { " , text))]
> text = text [setd i f f (seq (1 , length (text)) ,
grep (" } " , text))]
> text = text [setd i f f (seq (1 , length (text)) ,
grep (" [" , text))]
> text = text [setd i f f (seq (1 , length (text)) ,

32 Basic Text Analytics

grep ("_" , text))]
> text = text [setd i f f (seq (1 , length (text)) ,
grep (" \\/ " , text))]

At the end of this sequence of commands, there is a variable text
that is relatively free of html characters and codes. text is actually an
array of lines from the original web page. Each line (an element of the
array) is a string of characters. It is this text that is then subjected
to a comparison of words between the text and a list of positive and
negative words.

Therefore, the next step is compiling the positive and negative world
lists using the Harvard Inquirer. See Figure 3.2 for a screenshot of the
dictionary, where the words are signed with “Pos” and “Neg” tags. We
can then write code to extract a list of positive and negative words for
use from this file.

At the top of the file is a header and it is followed by each word, one
per line along with related emotive tags. We see many more words here
that are negative, such as ABANDON, ABATE, ABJECT, etc., than
positive words such as ABLE, ABIDE.

Here is how we create word lists from the Harvard Inquirer using
the following R script:

HGI = readLines ("HGI . txt ")
hg i_pos = HGI [grep (" Pos " ,HGI)]
pos = NULL
for (s in hg i_pos) {

s = s tr sp l i t (s , "#") [[1]] [1]
pos = c (pos , s tr sp l i t (s , " ␣ ") [[1]] [1])

}
hgi_neg = HGI [grep ("Neg " ,HGI)]
neg = NULL
for (s in hg i_neg) {

s = s tr sp l i t (s , "#") [[1]] [1]
neg = c (neg , s tr sp l i t (s , " ␣ ") [[1]] [1])

}

3.2. Mood scoring using Harvard General Inquirer 33

~ I]ntl')'l\lOr d Source Po, !leg Pstv Affi 1 ~v ~sti le Str r>g "'-r W""k SU!:Im Actv P,v ~
I; Pl""""..., Pain Arou",l E/oUT Feel Virtue Vic e OVr st LJncIr st Acod [)octr Econ· Exch E ~
I; coo Expr , L"9"l Mitit Polh· POLTI Relig Ral e (oLL IlIor k RitUCIl Intr el Race Kin· ~
I; MALE F""",le IIonadtt ~ ANI PLACE Social Region Route Aquatic Land Sky Obj ect Too ~
I; 1 Food Vehicle Bl<lgpt ~tobj Bodypt Coonobj Camfo"," C(J04 Say lie...:! Cioal Try Mean, ~
I; Ach Per sist Carc>lt Fail IIcttpro Begin Vary Chc>nge Incr [)ecr Finish Stay Rise Move ~
I; Exert Fetch Travel Fall Think Know (""",1 ().;ght Per c.v Carc> EV<ll EVAL Salve AIls · ~
I; ABS Quell Queln ~ (ltD CARD FREQ D1ST none· TIME Space POS DIM Di Rel COL(J(S ~
I; elf ().;r y"" ~ Ye, 110 llegate Intrj lAV DAV SV IPodj IndAdj POIIIGAIN POWLOSS POll' ~
; HIDS POII'AREN POWCOO POWCOOP POIIAPT POWPT POWOOCT PUIIAl1Tll POMIl'rt POWTOT RCTEnt R(~
:; lREL RCTliAIN RenOSS RCTENDS RenOT RSPGAIN RSPLOSS RSPOnt RSPTOT AFFCiAIN AFHOS ~
; S AFFPT AFFOnt AFFTOT WI. Tl'T ill TlAA.N WI. TOnt WI. nOT Wl.BliAIN Wl.BLOSS Wl.BPHYS Wl.BPSY ~
:; C Wl.BPT Wl.BTOT ENLliAIN ENLLOSS ENLENDS ENLPT ENLOnt ENL TOT SKLAS SKLPT SKLOnt SK ~
I; L TOT TIU«iAIN lRNLOSS TItANS MEANS ENDS AAENAS PARTIC HAllooS AUO AN(Jo4lE NEliAFF PO ~
; SAFF SlJ(E IF ~ TIMESP FOOO F(J(M Othertag' [)efiniti.on

A ~Lvd DET AAT 1 articl e : Indefinite singular article--sane o r any one
ABAHtoI ~Lvd Ne-g ~v W@IIk Fail lAV AFHOSS AFFTOT SlJPV 1
ABAIf[)(H4iNT ~ IleQ Weak Fait Noon 1
ABATE ~Lvd IleQ P,v [)ec r lAV TAA.NS SlJPV
ABATEMENT Lvd NolIn
ABDICATE ~ lleg W""k SUbm Psv Fini'h lAV SlJPV
AB~ ~ !leg ~stile P,v Arousal SV SlJPV
ABIDE ~ Po, AffH Actv [)octr lAV SlJPV 1

ABIDEfl Lvd Modi f
ABIDE'Z Lvd SUPV
ABILITY Lvd MEANS NolIn ABS ABS·
ABJECT ~ Neg W""k SU!:Im P,v Vi ce IPadj Modif
ABLE ~Lvd Po, Pstv Str r>g Virtue EVAL MEANS Modif 1 odjective: flavir>g nece,sary ~

I
; power . 'ki tt. ...,sources. Hc.
AB~L ~Lvd !leg ~v Vice NEliAFF Modif
_D ~Lvd Space PREP LY 1

ABOLISH ~Lvd Neg Hgtv ~stHe Str r>g ~r Actv Int...,l lAV POMIl'rt POWTOT SlJPV
A TT rl TRAN

Figure 3.2: Screen shot of the Harvard General Inquirer. After the header,
each word has its own line, and after the word, there are a series of tags that
represent the emotive content of each word. We focus on only two tags, Pos
and Neg.

34 Basic Text Analytics

pos = toupper (unique (pos))
neg = toupper (unique (neg))
> print (c (length (pos) , length (neg)))
[1] 1647 2121

The code above reads in the file HGI.txt which may be downloaded
from the Harvard Inquirer web site (the file has been renamed here).
Using generalized regular expressions (i.e., grep) we extract all lines
containing Pos and Neg tags, thereby cleaning up the file and restricting
it to words with positive and negative connotations. There are some
string handling arguments in the code above that clean up the file and
store the words with Neg and Pos tags into the neg and pos arrays,
respectively. As we see, there are more negative words (2121 in number)
than positive words (1647 in number) in these word lists which form
the lexicon for our next analyses.

The following program code counts the positive and negative values.

> text = unlist (s tr sp l i t (text , " ␣ ")
> posmatch = match(text , pos)
> negmatch = match(text , neg)
> print (c (length (posmatch) , length (negmatch)))
[1] 1019 1019

This code snippet takes the text and splits into an array of separate
words. Then the match function is used to match the words to the
lexicon separately for positive and negative words. A simple count of
matched words leads to an indication of sentiment. Interestingly, there
are equal numbers of positive and negative word matches in the dictio-
nary. Hence, the mood score is neutral.

Just to round things out, it is also useful to point out that looking
for similar words is often useful in textual analysis. For example, if we
start with a small set of positive connotation words in finance, and
then wish to explore a document for all positive words, a thesaurus like
lexicon such as WordNet may be used to expand the small set of words
into all associated words with similar positive meaning. WordNet is a
large database of words in English, i.e., a lexicon. See Miller [1995], Fell-
baum [1998]. The repository is at word net.princeton.edu. WordNet

3.3. Stemming and Stop Words 35

groups words together based on their meanings (synonyms) and hence
may be used as a thesaurus. WordNet is also useful for natural lan-
guage processing as it provides word lists by language category, such
as noun, verb, adjective, etc.

3.3 Stemming and Stop Words

Stemming reduces words to their root morphological forms, and leaves
a stem of the word in place. This may be best seen with an example.
Here is an extract from the financial news wires for April 15, 2014.

> text = "U. S . ␣ s to ck s ␣ ro s e ␣a␣ second␣day , ␣ a f t e r
e q u i t i e s ␣ posted ␣ the ␣worst ␣week␣ s i n c e ␣ 2012 , ␣ as
Coca−Cola␣Co . ␣and␣Johnson␣&␣Johnson
reported ␣ earn ings ␣and␣ i n v e s t o r s ␣weighed
developments ␣ in ␣Ukraine . The␣Nasdaq␣Composite
Index␣ gained ␣ 0 .1 ␣ percent , ␣ e r a s i ng ␣an␣ e a r l i e r ␣drop
o f ␣ 1 .9 ␣ percent ␣ a f t e r ␣ touching ␣ i t s ␣200␣day␣ average
p r i c e . ␣Coca−Cola␣ gained ␣ 3 .6 ␣ percent ␣ as ␣ g l oba l
volume␣ s a l e s ␣ i n c r ea s ed . ␣Johnson␣&␣Johnson
cl imbed␣ 1 .7 ␣ percent ␣ as ␣ the ␣company␣ r a i s e d ␣ i t s
f o r e c a s t ␣ f o r ␣ the ␣ year . "

We demonstrate how to stem this paragraph and remove stop
words. We proceed as follows.

> l ibrary (tm)
> ctex t = Corpus (VectorSource (text))
> ctex t = tm_map(ctext , removePunctuation)
> ctex t = tm_map(ctext , removeNumbers)
> ctex t = tm_map(ctext , stemDocument)
> in sp e c t (c t ex t)
[[1]]
US stock ro s e a second day a f t e r e q u i t i
post the worst week s i n c as CocaCola Co
and Johnson Johnson report earn and
i nv e s t o r weigh develop in UkraineTh
Nasdaq Composit Index gain percent e ra s

36 Basic Text Analytics

an e a r l i e r drop o f percent a f t e r touch i t day
averag p r i c e CocaCola gain percent as g l oba l
volum s a l e i n c r e a s Johnson Johnson cl imb
percent as the compani r a i s i t f o r e c a s t for the
year

The result of the stemming operation is quite self-explanatory. Note
that we removed all punctuation and numbers.

“Stop words” are non-contextual words, i.e., not germane to inter-
pretation of the text that are removed from the data before conducting
textual analysis. This is believed to improve the quality of the analysis
on text. Some stop words such as “the” are simple to see as being re-
dundant, but others may be more subtle. There are lists of stop words
that may be used for this parsing procedure, such as “a”, “are”, “as”,
“to”, etc.

Using the same example as above, we remove stop words as follows:

> s t o p l i s t = c (stopwords (" e n g l i s h "))
> ctex t = tm_map(ctext , removeWords , s t o p l i s t)
> in sp e c t (c t ex t)
[[1]]
US s tock s ro s e day e q u i t i e s posted worst week
CocaCola Co Johnson Johnson reported earn ings
i n v e s t o r s weighed developments UkraineThe Nasdaq
Composite Index gained percent e r a s i ng e a r l i e r
drop percent touching day average p r i c e CocaCola
gained percent g l oba l volume s a l e s i n c r ea s ed
Johnson Johnson cl imbed percent company
r a i s e d f o r e c a s t

The tm package comes with an English stop word list and it may
be enhanced by adding more words to it as needed and as the domain
requires. Here we used the tm_map() function with the removeWords
option to eliminate all stop words from the passage of text.

3.4. Text Summarization 37

3.4 Text Summarization

Digital news feeds generate more text than we can hope to consume and
comprehend. Summaries of documents may aid in our handling of text
manually, by making reading tasks more efficient. Moreover, automated
trading systems that are based on text signals need to distill down text
in order to reduce noise and extract a signal. One way to find a needle
in a haystack is to reduce the size of the haystack, and this is what text
summarization is analogous to.

The simplest form of text summarizer we may build operates on a
sentence-based model that sorts sentences in a document in descending
order of word overlap with all other sentences in the text. Hence, the
first sentence in a summary is the one that has the greatest common-
ality to all other sentences; The second sentence is the one with the
second greatest word overlap, and so on.

A document D is comprised of m sentences si, i = 1, 2, ...,m, where
each si is a set of words. We compute the pairwise overlap between
sentences using the Jaccard [1901] similarity index:

Jij = J(si, sj) = |si ∩ sj |
|si ∪ sj |

= Jji (3.1)

The overlap is the ratio of the size of the intersect of the two word sets
in sentences si and sj , divided by the size of the union of the two sets.
The similarity score of each sentence is computed as the row sums of
the Jaccard similarity matrix.

Si =
m∑
j=1

Jij (3.2)

Once the row sums are obtained, they are sorted and the summary is
the first n sentences based on the Si values.

An alternate approach to using row sums is to compute centrality
using the Jaccard matrix J , and then pick the n sentences with the
highest centrality scores.

The procedure is best illustrated with a news article from the
financial markets. The sample text is taken from Bloomberg on April
21, 2014, at the following URL:

38 Basic Text Analytics

http://www.bloomberg.com/news/print/2014-04-21/wall-street-
bond-dealers-whipsawed-on-bearish-treasuries-bet-1-.html.
The full text spans 4 pages and is presented in Appendix 8.

This article is read using a web scraper (as seen in preceding sec-
tions), and converted into a text file with a separate line for each sen-
tence. We call this file summary_text.txt and this file is then read into
R and processed with the following parsimonious program code.

TEXT SUMMARIZATION

FUNCTION TO RETURN n SENTENCE SUMMARY
Input : array o f sen tences (t e x t)
Output : n most common i n t e r s e c t i n g sen tences
text_summary = function (text , n) {

m = length (text) # No of sen tences in input
j a c ca rd = matrix (0 ,m,m) #Store match index
for (i in 1 :m) {

for (j in i :m) {
a = text [i] ; aa = unlist (s tr sp l i t (a , " ␣ "))
b = text [j] ; bb = unlist (s tr sp l i t (b , " ␣ "))
j a c ca rd [i , j] = length (intersect (aa , bb))/

length (union (aa , bb))
j a cca rd [j , i] = jacca rd [i , j]

}
}
s im i l a r i t y_s co r e = rowSums(jacca rd)
r e s = sort (s im i l a r i t y_score , index . return=TRUE,

dec r ea s ing=TRUE)
idx = re s$ i x [1 : n]
summary = text [idx]

}

READ IN THE TEXT FILE AND REMOVE BLANK LINES
text = readLines (" summary_t ex t . txt ")
idx = which(text !=" ")
text = text [idx]

3.4. Text Summarization 39

CALL TEXT SUMMARIZER
r e s = text_summary(text , 1 0)
print (r e s)

The code is a function that generates a ten-sentence summary of a
four page article. The following output is generated, and is a succinct
representation of the original article.

> source (" t ex t_summarizer .R")
[1] " After ␣ surg ing ␣ to ␣a␣29−month␣high ␣ o f ␣ 3 .05
percent ␣ at ␣ the ␣ s t a r t ␣ o f ␣ the ␣year , ␣ y i e l d s ␣on␣ the
10−year ␣note ␣have␣ dec l i n ed ␣and␣were␣ at ␣ 2 .72
percent ␣ at ␣ 7 :42 ␣a .m. ␣ in ␣New␣York . "
[2] " Average␣ da i l y ␣ t rad ing ␣has␣ a l s o ␣dropped␣ to
$551 .3 ␣ b i l l i o n ␣ in ␣March␣ from␣an␣ average ␣$570 .2
b i l l i o n ␣ in ␣ 2007 , ␣ even␣ as ␣ the ␣ outstanding ␣amount
o f ␣ Trea su r i e s ␣has␣more␣than␣doubled␣ s i n c e
the ␣ f i n a n c i a l ␣ c r i s i s , ␣ accord ing ␣data␣ from␣ the
S e c u r i t i e s ␣ Industry ␣and␣ F inanc i a l ␣Markets
As soc i a t i on . "
[3] "While␣ the ␣Fed ’ s ␣ d e c i s i o n ␣ to ␣ inundate ␣ the ␣U. S .
economy␣with␣more␣than␣$3␣ t r i l l i o n ␣ o f ␣cheap␣money
s i n c e ␣2008␣by␣buying␣ Trea su r i e s ␣and␣mortgaged−
backed␣bonds␣ bo l s t e r ed ␣ p r o f i t s ␣ as ␣ a l l ␣ f ixed−income
a s s e t s ␣ r a l l i e d , ␣ y i e l d s ␣ are ␣now␣ so ␣ low␣ that ␣banks
are ␣ s t r u g g l i n g ␣ to ␣make␣money␣ t rad ing ␣government
bonds . "
[4] "They␣ c o l l e c t i v e l y ␣amassed␣$5 .2 ␣ b i l l i o n ␣ o f
wagers ␣ in ␣March␣ that ␣would␣ p r o f i t ␣ i f ␣ Trea su r i e s
f e l l , ␣ the ␣ f i r s t ␣ time␣ they␣had␣net ␣ shor t ␣ p o s i t i o n s
on␣government␣debt␣ s i n c e ␣September␣ 2011 ,
data␣ compiled ␣by␣ the ␣Fed␣show . "
[5] "The␣world ’ s ␣ l a r g e s t ␣economy␣added␣ fewer ␣ jobs
on␣ average ␣ in ␣ the ␣ f i r s t ␣ three ␣months␣ o f ␣ the ␣ year
than␣ in ␣ the ␣same␣ per iod ␣ in ␣ the ␣ p r i o r ␣two␣years ,
data␣ compiled ␣by␣Bloomberg␣show . ␣ "

40 Basic Text Analytics

[6] " LaVorgna , ␣who␣has␣ the ␣ h i ghe s t ␣ es t imate ␣among
the ␣66␣ re sponse s ␣ in ␣a␣Bloomberg␣ survey , ␣ sa id
s t r onge r ␣ economic␣data␣ w i l l ␣ l i k e l y ␣ cause ␣ i n v e s t o r s
to ␣ s e l l ␣ Trea su r i e s ␣ as ␣ they␣ an t i c i p a t e ␣a␣ ra t e
i n c r e a s e ␣ from␣ the ␣Fed . "
[7] "The␣wagers ␣may␣ inc lude ␣market−making , ␣which
i s ␣ the ␣ bus in e s s ␣ o f ␣ us ing ␣ the ␣ firmÕs␣ c ap i t a l ␣ to ␣buy
and␣ s e l l ␣ s e c u r i t i e s ␣with␣ customers ␣whi l e ␣ p r o f i t i n g
on␣ the ␣ spread ␣and␣movement␣ in ␣ p r i c e s . "
[8] " ␣ " During the c r i s i s , the Fed went to grea t
pa ins to save primary dea l e r s , " ␣Chr i s topher
Whalen , ␣banker␣and␣author ␣ o f ␣ ‘ ‘ I n f l a t e d : ␣How
Money␣and␣Debt␣ Bu i l t ␣ the ␣American␣Dream , "
sa id in a te l ephone in t e rv i ew . "
[9] ␣ " In the past , " c a l l i n g ␣ the ␣ d i r e c t i o n ␣ o f ␣ the
market␣and␣what␣you␣ should ␣be␣doing ␣ in ␣ i t ␣was
a␣ l o t ␣ e a s i e r ␣ than␣ i t ␣ i s ␣ today , ␣ p a r t i c u l a r l y ␣ f o r
the ␣ d e a l e r s . " "
[1 0] ␣ " Trea su r i e s (USGG10YR) have confounded
economists who pred i c t ed 10−year y i e l d s would
approach 3 .4 percent by year−end as a s t r engthen ing
economy prompts the Fed to pare i t s unprecedented
bond buying . "

This chapter showed how extracted text (using tools from Chapter
2) may be characterized and modified using dictionaries, lexicons, and
text-mining tools to clean up and summarize text. In the next chapter
we explain how sentiment is extracted and the way in which documents
are classified based on sentiment.

4
Text Classification

Penny: You keep him there a little longer, and when
you get to the party, I’ll point out which of my
friends are easy.
Howard: Don’t toy with me, woman.
Penny: I got a hot former fat girl with no self-esteem.
I got a girl who punishes her father by sleeping
around, and an alcoholic who’s 2 tequila shots away
from letting you wear her like a hat.
Howard: Thy will be done.

“The Peanut Reaction”
The Big Bang Theory, Season 1, Episode 16

Modern text mining is as much about reading and understanding
text as it is about profiling and bucketing humans and there opinions
into categories for commercial applications.

Pick up the Wall Street Journal and start reading. After scanning
through article after article about one company and another, stop and
reflect on your thought process. One salient aspect is that for each firm
that you read about, your mind arrived at a sentiment value for that

41

42 Text Classification

firm. What you are engaged in is text mining, mapping each article to
a simple rubric of positive, neutral, or negative sentiment for the firm
being reported on. It is only natural for humans to want to automate
something as simple as this. This chapter details various approaches
for classifying documents (of various types such as press releases, Dow
Jones news feeds, chat room discussion, etc.) by sentiment into simple
categories.

We call this process “sentiment extraction” but it is nothing new.
In an older incarnation, for a very different domain, we have known
it as spam filtering. When we receive email, our computer “reads” the
mail and “comprehends” whether it is spam or not, a simple binary
choice. Spam and other filters are modern day electronic secretaries
that decide what gets read and what doesn’t. Adapting spam filtering
to document classification for sentiment extraction is a simple process
and has been extensively used. We discuss this in the following sections.

Machine classification is, from a layman’s point of view, nothing
but learning by example. In new-fangled modern parlance, it is a tech-
nique in the field of “machine learning”. Learning by machines falls
into two categories, supervised and unsupervised. When a number of
explanatory X variables are used to determine some outcome Y , and
we train an algorithm to do this, we are performing supervised (ma-
chine) learning. The outcome Y may be a dependent variable (for ex-
ample, the left hand side in a linear regression), or a classification (i.e.,
discrete outcome). When we only have X variables and no separate
outcome variable Y , we perform unsupervised learning. For example,
cluster analysis produces groupings based on the X variables of various
entities, and is a common example.

Machine learning usually involves a subsample of the data that is
used to fit the algorithm, and then another subsample used to test
its predictive accuracy. The former subsample of data is known as the
“training” data and the latter is the “test” data (out of sample). There
may even be a third hold-out sample, known as “validation” data, used
for final testing of models that have passed muster on test data.

4.1. Bayes classifiers 43

4.1 Bayes classifiers

In Bayes classification, we use the training data to define the prior
probabilities of the classification and then these priors are used with
additional cases to determine the classification of these cases from the
posterior probabilities of them falling into the specified categories.

Bayes classification extends the Document-Term model we encoun-
tered in Section 2.3 with a document-term-classification model. These
are the three entities in the model and we denote them as (d, t, c). As-
sume that there are D documents to classify into C categories, and we
employ a dictionary/lexicon (as the case may be) of T terms or words.
Hence we have di, i = 1, ..., D, and tj , j = 1, ..., T . And correspondingly
the categories for classification are ck, k = 1, ..., C.

Suppose we are given a text corpus of stock market related doc-
uments (tweets for example), and wish to classify them into bullish
(c1), neutral (c2), or bearish (c3), where C = 3. We first need to train
the Bayes classifier using a training data set, with pre-classified docu-
ments, numbering D. For each term t in the lexicon, we can compute
how likely it is to appear in documents in each class ck. Therefore,
for each class, there is a T -sided dice with each face representing a
term and having a probability of coming up. These dice are the prior
probabilities of seeing a word for each class of document. We denote
these probabilities succinctly as p(t|c). For example in a bearish docu-
ment, if the word “sell” comprises 10% of the words that appear, then
p(t = sell|c = bearish) = 0.10.

In order to ensure that just because a word does not appear in
a class, it has a non-zero probability we compute the probabilities as
follows:

p(t|c) = n(t|c) + 1
n(c) + T

(4.1)

where n(t|c) is the number of times word t appears in category c, and
n(c) =

∑
t n(t|c) is the total number of words in the training data in

class c. Note that if there are no words in the class c, then each term t

has probability 1/T .
A document di is a collection or set of words tj . The probability

of seeing a given document in each category is given by the following

44 Text Classification

multinomial probability:

p(d|c) = n(d)!
n(t1|d)! · n(t2|d)! · · ·n(tT |d)!×p(t1|c)·p(t2|c) · · · p(tT |c) (4.2)

where n(d) is the number of words in the document, and n(tj |d) is
the number of occurrences of word tj in the same document d. These
p(d|c) are the prior probabilities in the Bayes classifier, computed from
all documents in the training data. We then use these to compute the
posterior probabilities using documents from the test data. The prob-
abilities are computed for each document in the test data as follows:

p(c|d) = p(d|c)p(c)∑
k p(d|ck)p(ck)

,∀k = 1, . . . , C (4.3)

Note that we get C posterior probabilities for document d, and assign
the document to class maxk ck, i.e., the class with the highest poste-
rior probability for the given document. In essence, this approach may
be used to classify any text document into pre-assigned categories for
which training data is available. This is also, in essence, how a spam
filter works, where the training data is accumulated when assign emails
to spam.

The algorithm may be best explained with a simple example. First,
assume a very simple lexicon of just 6 terms.

> l e x i c on = c (" buy " , " s e l l " , " hold " , " good " ,
" bad " , " okay ")

Then we generate ten documents and prepare a document-term
matrix. The documents are along the rows, and the columns contain
the number of times each word in our lexicon appears in each document.

> t r a i n_data = matrix (rpois (60 , 3) , 10 , 6)
> t r a i n_data

[, 1] [, 2] [, 3] [, 4] [, 5] [, 6]
[1 ,] 2 1 1 3 3 8
[2 ,] 1 4 4 1 3 4
[3 ,] 8 1 1 2 6 3
[4 ,] 4 5 5 3 3 3
[5 ,] 3 3 7 2 5 3

4.1. Bayes classifiers 45

[6 ,] 4 3 4 6 5 3
[7 ,] 3 6 3 1 1 2
[8 ,] 0 1 4 1 3 1
[9 ,] 2 2 1 3 7 2

[1 0 ,] 2 4 2 3 5 2

We also have a vector that contains the known classes of this training
data for these ten documents. The class vector is (1 = bullish, 2 =
neutral, 3 = bearish):

> t r a i n_class = as .matrix (c (2 , 3 , 1 , 2 , 2 , 1 , 3 , 2 , 3 , 3))
> t r a i n_class

[, 1]
[1 ,] 2
[2 ,] 3
[3 ,] 1
[4 ,] 2
[5 ,] 2
[6 ,] 1
[7 ,] 3
[8 ,] 2
[9 ,] 3

[1 0 ,] 3

The e1071 package in R contains the Bayes classifier, and we invoke
it to train the classification of text documents. In order to do this we
pass it the training data set and also the pre-assigned classification of
documents in the training data.

> l ibrary (e1071)
> model = naiveBayes (t r a i n_data , t r a i n_class)
> model

Naive Bayes C l a s s i f i e r for Di s c r e t e Pr ed i c t o r s

Call :
naiveBayes . default (x = t r a i n_data , y = t r a i n_class)

46 Text Classification

A−p r i o r i p r o b a b i l i t i e s :
t r a i n_class

1 2 3
0 .2 0 .4 0 . 4

Condi t iona l p r o b a b i l i t i e s :
V1

t r a i n_class [, 1] [, 2]
1 6 .00 2.8284271
2 2 .25 1.7078251
3 2 .00 0.8164966

V2
t r a i n_class [, 1] [, 2]

1 2 . 0 1 .414214
2 2 .5 1 .914854
3 4 .0 1 .632993

V3
t r a i n_class [, 1] [, 2]

1 2 .50 2.121320
2 4 .25 2.500000
3 2 .50 1.290994

V4
t r a i n_class [, 1] [, 2]

1 4 .00 2.8284271
2 2 .25 0.9574271
3 2 .00 1.1547005

V5
t r a i n_class [, 1] [, 2]

1 5 . 5 0 .7071068
2 3 .5 1 .0000000
3 4 .0 2 .5819889

4.1. Bayes classifiers 47

V6
t r a i n_class [, 1] [, 2]

1 3 .00 0.000000
2 3 .75 2.986079
3 2 .50 1.000000

The trained classifier contains the unconditional probabilities p(c) of
each class, which are merely frequencies with which each document ap-
pears, i.e., class 1 appears twice, class 2 appears four times, as does
class 3. For each of the six terms in the lexicon we have conditional
probability distributions p(t|c) given as the mean and standard devia-
tion of the occurrence of these terms in each class.

We may take this trained model and re-apply to the training data
set to see how well it does. We use the predict function for this.

> pred = predict (model , t r a i n_data , type=" raw ")
> pred

1 2 3
[1 ,] 9 .472240 e−06 9.999895 e−01 1.001314 e−06
[2 ,] 2 .610521 e−07 4.808679 e−01 5.191318 e−01
[3 ,] 9 .999998 e−01 2.277438 e−07 2.671533 e−15
[4 ,] 2 .335902 e−01 6.923859 e−01 7.402396 e−02
[5 ,] 9 .924273 e−01 7.402110 e−03 1.705938 e−04
[6 ,] 9 .999986 e−01 4.230290 e−07 9.845067 e−07
[7 ,] 5 .459330 e−14 8.106116 e−03 9.918939 e−01
[8 ,] 1 .515014 e−06 9.448175 e−01 5.518095 e−02
[9 ,] 1 .444991 e−04 1.642963 e−03 9.982125 e−01

[1 0 ,] 6 .715189 e−05 3.945796 e−02 9.604749 e−01

We see above the posterior probabilities p(c|d) of each class for each
of the ten documents. We assign the class based on the maximum of
these three probabilities in each row. The results are as follows.

> t r a i n_fitted = as .matrix (c (2 , 3 , 1 , 2 , 1 , 1 , 3 , 2 , 3 , 3))
> cbind (t r a i n_class , t r a i n_fitted)

[, 1] [, 2]
[1 ,] 2 2

48 Text Classification

[2 ,] 3 3
[3 ,] 1 1
[4 ,] 2 2
[5 ,] 2 1
[6 ,] 1 1
[7 ,] 3 3
[8 ,] 2 2
[9 ,] 3 3

[1 0 ,] 3 3

We printed out the original class for each document alongside the one
predicted by the model. We see that only the fifth document was mis-
classified (as bullish instead of neutral).

This model was intentionally limited to a very small set of docu-
ments and a tiny lexicon so as to make the ideas clear. In practice the
training data set may be very large, the lexicon may run into a few
hundreds of words, and the classes are usually few. The coding steps
essentially remain the same. And the processing time of even very large
data sets is extremely economical.

4.2 Support vector machines

Support vector machines (SVMs) are efficient classifiers based on par-
titioning space using varied metrics. The original idea and work is
attributed to Vladimir Vapnik, and a series of seminal works detail
the approach, see Vapnik and Lerner [1963], Vapnik and Chervonenkis
[1964], for the underlying statistical learning theory, and Vapnik [1995]
for the SVM. Vapnik began this work in the Soviet Union, and then
later at AT&T Bell Labs, when he moved to the US in the 1990s.

The goal of the SVM is to map a set of entities with inputs
X = {x1, x2, . . . , xn} of dimension n, i.e., X ∈ Rn, into a set of
categories Y = {y1, y2, . . . , ym} of dimension m, such that the n-
dimensional X-space is divided using hyperplanes, which result in the
maximal separation between classes Y . A hyperplane is the set of points
x satisfying the equation

w · x = b

4.2. Support vector machines 49

where b is a scalar constant, and w ∈ Rn is the normal vector to the
hyperplane, i.e., the vector at right angles to the plane. The distance
between this hyperplane and w · x = 0 is given by b/||w||, where ||w||
is the norm of vector w.

This set up is sufficient to provide intuition about how the SVM is
implemented. Suppose we have two categories of data, i.e., y = {y1, y2}.
Assume that all points in category y1 lie above a hyperplane w ·x = b1,
and all points in category y2 lie below a hyperplane w ·x = b2, then the
distance between the two hyperplanes is |b1−b2|

||w|| . The goal of the SVM
is to maximize the distance (separation) between the two hyperplanes,
and this is achieved by minimizing norm ||w||. This naturally leads to
a quadratic optimization problem.

min
b1,b2,w

1
2 ||w|| (4.4)

subject to w·x ≥ b1 for points in category y1 and w·x ≤ b2 for points in
category y2. Note that this program may find a solution where many
of the elements of w are zero, i.e., it also finds the minimal set of
“support” vectors that separate the two groups. The “half” in front of
the minimand is for mathematical convenience in solving the quadratic
program.

Of course, there may be no linear hyperplane that perfectly sepa-
rates the two groups. This slippage may be accounted for in the SVM
by allowing for points on the wrong side of the separating hyperplanes
using cost functions, i.e., we modify the quadratic program as follows:

min
b1,b2,w,{ηi}

1
2 ||w||+ C1

n∑
i=1

ηi + C2

n∑
i=1

ηi (4.5)

where C1, C2 are the costs for slippage in groups 1 and 2, respectively.
Often implementations assume C1 = C2. The values ηi are positive
for observations that are not perfectly separated, i.e., lead to slippage.
Thus, for group 1, these are the length of the perpendicular amounts
by which observation i lies below the hyperplane w · x = b1, i.e., lies
on the hyperplane w · x = b1 − ηi. For group 1, these are the length
of the perpendicular amounts by which observation i lies above the
hyperplane w · x = b2, i.e., lies on the hyperplane w · x = b1 + ηi.

50 Text Classification

For observations within the respective hyperplanes, of course, ηi = 0.
The optimizer decides which observations are allowed to “slip” out of
the hyperplane restriction, hence the ηi become choice variables in the
optimization.

In R, the package e1071 also provides the function sum to undertake
classification. To illustrate, we apply it on the same data we used for
the Naive Bayes case earlier.

> l ibrary (e1071)
> model = svm(t r a i n_data , t r a i n_class)
> model

Call :
svm . default (x = t r a i n_data , y = t r a i n_class)

Parameters :
SVM−Type : eps−r e g r e s s i o n

SVM−Kernel : r a d i a l
co s t : 1

gamma: 0 .1666667
ep s i l o n : 0 . 1

Number o f Support Vectors : 10

We then take the trained model and apply it to generate the predicted
classification of the ten documents. The predicted values when rounded
deliver the fitted category. See the output next.

> pred = predict (model , t r a i n_data , type=" raw ")
> pred

1 2 3 4
5 6 7 8

9 10
2.078806 2.921133 1.481483 2.078716
2.078895 1.479892 2.921324 2.079185
2.907141 2.920822
> out = table (pred , t r a i n_class)

4.2. Support vector machines 51

> print (out)
t r a i n_class

pred 1 2 3
1.47989177959641 1 0 0
1.48148340348819 1 0 0
2.07871568663517 0 1 0
2.07880601903982 0 1 0
2.07889543046682 0 1 0
2.07918461069813 0 1 0
2.9071410716688 0 0 1
2.92082236130375 0 0 1
2.92113327188399 0 0 1
2.92132365807947 0 0 1

> t r a i n_fitted = round(pred , 0)
> t r a i n_fitted
1 2 3 4 5 6 7 8 9 10
2 3 1 2 2 1 3 2 3 3

> cbind (t r a i n_class , t r a i n_fitted)
t r a i n_fitted

1 2 2
2 3 3
3 1 1
4 2 2
5 2 2
6 1 1
7 3 3
8 2 2
9 3 3
10 3 3

The SVM fits the model in-sample with perfect accuracy. Hence, it
works better than the Bayes classifier. This is a common experience
with SVMs, they tend to be more flexible and deliver better predictive
accuracy, hence their widespread popularity.

52 Text Classification

4.3 Word count classifiers, adjectives, and adverbs

Given a lexicon of selected words, one may sign the words as positive
or negative, and then do a simple word count to compute net sentiment
or mood of text. We already considered examples of this in Section 3.2.
By establishing appropriate cut offs, one can determine the classifica-
tion of text into optimistic, neutral, or pessimistic. These cut offs are
determined using the training and testing data sets.

Word count classifiers may be enhanced by focusing on “emphasis
words” such as adjectives and adverbs, especially when classifying emo-
tive content. One approach used in Das and Chen [2007] is to identify
all adjectives and adverbs in the text and then only consider words that
are within ±3 words before and after the adjective or adverb. This ex-
tracts the most emphatic parts of the text only, and then mood scores
it.

4.4 Fisher’s discriminant-based word count

Each body of text contains words as atomic elements. When comparing
(say) optimistic text with pessimistic text, some words discriminate the
two texts better than others, i.e., have greater discriminating ability.
This discriminating ability is measured by the Fisher [1936] discrimi-
nant.

Fisher’s discriminant is simply the ratio of the variation of a given
word across groups to the variation within group. If we have two groups
of text, spam versus non-spam, and the word “Nigerian” appears on
average seven times in the spam group emails, and on average once
in the non-spam, and the variation within groups is minimal, then
the word will have a high Fisher score. If it so turns out that the
word “Nigerian” occurs exactly seven times in each spam email, and
never in the non-spam, then the Fisher score will be infinity, because
within group variation (in the denominator of the Fisher discriminant
calculation) is zero. Such a word would be the perfect discriminant.

4.5. Vector distance classifiers 53

More formally, Fisher’s discriminant score F (w) for word w is

F (w) =
1
K

∑K
j=1(w̄j − w̄0)2

1
K

∑K
j=1 σ

2
j

(4.6)

where K is the number of categories and w̄j is the mean occurrence of
the word w in each text in category j, and w̄0 is the mean occurrence
across all categories. And σ2

j is the variance of the word occurrence in
category j. This is just one way in which Fisher’s discriminant may
be calculated, and there are other variations on the theme as well, as
there are alternate ways in which we may compute the ratio of across
group variation to within group variation.

We may compute F (w) for each word w, and then use it to weight
the word counts of each text, thereby giving greater credence to words
that are better discriminants. See Das and Chen [2007] for an applica-
tion of this technique and its performance.

4.5 Vector distance classifiers

In Section 2.3 we represented any document as a vector of word counts.
This vector representation may be generalized to include standard dic-
tionaries, discussed in Section 3.1.

Standard English dictionaries contain 50,000 to 100,000 words. As-
sume we have a dictionary with n = 100, 000 words. Each word is
identified with a specific position in a vector of length n. Any text may
be represented by a vector of word frequencies. For example, the text
string “Text mining is easy easy” will contain (n − 4) zeroes and 4
slots for the words in the text that will have value 2 in the slot for the
word “easy” and value 1 in the other three slots. This vector repre-
sentation positions the document as a point at the end of a vector in
n-dimensional space.

Suppose we have 500 documents in each of two categories, bullish
and bearish. These 1,000 documents may all be placed as points in
n-dimensional space. It is more than likely that the points in each
category will lie closer to each other than to the points in the other
category. Now, if we wish to classify a new document, with vector Di,
the obvious idea is to look at which cluster it is closest to, or which point

54 Text Classification

in either cluster it is closest to. The closeness between two documents i
and j is determined easily by the well known metric of cosine distance,
i.e.,

1− cos(θij) = 1− D>i Dj

||Di|| · ||Dj ||
(4.7)

where ||Di|| =
√
D>i Di is the norm of the vector Di. The cosine of

the angle between the two document vectors is 1 if the two vectors are
identical, and in this case the distance between them would be zero.

In Das and Chen [2007] this approach was used to classify posting
on Yahoo! stock message boards. Their paper used a lexicon instead
of dictionary, making the size of the word vector economical and the
algorithm improved in efficiency with no degradation in classification
ability.

5
Metrics

Leonard: How can 5 not be worse than 1?
Raj: Yeah, Star Trek 5 is worse than 1.
Sheldon: Okay, first of all that is a comparison of
quality not intensity. Secondly, Star Trek 1 is orders
of magnitude worse than Star Trek 5.
Raj: Are you joking? Star Trek 5 is the standard
against which all badness is measured.

“The Lizard-Spock Expansion”
The Big Bang Theory, Season 2, Episode 8

An old adage goes - “What can be measured can be managed.” The
performance (accuracy and efficiency) of text extraction and classifi-
cation is evaluated using various metrics. In this chapter we present
most of the common metrics, as implemented in Das and Chen [2007]
and other papers, though some of these have been widely used pre-
viously in other contexts than text mining. Metrics need to satisfy a
statistical property such as being a significantly able to distinguish be-
tween classification categories. Predictive accuracy is important. Does
the predictive tool perform well in-sample and out-of-sample? We also

55

56 Metrics

should consider the stability of the algorithm across different data sets.
An algorithm that is too specialized may not be robust across data
sets.

Metrics are extremely useful for checking the validity of the text
mining algorithms. Behind the scenes, even though the code is run-
ning, there may be logical errors that are not easy to notice and trace.
Metrics offer an indirect way to check on the correctness of algorithms.
In the ensuing sections, we consider many such metrics. However, there
is often no substitute for hand-checking many use cases. The author
undertook such an exercise in the analysis in the Das and Chen [2007]
paper. Graduate students were asked to score stock bulletin board mes-
sages and their scoring was compared to that of the algorithm. Whereas
the algorithm classified postings into bullish, neutral, and bearish cor-
rectly two-thirds of the time, human agreement amongst themselves
was in fact a little higher, around 72 percent. Given this baseline, judg-
ment from hand-checking suggested that the algorithms did not have
major flaws in their logic.

5.1 Confusion Matrix

The confusion matrix is a workhorse tool for assessing classification
accuracy. Given K categories, the matrix is of dimension K ×K. By
convention, the columns relate to the category assigned by the classi-
fier algorithm and the rows refer to the actual category in which the
text resides. Each cell (i, j) of the matrix contains the number of text
messages that were of type i and were classified as type j. The cells
on the diagonal of the confusion matrix state the number of times the
algorithm got the classification right. All other cells are instances of
classification error. If an algorithm has no classification ability, then
the rows and columns of the matrix will be independent of each other.
Under this null hypothesis, the statistic that is examined for rejection
is as follows:

χ2[dof = (K − 1)2] =
K∑
i=1

K∑
j=1

[O(i, j)− E(i, j)]2

E(i, j) (5.1)

5.1. Confusion Matrix 57

where O(i, j) are the actual numbers observed in the confusion matrix,
and E(i, j) are the expected numbers, assuming no classification ability
under the null hypothesis. If M(i) represents the total across row i of
the confusion matrix, and M(j) the column total, then

E(i, j) = M(i)×M(j)∑K
i=1M(i)

≡ M(i)×M(j)∑K
j=1M(j)

(5.2)

The degrees of freedom of the χ2 statistic is (K − 1)2. This statistic is
very easy to implement and may be applied to models for any K. A
highly significant statistic is evidence of classification ability.

For illustration, suppose we have 100 documents classified into K =
3 categories {1, 2, 3}. The observed categories are given in vector x
below and the algorithm classifies them into categories displayed in
vector y.

> x
[1] 2 2 3 2 2 1 1 2 2 2 3 1 2 1 1 3 2 1 3 3 1 1 2
1 2 2 3 1 2 2 3 2 2 3 2 1 3 2 2 3 3 2 3

[4 4] 1 2 2 1 3 3 2 2 3 2 2 1 1 3 3 3 2 1 2 3 3 3 2
1 1 1 2 1 1 2 3 2 1 3 2 3 2 2 2 1 2 3 2
[8 7] 2 2 2 3 2 2 1 1 2 2 3 3 1 2

> y
[1] 2 2 3 2 2 1 1 2 2 2 3 1 2 1 1 3 2 1 3 3 2 1 2
1 2 2 2 1 2 2 3 2 2 3 2 1 3 2 2 3 3 2 3
[4 4] 1 2 2 2 2 3 2 2 3 2 2 1 2 3 2 3 2 1 2 3 3 3 2
1 1 1 2 1 1 2 3 2 1 3 2 3 2 2 2 3 1 3 2
[8 7] 2 2 2 3 2 2 1 1 3 2 3 3 1 2

The following command easily generates the observed confusion matrix:

> Omatrix = table (x , y)
> Omatrix

y
x 1 2 3

1 22 3 1
2 1 44 1
3 0 3 25

58 Metrics

The diagonal is quite heavy indicating that this algorithm has good
classification ability. How good this is, and whether it is statistically
significant may be determined by computing the χ2 statistic for the
confusion matrix which is provided in equation (5.1).

> rsum = rowSums(Omatrix)
> rsum
1 2 3

26 46 28
> csum = colSums (Omatrix)
> csum
1 2 3

23 50 27
> Ematrix = t (matrix (kronecker (rsum , csum)/

sum(Omatrix) , 3 , 3))
> Ematrix

[, 1] [, 2] [, 3]
[1 ,] 5 .98 13 7 .02
[2 ,] 10 .58 23 12 .42
[3 ,] 6 .44 14 7 .56
> t e s t_stat = sum((Omatrix−Ematrix)^2/Ematrix)
> t e s t_stat
[1] 149 .435
> 1 − pchisq (t e s t_stat , 4)
[1] 0

The p-value at 4 degrees of freedom is zero, indicating that the classi-
fication achieved is highly statistically significant.

5.2 Accuracy

Algorithm accuracy over a classification scheme is the percentage of
text that is correctly classified. This may be done in-sample or out-of-
sample. To compute this off the confusion matrix, we calculate

Accuracy =
∑K
i=1O(i, i)∑K
j=1M(j)

=
∑K
i=1O(i, i)∑K
i=1M(i)

5.3. False Positives 59

We should hope that this is at least greater than 1/K, which is the
accuracy level achieved on average from random guessing. In practice,
I find that accuracy ratios of 60–70% are reasonable for text that is
non-factual and contains poor language and opinions.

For the example in the previous section, we compute the accuracy
for illustration as follows.

> sum(diag (Omatrix))/sum(Omatrix)
[1] 0 .91

The accuracy is high, 90%.

5.3 False Positives

Improper classification is worse than a failure to classify. In a 2×2 (two
category, n = 2) scheme, every off-diagonal element in the confusion
matrix is a false positive. When n > 2, some classification errors are
worse than others. For example in a 3–way buy, hold, sell scheme, where
we have stock text for classification, classifying a buy as a sell is worse
than classifying it as a hold. In this sense an ordering of categories is
useful so that a false classification into a near category is not as bad as
a wrong classification into a far (diametrically opposed) category.

The percentage of false positives is a useful metric to work with. It
may be calculated as a simple count or as a weighted count (by nearness
of wrong category) of false classifications divided by total classifications
undertaken. In experiments on stock messages in Das and Chen [2007],
we found that the false positive rate for the voting scheme classifier
was about 10%.

For example, assume that in the example above, category 1 is
BULLISH and category 3 is BEARISH, whereas category 2 is NEU-
TRAL. The false positives would arise from mis-classifying category 1
as 3 and vice-versa. We compute the false positive rate for illustration.

> Omatrix
y

x 1 2 3
1 22 3 1
2 1 44 1

60 Metrics

3 0 3 25
> (Omatrix [1 ,3]+Omatrix [3 , 1]) /sum(Omatrix)
[1] 0 .01

The false positive rate is just 1%.

5.4 Sentiment Error

When many articles of text are classified, an aggregate measure of
sentiment may be computed. Aggregation is useful because it allows
classification errors to cancel—if a buy was mistaken as a sell, and
another sell as a buy, then the aggregate sentiment index is unaffected.

Sentiment error is the percentage difference between the computed
aggregate sentiment, and the value we would obtain if there were no
classification error. In Das and Chen [2007] sentiment error varied from
5-15% across the various data sets used. Leinweber and Sisk [2010] show
that sentiment aggregation gives a better relation between news and
stock returns.

In a 3-way classification scheme, where category 1 is BULLISH and
category 3 is BEARISH, whereas category 2 is NEUTRAL, we can
compute this metric as follows.

Sentiment Error = 1− M(j = 1)−M(j = 3)
M(i = 1)−M(i = 3) (5.3)

In our illustrative example, we may easily calculate this metric.

> rsum = rowSums(Omatrix)
> csum = colSums (Omatrix)
> rsum
1 2 3

26 46 28
> csum
1 2 3

23 50 27
> 1 − (−3)/(−2)
[1] −0.5

5.5. Disagreement 61

The classified sentiment from the algorithm was −3 = 23−27, whereas
it actually should have been −2 = 26 − 28. The percentage error in
sentiment is 50%.

5.5 Disagreement

Das et al. [2005] introduced a disagreement metric to gauge the level
of conflict in the discussion from stock text messages. The metric uses
the number of signed buys and sells in the day (based on a sentiment
model) to determine how much difference of opinion there is in the
market. The metric is computed as follows:

DISAG =
∣∣∣∣1− ∣∣∣∣B − SB + S

∣∣∣∣∣∣∣∣
where B,S are the numbers of classified buys and sells. Note that
DISAG is bounded between zero and one.

Using the true categories of buys (category 1 BULLISH) and sells
(category 3 BEARISH) in the same example as before, we may compute
disagreement.

> DISAG = abs(1−abs ((26−28)/ (26+28)))
> DISAG
[1] 0 .962963

Since there is little agreement (26 buys and 28 sells), disagreement is
high.

5.6 Correlations

How well does the sentiment from news correlate with financial time
series? Is there predictability? Leinweber and Sisk [2010] examine in-
vestment signals derived from news and show that there is a significant
difference in cumulative excess returns between strong positive senti-
ment and strong negative sentiment days over prediction horizons of a
week or a quarter. The effect appears to be robust across many coun-
tries.

We may plot the movement of a stock series, alongside the cumula-
tive sentiment series. The latter is generated by taking classified text,

62 Metrics

and counting all ‘buys’ as +1, ‘holds’ as zero, and ‘sells’ as −1, and
plotting the cumulative total of scores of the messages. See Figure 5.1
where we plot the sentiment graph and stock graph for Dell Comput-
ers, where the sentiment and stock series track each other quite closely.
We coin the term “sents” for the units of sentiment.

A casual study of correlations between each stock in the Morgan
Stanley High Tech 35 index and the sentiment index for each stock
showed an average correlation of 18.8%, ranging from a high of 49.3%
(Dell) to a low of −12.4% (Intuit), with most correlations being pos-
itive. However, when an index of sentiment is constructed, much of
the noise cancels out, and the correlation of the aggregate sentiment
across these thirty-five stocks and the MSH35 index is a robust 48.6%,
see Das [2011]. This suggests that cross-sectional information on senti-
ment may be exploited to generate better aggregate sentiment indexes.
We will consider more information on correlations in assessments of the
empirical work in financial text mining later in this monograph.

5.7 Phase lag metrics

Even though textual information is abundant, mining it results in con-
version into condensed numerical scores. This mapping of broad text
to narrow numbers may lose the forest for the trees, or give an in-
herent perception of false precision. Therefore, rather than zero in on
debatable fine-grained numerical attributes, it may be easier to exam-
ine coarse features of the numerical scores. For instance, in Das [2011] I
present a phase lag metric derived from the geometry of the sentiment
time series.

A time series may be represented as taking on one of eight “shapes”
derived from the features of the plot. We get precisely eight distinct
shapes when considering four features of a sentiment plot: the beginning
point, end point, maximum, and minimum points. If the maximum and
minimum points do not coincide with the beginning and end points,
then we get an “Up-Down” plot if the maximum comes before the
minimum. If the minimum point comes before the maximum point, then
we call it a “Down-Up” plot. Such plots have two points of inflection.

5.7. Phase lag metrics 63

Figure 5.1: Plot of stock series (upper graph) versus sentiment series (lower
graph). The correlation between the series is high. The plot is based on mes-
sages from Yahoo! Finance and is for a single twenty-four hour period.

64 Metrics

When the maximum and minimum points both coincide with the
beginning and ending points, there are no points of inflection, and the
plots are called “Max-Min" (maximum precedes minimum) or "Min-
Max" (minimum precedes maximum).

The remaining four graphs have just one point of inflection. The
“Min-Up” plot starts at the minimum and then goes up (there can-
not be a “Min-Down” plot for obvious reasons). The “Max-Down” plot
starts at the maximum and proceeds downwards to the point of inflec-
tion before returning upwards. The “Up-Min” plot moves up from the
beginning point, reaches the maximum and then moves down to the
minimum. Finally, the “Down-Max” plot moves down from the begin-
ning point, reaches the minimum, and then returns back up to end at
the maximum. These eight plots are shown in Figure 5.2.

Phase lag plots are useful for detecting whether sentiment data
generated from text may be used to predict stock returns or prices.
These eight patterns may be explored in sentiment charts and stock
charts simultaneously to determine in which chart the pattern appears
first, and with how much lead time. Das [2011] reports that in most
cases the stock chart leads the sentiment chart by about 1-2 hours,
suggesting that stock prices are not easy to predict with text-based
sentiment.

5.8 Readability

Financial documents are often long-winded and loaded with jargon. Av-
erage word lengths are higher, and sentences tend to be longer. “Read-
ability” is a metric of how easy it is to comprehend text. Given a goal
of efficient markets, regulators want to foster transparency by making
sure financial documents that are disseminated to the investing public
are readable. Hence, metrics for readability are very important and are
recently gaining traction.

Gunning [1952] developed the Fog index. The index estimates the
years of formal education needed to understand text on a first reading.
A fog index of 12 requires the reading level of a U.S. high school senior
(around 18 years old). The index is based on the idea that poor read-

5.8. Readability 65

Phase-Lag
Analysis

Figure 5.2: Eight different possible shapes of times series when four points
are considered, the beginning, ending, maximum, and minimum points. See
Das [2011].

66 Metrics

ability is associated with longer sentences and complex words. Complex
words are those that have more than two syllables. The formula for the
Fog index is

0.4 ·
[#words
#sentences + 100 ·

(#complex words
#words

)]
Alternative readability scores use similar ideas. The Flesch Read-

ing Ease Score and the Flesch-Kincaid Grade Level also use counts
of words, syllables, and sentences.1 The Flesch Reading Ease Score is
defined as

206.835− 1.015
(#words
#sentences

)
− 84.6

(#syllables
#words

)
With a range of 90-100 easily accessible by a 11-year old, 60-70 being
easy to understand for 13-15 year olds, and 0-30 for university gradu-
ates.

The Flesch-Kincaid Grade Level is defined as

0.39
(#words
#sentences

)
+ 11.8

(#syllables
#words

)
− 15.59

which gives a number that corresponds to the grade level. As expected
these two measures are negatively correlated. Various other measures
of readability use the same ideas as in the Fog index. For example
the Coleman and Liau [1975] index does not even require a count of
syllables, as follows:

CLI = 0.0588L− 0.296S − 15.8

where L is the average number of letters per hundred words and S is
the average number of sentences per hundred words.

Standard readability metrics may not work well for financial text.
Loughran and McDonald [2014] find that the Fog index is inferior to
simply looking at 10-K file size.

Out of interest, and as an example, I ran readability scores for this
monograph you are reading using https://readability-score.com/.
It has readability scores shown in Table 5.1 below:

1See http://en.wikipedia.org/wiki/Flesch-Kincaid_readability_tests.

5.8. Readability 67

Table 5.1: Readability score of this monograph

Readability Formula Grade
Flesch-Kincaid Grade Level 9.6
Gunning-Fog Score 11.8
Coleman-Liau Index 11.9
SMOG Index 9.5
Automated Readability Index 8.1
Average Grade Level 10.2
Note: The grade level (based on the US education system)
is the number of years of education a person has to have
had to read this document. The Flesch-Kincaid Reading Ease
score for this monograph is 52.8, which is approximately high-
school reading level.

6
Applications and Empirics

Beverly Hofstadter: Your scan data will be very
helpful to my research. You have a remarkable brain.
Sheldon: I know. Although I’ve always hated how my
right frontal lobe looks in pictures.
Beverly Hofstadter: Common complaint among men.
Nothing’s ever big enough, except when they get a
tumor. Then you never hear the end of it.

“The Maternal Capacitance”
The Big Bang Theory, Season 2, Episode 15

The focus of text mining has been prediction. Well-known fore-
caster Paul Saffo criticized prediction as a wasted exercise in chasing
uncertainty where we are looking for one certain point estimate. In con-
trast to prediction, a forecast is a statement about the future “cone of
uncertainty” where various scenarios are developed with attached prob-
abilities. Still, the term “predictive analytics” appears to be prevalent,
and we will use the terms predictions and forecasts interchangeably,
i.e., point estimates with error around them.

69

70 Applications and Empirics

The literature has accessed varied sources of text to make predic-
tions. Lu et al. [2010] categorize finance-related textual content into
three categories: (a) forums, blogs, and wikis; (b) news and research
reports; and (c) content generated by firms. Early work focused on ex-
tracting sentiment and other information from messages posted to stock
message boards such as Yahoo!, Motley Fool, Silicon Investor, Raging
Bull, etc., see Tumarkin and R.Whitelaw [2001], Antweiler and Frank
[2004], Antweiler and Frank [2005], Das et al. [2005], Das and Chen
[2007]. Other news sources have also been accessed such as Lexis-Nexis,
Factiva, Dow Jones News, etc., see Das et al. [2005]; Boudoukh et al.
[2012]. The Heard on the Street column in the Wall Street Journal has
been used in work by Tetlock [2007], Tetlock et al. [2008]; see also the
use of Wall Street Journal articles by Lu et al. [2010]. Other work uses
the Thomson-Reuters NewsScope Sentiment Engine (RNSE) based on
Infonics/Lexalytics algorithms and varied data on stocks and text from
internal databases, see Leinweber and Sisk [2011]. Zhang and Skiena
[2010] develop a market neutral trading strategy using news media such
as tweets, over 500 newspapers, Spinn3r RSS feeds, and LiveJournal.

More recently, a string of papers has attempted to exploit Twit-
ter feeds (and to a lesser extent Facebook data). One of the earliest
papers is that by Bollen et al. [2010] showing that stock direction of
the Dow Jones Industrial Average can be predicted using tweets with
87.6% accuracy. Bar-Haim et al. [2011] attempt to predict stock direc-
tion using tweets by detecting and overweighting the opinion of expert
investors. Brown [2012] looks at the correlation between tweets and
the stock market via several measures. Logunov [2011] uses Opinion-
Finder to generate many measures of sentiment from tweets. Twitter
based sentiment developed by Rao and Srivastava [2012] is found to
be highly correlated with stock prices and indexes, as high as 0.88 for
returns. Sprenger and Welpe [2010] find that tweet bullishness is asso-
ciated with abnormal stock returns and tweet volume predicts trading
volume. Above average tweeters are retweeted more often too. Sprenger
[2011] integrates data from text classification of tweets, user voting, and
a proprietary stock game to extract the bullishness of online investors;
these ideas are behind the site TweetTrader.net. Tweets also pose

6.1. Predicting Market Movement 71

interesting problems of big streaming data discussed in Pervin et al.
[2013].

Other text mining approaches have been directed at questions that
are more in the corporate finance and risk management space. Data
used here is from filings such as 10-Ks, etc., (Loughran and McDonald
[2011]; Burdick et al. [2011]; Bodnaruk et al. [2013]; Jegadeesh and Wu
[2013]; Loughran and McDonald [2014]).

6.1 Predicting Market Movement

Beating the market is the goal of stock prediction. This is not consis-
tently sustainable in an efficient market, since all information (including
that extractable from text mining) is accurately and quickly incorpo-
rated into prices. Text mining algorithms that really predict market
movements are refutations of the efficient market hypothesis. In this
section we review the evidence that this is the case.

Sentiment extraction from text mining comprises both quality
(meaning) and quantity (volume) of text. The former is harder to an-
alyze because linguistic algorithms are needed. The latter is easier to
parse as it entails counting (of words or messages).

An early study by Wysocki [1999] found that for the 50 top firms
in message posting volume on Yahoo! Finance, message volume pre-
dicted next day abnormal stock returns. Using a broader set of firms,
he also found that high message volume firms were those with inflated
valuations (relative to fundamentals), high trading volume, high short
seller activity (given possibly inflated valuations), high analyst follow-
ing (message posting appears to be related to news as well, correlated
with a general notion of “attention” stocks), and low institutional hold-
ings (hence broader investor discussion and interest), all intuitive out-
comes.

Text mining also opens up the variety of sources of information. For
example, Bagnoli et al. [1999] examined earnings “whispers”, unoffi-
cial crowd-sourced forecasts of quarterly earnings from small investors,
posted to web pages and news stories that report whisper forecasts.
Interestingly, they find that whisper forecasts are more accurate than

72 Applications and Empirics

that of First Call analyst forecasts. In a negative result, Tumarkin
and R.Whitelaw [2001] examined self-reported sentiment on the Raging
Bull message board and found no predictive content, either of returns
or volume.

Antweiler and Frank [2004] studied more than 1.5 million messages
on the Yahoo! Finance and Raging Bull stock message boards. They
analyzed about 45 companies in the Dow Jones Industrial Average, as
well as the Dow Jones Internet Index. They constructed a “bullishness
index” using text mining, and found that they could not predict stock
returns, though they could predict stock volatility.

Antweiler and Frank used the Naive Bayes algorithm for classifica-
tion, implemented in the Rainbow package of Andrew McCallum [1996].
They also repeated the same using Support Vector Machines (SVMs)
as a robustness check. Both algorithms generate similar empirical re-
sults. Once the algorithm is trained, they use it out-of-sample to sign
each message as {Buy,Hold, Sell}. Let nB, nS be the number of buy
and sell messages, respectively. Then R = nB/nS is just the ration of
buy to sell messages. Based on this they define their bullishness index

B = nB − nS
nB + nS

= R− 1
R+ 1 ∈ (−1,+1)

This metric is independent of the number of messages, i.e., is homoge-
nous of degree zero in nB, nS . An alternative measure is also proposed,
i.e.,

B∗ = ln
[1 + nB

1 + nS

]
= ln

[1 +R(1 + nB + nS)
1 +R+ nB + nS

]
= ln

[2 + (nB + nS)(1 +B)
2 + (nB + nS)(1−B)

]
≈ B · ln(1 + nB + nS)

This measure takes the bullishness index B and weights it by the num-
ber of messages of both categories. This is homogenous of degree be-
tween zero and one. And they also propose a third measure, which is

6.1. Predicting Market Movement 73

much more direct, i.e.,

B∗∗ = nB − nS = (nB + nS) · R− 1
R+ 1 = M ·B

which is homogenous of degree one, and is a message weighted bullish-
ness index. They prefer to use B∗ in their algorithms as it appears to
deliver the best predictive results. Finally, Antweiler and Frank [2004]
produce an agreement index,

A = 1−
√

1−B2 ∈ (0, 1)

Note how closely this is related to the disagreement index in Section
5.5.

The bullishness index does not predict returns, but returns do ex-
plain message posting. More messages are posted in periods of nega-
tive returns, but this is not a significant relationship. As expected, a
contemporaneous relation between returns and bullishness is present.
Overall, Antweiler and Frank [2004] present some important results
that are indicative of the results in this literature, confirmed also in
subsequent work. First, that message board postings do not predict
returns. Second, that disagreement (measured from postings) induces
trading. Third, message posting does predict volatility at daily frequen-
cies and intraday. Fourth, messages reflect public information rapidly.
Overall, they conclude that stock chat is meaningful in content and not
just noise.

Das and Chen [2007] developed a systematic algorithm for classi-
fying stock board messages. Their approach comprised five algorithms
that individually classified each posting into buy, hold, and sell cate-
gories. A voting system was overlaid to classify messages based on ma-
jority verdict across the five algorithms. The voting approach is shown
to improve the signal to noise ratio of the overall classification system,
as was an overlaid ambiguity filter. Classification accuracy was found
to be much better than random (the confusion matrix had a significant
χ2 statistic), the false positive rate was low, and error in aggregate
sentiment was also small. Despite the good quality of the extracted,
text-mined sentiment, its predictive value was low. Hence, as in the
previously cited work, the prognosis for predicting returns is poor.

74 Applications and Empirics

Interestingly though, there are some useful contemporaneous find-
ings. Das and Chen [2007] find strong contemporaneous correlation of
sentiment and returns. They find that sentiment is inversely related to
disagreement (defined in Section 5.5 of this paper). As disagreement
increases, sentiment drops. Or interpreted differently, there is greater
disagreement when sentiment is falling than when it is rising. Sentiment
is also correlated to high posting volume, suggesting that increased dis-
cussion is a symptom of favorable opinion (indeed, Antweiler and Frank
[2004] name their sentiment index a bullishness index).

Whereas stock message board postings offer one approach to elic-
iting sentiment information, news stories are another. Boudoukh et al.
[2012] (BFKR) conduct an interesting analysis of news by analyzing
its textual content for relevance, and for tone. The algorithm they im-
plement determines whether news is relevant or not. They find that
days where news is not relevant are not different than days on which
there is no news. On the other hand days on which news is relevant
have a different impact on returns and volatility. This paper questions
the long standing literature that suggests that stock price movements
are the result of irrational noise trading or trading based on private
information, but not news. In contrast, they posit that when news is
correctly identified as relevant versus irrelevant, then news does impact
stock prices. They analyze data from 2000–2009 for all S&P500 compa-
nies using 1.9 million stories from Dow Jones Newswire (a total of 791
firms that existed at different times in the S&P500). Of these about
50% are identified as relevant. Their analysis does not rely purely on
word counts using a dictionary but also on phrase level patterns to
determine the tone of the news article.

BFKR do not use machine learning (Naive Bayes, etc.) to classify
messages. Instead they determine tone using words, as in much of the
preceding literature, and phrases, accounting also for negation. They
employ The Stock Sonar (TSS) algorithm of Feldman et al. [2011]. The
tone is determined using a sentiment score defined as

S = npos − nneg
1 + npos + nneg

6.1. Predicting Market Movement 75

where npos, nneg are the number of positive and negative words, re-
spectively. This algorithm also parses out the context of the news story
by eliciting 14 event categories and 56 subcategories. These categories
were determined in a rule-based manner using over 4000 rules.

The main results in the Boudoukh et al. [2012] paper are as follows.
First, stock volatility on relevant news days is double that of days with
irrelevant or no news. This clearly supports the idea that news does
move stock prices, once it is correctly classified as relevant. Second,
Roll [1988] theoretically posited that a low market model R-square
indicates that there is more firm-specific information being priced in
the stock, or conversely, on days with no news, stock movement is less
idiosyncratic. Consistent with this, BFKR find that market models
regressions estimated on days with relevant news have median R2s
of 16%, compared to 28% on days with no news or irrelevant news,
or on all days taken together. Third, analysis of text for tone delivers
intuitive results, for example, legal announcements tend to be negative,
and announcements of deals render positive tone. Fourth, large stock
price moves on no news or irrelevant news days are usually followed
by reversals as the market corrects its erroneous interpretation, but
reversals are not seen after large stock moves on relevant news days,
in fact, continuation is more likely. Using this separation of effects a
simple portfolio strategy to exploit this yields a Sharpe ratio of 1.7.
Taken together, these results suggest that relevant news does move
stock prices.

6.1.1 Twitter and News Based Prediction

There is a plethora of papers using Twitter feeds for sentiment construc-
tion and prediction. The ease of accessing Twitter talk comes from the
facile API interface provided by Twitter and the easy download of mes-
sages for a given firm or topic using hashtags. In addition tweets are
restricted to 140 characters, and lead to the intuition that the extent
of meaning per quantum of text is likely to be much higher for tweets
than most other forms of meaningful text. However, these microblog
posts exhibit language usage that is often different than standard, and
hence, mood scoring might require specific lexicons. For example, the

76 Applications and Empirics

words “wicked stock” might be exaggerating the value of a stock even
though the word “wicked” normally has a negative mood score.

The cost of Twitter sentiment construction is much lower than that
of a poll. Further, the sheer quantity of tweets is so large that it lends
new scale to the meaning of “wisdom of the crowd.” Given the fact that
modern computing has made all this possible, we may in fact refer to it
as the “wisdom of the cloud.” For example, Pervin et al. [2013] develop
a system called TrendMiner to uncover trending topics on Twitter,
showing how useful a high velocity stream from a microblog can be
for crowdsourcing opinion. In many cases, tweets reference news items,
and hence, aggregate more than just short statements.

Bollen et al. [2010] undertake an extensive analysis of Twitter feeds
and relate textual information within tweets to the stock market, in
particular the Dow Jones Industrial Average (DJIA). They are able
to predict the sign of the daily move in the DJIA correctly 87.6% of
the time. They construct two mood-tracking tools. The first, called
OpinionFinder (OF)1 measures positive and negative sentiment. The
second, named Google-Profile of Mood States (GPOMS) takes the view
that sentiment is more multifaceted than just positive and negative, and
therefore measures mood on six dimensions: {Calm, Alert, Sure, Vital,
Kind, Happy}. GPOMS is an extension of the well known Profile of
Mood States (POMS) in McNair et al. [2003]. These public mood states
are predictive of the DJIA, and are cross-validated using Presidential
election results and Thanksgiving day outcomes.

Overall, sentiment from the GPOMS appears to be more predic-
tive than sentiment from OpinionFinder. Regressing the OF normal-
ized score on the six normalized mood states from GPOMS shows that
the Sure and Happy mood states are significantly related to OF. The
OF sentiment predicts the DJIA at a one-day lag, whereas the GPOMS
(only the Calm state) predicts the DJIA two to 6 days ahead.

Zhang and Skiena [2010] use Twitter feeds and also three other
sources of text: over 500 nationwide newspapers, RSS feeds from blogs,

1http://mpqa.cs.pitt.edu/opinionfinder/. The system contains corpora and
lexicons for open use. See Wilson et al. [2005].

6.1. Predicting Market Movement 77

and LiveJournal blogs. These are used to compute two metrics.

polarity = npos − nneg
npos + nneg

subjectivity = npos + nneg
N

where N is the total number of words in a text document, npos, nneg
are the number of positive and negative words, respectively. They find
that the number of articles is predictive of trading volume. Subjectivity
is also predictive of trading volume, lending credence to the idea that
differences of opinion make markets. Stock return prediction is weak us-
ing polarity, but tweets do seem to have some predictive power. Various
sentiment driven market neutral strategies are shown to be profitable,
though the study is not tested for robustness.

Logunov [2011] uses tweets data, and applies OpinionFinder and
also developed a new classifier called Naive Emoticon Classification to
encode sentiment. This is an unusual and original, albeit quite intuitive
use of emoticons to determine mood in text mining. If an emoticon
exists, then the tweet is automatically coded with that sentiment of
emotion. Four types of emoticons are considered: Happy (H), Sad (S),
Joy (J), and Cry (C). Polarity is defined here as

polarity = A = nH + nJ
nH + nS + nJ + nC

Values greater than 0.5 are positive. A stands for aggregate sentiment
and appears to be strongly autocorrelated. Overall, prediction evidence
is weak.

Sprenger and Welpe [2010] construct a bullishness index from
250,000 daily tweets and find it to be associated to contemporaneous
abnormal stock returns. Message volume is not related to abnormal re-
turns. Interestingly, users that provide better tweet advice tend to be
retweeted more than others, thereby expanding their influence. Classifi-
cation of tweets is undertaken using the Naive Bayes classifier discussed
in Section 4.1. The technology for this has been developed in another
paper that describes the microblogging forum TweetTrader.net, see
Sprenger [2011]. The bullishness index is defined as in Antweiler and

78 Applications and Empirics

Frank [2004]:

B = ln
[1 + #Buy Messages

1 + #Sell Messages

]
Of course, the interesting question is whether bullishness can predict
returns. The paper finds that the evidence for this is lacking, and in
fact, returns appear to predict bullishness, in line with the findings of
Das and Chen [2007], and Antweiler and Frank [2004].

Rao and Srivastava [2012] analyze more than 4 million tweets be-
tween June 2010 and July 2011 for the DJIA, NASDAQ-100 and 11
other big cap technology stocks. A Naive Bayes classifier is used to de-
termine sentiment, using a service called Sentiment140 from Stanford
University.2 Twitter sentiment and returns have an 88% correlation.
Granger causality regressions show that tweets are predictive of stock
and index movements. They implement the Expert Model Mining Sys-
tem (EMMS) to demonstrate that forecasted DJIA returns (R-square
of 0.952) have low Maximum Absolute Percentage Error (MAPE) of
1.76%.

Bar-Haim et al. [2011] also generate sentiment using tweets, but in
the spirit of Sprenger and Welpe [2010], they build an algorithm to
identify expert investors whose tweets are weighted more highly. They
also divide tweets (as done in Das et al. [2005]) into questions, noise
or obscure items, and the remaining tweets are divided into facts and
opinions.

Facts are further classified into news, chart patterns, trade, and
trade outcome. News items are useful, but are less valuable than the
main source that has been compressed into a tweet. Chart patterns are
tweets that describe how the stock moved, and since they are backward
looking, are of limited predictive value. A trade reports an actual buy or
sell by the poster, and is deemed valuable information by the authors.
Trade outcome is the reversal of an existing trade and as such, have
limited information over and above the original trade.

Opinions are also broken down into four categories: speculation,
chart prediction, recommendation, and sentiment. Speculation is a user
opinion provided without basis, and is least useful. Chart prediction is

2http://help.sentiment140.com/.

6.1. Predicting Market Movement 79

a forward estimate of movement based on technical analysis. Recom-
mendation is a prompt to take some action, and is less valuable than a
trade fact. Sentiment tweets express pure emotion without any factual
content.

Using this taxonomy of tweet types, a small sample was analyzed
to come up with the proportion of tweets in each category. A quarter of
the tweets were deemed irrelevant and 7% were questions. About 40%
of tweets were facts, and the remaining 28% are opinions.

User u has expertise if a large number of his/her bullish tweets
are followed by a stock rise. Bar-Haim et al. [2011] exclude bearish
tweets followed by a stock fall. This assumption is debatable, though
the authors argue that stock selling may be made for reasons other
than bearishness, an argument that may also apply to stock purchases.
Be that as it may, each tweet t is assessed for its predictive value over
the next trading day by examining the sign of stock movement. The
precision of user u is then scored as follows:

Pu = Cu
Cu + Iu

where Cu is the number of correct tweets, i.e., bullish tweets followed
by a stock price increase, and Iu is the number of incorrect tweets, i.e.,
bullish tweets not followed by an uptick in price. The precision of a user
is then compared with the average precision of all users in the sample
and experts are users with statistically higher precision than average.
Classification into bullish, bearish, and neutral is undertaken using a
SVM, described in Section 4.2. Overall, the authors find that identifying
experts and using user-specific unsupervised learning via SVM leads to
better prediction than otherwise. In a manner of speaking, these results
would be somewhat circular, by choosing users whose predictions are
better, they have to be better predictors than the entire set of users, but
there is strong evidence that this works well out-of-sample. Therefore,
this paper makes a strong case for the “wisdom of a crowd of experts.”

80 Applications and Empirics

6.2 Predicting risk, volatility, volume

Wysocki [1999] examined message posting volume to see whether it
relates to stock market activity. He found that the top 50 firms by
message volume (period: January to August 1998) forecasted next day
trading volume.

Antweiler and Frank [2004] developed a bullishness index to predict
stock returns, but failed to find significant predictability. However, they
did find that volatility could be predicted for 45 stocks in the Dow Jones
Industrial Average. Consistent with the argument that differences in
opinion make markets, they found that disagreement among posted
messages was positively correlated with greater trading volume. Das
and Chen [2007] also find a significant relationship between message
volume and volatility.

The notion of relevance for a news article [Boudoukh et al., 2012]
also relates to the concept of certainty, a state of being free from doubt.
Certainty recognition, discussed in Lu et al. [2010], may be used to
distinguish hard facts from doubtful ones in information retrieval. It is
closely related to extracting risk related statements in finance textual
data. Lending firms may monitor text about their clients continually
to elicit risk related warnings. A statement is defined as risk related if
there is information about firm value, future timing, and uncertainty.
Lu et al. [2010] implemented two statistical learning approaches (SVM
and elastic-net logistic regressions) to study 1529 sentences from the
Wall Street Journal and found that 47% of these were risk related (with
an accuracy level of classification of 70%).

The finding that message volume and trading volume are related
appears to be a robust finding in the literature. Zhang and Skiena [2010]
find that article volume in news predicts trading volume. Sprenger and
Welpe [2010] also find the same relationship between tweet volume and
trading volume.

6.3. Text Mining Company Reports 81

6.3 Text Mining Company Reports

Whereas much of financial text analysis uses messages posted to finance
boards like Yahoo!, Motley Fool, or to blogs such as Twitter, Facebook,
etc., other textual analysis has been applied to company reports and
filings. In the former case, analysis is usually of a time series nature,
whereas in the latter, text analysis is undertaken across companies in
a cross-section.

The quality of text in company reports is much better than in mes-
sage postings, and hence, we should expect richer meaning extraction
in this domain. Researchers in both Accounting and Finance have be-
gun exploiting filing information. Textual analysis in this area has also
resulted in technical improvements. Rudimentary approaches such as
word count methods have been extended to weighted schemes, where
weights are determined in statistical ways. For instance, in Das and
Chen [2007], the discriminant score of each word across classification
categories is used as a weighting index for the importance of words.

There is a proliferation of word-weighting schemes in the finance
domain. One intuitive idea is that articles that contain words that are
uncommon across all documents are more likely to be similar to other
articles that contain those words, whereas articles that have common
joint words are less likely to be similar. This introduces the idea of
“inverse document frequency” (idf) as a weighting coefficient. Hence,
the idf for word j would be

widfj = ln
(
N

dfj

)

where N is the total number of documents, and dfj is the number of
documents containing word j. This scheme was proposed by Manning
and Schütze [1999].

Loughran and McDonald [2011] use this weighting approach to
modify the word (term) frequency counts in the documents they ana-
lyze. The weight on word j in document i is specified as

wij = max[0, 1 + ln(fij)widfj]

82 Applications and Empirics

where fij is the frequency count of word j in document i. This leads
naturally to a document score of

SLMi = 1
1 + ln(ai)

J∑
j=1

wij

Here ai is the total number of words in document i, and J is the
total number of words in the lexicon. (The LM superscript signifies
the Loughran and McDonald [2011] weighting approach.)

Whereas the idf approach is intuitive, it does not have to be rele-
vant for market activity. An alternate and effective weighting scheme
has been developed in Jegadeesh and Wu [2013] (JW) using market
movements. Words that occur more often on large market move days
are given a greater weight than other words. JW show that this scheme
is superior to an unweighted one, and delivers an accurate system for
determining the “tone” of a regulatory filing. They also conduct ro-
bustness checks that suggest that the approach is quite general, and
applies to other domains with no additional modifications to the speci-
fication. Indeed, they find that tone extraction from 10-Ks may be used
to predict IPO underpricing.

JW create a “global lexicon” merging multiple word lists from
Harvard-IV-4 Psychological Dictionaries(Harvard Inquirer), the Lass-
well Value Dictionary, the Loughran and McDonald [2011] lists, and
the word list in Bradley and Lang [1999]. They test this lexicon for ro-
bustness by checking (a) that the lexicon delivers accurate tone scores
and (b) that it is complete by discarding 50% of the words and see-
ing whether it causes a material change in results (it does not). This
approach provides a more reliable measure of document tone than pre-
ceding approaches. Their measure of filing tone is statistically related
to filing period returns after providing for reasonable control variables.
Tone is significantly related to returns for up to two weeks after fil-
ing, and it appears that the market under reacts to tone, and this is
corrected within this two week window.

The tone score of document i in the JW paper is specified as

SJWi = 1
ai

J∑
j=1

wjfij

6.3. Text Mining Company Reports 83

where wj is the weight for word j based on its relationship to market
movement. (The JW superscript signifies the Jegadeesh and Wu [2013]
weighting approach.) The following regression is used to determine the
value of wj (across all documents).

ri = a+ b · SJWj + εi

= a+ b

 1
ai

J∑
j=1

wjfij

+ εi

= a+

 1
ai

J∑
j=1

(bwj)fij

+ εi

= a+

 1
ai

J∑
j=1

Bjfij

+ εi

where ri is the abnormal return around the release of document i, and
Bj = bwj is a modified word weight. This is then translated back into
the original estimated word weight by normalization, i.e.,

wj =
Bj − 1

J

∑J
j=1Bj

σ(Bj)

where σ(Bj) is the standard deviation of Bj across all J words in the
lexicon.

Abnormal return ri is defined as the three-day excess return over
the CRSP value-weighted return.

ri =
3∏
t=0

retit −
3∏
t=1

retVW,t

Instead of ri as the left-hand side variable in the regression, one might
also use a binary variable for good and bad news, positive or negative
10-Ks, etc., and instead of the regression we would use a limited depen-
dent variable structure such as logit, probit, or even a Bayes classifier.
However, the advantages of ri being a continuous variable are consid-
erable for it offers a range of outcomes, and simpler regression fit.

Jegadeesh and Wu [2013] use data from 10-K filings over the pe-
riod 1995–2010 extracted from SEC’s EDGAR database. They ignore

84 Applications and Empirics

positive and negative words when a negator occurs within a distance
of three words, the negators being the words “not, no, never”. Word
weight scores are computed for the entire sample, and also for three
roughly equal concatenated subperiods. The correlation of word weights
across these subperiods is high, around 0.50 on average. Hence, the
word weights appear to be quite stable over time and different eco-
nomic regimes. As would be expected, when two subperiods are used
the correlation of word weights is higher, suggesting that longer sam-
ples deliver better weighting scores. Interestingly, the correlation of JW
scores with LM idf scores is low, and therefore, they are not substitutes.

JW examine the market variables that determine document score
SJWi for each 10-K with right-hand side variables as the size of the
firm, book-to-market, volatility, turnover, three day excess return over
CRSP VW around earnings announcements, and accruals. Both posi-
tive and negative tone are significantly related to size and BM, suggest-
ing that risk factors are captured in score. Volatility is also significant
and has the correct sign, i.e., that increases in volatility make negative
tone more negative and positive tone less positive. The same holds for
turnover, in that more turnover makes tone pessimistic. The greater the
earnings announcement abnormal return, the higher the tone, though
this is not significant. Accruals do not significantly relate to score.

When regressing filing period return on document score and other
controls (same as in the previous paragraph), the score is always sta-
tistically significant. Hence text in the 10-Ks does correlate with the
market’s view of the firm after incorporating the information in the
10-K and from other sources. Finally, JW find a negative relation be-
tween tone and IPO underpricing, suggesting that term weights from
one domain can be reliably used in a different domain.

When using company filings, it is often an important issue as to
whether to use the entire text of the filing or not. Sharper conclusions
may be possible from specific sections of the filing such as a 10-K.
Loughran and McDonald [2011] examined whether the Management
Discussion and Analysis (MD&A) section of the filing was better at
providing tone (sentiment) then the entire 10-K. They found not. They
also showed that using their six tailor-made word lists gave better re-

6.3. Text Mining Company Reports 85

sults for detecting tone than did the Harvard Inquirer words. And as
discussed earlier, proper word-weighting also improves tone detection.
Their word lists also worked well in detecting tone for seasoned equity
offerings and news articles, providing good correlation with returns.

In an interesting paper, Loughran and McDonald [2014] examine
the readability of financial documents, by surveying at the text in 10-
K filings. They compute the Fog index for these documents and com-
pare this to post filing measures of the information environment such
as volatility of returns, dispersion of analysts recommendations. When
the text is readable, then there should be less dispersion in the informa-
tion environment, i.e., lower volatility and lower dispersion of analysts
expectations around the release of the 10-K. Whereas they find that the
Fog index does not seem to correlate well with these measures of the
information environment, the file size of the 10-K is a much better mea-
sure and is significantly related to return volatility, earnings forecast
errors, and earnings forecast dispersion, after accounting for control
variates such as size, book-to-market, lagged volatility, lagged return,
and industry effects. Li [2008] also shows that 10-Ks with high Fog
index and longer length have lower subsequent earnings. Thus man-
agers with poor performance may try to hide this by increasing the
complexity of their documents, mostly by increasing the size of their
filings.

The readability of business documents has caught the attention of
many researchers, and not unexpectedly, in the accounting area. De
Franco et al. [2013] combine the Fog, Flesh-Kincaid, and Flesch scores
to show that higher readability of analyst’s reports is related to higher
trading volume, suggesting that a better information environment in-
duces people to trade more and not shy away from the market. Lehavy
et al. [2011] show that a greater Fog index on 10-Ks is correlated with
greater analyst following, more analyst dispersion, and lower accuracy
of their forecasts. Most of the literature focuses on 10-Ks because these
are deemed the most information to investors, but it would be inter-
esting to see if readability is any different when looking at shorter
documents such as 10-Qs. Whether the simple, dominant (albeit lan-

86 Applications and Empirics

guage independent) measure of file size remains a strong indicator of
readability remains to be seen in documents other than 10-Ks.

Another examination of 10-K text appears in Bodnaruk et al. [2013].
Here, the authors measure the percentage of negative words in 10-Ks
to see if this is an indicator of financial constraints that improves on
existing measures. There is low correlation of this measure with size,
where bigger firms are widely posited to be less financially constrained.
But, an increase in the percentage of negative words suggests an in-
flection point indicating the tendency of a firm to lapse into a state
of financial constraint. Using control variables such as market capital-
ization, prior returns, and a negative earnings indicator, percentage
negative words helps more in identifying which firm will be financially
constrained than widely used constraint indexes. The negative word
count is useful in that it is independent of the way in which the filing is
written, and picks up cues from managers who tend to use more neg-
ative words. This further validates the negative word list in Loughran
and McDonald [2011]. The number of negative words is useful in pre-
dicting liquidity events such as dividend cuts or omissions, downgrades,
and asset growth. A one standard deviation increase in negative words
increases the likelihood of a dividend omission by 8.9% and a debt
downgrade by 10.8%. An obvious extension of this work would be to
see whether default probability models may be enhanced by using the
percentage of negative words as an explanatory variable.

6.4 Text Mining Public Data and Network Modeling

The revolution in text analytics is intertwined with the growth in Big
Data analytics. The quantum of textual data being generated in the
public domain is so vast that harvesting and analyzing this data needs
modern computer science techniques in information extraction, and
information integration.

In the previous section, we surveyed the literature that examined
corporate filings, mostly 10-Ks. The universe of filings is much larger
than one merely restricted to 10-Ks. Mining all the filings and collating
this information with other public data has immense potential. This

6.4. Text Mining Public Data and Network Modeling 87

7"

employment, director, officer

insider, 5% owner, 10% owner

holdings,

transactions

Event

Company Person

Security Loan

subsidiaries, insider, 5%,
10% owner, banking

subsidiaries

borrower,
lender

Forms 8-K

Forms 10-K, DEF 14A, 8-K, 3/4/5

Forms 10-K, DEF
14A, 8-K, 3/4/5, 13F,
SC 13D, SC 13G,
FDIC Call Report

Reference SEC table
Forms 13F, Forms 3/4/5

Forms 3/4/5, SC 13D, SC 13G, 10-K,
FDIC Call Report

Forms 3/4/5, SC 13D, SC 13G

Forms 10-K, 10-Q, 8-K

5%"beneficial"ownership"
•  owner"
•  issuer"
•  %"owned"
•  date"

Shareholders"
•  related"ins8tu8onal"managers"
•  Holdings"in"different"securi8es"

Subsidiaries"
•  list"subsidiaries"of"a"
company"

Current"Events"
•  merger"and"acquisi8on"
•  bankruptcy"
•  change"of"officers"and"directors"
•  material"defini8ve"agreements"

Loan"Agreements"
•  loan"summary"details"
•  counterpar8es"(borrower,"
lender,"other"agents)"

•  commitments"

Insider"filings"
•  transac8ons"
•  holdings"
•  Insider"rela8onship"

Officers"&"Directors"
•  men8on"
•  bio"range,"age,"current"
posi8on,"past"posi8on"

•  signed"by"
•  commiNee"membership"

Midas&provides&Analy0cal&Insights&into&company&rela0onships&by&exposing&informa0on&concepts&and&
rela0onships&within&extracted&concepts&

Figure 6.1: The data map in the IBM Midas system for the entities being
populated with data from corporate filings.

potential is explored in Burdick et al. [2011], where a team from IBM
Labs developed a technology for using data from public filings to create
useful applications like bank personnel tracking and forensics, systemic
risk from loan networks, and bank and subsidiary corporate structures.
A system called Midas is developed to undertake all these tasks.

The Burdick et al. [2011] paper downloads large documents from
SEC’s servers, and then extracts relevant information from volumes of
unstructured text therein. To do this efficiently a data entity model
is used, where various entities are defined, such as Event, Company,
Loan, Security, and Person. See Figure 6.1.

Large-scale text mining of this sort is best carried out in a flow
manner once data entities are finalized. For example, if one is reading
a 10-K, then the simple approach is as one reads to take any information
that is relevant for a data entity and drop it into the data structure for
that entity. A single filing may impact one or more data entities, and
information will flow accordingly. This is similar to the way in which
data broker firms collect your personal data and assign it to various

88 Applications and Empirics

Midas&Architecture&&

10#

DB Export

Index
Generation

Hadoop (Map/Reduce)

Distributed File System

Nutch Jaql + SystemT

Analytic
DB

Inde
x

Applications

Crawl Extract

Entity Integration

Entity
Resolution

Map

Fuse

Temporal
Analyze

Healthcare# Telecom# Government# Insurance#…#Finance#

Analytic +
Search UI

Cognos
Reports

BigInsights)

Extrac/on)&)Integra/on)Flow)
Midas)

))Domain:Specific)
Applica/ons)

AQL Nutch

HIL

Figure 6.2: The Midas system architecture. See also Figure 8 in the paper
by Burdick et al. [2011] for a reduced version of the same.

tags. Rules are usually written for this purpose, and a large system ends
up with hundreds of rules. Entity resolution is also needed to ensure
that mix-ups do not occur, such as the word “Morgan” which may refer
to Bob Morgan, a Person-entity, or “J.P. Morgan”, the Company-entity.
Proper parsing resolves these conflicts and assures that data is tagged
correctly to the correct entity. The architecture of this unstructured
large-scale text-mining system is depicted in Figure 6.2.

Once the data has been mined, data sets are constructed. One of
the applications in Midas is assessing systemic risks from an interbank
co-lending network. Interbank loans are usually syndicated and are for
large amounts. Text mining is used to extract loan details (lenders,
borrower, amounts, etc.) and then these loan flows are represented in a
network, whose mathematical form is an adjacency matrix Aij , where
each element in the matrix represents the flow from bank i to bank j
(if the network is directed), or simply the shared flow (if the network
is undirected). When the network is undirected, Aij = Aji, across all n
banks, i.e., i, j = 1...n. Diagonal elements of the matrix are zero. For

6.4. Text Mining Public Data and Network Modeling 89

Part 2: Systemic Risk from Co-Lending Networks Empirics

Loan Network 2005
2005$

Ci'group$Inc.$

J.P.$Morgan$Chase$

BankofAmerica$Corp.$

Sanjiv R. Das Risk and Return Networks IRMC 2014 20 / 47

Figure 6.3: The 2005 loan network in the IBM Midas system for the entities
being populated with data from corporate filings. All loans made in 2005 are
included in this plot. From Figure 1 in the paper by Burdick et al. [2011].

Part 2: Systemic Risk from Co-Lending Networks Empirics

Loan Network 2006–2009

2006$ 2007$

2008$ 2009$

Sanjiv R. Das Risk and Return Networks IRMC 2014 21 / 47

Figure 6.4: The 2006 to 2009 loan networks in the IBM Midas system for
the entities being populated with data from corporate filings. From Figure 2
in the paper by Burdick et al. [2011].

90 Applications and Empirics

Part 2: Systemic Risk from Co-Lending Networks Empirics

Systemically Important Financial Institutions (SIFIs)Top25banksbysystemic$risk$

Sanjiv R. Das Risk and Return Networks IRMC 2014 22 / 47

Figure 6.5: Centrality computed from the 2005 loan network in the IBM
Midas system for the entities being populated with data from corporate filings.
From Table 1 in the paper by Burdick et al. [2011].

the year 2005, the extracted loan data yielded the network shown in
Figure 1 of Burdick et al. [2011], reproduced here as Figure 6.3. Figure
6.4 shows the loan networks for four years, 2006–2009.

Burdick et al. [2011] computed the “eigenvector centrality” of each
bank in the network. Centrality tells you which node in the network
is the most influential, or in the case of this application, which bank
contributes the most to the systemic risk of the lending system. The
systemic risk contribution of each bank is stacked up in a n-vector
denoted R made up of unknown values satisfying, for each bank i, the
following equation:

Ri =
∑
j=1

AijRj , for all i.

The systemic risk of each bank is a function of the connections to
other banks and vice-versa, in a circular manner, resulting in a series of
interlocking equations. Stacking up equations for each i, we get a matrix
system, R>AR. An eigenvalue decomposition of this system yields the

6.5. News Analytics 91

principal eigenvector, which is denoted as centrality (originally coined
as such by Bonacich [1972]; Bonacich [1987]). The computed centrality
is shown in Figure 6.5. We see that the top three systemically risky
banks are J.P. Morgan Chase, Bank of America, and Citigroup. The
centrality in the table is normalized so that the top value is 1 for J.P.
Morgan Chase. Bank of America is 92.6% as risky as J.P. Morgan
Chase, and Citigroup is relatively less risky, at 63.9% of the systemic
risk of J.P. Morgan Chase.

Burdick et al. [2011] also provide analyses of filings that relate to
corporate insiders. They analyze insider holdings, insider transactions,
and employment history. These forensics produce timelines of insider
activity that may be used forensically. See Figure 6.6 for some examples.

6.5 News Analytics

Processing news stories for trading signals has become an exhaustive
business, in addition to the processing of web forums, microblogs, and
corporate filings. Das [2011] provides an introduction to some of the
approaches to text handling for news and other text. In a delightful
and instructive book, Leinweber [2009] includes a large discussion on
news analytics based trading rules. Wikipedia offers a definition of news
analytics that embodies Leinweber’s work, as follows:

“News analysis refers to the measurement of
the various qualitative and quantitative at-
tributes of textual (unstructured data) news
stories. Some of these attributes are: senti-
ment, relevance, and novelty. Expressing news
stories as numbers and metadata permits the
manipulation of everyday information in a
mathematical and statistical way.”

Here, we examine the literature on news analytics. In early work using
the “Abreast of the Market” column in the Wall Street Journal, Tetlock
[2007] finds that media pessimism exerts abnormal downward pressure
on prices, which is subsequently corrected. He uses word counts across
77 categories in the Harvard Inquirer, and then extracts the principal

92 Applications and Empirics

Figure 5: Insider Holdings for Citigroup.

Figure 6: Insider transactions trend for Citigroup.

401K or family members).
Insider Transactions: Figure 6 presents a summary of
insider transactions (buys and sells) of Citigroup securities
from 2005-2009. A further breakdown of open market trans-
actions compared with total transactions is provided. In
general an open market purchase is a stronger indication of
an insider’s confidence. Observe that while in 2005 and 2006
there were a lot of sells of stock, in 2008 and 2009 there are
not only more buys than sells, but the purchases are mostly
on the open market, a very strong indication of confidence.
This year so far there are more sells then buys, indicating
that the trend has again reversed.

2.2.3 Lending Exposure Analysis
Figure 7 (top) shows a list of recent loans issued by Cit-

igroup, either directly or through its subsidiaries. For each
loan, the chart shows Citigroup’s commitments to various
borrowers, as compared to other co-lenders. This informa-
tion has been extracted from the SEC filings made by the
borrowers, where the loan documents were filed as part of
their annual and current reports.

For any particular loan, additional details on the com-
mitments made by all the lenders involved in that loan are
displayed in the lower part of the figure. In this example, it
shows details of an 800 million dollar loan to Charles Schwab
corporation made jointly by 12 banks, including Citibank
National Association, a subsidiary of Citigroup.

3. MIDAS OVERVIEW
We now give an overview of Midas, our system for extract-

ing and integrating information from heterogeneous data
sources. Figure 8 shows, at a high-level, the Midas data
flow. Midas can take as input data from multiple sources
and represented in different data formats. As output, Mi-
das produces sets of integrated and cleansed objects and

Figure 7: Lending activity for Citigroup.

!"#$%

A
PI

!"#"$

%&'()*

!"#$% &'("#)(
&*(+(,-

./01%2(+1*
3#4-5-
620/

72()8 9,0(/:; <#=%<#=%

!"#"$

%&'()*

!"#"$%&'%'!(

!"#"$%&'%)*+(

&*(+(+/0-5-
./%#(+1*0-
>*?/'

@2)/*/

,-./0%
1223-4/5-670

Figure 8: The Midas Data Flow

relationships between those objects which are then used by
applications like the ones described in the previous section.

Input data sources can be large (Peta-bytes of informa-
tion) with new incremental updates arriving daily. All op-
erators in the Midas data flow must be capable to process
large amounts of data efficiently and should scale well with
increasing data sizes. To address these challenges, Midas
operators are designed to run on top of Hadoop and are
compiled into sequences of map/reduce jobs. For instance,
the Crawl operator uses Nutch to retrieve input data doc-
uments. Nutch jobs are compiled into Hadoop jobs and ex-
ecuted in parallel. The Extract operator use SystemT [14]
to annotate each document retrieved by Crawl. This op-
erator is trivially parallelizable with Hadoop. However, the
other operators (Entity Resolution, Map & Fuse) re-
quire complex data transformation whose parallel and dis-
tributed execution plan might not be trivial. To address
this challenge, all instances of these operators are currently
implemented using Jaql [3], a general-purpose language for
data transformations. Jaql uses JSON as its data model
and features a compiler that creates efficient map/reduce
(Hadoop) jobs. Jaql runs the compiled jobs directly on our
Hadoop cluster. Moreover, Jaql is implemented in Java and
allowing many customizable extensions to be implemented
in Java (e.g., user-defined functions) and seamlessly used at
runtime. The Midas architecture is inspired, in part, by our
Content Analytics Platform [4].

Crawl is in charge of retrieving data directly from public
data sources and storing it in our local file system. Instances
of Crawl are implemented using Nutch, a widely used open-

Figure 5: Insider Holdings for Citigroup.

Figure 6: Insider transactions trend for Citigroup.

401K or family members).
Insider Transactions: Figure 6 presents a summary of
insider transactions (buys and sells) of Citigroup securities
from 2005-2009. A further breakdown of open market trans-
actions compared with total transactions is provided. In
general an open market purchase is a stronger indication of
an insider’s confidence. Observe that while in 2005 and 2006
there were a lot of sells of stock, in 2008 and 2009 there are
not only more buys than sells, but the purchases are mostly
on the open market, a very strong indication of confidence.
This year so far there are more sells then buys, indicating
that the trend has again reversed.

2.2.3 Lending Exposure Analysis
Figure 7 (top) shows a list of recent loans issued by Cit-

igroup, either directly or through its subsidiaries. For each
loan, the chart shows Citigroup’s commitments to various
borrowers, as compared to other co-lenders. This informa-
tion has been extracted from the SEC filings made by the
borrowers, where the loan documents were filed as part of
their annual and current reports.

For any particular loan, additional details on the com-
mitments made by all the lenders involved in that loan are
displayed in the lower part of the figure. In this example, it
shows details of an 800 million dollar loan to Charles Schwab
corporation made jointly by 12 banks, including Citibank
National Association, a subsidiary of Citigroup.

3. MIDAS OVERVIEW
We now give an overview of Midas, our system for extract-

ing and integrating information from heterogeneous data
sources. Figure 8 shows, at a high-level, the Midas data
flow. Midas can take as input data from multiple sources
and represented in different data formats. As output, Mi-
das produces sets of integrated and cleansed objects and

Figure 7: Lending activity for Citigroup.

!"#$%

A
PI

!"#"$

%&'()*

!"#$% &'("#)(
&*(+(,-

./01%2(+1*
3#4-5-
620/

72()8 9,0(/:; <#=%<#=%

!"#"$

%&'()*

!"#"$%&'%'!(

!"#"$%&'%)*+(

&*(+(+/0-5-
./%#(+1*0-
>*?/'

@2)/*/

,-./0%
1223-4/5-670

Figure 8: The Midas Data Flow

relationships between those objects which are then used by
applications like the ones described in the previous section.

Input data sources can be large (Peta-bytes of informa-
tion) with new incremental updates arriving daily. All op-
erators in the Midas data flow must be capable to process
large amounts of data efficiently and should scale well with
increasing data sizes. To address these challenges, Midas
operators are designed to run on top of Hadoop and are
compiled into sequences of map/reduce jobs. For instance,
the Crawl operator uses Nutch to retrieve input data doc-
uments. Nutch jobs are compiled into Hadoop jobs and ex-
ecuted in parallel. The Extract operator use SystemT [14]
to annotate each document retrieved by Crawl. This op-
erator is trivially parallelizable with Hadoop. However, the
other operators (Entity Resolution, Map & Fuse) re-
quire complex data transformation whose parallel and dis-
tributed execution plan might not be trivial. To address
this challenge, all instances of these operators are currently
implemented using Jaql [3], a general-purpose language for
data transformations. Jaql uses JSON as its data model
and features a compiler that creates efficient map/reduce
(Hadoop) jobs. Jaql runs the compiled jobs directly on our
Hadoop cluster. Moreover, Jaql is implemented in Java and
allowing many customizable extensions to be implemented
in Java (e.g., user-defined functions) and seamlessly used at
runtime. The Midas architecture is inspired, in part, by our
Content Analytics Platform [4].

Crawl is in charge of retrieving data directly from public
data sources and storing it in our local file system. Instances
of Crawl are implemented using Nutch, a widely used open-

Figure 6.6: Insider time lines from the IBM Midas system for the entities
being populated with data from corporate filings. The top chart shows insider
holdings, and the bottom one shows insider transactions. From Figures 5 & 6
in the paper by Burdick et al. [2011]. The data is for insiders in Citigroup.

6.5. News Analytics 93

component across all categories. This principal component is denoted
as a pessimism factor because it is found to be highly correlated with
negative words. The pessimism factor is negatively related to one-day
lagged Dow returns, and positively to five-day lagged return, confirming
an overreaction to pessimistic media reports.

Trading volume is also related to media pessimism. It seems to play
a direct role in forecasting volume, based on the idea that pessimism is
a proxy for trading costs. The first lags of pessimistic words significant
inverse predictors of volume (though this is a weak result, and vanishes
with 1% outlier winsorization).

Leinweber and Sisk [2011] (hereafter denoted as LS) provide an in-
teresting overview. They point out that the volume, breadth, depth,
and frequency of news have all increased sharply in recent times.
Whereas prior research in domains other than just news has shown clear
linkages between the quantity of text and trading volume and volatility,
it has been harder to show that the qualitative content of news contains
information that is not in prices, thereby offering investors alpha, and
delivering violations of the efficient market hypothesis.

Tetlock et al. [2008] is one of the first papers to use news content
to generate trading signals, and assess whether text may be correlated
to stock returns and accounting earnings. The three main results in
the paper are that (i) the percentage of negative words forecasts re-
duced earnings; (ii) stock prices briefly under react to negative words;
and (iii) stories that focus on fundamentals are more informative in
that negative words in these stories elicit greater reaction. Earlier work
by Li [2006] uncovered the interesting relationship between negative
words in annual reports and earnings, by showing that greater occur-
rence of two words, “risk” and “uncertain”, are indicative of risk and
consequently lower earnings. Tetlock et al. [2008] pioneered the use of
event study methodology in assessing news stories by examining the cu-
mulative standardized unexpected earnings (CSUE) around the event
date, i.e., news story. Figures 2 and 3 in their paper are reproduced
here (see Figure 6.7). The figure clearly shows that sentiment scoring
of news stories into positive and negative ones correlates with earnings
and return outcomes. Information leakage starts to occur around ten

94 Applications and Empirics
1450 The Journal of Finance

Figure 2. Firms’ fundamentals around positive and negative news stories. In this figure,
we graph firms’ cumulative standardized unexpected earnings (SUE) from 10 fiscal quarters pre-
ceding media coverage of an earnings announcement to 10 quarters after the media coverage. We
define media coverage of the announcement as positive (negative) when it contains a fraction of
negative words (Neg−30,−3) in the previous year’s top (bottom) quartile. The measure of negative
words (Neg−30,−3) is the fraction of words that are negative in the news stories from 30 trading days
prior up to 3 trading days prior to an earnings announcement. We separately analyze the firms
with positive and negative media coverage prior to their earnings announcements. We compute
the cumulative SUE for both sets of firms, beginning 10 quarters prior to the news and ending 10
quarters after the news. To compute SUE values after the news stories, we use only unexpected
earnings benchmarks known at the time of the news—that is, those based on earnings prior to
quarter zero (see text for details).

To compute SUE values after the news stories in Figure 2, we use only bench-
marks for unexpected earnings that are known at the time of the news—that is,
those based on earnings information prior to quarter zero. We use the matching
seasonal earnings figure from before quarter zero to compute unexpected earn-
ings after quarter zero—for example, we subtract E−3 from E1, E5, and E9 to
obtain UE1, UE5, and UE9. To obtain SUE measures, we standardize these
unexpected earnings values using the mean and volatility of unexpected

More Than Words: Quantifying Language 1455

Figure 3. Firms’ valuations around positive and negative news stories. In this figure, we
graph a firm’s abnormal event returns from 10 trading days preceding a news story’s release to 10
trading days following its release. All news stories focus on S&P 500 firms and come from either
Dow Jones News Service or The Wall Street Journal between 1980 and 2004 inclusive. For all DJNS
stories, we exclude stories that occur after 3:30 pm (30 minutes prior to market closing). For all
WSJ stories, we assume that stories printed in the morning’s WSJ are available to traders well
before the market close on the same day. We use the Fama-French three-factor model with a [−252,
−31] trading day estimation period relative to the release of the news story as the benchmark for
expected returns. We label all news stories with a fraction of negative words (Neg) in the previous
year’s top (bottom) quartile as negative (positive) stories. We separately examine the market’s
response to positive and negative DJNS and WSJ stories. We also compute the difference between
the reaction to positive and negative news stories for each source.

One pattern in these regressions is somewhat analogous to the main result
in Chan (2003). He shows that stocks in the news experience annual return
continuations, whereas those not in the news experience annual return rever-
sals. Although Table II examines daily horizons, the interpretation of the day 0
(day-of-news), and day –1 and –2 (usually not news days) returns coefficients is
quite similar. The positive coefficient on FFCAR0,0 shows that news-day returns
continue on the next day, whereas the negative coefficients on FFCAR−1,−1 and
FFCAR−2,−2 show that non-news-day returns reverse themselves.

We now examine the market’s apparently sluggish reaction to negative words
in the 4 weeks surrounding the story’s release to the public. Figure 3 graphs a
firm’s abnormal returns from 10 trading days before a story’s release to 10 trad-
ing days after its release. Again, we use the Fama-French three-factor model to

Figure 6.7: Reproduction from the Journal of Finance of Figures 2 and 3
from Tetlock et al. [2008]. The top figure shows the cumulative standardized
unexpected earnings (CSUE) around news story date, separately for positive
and negative news stories. The bottom plot shows the cumulative abnormal
return (CAR) related to two news sources, the Wall Street Journal, and Dow
Jones News.

6.5. News Analytics 95

days prior to the release of the news story. About half of the earnings
and return surprise comes before news date, and the remaining in the
ten days thereafter. Leinweber and Sisk [2011] warn that a substan-
tial portion of the news effect comes from me-too stories, and does not
represent additional trading signals.

A similar analysis is presented in Leinweber and Sisk [2011]. They
use data from the Thomson Reuters NewsScope Sentiment Engine
(RNSE) developed with Infonics/Lexalytics. This product is known as
Thomson Reuters News Analytics (TRNA). It covers over 7,000 U.S.
stocks from 2003–2008 for contemporaneous S&P 1500 stocks. This
uses real time data and is on a much larger scale than the Tetlock et al.
[2008] study. LS compute various linguistic scores for the news stories
they analyze, such as sentiment, relevance, and novelty. Sentiment is
defined as bullish, neutral, or bearish: {−1, 0,+1}, respectively. They
keep track of the percentage of positive, negative, and neutral words.
They also compute “relevance” - defined as applicability to a particular
stock, and serves to weight articles. And “novelty” captures the inverse
notion to the number of links to previous stories, thereby accounting
for the me-too effect. They measure the volume of news (i.e., number of
stories); the breadth of news, i.e.. number of tickers in the coverage; and
depth, i.e., average number of news stories per ticker. The extracted
aggregate sentiment appears to track market conditions very well, see
a reproduction of Exhibit 7 in Leinweber and Sisk [2011], shown here
in Figure 6.8. They also are able to replicate the event study results
of Tetlock et al. [2008] by building a special tool, named Event Study
Explorer, that generates a dashboard for replicating any event study
seamlessly. They also find persistent evidence of news leakage.

One of the important findings in Leinweber and Sisk [2011] is that
textual information is predictive, and this is demonstrated in their repli-
cated event studies. Since, the plots show persistent positive abnormal
returns for stocks with positive news stories, and negative abnormal
returns for those with negative news, a trading strategy that goes long
stocks with positive stories and short those with negative stories, is
plausibly likely to produce alpha. Using a carefully constructed hold-
out sample, nine months post model fitting, LS achieve an alpha of

96 Applications and Empirics

THE JOURNAL OF PORTFOLIO MANAGEMENT 7SUMMER 2011

EVENT STUDY RESULTS

Our first event study was very simple and broad,
designed to compare with Tetlock, Saar–Tsechansky, and
Macskassy’s [2008] earlier result (shown in Exhibit 2).
Our first event study is shown in Exhibit 8 and is very
similar to the previous result. In both, the positive sen-
timent lines (the upper virtual “green” line shown as
black) are consistently above the negative sentiment
lines (the lower virtual “red” line shown as gray) lines.
Timeliness is still an issue with the preponderance of
returns observed pre-event. The sentiment signal gets

the direction right, but most of the price move
precedes the event. The story day is at the ver-
tical dashed line, and returns are seen 20 days
before and 60 days after. Very similar effects are
seen in international markets: the U.K., France,
Germany, Japan, and Hong Kong.

A reasonable question involving news is,
so what is really new? Many stories linger on.
Filtering by novelty can be done using the link
count metadata, which applies stronger volume
filters, and is shown in Exhibit 9. Novel news
(with all link counts at zero) is unrelated to pre-
vious news, and as expected, shows a much larger
potential alpha. Excess return spreads shown in
event studies depend on timing, a consideration
addressed in the event visualization tool shown
in Exhibit 11 in the next section.

Segmentation by sector is a common
method in quantitative modeling, which we also

apply to news filter design. We segment by sector and
observe notable differences. In general, more stringent
filters reduce the number of events, but are associated
with larger excess returns.

The best sectors for this approach were found to
be basic materials, cyclicals, financials, industrials, non-
cyclicals, and technology. The event study for financials
is shown in Exhibit 10. The small inset table shows the
effects of adjusting the item-count threshold, which
results in fewer, but larger events.

E X H I B I T 8
An Updated Low-Threshold Event Study Similar to the Tetlock, Saar–Tsechansky,
and Macskassy [2008] Observations

E X H I B I T 7
Net News Sentiment, 2003–2009

JPM-LEINWEBER.indd 7JPM-LEINWEBER.indd 7 6/29/11 7:18:41 PM6/29/11 7:18:41 PM

Aut
ho

r D
ra

ft
Fo

r R
ev

ie
w O

nl
y

Figure 6.8: Reproduction from the Journal of Portfolio Management of Ex-
hibit 7 from Leinweber and Sisk [2011], showing the net sentiment in aggregate
from 2003–2009.

11.5%, but not without apparently risk returns. LS fail to provide risk
adjusted measures such as the Sharpe ration, or just risk measures, es-
pecially higher-order moments of returns, which would enable a clearer
assessment of whether these high returns are truly bankable in a rea-
sonably safe manner. This corroborates the positive alpha produced in
Tetlock et al. [2008] from a four-factor Fama-French model. However,
these returns are possibly hard to capture, since they are wiped out if
trading costs exceed 9 bps.

LS also ask an interesting follow-up question: For what kinds of
stocks is mining news stories more likely to be profitable? They hy-
pothesize and confirm that this is the case for smaller stocks, where
the CAR plots reveal quite clearly higher abnormal returns for lower
capitalization firms.

6.6 Commercial Vendors

Textual analysis of financial text has come of age. Begun as an academic
interest, maturation is now signaled by the commercialization of text

6.6. Commercial Vendors 97

sentiment by many firms. Here we briefly examine some of these services
and the role they play.

Ravenpack is one of the leading names in the financial text min-
ing business. Their web site positions them as3 - “... a pioneer in fi-
nancial news and sentiment analytics. We provide structured data de-
rived in real-time from the unstructured text produced by reputable
traditional and social media.” They provide services in quantitative
and algorithmic trading by generating timely signals and build custom
models across all asset classes and trading frequencies. They also offer
risk management services and market surveillance. They also construct
company sentiment indicators (CSI) and macro sentiment indicators
(MSI). These have proven to be quite successful for trading strate-
gies. The indicators are used to enhance short-term (one week) strate-
gies over all S&P500 stocks to exploit the short-term reversal anomaly
with two news-based indicators, company event volume and sentiment.
They find stronger reversal effects for past losers when unsupported by
news. Strong reversal effects also exist for past winners when supported
by news. Intuitively, reversal effects are stronger for past losers when
company sentiment is positive, and for past winners when company
sentiment is negative.4

Ravenpack focuses on news analytics. They find that news signals
have the greatest impact on European markets. followed by US and
Emerging markets.5 The signals extracted from real-time content pub-
lished by Dow Jones Newswires, The Wall Street Journal, and Bar-
ron’s are used to construct long-only and long-short portfolios based
on sector level 1-month expected returns. These portfolios consistently
outperform the S&P 500 on both an absolute and risk-adjusted basis.6
Their research is available on their web site. Mostly, they are a leading

3www.ravenpack.com.
4“Enhancing Short Term Reversal Strategies with News Analytics,” 2014, Raven-

pack White Paper.
5“Exploring Global Variations in News Impact on Equities,” 2014, Ravenpack

White Paper.
6“Tactical Equity Portfolio Formation Using News Analytics,” 2013, Ravenpack

White Paper.

98 Applications and Empirics

Figure 6.9: Illustrative output of Ravenpack macro indicators. The one-
month measure is an indicator of shorter-term macroeconomic sentiment and
the three month measure a longer-term indicator. A score of 50 is neutral and
the maximum range is 0 (most negative) to 100 (most positive).

player in the macro signals arena, see Figure 6.9 for an example of the
signals.

In contrast to the commercial production of sentiment from news
media, firms like iSentium extract sentiment from social media, in par-
ticular Twitter. iSentium touts itself as converting social media into
alpha. They produce long and short horizon sentiment streams in real
time, and are also accessible through Bloomberg terminals. They of-
fer a product called iSense that is claimed to predict short term price
movements. See Figure 6.10 for a depiction.

Finance related social media has also been commercialized in the
retail market. StockTwits is a firm that provides sentiment indicators
to the public at large and also has a mobile enabled web application.
StockTwits mines Twitter for ticker based sentiment, which is calcu-
lated on a rolling seven-day basis. Standard output is of stock price,
message volume and sentiment, see Figure 6.11.

6.6. Commercial Vendors 99

Figure 6.10: Illustrative output of iSentium’s iSense product. This reaction
indicator represents the live sentiment of a portfolio of financial assets. In
the top plot each bubble displays information about the short- and long-
term sentiment signal for the asset. Clicking on the bubble returns both the
short term (middle plot) and long term (bottom plot) sentiment signals. The
middle and bottom plots show asset the price in white overlaid onto sentiment
signals at various time scales. Positive green and negative red regions indicate
that recent sentiment is more bullish (respectively, bearish) than average.
Sentiment is a leading indicator of price at both the intraday scale and longer
term.

100 Applications and Empirics

Figure 6.11: Illustrative output of StockTwits.

6.6. Commercial Vendors 101

There are several other firms in the intersection space of finance
and social media, such as SNTMNT7, The Stock Sonar8, SentDex9,
StockBuss10 from BBVA (Banco Bilbao Vizcaya Argentaria), Down-
side Hedge11, HedgeChatter12. These sentiment modeling firms comple-
ment the vast industry that offers sentiment based trading, or insights
from social media. See for example firms such as SentimenTrader13,
Topsy14, SocialMention15, ViralHeat16, SocialReport17, Twitalyzer18,
WildFire19.

7www.sntmnt.com.
8http://www.thestocksonar.com/.
9http://sentdex.com/.

10http://www.stockbuzz.es/.
11http://www.downsidehedge.com/twitter-stock-market-sentiment-download/.
12http://www.hedgechatter.com/.
13www.sentimentrader.com.
14http://topsy.com/.
15http://socialmention.com/.
16https://www.viralheat.com/.
17http://www.socialreport.com/.
18http://twitalyzer.com/.
19http://www.wildfireapp.com/.

7
Text Analytics – The Future

Leonard: You’ll never guess what just happened.
Sheldon: You went out in the hallway, stumbled into
an inter-dimensional portal, which brought you 5,000
years into the future, where you took advantage of
the advanced technology to build a time machine,
and now you’re back, to bring us all with you to
the year 7010, where we are transported to work at
the think-a-torium by telepathically controlled flying
dolphins?
Leonard: No. Penny kissed me.
Sheldon: Who would ever guess that?

“The Boyfriend Complexity”
The Big Bang Theory, Season 4, Episode 9

This monograph assessed the current ideas, technologies,
paradigms, and empirical findings of the extant literature on the ana-
lytics of financial text. Suffice to say this is but the tip of the looming
iceberg of progress in this area. The growing commercialization of fi-

103

104 Text Analytics – The Future

6

Introduction: Future Directions
What is Text Analytics Good For?

Figure 7.1: Dilbert on Text Mining.

nancial text analysis suggests that there is unexploited value that will
drive future developments, in a modern technology-driven gold rush.

Text mining encompasses several technical processes such as infor-
mation retrieval, information extraction, clustering, categorization, vi-
sualization, database technologies, machine learning, and data mining.
These techniques overlap and complement each other. Broadly, we will
see better ways of extracting and storing text, followed by knowledge
distillation therefrom.

Big Data is inextricably wound up with Text Analytics, simply be-
cause there is so much text. There is huge appeal in mining all this
extensive structured and unstructured text, see Figure 7.1. One may
envisage the co-mingled field known as “Big Text”, offering a utopian
solution to our growing oppression from information overload. This sug-
gests that new summarization technologies (briefly described in Section
5.8) for finance will make a huge difference in the future. As a conse-
quence, document readability (Loughran and McDonald [2014]) will
matter a lot and may even be legislated as a requirement.

Text serves to enhance Data, adding reasoning and stories to bland
numbers. Future financial text algorithms will parse the news and ex-
plain to us why stocks moved in the way they did or offer automated
analyst reports. Whereas there is some evidence that text offers statis-
tically significant predictions of price, volatility, and volume, one may

105

imagine that as text mining algorithms improve, we will reach an ele-
vated form of information efficiency in markets, the algorithms robbing
themselves of their ability to remain predictive. Text analytics will al-
ways thus remain vulnerable to be hoist on its own petard.

One may conjecture that the future of text mining in finance will
be statistical and minimally language dependent, reflecting the well
accepted abdication of natural language processing (NLP) in favor of
statistical language processing (SLP), subsumed under the rubric of
machine learning. In finance, this is more crucial given the need for
good data before decisions may be taken, unlike the case with consumer
marketing text applications where the signal from noise is not as much
an issue. Therefore, much needs to be done to resolve several impor-
tant issues in text mining for finance such as data cleaning, data secu-
rity and integrity, handling multilingual and correlated textual data,
entity resolution, managing jargon-laden text, domain specificity, and
the fact that bigger data means more noise, making sentiment extrac-
tion a search for a needle in a ever-growing haystack. On the flip side,
this augurs well for an exciting time ahead for researchers in this field.
Add to this the fact that numerical data and text will eventually be
augmented with other mediums such as voice, video, temperature, and
many other physical phenomena, the complexity of the ecosystem for
sentiment extraction is extensive. The exciting thing is, it’s happening
now!

Financial firms are only now realizing that data science and text
mining offers serious added value, something that marketing firms re-
alized earlier on. An illustrative list of applications for finance firms is
as follows:

1. Monitoring corporate buzz.

2. Analyzing textual data to detect, analyze, and understand the
more profitable customers or products.

3. Targeting new clients.

4. Customer retention, which is a huge issue. Text mining com-
plaints to prioritize customer remedial action makes a huge dif-
ference, especially in the insurance business.

106 Text Analytics – The Future

5. Lending activity - automated management of profiling informa-
tion for lending screening.

6. Market prediction and trading.

7. Risk management.

8. Automated financial analysts.

9. Financial forensics to prevent rogue employees from inflicting
large losses.

10. Fraud detection.

11. Detecting market manipulation.

12. Social network analysis of clients.

13. Measuring institutional risk from systemic risk.

This list is by no means exhaustive. There are major benefits to au-
tomated textual analysis. First, handling of big data is getting easier
and more critical as well. Big Text has the same three Vs of Big Data:
Volume (amount of data), Velocity (speed/rate of the stream), Vari-
ability (forms and variety such as blogs, news, posts, filings, emails,
mobile app information) are critical for the competitiveness of a large
financial institution. (A fourth commonly asserted V is Volatility.)

Second, automated decisions based on Big Text are less judgmental.
Even when human interaction is required, text mining creates a new
culture of good judgment based on data. Third, the decision process
from automated text mining is repeatable and replicable. Fourth, text
analytics lead to new business opportunities through uncovering unex-
pected correlations in the data. Fifth, the scope now extends to system
wide risk and return, and generates useful data aggregates. Sixth, Big
Text data mining models lead to real time decision-making from mas-
sive data, infeasible for human decision makers.

Of course, Big Text comes with pitfalls. Garbage in, garbage out
(GIGO), which now occurs with greater propensity. The infrastructure
is expensive, and huge effort may be expended on collecting too much

107

data and not using it correctly; this is extremely wasteful. Big data
leads to bigger errors if misused. For example, a common problem is
confusing text correlation with financial variates as causality or pre-
dictability. Stricter statistical foundations need to be imposed on text
analytics. And of course, there is a tendency for excessive misdirected
automation leading to poor client service.

Final issues with text are efficiency, privacy and accessibility. Should
financial firms be allowed to access our activity on Twitter and Face-
book and determine the pricing of financial products using such infor-
mation? Maybe the question is moot, as this is already happening, as
data brokers actively farm personal data on open social media sites.
How soon this will enter models for pricing medical insurance, auto in-
surance, mortgage rates is a good question, though one would speculate
it is but a matter of short time. Maybe this will make markets more
efficient at the cost of privacy? Where does one draw the line? As we
provide more and more text for commercial mining, the question arises,
should we be paid for voluntarily offering up our data, as argued by
Lanier [2013]1. Or is our personal data fair payment for the myriad free
web services we receive? This debate will impact the commercialization
of text analytics in finance.

Publishers also present another stumbling block to financial text
mining. The Association for European Research Libraries (LIBER2)
maintains that the right to read confers the right to text mine. This
is contested by publishers, who assume that this is an infringement of
terms of use, as they do not get paid for the results of use of the text.
Moreover, summarization may kill their market for the original text.
(And as a side issue, if everyone started reading the same distillations
and summaries, differences and richness of opinion would be hugely
impacted.) LIBER advocates argue that much public economic good
comes from the applications of financial text mining, such as manag-
ing systemic risk, improving the employment market, predicting and
clarifying political issues.

1See the New York Times article by Joe Nocera titled “Will Digital Networks
Ruin Us?” - Jan 6, 2014.

2http://libereurope.eu/

108 Text Analytics – The Future

We live in interesting times. Text analytics in finance is where talk
and money intersect. So far the success of this new paradigm has been
limited, as surveyed in preceding sections. Is this all hype? Or is there
real potential here, as claimed by companies like Recorded Future3 who
claim that text analytics makes it possible to “know the future.” Only
time, money, and lots of talk will tell.

3https://www.recordedfuture.com/.

8
Appendix

Sample text from Bloomberg for summarization

Summarization is one of the major implementations in Big Text ap-
plications. When faced with Big Text, there are three important stages
through which analytics may proceed: (a) Indexation, (b) Summariza-
tion, and (c) Inference. Automatic summarization1 is a program that
reduces text while keeping mostly the salient points, accounting for
variables such as length, writing style, and syntax. There are two ap-
proaches: (i) Extractive methods selecting a subset of existing words,
phrases, or sentences in the original text to form the summary. (ii) Ab-
stractive methods build an internal semantic representation and then
use natural language generation techniques to create a summary that is
closer to what a human might generate. Such a summary might contain
words not explicitly present in the original.

The following news article was used to demonstrate text summa-
rization for the application in Section 3.4.

1http://en.wikipedia.org/wiki/Automatic_summarization.

109

110 Appendix

4/21/2014 Wall Street Bond Dealers Whipsawed on Bearish Treasuries Bet - Bloomberg

http://www.bloomberg.com/news/print/2014-04-21/wall-street-bond-dealers-whipsawed-on-bearish-treasuries-bet-1-.html 1/5

Wall Street Bond Dealers Whipsawed on Bearish
Treasuries Bet
By Lisa Abramowicz and Daniel Kruger - Apr 21, 2014

Betting against U.S. government debt this year is turning out to be a fool’s errand. Just ask Wall
Street’s biggest bond dealers.

While the losses that their economists predicted have yet to materialize, JPMorgan Chase & Co.
(JPM), Citigroup Inc. (C) and the 20 other firms that trade with the Federal Reserve began wagering
on a Treasuries selloff last month for the first time since 2011. The strategy was upended as Fed Chair
Janet Yellen signaled she wasn’t in a rush to lift interest rates, two weeks after suggesting the opposite
at the bank’s March 19 meeting.

The surprising resilience of Treasuries has investors re-calibrating forecasts for higher borrowing costs
as lackluster job growth and emerging-market turmoil push yields toward 2014 lows. That’s also made
the business of trading bonds, once more predictable for dealers when the Fed was buying trillions of
dollars of debt to spur the economy, less profitable as new rules limit the risks they can take with their
own money.

“You have an uncertain Fed, an uncertain direction of the economy and you’ve got rates moving,”
Mark MacQueen, a partner at Sage Advisory Services Ltd., which oversees $10 billion, said by
telephone from Austin, Texas. In the past, “calling the direction of the market and what you should be
doing in it was a lot easier than it is today, particularly for the dealers.”

Treasuries (USGG10YR) have confounded economists who predicted 10-year yields would approach
3.4 percent by year-end as a strengthening economy prompts the Fed to pare its unprecedented bond
buying.

Caught Short

After surging to a 29-month high of 3.05 percent at the start of the year, yields on the 10-year note
have declined and were at 2.72 percent at 7:42 a.m. in New York.

One reason yields have fallen is the U.S. labor market, which has yet to show consistent improvement.

111

4/21/2014 Wall Street Bond Dealers Whipsawed on Bearish Treasuries Bet - Bloomberg

http://www.bloomberg.com/news/print/2014-04-21/wall-street-bond-dealers-whipsawed-on-bearish-treasuries-bet-1-.html 2/5

The world’s largest economy added fewer jobs on average in the first three months of the year than in
the same period in the prior two years, data compiled by Bloomberg show. At the same time, a
slowdown in China and tensions between Russia and Ukraine boosted demand for the safest assets.

Wall Street firms known as primary dealers are getting caught short betting against Treasuries.

They collectively amassed $5.2 billion of wagers in March that would profit if Treasuries fell, the first
time they had net short positions on government debt since September 2011, data compiled by the Fed
show.

‘Some Time’

The practice is allowed under the Volcker Rule that limits the types of trades that banks can make with
their own money. The wagers may include market-making, which is the business of using the firm’s
capital to buy and sell securities with customers while profiting on the spread and movement in prices.

While the bets initially paid off after Yellen said on March 19 that the Fed may lift its benchmark rate
six months after it stops buying bonds, Treasuries have since rallied as her subsequent comments
strengthened the view that policy makers will keep borrowing costs low to support growth.

On March 31, Yellen highlighted inconsistencies in job data and said “considerable slack” in labor
markets showed the Fed’s accommodative policies will be needed for “some time.”

Then, in her first major speech on her policy framework as Fed chair on April 16, Yellen said it will
take at least two years for the U.S. economy to meet the Fed’s goals, which determine how quickly the
central bank raises rates.

After declining as much as 0.6 percent following Yellen’s March 19 comments, Treasuries have
recouped all their losses, index data compiled by Bank of America Merrill Lynch show.

Yield Forecasts

“We had that big selloff and the dealers got short then, and then we turned around and the Fed says,
‘Whoa, whoa, whoa: it’s lower for longer again,’” MacQueen said in an April 15 telephone interview.
“The dealers are really worried here. You get really punished if you take a lot of risk.”

Economists and strategists around Wall Street are still anticipating that Treasuries will underperform
as yields increase, data compiled by Bloomberg show.

While they’ve ratcheted down their forecasts this year, they predict 10-year yields will increase to 3.36
percent by the end of December. That’s more than 0.6 percentage point higher than where yields are

112 Appendix

4/21/2014 Wall Street Bond Dealers Whipsawed on Bearish Treasuries Bet - Bloomberg

http://www.bloomberg.com/news/print/2014-04-21/wall-street-bond-dealers-whipsawed-on-bearish-treasuries-bet-1-.html 3/5

today.

“My forecast is 4 percent,” said Joseph LaVorgna, chief U.S. economist at Deutsche Bank AG, a
primary dealer. “It may seem like it’s really aggressive but it’s really not.”

LaVorgna, who has the highest estimate among the 66 responses in a Bloomberg survey, said stronger
economic data will likely cause investors to sell Treasuries as they anticipate a rate increase from the
Fed.

History Lesson

The U.S. economy will expand 2.7 percent this year from 1.9 percent in 2013, estimates compiled by
Bloomberg show. Growth will accelerate 3 percent next year, which would be the fastest in a decade,
based on those forecasts.

Dealers used to rely on Treasuries to act as a hedge against their holdings of other types of debt, such
as corporate bonds and mortgages. That changed after the credit crisis caused the failure of Lehman
Brothers Holdings Inc. in 2008.

They slashed corporate-debt inventories by 76 percent from the 2007 peak through last March as they
sought to comply with higher capital requirements from the Basel Committee on Banking Supervision
and stockpiled Treasuries instead.

“Being a dealer has changed over the years, and not least because you also have new balance-sheet
constraints that you didn’t have before,” Ira Jersey, an interest-rate strategist at primary dealer Credit
Suisse Group AG (CSGN), said in a telephone interview on April 14.

Almost Guaranteed

While the Fed’s decision to inundate the U.S. economy with more than $3 trillion of cheap money
since 2008 by buying Treasuries and mortgaged-backed bonds bolstered profits as all fixed-income
assets rallied, yields are now so low that banks are struggling to make money trading government
bonds.

Yields on 10-year notes have remained below 3 percent since January, data compiled by Bloomberg
show. In two decades before the credit crisis, average yields topped 6 percent.

Average daily trading has also dropped to $551.3 billion in March from an average $570.2 billion in
2007, even as the outstanding amount of Treasuries has more than doubled since the financial crisis,
according data from the Securities Industry and Financial Markets Association.

113

4/21/2014 Wall Street Bond Dealers Whipsawed on Bearish Treasuries Bet - Bloomberg

http://www.bloomberg.com/news/print/2014-04-21/wall-street-bond-dealers-whipsawed-on-bearish-treasuries-bet-1-.html 4/5

“During the crisis, the Fed went to great pains to save primary dealers,” Christopher Whalen, banker
and author of “Inflated: How Money and Debt Built the American Dream,” said in a telephone
interview. “Now, because of quantitative easing and other dynamics in the market, it’s not just
treacherous, it’s almost a guaranteed loss.”

Trading Revenue

The biggest dealers are seeing their earnings suffer. In the first quarter, five of the six biggest Wall
Street firms reported declines in fixed-income trading revenue.

JPMorgan, the biggest U.S. bond underwriter, had a 21 percent decrease from its fixed-income trading
business, more than estimates from Moshe Orenbuch, an analyst at Credit Suisse, and Matt Burnell of
Wells Fargo & Co.

Citigroup, whose bond-trading results marred the New York-based bank’s two prior quarterly
earnings, reported a 18 percent decrease in revenue from that business. Credit Suisse, the second-
largest Swiss bank, had a 25 percent drop as income from rates and emerging-markets businesses fell.
Declines in debt-trading last year prompted the Zurich-based firm to cut more than 100 fixed-income
jobs in London and New York.

Bank Squeeze

Chief Financial Officer David Mathers said in a Feb. 6 call that Credit Suisse has “reduced the capital
in this business materially and we’re obviously increasing our electronic trading operations in this
area.” Jamie Dimon, chief executive officer at JPMorgan, also emphasized the decreased role of
humans in the rates-trading business on an April 11 call as the New York-based bank seeks to cut
costs.

About 49 percent of U.S. government-debt trading was executed electronically last year, from 31
percent in 2012, a Greenwich Associates survey of institutional money managers showed. That may
ultimately lead banks to combine their rates businesses or scale back their roles as primary dealers as
firms get squeezed, said Krishna Memani, the New York-based chief investment officer of
OppenheimerFunds Inc., which oversees $79.1 billion in fixed-income assets.

“If capital requirements were not as onerous as they are now, maybe they could have found a way of
making it work, but they aren’t as such,” he said in a telephone interview.

To contact the reporters on this story: Lisa Abramowicz in New York at labramowicz@bloomberg.net;
Daniel Kruger in New York at dkruger1@bloomberg.net

To contact the editors responsible for this story: Dave Liedtka at dliedtka@bloomberg.net Michael

Acknowledgements

I am especially grateful to my colleagues, and to collaborators and co-
authors on several text analytics projects for the learning and wisdom
gained from many interactions: Douglas Burdick, Mike Chen, Mauri-
cio A. Hernandez, Howard Ho, Georgia Koutrika, Rajasekar Krishna-
murthy, Asis Martinez-Jerez, Lucian Popa, Priya Raghubir, Jose Silva,
Jacob Sisk, Ioana Stanoi, Peter Tufano, Shivakumar Vaithyanathan.
Thanks to Sophie Raza for bringing calm to this frenetic endeavor. I
am also grateful for excellent comments from an anonymous referee.

115

References

A. Admati and P. Pfleiderer. Noisytalk.com: Broadcasting opinions in a noisy
environment. Working paper, Stanford University, 2001.

W. Antweiler and M. Frank. Is all that talk just noise? the information content
of internet stock message boards. Journal of Finance, v59(3):1259–1295,
2004.

W. Antweiler and M. Frank. The market impact of corporate news stories.
Working paper, University of British Columbia, 2005.

Mark Bagnoli, M. Beneish, and S. Watts. Whisper forecasts of quarterly
earnings per share. Journal of Accounting and Economics, 28(1):27–50,
1999.

R. Bar-Haim, E. Dinur, R. Feldman, Fresko M, and G. Goldstein. Identifying
and following experts in stock microblogs. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing, pages 1310–1319.
Edinburgh, UK, 2011.

A. Bodnaruk, T.Loughran, and B. McDonald. Using 10-k text to gauge fi-
nancial constraints. Working paper, University of Notre Dame, 2013.

J. Bollen, H. Mao, and X-J. Zeng. Twitter mood predicts the stock market.
arXiv:1010.3003v1, 2010.

P. Bonacich. Technique for analyzing overlapping memberships. Sociological
Methodology, 4:176–185, 1972.

P. Bonacich. Power and centrality: A family of measures. American Journal
of Sociology, 92(5):1170–1182, 1987.

117

118 References

J. Boudoukh, R. Feldman, S. Kogan, and M. Richardson. Which news moves
stock prices? a textual analysis. Working paper, University of Texas, Austin,
2012.

M. Bradley and P. Lang. Affective norms for english words (anew): Stimuli,
instruction manual and affective ratings. Technical report C-1, The Center
for Research in Psychophysiology, University of Florida, 1999.

E. D. Brown. Will twitter make you a better investor? a look at sentiment,
user reputation and their effect on the stock market. In Proceedings of the
Southern Association for Information Systems Conference. Atlanta, GA,
USA, March 23rd–24th 2012.

D. Burdick, S. Das, M. A. Hernandez, H. Ho, G. Koutrika, R. Krishnamurthy,
L. Popa, I. Stanoi, and S. Vaithyanathan. Extracting, linking and integrat-
ing data from public sources: A financial case study. IEEE Data Engineering
Bulletin, 34(3):60–67, 2011.

M. Coleman and T. L. Liau. A computer readability formula designed for
machine scoring. Journal of Applied Psychology, 60:283–284, 1975.

D. Conway and J. M. White. Machine Learning for Hackers. O’Reilly Press,
Sebastopol, CA, 2012.

S. Das and M. Chen. Yahoo for amazon! sentiment extraction from small talk
on the web. Management Science, 53:1375–1388, 2007.

S. Das and J. Sisk. Financial communities. Journal of Portfolio Management,
31(4):112–123, 2005.

S. Das, A. Martinez-Jerez, and P. Tufano. einformation: A clinical study of
investor discussion and sentiment. Financial Management, 34(5):103–137,
2005.

S. R. Das. News analytics: Framework, techniques and metrics. In The Hand-
book of News Analytics in Finance. John Wiley & Sons, U.K, 2011.

G. De Franco, O.-K. Hope, D. Vyas, and Y. Zhou. Analyst report readability.
Contemporary Accounting Research, forthcoming, 2013.

P. DeMarzo, D. Vayanos, and J. Zwiebel. Persuasion bias, social influence,
and uni-dimensional opinions. Quarterly Journal of Economics, 118:909–
968, 2003.

R. Feldman, B. Rosenfeld, R. Bar-Haim, and M. Fresko. The stock sonar
sentiment analysis of stocks based on a hybrid approach. Proceedings of the
Twenty-Third Innovative Applications of Artificial Intelligence Conference,
pages 1642–1647, 2011.

References 119

C. Fellbaum. WordNet: An Electronic Lexical Database. MIT Press, Cam-
bridge, MA, 1998.

R. A. Fisher. The use of multiple measurements in taxonomic problems.
Annals of Eugenics, 7(2):179–188, 1936.

D. Godes, D. Mayzlin, Y. Chen, S. Das, C. Dellarocas, B. Pfeieffer, B. Libai,
S. Sen, M. Shi, and P. Verlegh. The firm’s management of social interac-
tions. Marketing Letters, v16:415–428, 2005.

R. Gunning. The Technique of Clear Writing. McGraw-Hill, 1952.
Y. Hochberg, A. Ljungqvist, and Y. Lu. Whom you know matters: Venture

capital networks and investment performance. Journal of Finance, 62(1):
251–301, 2007.

P. Jaccard. Etude comparative de la distribution florale dans une portion des
alpes et des jura. Bulletin de la Societe Vaudoise des Sciences Naturelles,
37:547–579, 1901.

N. Jegadeesh and D. Wu. Word power: A new approach for content analysis.
Journal of Financial Economics, 110(3):712–729, 2013.

R. Jordan. Academic Writing Course. Longman, London, 1999.
J. Lanier. Who Owns the Future? Simon and Schuster, New York, 2013.
R. Lehavy, F. Li, and K. Merkley. The effect of annual report readability on

analyst following and the properties of their earnings forecasts. Accounting
Review, 86:1087–1115, 2011.

D. Leinweber. Nerds on Wall Street. John Wiley and Sons, New Jersey, 2009.
D. Leinweber and J. Sisk. Relating News Analytics to Stock Returns. mimeo,

Leinweber & Co, 2010.
D. Leinweber and J. Sisk. Event-driven trading and the “new news”. Journal

of Portfolio Management, Summer, 1–15 2011.
F. Li. Do stock market investors understand the risksentiment of corporate

annual reports? Working paper, University of Michigan, 2006.
F. Li. Annual report readability, current earnings, and earnings persistence.

Journal of Accounting and Economics, 45:221–247, 2008.
A. Logunov. A tweet in time: Can twitter sentiment analysis improve economic

indicator estimation and predict market returns? Undergraduate Honors
Thesis, University of New South Wales, 2011.

T. Loughran and W. McDonald. When is a liability not a liability. Journal
of Finance, 66:35–65, 2011.

120 References

T. Loughran andW. McDonald. Measuring readability in financial disclosures.
Journal of Finance, 69:1643–1671, 2014.

H.-M. Lu, H. Chen, T.-J. Chen, M.-W. Hung, and S.-H. Li. Financial text
mining: Supporting decision making using web 2.0 content. IEEE Intelligent
Systems, pages 78–82, 2010.

C.D. Manning and H. Schütze. Foundations of Statistical Natural Language
Processing. MIT Press, 1999.

W. J. Mayew and M. Venkatachalam. Speech analysis in financial markets.
Foundations and Trends in Accounting, 7(2):73–130, 2012.

A. McCallum. Bow: A toolkit for statistical language modeling, text retrieval,
classification and clustering. http://www.cs.cmu.edu/∼mccallum/bow,
1996.

D. McNair, J. P. Heuchert, and E. Shilony. Profile of Mood States. Bibliography
1964–2002. Multi-Health Systems, 2003.

G. Miller. Wordnet: A lexical database for english. Communications of the
ACM, 38(11):39–41, 1995.

L. Mitra, G. Mitra, and D. diBartolomeo. Equity portfolio risk (volatility)
estimation using market information and sentiment. Working paper, Brunel
University, 2008.

N. Pervin, F. Fang, A. Datta, and K. Dutta. Fast, scalable, and context-
sensitive detection of trending topics in microblog post streams. ACM
Transactions on Management Information Systems, 3(4):Article 19, 2013.

M. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.
T. Rao and S. Srivastava. Twitter sentiment analysis: How to hedge your bets

in the stock markets. Working paper, Indian Institute of Technology, Delhi,
2012.

R. Roll. R-squared. Journal of Finance, 43:541–566, 1988.
T. Sprenger. Tweettrader.net: Leveraging crowd wisdom in a stock micro

blogging forum. Association for the Advancement of Artificial Intelligence,
2011.

T. Sprenger and I. M. Welpe. Tweets and trades: The information content of
stock microblogs. Working paper, Technische Universität München, 2010.

J. Surowiecki. The Wisdom of Crowds. Anchor Books, New York, 2004.
P. Tetlock. Giving content to investor sentiment: The role of media in the

stock market. Journal of Finance, 62(3):1139–1168, 2007.

References 121

P. Tetlock, P. M. Saar-Tsechansky, and S. Macskassay. More than words:
Quantifying language to measure firm’s fundamentals. Journal of Finance,
63(3):1437–1467, 2008.

R. Tumarkin and R.Whitelaw. News or noise? internet postings and stock
prices. Financial Analysts Journal, 57(3):41–51, 2001.

R. Van Noorden. Trouble at the text mine. Nature, 483:134–135, 2012.
V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, New

York, 1995.
V. Vapnik and Chervonenkis. On the uniform convergence of relative frequen-

cies of events to their probabilities. Theory of Probability and its Applica-
tions, v16(2):264–280, 1964.

V. Vapnik and A. Lerner. Pattern recognition using generalized portrait
method. Automation and Remote Control, v24, 1963.

T. Wilson, P. Hoffmann, S. Somasundaran, J. Kessler, J. Wiebe, Y. Choi,
C. Cardie, E. Riloff, and S. Patwardhan. Opinionfinder: A system for sub-
jectivity analysis. Proceedings of HLT/EMNLP 2005 Interactive Demon-
strations, pages 34–35, 2005.

P. Wysocki. Cheap talk on the web: The determinants of postings on stock
message boards. Working Paper, November, University of Michigan, 1999.

W. Zhang and S. Skiena. Trading strategies to exploit blog and news senti-
ment. Proceedings of the Fourth International AAAI Conference on Weblogs
and Social Media, pages 375–378, 2010.

	What is Text Mining?
	Text Extraction
	Using R for text extraction
	Using the text mining package tm
	Term Document Matrix (Indexing)
	Visualizing Text
	Using Twitter Feeds
	Using Facebook Feeds
	Alternate Programming Languages

	Basic Text Analytics
	Dictionaries and Lexicons
	Mood scoring using Harvard General Inquirer
	Stemming and Stop Words
	Text Summarization

	Text Classification
	Bayes classifiers
	Support vector machines
	Word count classifiers, adjectives, and adverbs
	Fisher's discriminant-based word count
	Vector distance classifiers

	Metrics
	Confusion Matrix
	Accuracy
	False Positives
	Sentiment Error
	Disagreement
	Correlations
	Phase lag metrics
	Readability

	Applications and Empirics
	Predicting Market Movement
	Predicting risk, volatility, volume
	Text Mining Company Reports
	Text Mining Public Data and Network Modeling
	News Analytics
	Commercial Vendors

	Text Analytics – The Future
	Appendix
	Acknowledgements
	References

