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Abstract

In goals-based wealth management (GBWM), an
investor looks to maximize the probabilities of
attaining each of n goals over time. Because the
goals are in competition for potentially limited
financial resources, their relative importance must
be specified, which we do by assigning utility
weights to each goal. Given these weights, dy-
namic programming can determine both the opti-
mal investment strategy and the optimal strategy
for when to fulfill versus forgo each goal. This
yields the optimal goal probabilities for fulfilling
each goal. By altering the utility weights, we
show how to generate the efficient goal proba-
bility frontier (EGPF), an (n − 1)-dimensional
hypersurface of the optimized goal probability
combinations. Just as the classic efficient fron-
tier in mean-variance portfolio optimization al-
lows investors to understand the trade-offs under
the best circumstances between their portfolio’s
mean and variance, the EGPF allows the investor
to understand the trade-offs under the best cir-
cumstances between the probabilities of attaining
each of their goals — without needing to see or
understand the goals’ underlying utility weights.
We extend our EGPF framework to determine ei-
ther the minimum initial wealth or the minimum
of a one-parameter family of infusions over time
that are needed to attain specified probabilities for
each completely or partially fulfilled goal.
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Figure 1. A typical Markowitz (mean-variance) efficient frontier.
Points (σ, µ) above the efficient frontier are impossible to obtain.
Investment portfolios that lead to points (σ, µ) below the efficient
frontier are always suboptimal, so they should never be used. The
efficient frontier is a Pareto frontier showing the trade-off between
µ and σ under the optimal circumstances. The best location on
the efficient frontier at any given time is defined by the investor’s
preference regarding this trade-off. The specific efficient frontier
shown in this figure is used for all the examples in this paper. That
is, as we will see, it is the hyperbola from equation (6), where µ
and Σ are given in equations (4) and (5).

1. Introduction
The seminal Markowitz (1952) paper defined the notion of
the “efficient frontier,” the envelope of best possible port-
folios representing the optimal tradeoff of risk and return.
The efficient frontier is plotted in (σ, µ) space, where σ and
µ are, respectively, the volatility and the expected return of
a portfolio. An example of the efficient frontier is shown
in Figure 1. Any point, (σ, µ), above the efficient frontier
is impossible to obtain, meaning no portfolios have that
(σ, µ) combination. Any point below the efficient frontier
is suboptimal, meaning there is a portfolio on the frontier
with the same σ, but a higher µ. The frontier itself is Pareto
optimal: no location is inherently better than another. The
best location on the frontier strictly depends on an investor’s
personal preferred balance between volatility and expected
return.

A vast literature has incorporated and extended mean-
variance efficient portfolio optimization, in both static and
dynamic settings, and is widely used in retirement planning



(Merton, 1969; 1971; Consiglio, Cocco, and Zenios, 2004;
Dempster and Medova, 2011; Konicz and Mulvey, 2013; Vo
and Maurer, 2013; Konicz, Pisinger, Rasmussen, and Stef-
fensen, 2015; Konicz, Pisinger, and Weissensteiner, 2016;
Brown, Cederburg, and O’Doherty, 2017; Merton and Mu-
ralidhar, 2017; Muralidhar, 2018; Simsek, Kim, Kim, and
Mulvey, 2018; Martellini, Milhau, and Mulvey, 2019).

More recently, the wealth management industry has
advocated the use of goals-based wealth management
(GBWM), where investors choose investment portfolios
on the Markowitz efficient frontier with an aim to maxi-
mize the probability of meeting their financial goals, rather
than maximize utility or directly optimize their trade-off
between volatility and expected return. Early literature
(Browne, 1997; 1999; Shefrin and Statman, 2000; Nevins,
2004; Chhabra, 2005; Das, Markowitz, Scheid, and Stat-
man, 2011; Wang, Suri, Laster, and Almadi, 2011; Das
and Statman, 2013) laid the groundwork for GBWM. A
wide ranging book by Brunel (2015) offers a framework.
In GBWM, the notion of risk, usually deemed to be the
volatility of the portfolio return, is instead interpreted as
the chance that an investor does not meet their goal(s). The
two views may conflict; that is, decreasing risk in the sense
of lowering volatility may increase risk in the sense of an
investor not reaching their goals. This happens, for example,
for young, poor investors who put all of their retirement
assets into cash.

Goals-based wealth management implementations vary, and
several recent works have offered theoretically founded,
yet practical approaches (Deguest, Martellini, Milhau, Suri,
and Wang, 2015; Alexander, Baptista, and Yan, 2017; Das,
Ostrov, Radhakrishnan, and Srivastav, 2018; 2020; Das
and Ross, 2020; Kim, Kwon, Lee, Kim, and Lin, 2020;
Martellini, Milhau, and Mulvey, 2020; Parker, 2020; Das,
Ostrov, Casanova, Radhakrishnan, and Srivastav, 2021;
Parker, 2021).

In Das, Ostrov, Radhakrishnan, and Srivastav (2021), the
authors present an algorithm for dynamic optimization over
long horizons with multiple goals, where each goal can be
fulfilled at a specified time and cost. When there is sufficient
money to meet all lifetime goals, the GBWM problem is
trivial and the probability of meeting each goal is essentially
equal to one. When the wealth in the portfolio is insufficient
to meet all goals, however, the investor will need a way
to weight their goals with utilities to instruct the algorithm
which goals to prioritize by maximizing the expected utility
of fulfilled goals over time. For instance, in the presence
of two goals with relative utility weights of, say, 3:1, the
algorithm will return a higher probability of achieving the
first goal than the second compared to if the relative utility
weights were, say, 1:3. Of course, either way the proba-
bilities of fulfilling the two goals will be maximized while
respecting these utility weights. Since different ratios of
utility weights result in different pairs of maximized proba-

bilities, we can plot all the possible maximized probability
pairs as we vary the underlying ratio of the utility weights
from 0 to ∞. The plot of all these maximized probability
pairs forms the “efficient goal probability frontier” (EGPF),
which is a one-dimensional curve in the two-dimensional
space formed by the probabilities of fulfilling each of the
two goals.

We note the following properties of the efficient goal proba-
bility frontier (EGPF):

1. For two goals, the EGPF is a curve. For n goals, the
EGPF is an (n− 1)-dimensional hypersurface.

2. Each point on the EGPF is mapped from a predeter-
mined set of utility weights that reflect the relative
importance of each goal to the investor.

3. Behind each point of the EGPF are two optimized
strategies: 1) an optimized investment strategy and 2)
an optimized goals-taking strategy. The optimized in-
vestment strategy dynamically, optimally moves the
investor among a given set of possible investment port-
folios as time and the investor’s wealth change. It uses
mean-variance efficient investment portfolios when
possible, as in the cases presented in this paper, but can
just as easily work with other sets of investment portfo-
lios when mean-variance efficient investment portfolios
are not available. The optimized goals-taking strategy
best determines which goals to fulfill and which to
forgo so that more important goals may be fulfilled
later.

As mentioned earlier, the Markowitz mean-variance efficient
frontier (EF) is a Pareto optimal frontier where (σ, µ) points
above the EF are impossible to obtain, and points below
the EF are possible, but suboptimal, to obtain. The EGPF
has the same nature. For n goals, the EGPF is an (n− 1)-
dimensional Pareto optimal frontier where goal probabilities
(p1, p2, ..., pn) that correspond to points lying above the
EGPF are impossible to obtain, while those below the EGPF
are possible but suboptimal. That is, a suboptimal goals-
taking strategy and/or a suboptimal investment strategy will
lead to a point below the EGPF. Just as an investor must
choose which point on the EF (that is, which investment
portfolio) best fits their preferences, they must also decide
which point on the EGPF (specifying optimal combinations
of probabilities for attaining each of their n goals) best fits
their preferences.

What is key here is that the EGPF is stated strictly in terms
of probabilities, not in terms of utilities, so the investor is
able to specify their preferences. That is, most investors
understand the idea of having to make trade-offs between
probabilities intuitively, but almost no investors know how
to assign utility values to each of their goals. Because the
EGPF only uses utilities behind the scenes, investors no
longer need to think about or understand utilities. Instead,
they can focus strictly on their goal probabilities, allowing
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them to knowledgeably select their best option.

Further, for a fixed initial investment, we can find a point
on the EGPF, which we call the proximity point, that is
close to an investor’s desired goal probability point when
the desired goal probability point lies above the EGPF. This
helps optimize the use of the initial investment given the
investor’s desired goal preferences.

If the investor can devote more money to the initial invest-
ment, we can instead find the minimum initial investment
needed to obtain the desired goal probability point. This
enables the investor to neither overspend nor underspend
to obtain their desired goal probabilities. Geometrically, it
corresponds to finding the EGPF that contains the desired
goal probability point, since the EGPF moves upwards to-
wards higher probabilities as the initial investment increases.
Alternatively, the investor may not be able to access addi-
tional money initially, but may instead be able to contribute
money over time. In this case, the method to determine
the minimum additional initial investment can easily be
altered to instead determine the minimum of any given one-
parameter family of infusions over time where the desired
goal probability point is obtained.

While the EGPF can be easily visualized for two goals
(in 2-D) or for three goals (in 3-D), it cannot be easily
visualized in higher dimensions. However, our algorithms
for finding the proximity point and for finding the minimum
initial wealth or minimum infusions to obtain desired goal
probabilities works for n goals, where n can be far larger
than 2 or 3. Further, this can be extended to accommodate
the important case of partial goals. For example, a couple
may have a goal of spending $40,000 on a car seven years
from now, but also be open to a partial goal where they spend
$35,000 on a less nice car or another partial goal where they
only spend $28,000 on the car. The partial goals will bring
less happiness to the investor, but the money may be better
off being diverted to other concurrent goals or saved to give
a higher likelihood of attaining more important goals at later
times.

The paper proceeds as follows. Section 2 discusses how,
in the context of a single goal and static one-period op-
timization, we can generate goal probability level curves
(GPLCs), which then determine the single point that com-
prises the EGPF in this simple context. Section 3 extends
this considerably to multiple goals with dynamic (multi-
period) optimization. Section 4 shows how to determine
the proximity point on an EGPF, as well as the minimal
initial investment or minimal infusions needed to obtain
desired goal probabilities for full or partial goals. Further, it
explores the sensitivity of these results to prohibiting short
positions or to increasing either the expected returns or the
covariance matrix of the investments. Section 5 contains a
closing discussion.

2. Goal Probability Level Curves For Static
Optimization With A Single Goal

Das, Ostrov, Radhakrishnan, and Srivastav (2018) derived a
mathematical relationship between the Markowitz efficient
frontier (EF) and goals-based investing for a given single
goal. The single goal was to attain enough portfolio growth
over a set time period to enable fulfilling (that is, paying
for) a desired financial goal at end of the time period. They
showed how to locate the static investment portfolio on the
efficient frontier that maximizes the probability of achieving
the given goal. This investment portfolio sits at a common
point of tangency between the hyperbolic, concave curve in
the (σ, µ) plane for the EF and the convex curve of all (σ, µ)
combinations that correspond to the maximum attainable
probability of fulfilling the given goal. This latter, convex
curve is a specific example of a goal probability level curve
(GPLC), which is defined as any iso-probability curve in the
(σ, µ) plane.

We further explain the nature of a GPLC, following Das,
Ostrov, Radhakrishnan, and Srivastav (2018). We assume a
wealth (W ) growth process that follows geometric Brownian
motion:

dW

W
= µ dt+ σ dB, (1)

where µ is the continuous mean growth rate, σ is the volatil-
ity, and dB is the standard Brownian motion differential.
The solution to this stochastic differential equation in (1) is

W (t) = W (0) exp

[(
µ− 1

2
σ2

)
t+ σ

√
t Z

]
, (2)

where Z ∼ N(0, 1) is a standard normal random variate.

Rearranging equation (2) so that µ is isolated on the left-
hand side and replacing Z with −z0 yields

µ =
1

2
σ2 +

z0√
t
σ + g, (3)

where g = 1
t ln

(
W (t)
W (0)

)
is the constant, continuous growth

rate per annum required for the initial investment W (0) to
grow to the target goal W (t), and z0 is the unique value
such that Pr(Z ≤ z0) is equal to the “goal probability,”
which is the probability that W (0) will grow to at least
W (t), the target goal. If we fix the values of g, t, and z0,
then equation (3) defines a convex parabolic relationship
for µ as a function of σ. This convex parabola in the (µ, σ)
plane is denoted as the goal probability level curve (GPLC).

As an example, assume we have access to three index funds
whose expected returns are given by the vector

µ =

 0.0493
0.0770
0.0886

 (4)
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Figure 2. The efficient frontier from Figure 1 along with three goal
probability level curves (GPLCs). The initial wealth is W (0) =
$100,000. The target wealth after five years is W (5) = $125,000.
The three GPLCs shown correspond to goal probabilities of 60%,
70%, and 80%, meaning, for example, any investment portfolio
whose (µ, σ) pair is on the 60% GPLC has a 60% chance that
W (5) ≥ $125,000.

and whose return covariance matrix is

Σ =

 0.0017 −0.0017 −0.0021
−0.0017 0.0396 0.0309
−0.0021 0.0309 0.0392

 . (5)

The EF is the hyperbola

σ =
√
aµ2 + bµ+ c, (6)

with a = h⊤Σh, b = 2g⊤Σh, and c = g⊤Σg, where
g = lΣ−11−kΣ−1µ

lm−k2 , h = mΣ−1µ−kΣ−11
lm−k2 , and 1 is a unit

vector of ones, and where the scalars k, l, and m are defined
by k = µ⊤Σ−11, l = µ⊤Σ−1µ, and m = 1⊤Σ−11.
Figure 1 shows the efficient frontier for the µ and Σ given
in equations (4) and (5).

Now assume that the initial wealth is W (0) =$100,000 and
the target wealth after five years is W (5) =$125,000. Figure
2 shows the efficient frontier from Figure 1 along with the
three different GPLCs corresponding to goal probabilities
of 60%, 70%, and 80%, which are created by increasing the
value of z0. We see that we can do much better than a 60%
goal probability, since so much of the EF lies above the 60%
GPLC. Only a little of the EF lies above the 70% GPLC,
however, and no attainable investment portfolio can achieve
a goal probability of 80%, since the 80% GPLC lies strictly
above the EF.

It is therefore clear that the highest possible goal probability
corresponds to a GPLC that shares a single point in common
with the EF. Further, this point is a common point of tan-
gency for the EF and this GPLC, as shown in Figure 3, and
more importantly, it defines the µ and σ of the optimal static

Figure 3. The optimal goal probability investment portfolio. This
resides at the common point of tangency between the goal proba-
bility level curves (GPLCs) and the efficient frontier. For the top
panel, the initial wealth is W (0) = $100,000, the target wealth
after five years is W (5) = $125,000, and the optimal goal proba-
bility is 72%. For the bottom panel, we have the same parameters,
including the initial wealth, but the target wealth, which is now
after six years, is W (6) = $150,000. In this case the optimal
goal probability becomes 51%, and the optimal portfolio is more
aggressive than in the top panel.

investment portfolio. We know this optimal GPLC corre-
sponds to a goal probability just above 70%, but how do we
determine the exact value of the optimal goal probability
and the exact optimal point on the EF?

Based on Das, Ostrov, Radhakrishnan, and Srivastav (2018),
we re-arrange equation (3) to isolate z0,

z0 =
1

σ

(
µ− 1

2
σ2 − g

)√
t, (7)

and then look to maximize z0, while constrained to remain
on the EF (equation 6). This constrained optimization prob-
lem yields a Lagrange Multipliers formulation that results
in a cubic polynomial equation for the optimal value of µ:

c3µ
3 + c2µ

2 + c1µ+ c0 = 0 (8)
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where c3 = a2, c2 = 3ab
2 , c1 = ac + b2

2 − b − 2ag, and
c0 = bc

2 −2c−bg. This cubic polynomial has three potential
roots for µ, but it is guaranteed that one, and only one, of
these roots will be above the EF vertex’s µ value. The point
on the upper envelope of the EF with this root’s µ value is
the optimal static portfolio.

For our example, this optimal solution point is shown in
the top panel of Figure 3, where we see the optimized goal
probability is 72%, which is just above 70%, as expected.
This 72% goal probability is obtained by using the optimal
investment portfolio on the EF, which has an expected return
of 5.80% and a volatility of 4.71%. The lower panel in
Figure 3 is for the same circumstances, but a different, more
difficult target goal: instead of five years, we have six years,
but we look to grow our initial $100,000 to $150,000 instead
of just $125,000. Given the more difficult goal, we expect
both a lower optimal goal probability and a more aggressive
optimal investment portfolio. The lower panel confirms and
quantifies this: the optimal goal probability is only 51%, and
the optimal investment portfolio (which is on the same EF
as before) has an expected return of 8.59% and a volatility
of 18.12%.

The optimal solution point’s GPLC probability corresponds
to the single point that comprises the entire efficient goal
probability frontier (EGPF) in this section’s context, as we
now explain: Because the number of goals, n, equals one
here, we have a one-dimensional probability space, which
is simply a line segment from 0 to 1. The EGPF is an
(n− 1)-dimensional hyperplane in general, meaning a zero-
dimensional hyperplane in our current context, which is
a point. That point is the location on the line segment
that corresponds to the value of the optimal probability of
fulfilling the goal, which is the optimal solution point’s
GPLC probability.

As we will see later, each point on the EGPF comes with
two optimal strategies. The first is the optimal investment
strategy. In our current context, this is the optimal static
portfolio, which corresponds to the optimal solution point’s
location on the EF. The second is the optimal goals taking
strategy. In our current context, this is obvious: if the in-
vestor has enough money to fulfill their goal, they should
fulfill it, since, when there is only one goal as is the case
here, there is no later goal that is more likely to be fulfilled
if we forgo our single goal.

3. Efficient Goal Probability Frontier With
Dynamic Optimization And Multiple Goals

The analysis in the previous section presented a solution to
maximize the probability of reaching a single goal in a static
investment portfolio framework. In this section, we extend
this framework considerably, both to encompass multiple
goals instead of one goal, and to use dynamic optimization
over multiple time periods instead of static optimization.

Dynamic optimization in the context of the remainder of
this paper means: (i) Investment optimization, where the
investment portfolio can change with each time period and
the investment optimization strategy must take into account
the fact that the investment portfolio can be changed with
each future time period. (ii) Goals-taking optimization,
where each goal at each time period must be optimally
chosen to be fulfilled or unfulfilled so as to optimize the
expected value of the sum of the utilities of the fulfilled
goals over both current and future time periods.

Because we now consider multiple goals, we must weigh
the relative importance of these goals to the investor, which
we do by assigning a utility value to each goal. Each set
of relative utility weights for the goals will correspond to
a point on the efficient goal probability frontier (EGPF),
which represents the set of optimal probabilities for the
goals given these relative utility weights. In this section we
explore the geometric nature of the EGPF in the case of two
goals and three goals.

3.1. An Example With Two Goals

Consider an investor with an initial wealth of $50,000 and
two goals: Goal 1 is to spend $100,000 for a luxury car
10 years from now. Goal 2 is to spend $150,000 for their
child’s college 20 years from now. With two goals, the opti-
mized goal probabilities depend on the relative importance
(utilities) that the investor assigns to each goal. If we assign
a utility of U1 = 100 to the car goal and a utility of, say,
U2 = 20 to the college goal, we can use the dynamic pro-
gramming algorithm described in Appendix A to maximize
the expected attained utility, which will generate the optimal
goal probabilities for the car and college goals. If we keep
U1 = 100 but increase U2 to, say, 80, the algorithm will
return a lower optimized goal probability for the car goal
and a higher one for the college goal.

Indeed, as the ratio U1

U2
is increased from 0 to infinity, we

expect to see the corresponding optimized goal probabilities
shift from favoring Goal 1 to favoring Goal 2. Specifically,
the optimized goal probabilities (p1, p2) will trace a curve in
the plane whose axes are the Goal 1 probability and the Goal
2 probability. This curve forms the efficient goal probability
frontier (EGPF) shown in Figure 4.

Note that even though assigned utility values underlie our
analysis, the EGPF is strictly in terms of probabilities. This
is key because investors do not have a clear sense of what
utility values to assign to goals, but they can understand
the trade-offs between the optimal probability of fulfilling
one goal versus another. The EGPF makes those trade-offs
explicit, allowing an investor to make an informed choice
that conforms to their preferences.

There are clear parallels between the EGPF in Figure 4
and the Markowitz efficient frontier (EF) in Figure 1. Both
frontiers are Pareto optimal, so no point on a frontier is in-
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Figure 4. The efficient goal probability frontier (EGPF) for two
goals. This EGFP is for an investor starting with $50,000 with
access to 15 investment portfolios discussed in the text. The EGFP
curve shows various possible pairs of dynamically optimized goal
probabilities for two goals, (i) buying a luxury car in 10 years
time at a cost of $100,000 and (ii) saving for college so as to have
$150,000 in 20 years time. That is, the EGFP shows the trade-off
between the probability of fulfilling Goal 1 versus Goal 2 under
the optimal investment and goals-taking strategies. The colors on
the EGFP correspond to which of the 15 investment portfolios are
initially optimal. The EGFP, combined with the dashed vertical
line when the Goal 2 probability is below approximately 20%,
partitions the graph into a region that is impossible to attain and
a region that is possible but suboptimal. Note the heavy parallel
between this figure and Figure 1, which described the Markowitz
efficient frontier (EF).

herently better or worse than another. That is, the best point
on either frontier is a matter of investor-specific preferences.
It is impossible to attain a point above either frontier. It is
possible to attain a point below either frontier, but never
desirable, as these points represent inherently suboptimal
investment and/or goals-taking decisions. Of course, the
EF is always a 1-D curve residing in the 2-D space formed
by µ and σ, whereas for n goals, the EGPF is an (n − 1)-
dimensional hypersurface residing in the n-dimensional
space formed by the goal probabilities of each goal.

Unlike the static analysis in Section 2 where we could select
any single point on the EF, our analysis here allows us
in each time period to dynamically jump between a fixed
number of investment portfolios on the EF in Figure 1. To
obtain the EGPF in Figure 4, the dynamic programming
algorithm had access to 15 investment portfolios. These
portfolios were determined by equally spacing 15 values
for µ from 5.26%, which corresponds to the vertex of the
EF hyperbola, to 8.86%, the highest expected value of the
three index funds from equation (4), and then selecting the
15 investment portfolios (numbered portfolio 0 to portfolio
14) on the EF in Figure 1 with these µ values.

While the optimal choice among these 15 investment port-
folios varies with time due to varying wealth, we are able
to show the initial optimal investment in Figure 4, since we
know the initial wealth is $50,000. In the figure we see that
when U1

U2
is near zero, meaning Goal 2 is far more important

that Goal 1, it is optimal to initially select portfolio 6, a
relatively conservative portfolio, since we only worry about
obtaining Goal 2 for $150,000 after 20 years, not Goal 1. As
U1

U2
increases to values closer to 1, we see the initial portfolio

increase to portfolio 14, the most aggressive portfolio, since
we have a stronger reason to accept more volatility in the
hopes of attaining both goals. As U1

U2
increases towards infin-

ity, we see the initial portfolio come back down to portfolio
11. This corresponds to only worrying about obtaining Goal
1, which means obtaining $100,000 after 10 years.

Because Goal 1 is harder to reach than Goal 2, we opti-
mally require a more aggressive initial portfolio (number
11) than portfolio 6, the optimal initial portfolio when we
only worried about obtaining Goal 2. We can also see this
in Figure 4, where the optimal probability of attaining Goal
2 is 87.5% (on the top, left point of the EGPF), while the
optimal probability of attaining Goal 1 is 70.9% (on the
bottom, right point of the EGPF). At the top, left point, the
optimal goals-taking strategy is to never fulfill Goal 1, so
as to maximize the probability of being able to fulfill Goal
2, so we see that the optimal probability of attaining Goal 1
at this point is zero. In contrast, at the bottom, right point,
the optimal goals-taking strategy is to fulfill Goal 1 at time
10 if the money exists, but then use any excess money to
try to obtain Goal 2, which happens 19.7% of the time. In
this case, there is no advantage towards fulfilling Goal 1 by
using a strategy that further reduces the chance of fulfill-
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Figure 5. Efficient goal probability frontier for three goals. The
investor starts with $50,000. The surface shows various possible
combinations of dynamically optimized goal probabilities over
three goals, (i) buying a luxury car in 10 years time at a cost of
$100,000, (ii) saving for college so as to have $150,000 in 20 years
time, and (iii) taking an extended vacation in 15 years time at a
cost of $70,000.

ing Goal 2. This is indicated by the dashed, vertical line
in Figure 4 that extends from the bottom, right point. The
dashed line (along with the EGPF) demarcates the region
that is possible, but never optimal, from the region that is
impossible to attain.

3.2. Extension To Three Goals

We now examine a case with three goals. In Subsection 3.1,
we considered Goal 1, a car goal costing $100,000 in 10
years time, and Goal 2, a college goal costing $150,000 in
20 years time. To this we add Goal 3, an extended vacation
goal costing $70,000 in 15 years time. Using the approach
in Appendix A, the optimized probabilities of fulfilling the
three goals are obtained for different utility weights assigned
to each goal. This traces out a 2-D EGPF surface in 3-D
probability space, as shown in Figure 5. The EGPF surface
gives the best possible combinations of goal probabilities
across the three goals. For example, an investor mostly inter-
ested in making sure they fulfill Goal 2 and less concerned
about Goals 1 and 3 might choose the dynamic strategy
associated with a yellow point near the top of the surface.
Note that when we set the probability of obtaining Goal 3
to zero, the cross-section of the corresponding plane with
the EGPF surface is the 1-D EGPF curve in Figure 4.

4. Working With Multiple Goals And Desired
Probabilities For Each Of These Goals

The EGPF (efficient goal probability frontier) makes it clear
to investors what the trade-offs are between their goals under
optimal circumstances. Once the investor selects a point on
the EGPF that best satisfies their personal preference within
these trade-off constraints, we can note the corresponding
underlying utility values assigned to that point for each
goal and, using Appendix A, we can determine both the
corresponding optimal investment strategy and the optimal
goals-taking strategy for the investor.

But what happens if we have four or more goals? In this case,
the EGPF becomes hard to directly visualize, since it exists
in four or higher-dimensional space. The ideas behind the
EGPF, however, can still be extended to determine how to
best satisfy an investor’s needs, as we show in this Section.
Further, our approach will extend to the case of partial
goals, which are acceptable alternatives to full goals for
the investor that have the advantage of costing less but the
disadvantage of providing less utility should the partial goal
be fulfilled instead of the full goal.

4.1. Generating Optimal Probabilities For n Goals
When The Initial Wealth Is Fixed

The investor can be asked to give desired probabilities for
attaining each of their n goals. This corresponds to a single
point in n dimensional probability space, which we will
call the “desired point.” We look to determine a point on
the EGPF that is “near” (in a sense we will define) to the
desired point, even if the geometry cannot be visualized
easily when n ≥ 4. We will call this point on the EGPF
the “proximity point” and the algorithm that generates it the
“proximity algorithm,” which we describe in this subsection.

We start with some notation before describing the proximity
algorithm. We denote the desired point by d, an n-vector
whose components, di, are the desired probabilities of attain-
ing goal i, where i = 1, 2, ..., n. We will use the n-vector
U to denote the utilities assigned to each of the n goals, and
we will use the n-vector p to denote a point on the EGPF for
a given initial investment W (0), meaning p represents an
attainable, Pareto optimal set of probabilities for each of the
n goals, given an initial investment of W (0). Finally, we
define the “distance” between two points, such as d and a
point p, in the normal sense; that is, the distance is ||d−p||,

where ||v||, the norm of an n-vector, is defined by

√
n∑

i=1

v2i .

To determine pprox, the proximity point on the EGPF to the
desired point d, we employ the following iterative algorithm:
We start with any initial U.1 We then compute the point

1While, for simplicity, we generally set all the initial Ui = 100,
we also found that in practice, regardless of the initial U chosen,
the number of iterations, and therefore the computational time for
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p on the EGPF that corresponds to the initial U by using
the algorithm given in Appendix A. After that, we use the
following iteration formula (where we later define ∆U ) to
determine a new value for U:

Unew = Uold +∆U(d− pold). (9)

We then return to using Appendix A to determine the pnew
that corresponds to Unew. Setting Unew and pnew to now be
Uold and pold, we can start a new iteration using equation
(9).

The iteration formula in equation (9) essentially uses gra-
dient descent in p to evolve U. While this is an unusual
approach, it proves quite practical in our context. Not only
is it extremely quick to compute, it has the key property that
for each of the n components where pold,i < di, we have
that U new,i > U old,i, and where pold,i > di, we have that
U new,i < U old,i. This means, as a practical matter, that as
the algorithm evolves, eventually either all the components
of p become greater than or equal to their counterpart com-
ponents in d or all the components of p become less than
or equal to their counterpart components in d.

Initially, we set ∆U to just below the average value of the
initial U components. Two things can go wrong when we
apply equation (9). The first is that some of the computed
components of Unew may be negative, in which case, we
simply reset those components to take small positive values.
The second is that ∆U may be too large, which we define
as resulting in the distance between d and pnew being larger
than the distance between d and pold. When this happens,
the algorithm shrinks ∆U to 70% of its previous value and
then recomputes Unew from Uold using equation (9) with
the new ∆U value. This is repeated as many times as is
necessary to ensure that the distance between d and pnew
never grows between iterations.

When do we stop our proximity algorithm? It is a mistake
to require that the distance between Unew and Uold becomes
sufficiently small, because if Unew = kUold, where k is any
positive constant, both Unew and Uold will result in the same
p. This is because only the ratios of the components in U
to each other matter, not their actual values. We therefore
want to stop once Unew becomes sufficiently close to be-
ing a constant multiple of Uold, which, from equation (9),
corresponds to the case where

Unew = kUold = Uold +∆U(d− pold), (10)

or, after rearrangement,

αUold = d− pold, (11)

where α = k−1
∆U . To remove the unknown value of α, we

take the norm of both sides of equation (11) and then di-
vide equation (11) by it. This cancels the positive α factor,

the proximity algorithm to converge, stayed approximately the
same.

Figure 6. We consider the same two goals and available invest-
ments that were used in Subsection 3.1 and Figure 4. The figure
shows three efficient goal probability frontiers (EGPFs) corre-
sponding to what is possible if the investor starts with W (0) =
$50,000, $79,900, and $100,000. The desired probability point (in
red) corresponds to a desired 70% chance of obtaining Goal 1 and
a desired 80% chance of obtaining Goal 2. The proximity points
from successive EGPFs, shown here just for the W (0) = $50,000
and $100,000 EGPFs, can be used to determine that W (0) =
$79,900 is the minimal initial investment needed to obtain the
desired probabilities.

leaving
Uold

||Uold||
=

d− pold

||d− pold||
.

It follows that we stop our proximity algorithm when the
metric ∥∥∥∥ Uold

||Uold||
− d− pold

||d− pold||

∥∥∥∥
becomes sufficiently small, and when this occurs we have
our proximity point pprox = pold.

The proximity point may give the investor an option that
satisfies them, but if they believe one or more of its goal
probabilities (that is, components) are too small (or too
big), they can change the desired point, d, to better align
with their desires, knowing that each increase to a single
goal’s probability will generally decrease the other goals’
probabilities once the new corresponding proximity point is
determined from rerunning our proximity algorithm.

Although the proximity algorithm works for n goals, we can
visualize its effect by looking at our two goal example from
Subsection 3.1. Recall that the EGPF for this example where
W (0) = $50,000 is given in Figure 4. This same EGPF is
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reprinted in Figure 6 as the W (0) = $50,000 EGPF. In this
figure, we also see the desired point d = (0.7, 0.8); that is,
the investor is looking for at least a 70% chance of attaining
Goal 1, which is a $100,000 luxury car after 10 years, and at
least an 80% chance of attaining Goal 2, which is $150,000
for their child’s college in 20 years. The proximity point,
pprox, determined from our algorithm, which is shown in
Figure 6, is (0.4894, 0.5828). This proximity point is a
distance of 0.3025 from the investor’s desired point. The
investor can now do one of three things:

1. They can accept having a 48.94% chance of fulfilling
Goal 1 and a 58.28% chance of fulfilling Goal 2, in
which case, the U that was used to generate pprox also
generates the optimal investment strategy and optimal
goals-taking strategy that are needed to obtain these
probabilities, as described in Appendix A.

2. They may decide that they are willing to accept a re-
duction in the probability of fulfilling one of their goals
so that they can increase the probability of fulfilling
the other goal. In this case, they will rerun the proxim-
ity algorithm with a new desired point d, which will
produce a new pprox on the W (0) = $50,000 EGPF.

3. They may have more money available, in which case
they may be able to obtain their desired probabilities
of 70% for Goal 1 and 80% for Goal 2 by adding this
money to create a larger W (0). But how much addi-
tional money is necessary? The next subsection shows
how we can use the proximity algorithm to determine
this.

4.2. Determining The Minimum Initial Wealth To
Reach The Desired Probabilities

In this subsection, we show how to determine the minimum
initial wealth needed to obtain desired probabilities, d, for
fulfilling the investor’s goals by applying the secant method.
For the secant method, we use the initial wealth, W (0), as
the input and the signed distance from d of the proximity
point pprox (determined from the proximity algorithm in the
previous subsection) as the output. Repeated iteration of the
secant method will produce proximity points that converge
to d (that is, the unique root of the signed distance) and
W (0) values that converge to the minimum initial wealth.

More specifically, as discussed in the previous subsection,
the proximity algorithm will produce a proximity point,
pprox, whose components are all less than their correspond-
ing components in d, in which case the portfolio is under-
funded and cannot obtain d, or all the components in pprox
are greater than (or equal to) their corresponding compo-
nents in d, in which case the portfolio is overfunded (or
funded). If the portfolio is overfunded, we define the signed
distance to be the negative of the distance between pprox and
d; if it is underfunded, the signed distance is the (positive)
distance.

We run the proximity algorithm using an initial W (0). If
that leads to a positive signed distance, meaning we are
underfunded, we rerun the proximity algorithm with twice
the initial W (0) used previously; otherwise, if we are over-
funded, we rerun the proximity algorithm with half the
initial W (0) used previously. This gives us two points for
which the input is (the initial) W (0) and the output is the
corresponding signed distance between pprox and d.

From these two points, we can iterate using the secant
method to converge to the W (0) that corresponds to the root
of the signed distance. In the secant method, we plot the
last two calculated points on the (W (0), signed distance)
plane, draw the line that goes through the two points (that
is, the secant line), find the W (0) value on this line that
corresponds to a signed distance of 0, and use that W (0) for
the next point, where the signed distance corresponding to
this W (0) is determined from the proximity algorithm.

As an example, we continue the two goals case discussed
in the previous subsection and shown in Figure 6. Recall
that when W (0) = $50,000, the proximity algorithm deter-
mined the corresponding signed distance was 0.3025. Since
we have underfunding, we next choose W (0) = $100,000.
Using this W (0), the proximity algorithm determines that
pprox = (0.814, 0.922), which corresponds to a signed dis-
tance of -0.1670, which is negative because we now have
overfunding. In Figure 6 we have calculated the entire
W (0) = $100,000 EGPF strictly for visualization purposes.
We note, however, that the proximity algorithm does not
require the entire EGPF. The proximity algorithm just cal-
culates a few points on the EGPF as it converges to the
proximity point, which is why it is so effective with n goals,
even if n is large.

We next apply the secant method to the two points ($50,000,
0.3025) and ($100,000, -0.1670). The root of the secant line
connecting these two points is determined from

W (0)− 50,000
0− 0.3025

=
100,000 − 50,000
−0.1670− 0.3025

,

which gives W (0) = $82,220. Applying the proximity
algorithm to W (0) = $82,220 gives a signed distance of
-0.0338, which is much closer to 0 than our previous two
points. We then rerun the secant method with our two most
recent points, ($100,000, -0.1670) and ($82,220, -0.0338),
and continue iterating until we have sufficiently converged
to the root of the signed distance. In this case, the root is
W (0) = $79,900. 2 In Figure 6, we have included the
W (0) = $79,900 EGPF, which, of course, goes through the
desired point d.

As a byproduct of the proximity algorithm, we also know
that to obtain this desired point, we run the algorithm in

2The computational time to run this entire iterative process to
obtain this root was 62 seconds on a Mac Studio computer with an
M1 Max chip.
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Appendix A with a utility of 100 assigned to Goal 1 and a
utility of 108.47 assigned to Goal 2.3 This in turn generates
the optimal investment strategy and the optimal goals-taking
strategy that enables the initial investment of $79,000 to
obtain a 70% chance of attaining Goal 1 and an 80% chance
of attaining Goal 2.

This subsection’s algorithm for determining the minimum
W (0) to attain the investor’s desired probabilities is particu-
larly useful to investors who are well off. It enables them to
devote the correct amount of funding to their goals, neither
underspending so as to make it impossible to attain their
desired probabilities nor, just as importantly, overspending,
so we are able to optimally free their other funds for other
financial priorities. For investors who are less well off, the
proximity algorithm presented in the previous subsection
will be of more use, enabling investors to use their money
to come as close to their desired probabilities as is possible.

4.3. Incorporating Partial Goals

The algorithms in the previous two subsections can be ex-
tended to incorporate the important case of partial goals. As
explained in the Introduction, a partial goal is an alternative
to the full goal that is acceptable to the investor. While the
partial goal costs less than the full goal, it also correspond
to a lower utility when it is fulfilled in place of the full goal.

Consider the example in Table 1. Goal 1 is strictly a full
goal that, 10 years from now, is either fulfilled for $7,000
or not fulfilled. The investor wants at least an 80% chance
of fulfilling this goal. Goal 2 is also a goal that the investor
will either fulfill or forgo 10 years from now. The investor
wants at least a 90% chance of fulfilling the full goal, which
costs $20,000, but they are also open to a partial goal that
costs only $9,000. They also want at least a 91% chance of
fulfilling either the full or partial version of this goal. Goal
3, which the investor can be fulfill or forgo 15 years from
now has three partial goal versions. Perhaps Goal 3 is a
charitable donation goal, and the investor would like to give
$40,000 to the charity, but is also open to giving $30,000,
$20,000, or $10,000. The investor wants at least an 86%
chance of giving one of these four amounts, at least an 85%
chance of giving $20,000 or more, at least an 80% chance
of giving $30,000 or more, and at least a 60% chance of
giving the full $40,000. Finally, Goal 4 is a long term goal
in 30 years. The investor wants at least an 80% chance
of fulfilling the full goal, which costs $90,000 but is open
to instead fulfilling the partial version of the goal, which
costs $50,000. The investor wants at least a 95% chance of
fulfilling either the full or partial version of Goal 4.

If the investor only has $20,000, they are unable to obtain

3Alternatively, since only the ratio of these utilities matter, any
two utility values where 47.97% of the total utility is assigned to
Goal 1 and the remaining 52.03% is assigned to Goal 2 can be
used.

Goal Time Cost Desired Probabilities Probabilities Utilities for
(p = (in (in minimum from pprox if from pprox if pprox if W (0)

partial) years) 1000s) probabilities W (0) = $20K W (0) = $39.4K = $39.4K
1 10 $7 80% 56% 80% 100.00
2 10 $20 90% 55% 91% 325.77
p ” $9 91% 82% 91% 130.82
3 15 $40 60% 19% 60% 453.26
p ” $30 80% 44% 81% 368.92
p ” $20 85% 60% 87% 226.91
p ” $10 86% 74% 87% 82.94
4 30 $90 80% 40% 85% 804.95
p ” $50 95% 70% 96% 431.22

Table 1. Results from determining the proximity point and the
minimal initial wealth to obtain the investor’s desired minimum
probabilities for a case with partial, as well as full, goals.

their desired probabilities. The proximity point’s probabil-
ities are given in the third to last column in Table 1. We
note that with partial goals, unlike full goals, the proximity
point may satisfy some of the desired probabilities, but not
all of them, although in this case it satisfies none of them.
The algorithm from the previous subsection shows that to
obtain all of the desired probabilities, the investor minimally
needs $39,400. The proximity point’s probabilities when
W (0) = $39,400 are given in the second to last column in
Table 1. Note for Goal 4, that the probability for fulfilling
the full goal is 85%, which is five percentage points higher
than the minimally required 80%. This overshoot of the
minimally required probability is a byproduct of needing a
95% chance of fulfilling either the full or partial version of
Goal 4, which is barely accomplished. Utility values that
correspond to the proximity point when W (0) = $39,400
are given in the last column of Table 1. Note that, unlike the
probabilities, the utilities for partial goals are individual, not
cumulative, so, for example, in Goal 3, the utility of 368.92
corresponds to the investor spending exactly $30,000, not
more or less. We observe that even though we only require
the investor to specify desired goal probabilities (and not
utilities for each goal), the algorithm is able to back out the
investor’s implied utility over goals, generating this latent
information in a computationally facile manner. 4

4.4. Sensitivity To Different Investment Portfolios

As stated in Subsection 3.1, our above examples have the
investor optimally jump between 15 investment portfolios.
These portfolios are on the Markowitz efficient frontier (EF)
in Figure 1 for 15 equally spaced µ values from 5.26%,
which corresponds to the vertex of the EF hyperbola, to
8.86%, the highest of the expected returns for the three index
funds given in equation (4). The 3×3 return covariance for
these three index funds is given in equation (5).

There will always be some error in forecasting the expected
returns and covariances of these funds, so we explore the
sensitivity of our results in the previous subsection to per-

4The computational time to determine all of the results in this
table was 126 seconds on a Mac Studio computer with an M1 Max
chip.
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Goal Time Cost Desired Probabilities Probabilities Utilities for
(p = (in (in minimum from pprox if from pprox if pprox if W (0)

partial) years) 1000s) probabilities W (0) = $20K W (0) = $33.6K = $33.6K
1 10 $7 80% 63% 82% 100.00
2 10 $20 90% 65% 92% 320.68
p ” $9 91% 85% 92% 129.29
3 15 $40 60% 30% 62% 419.94
p ” $30 80% 55% 81% 339.99
p ” $20 85% 69% 85% 197.29
p ” $10 86% 79% 86% 66.48
4 30 $90 80% 53% 84% 637.68
p ” $50 95% 78% 96% 361.23

Table 2. The update to the results from Table 1 when we add one
percentage point to the expected returns; that is, we replace µ from
equation (4) with µnew from equation (12).

turbing the values in both equation (4) and equation (5). If,
for example, we add one percentage point to the expected
returns in equation (4), we get

µnew =

 0.0593
0.0870
0.0986

 . (12)

Table 2 shows the effect of using µnew in place of the old µ
given in equation (4) on Table 1 from the previous subsec-
tion. Note that the 15 investment portfolios now correspond
to 15 equally spaced µ values from 6.26%, which corre-
sponds to the vertex of the new EF hyperbola, to 9.86%,
the highest of the new expected returns for the three in-
dex funds. The probability for attaining each goal when
W (0) = $20,000 increases in the range of 3 to 13 percent-
age points due to using µnew . Further, the minimum initial
investment needed to attain all the desired goal probabilities
decreases from $39,400 to $33,600.

On the other hand if we restore µ back to its original values
in equation (4) but now increase the covariances 50% by
multiplying Σ in equation (5) by 1.5, we get the new return
covariance matrix

Σnew =

 0.0026 −0.0026 −0.0032
−0.0026 0.0594 0.0463
−0.0032 0.0463 0.0587

 . (13)

Table 3 shows the effect of using Σnew in place of the old Σ
given in equation (5). The 15 investment portfolios have the
same µ values as in the main examples, since the µ value
for the vertex of the new EF hyperbola is still 5.26%. The
15 corresponding sigma values, however, are all increased,
of course. The probability of attaining each goal when
W (0) = $20,000 generally decreases due to Σnew , and by
as much as seven percentage points, although the probabil-
ity of attaining the first goal increases by four percentage
points. The increased volatility causes the minimum initial
investment needed to attain all the desired goal probabilities
to increase from $39,400 to $42,900.

Because we have used the Markowitz efficient frontier to
generate our 15 investment portfolios, we have allowed the
possibility of short positions in any of the three component

Goal Time Cost Desired Probabilities Probabilities Utilities for
(p = (in (in minimum from pprox if from pprox if pprox if W (0)

partial) years) 1000s) probabilities W (0) = $20K W (0) = $42.9K = $42.9K
1 10 $7 80% 60% 82% 100.00
2 10 $20 90% 53% 92% 319.30
p ” $9 91% 79% 92% 126.38
3 15 $40 60% 12% 63% 462.06
p ” $30 80% 41% 82% 366.54
p ” $20 85% 59% 86% 227.97
p ” $10 86% 74% 86% 86.43
4 30 $90 80% 35% 86% 901.96
p ” $50 95% 64% 96% 473.49

Table 3. The update to the results from Table 1 when we increase
the covariances by 50%; that is, we replace Σ from equation (5)
with Σnew from equation (13).

Portfolio Weights (shorting) Portfolio Weights (no shorting)
Portfolio µ Index 1 Index 2 Index 3 Index 1 Index 2 Index 3

0 5.26% 0.9098 0.0225 0.0677 0.9098 0.0225 0.0677
1 5.52% 0.8500 0.0033 0.1467 0.8500 0.0033 0.1467
2 5.78% 0.7903 -0.0160 0.2257 0.7855 0.0 0.2145
3 6.03% 0.7305 -0.0352 0.3047 0.7201 0.0 0.2799
4 6.29% 0.6707 -0.0545 0.3837 0.6546 0.0 0.3454
5 6.55% 0.6110 -0.0737 0.4628 0.5891 0.0 0.4109
6 6.81% 0.5512 -0.0930 0.5418 0.5237 0.0 0.4763
7 7.06% 0.4915 -0.1122 0.6208 0.4582 0.0 0.5418
8 7.32% 0.4317 -0.1315 0.6998 0.3928 0.0 0.6072
9 7.58% 0.3719 -0.1507 0.7788 0.3273 0.0 0.6727

10 7.83% 0.3122 -0.1700 0.8578 0.2618 0.0 0.7382
11 8.09% 0.2524 -0.1892 0.9368 0.1964 0.0 0.8036
12 8.35% 0.1927 -0.2085 1.0158 0.1309 0.0 0.8691
13 8.61% 0.1329 -0.2277 1.0948 0.0655 0.0 0.9345
14 8.86% 0.0731 -0.2470 1.1738 0.0 0.0 1.0000

Table 4. The optimal weights for the three component indexes in
the 15 investment portfolios if we allow short selling and then if
we do not allow short selling.

index funds. Indeed, for 13 of these portfolios, the second
index fund is optimally shorted, as can be seen in Table 4.
If we wish to restrict ourselves to no short positions, then
for each of the 15 portfolios’ µ values, we can determine
the optimal index fund weights using a constrained numeri-
cal optimizer. The resulting optimal nonnegative portfolio
weights are contained in the last three columns of Table 4.
Even though the weights seem considerably different if we
prohibit short selling, the effect on the resulting 15 portfolio
volatilities is rather small, as can be seen by comparing the
Markowitz efficient frontier with the modified optimal fron-
tier for no short selling seen in Figure 7. This means that
prohibiting short selling has an almost negligible detrimen-
tal effect on Table 1. This is quantified by comparing Table
1 to Table 5, the results when short sales are prohibited. As
an example, the minimum initial investment needed to attain
all the desired goal probabilities increases when short sales
are prohibited, as it must, but only from $39,400 to $39,700.

4.5. Infusions

Our dynamic programming algorithm in Appendix A ac-
commodates any specified external infusions, I(t), over
time. For example, we again consider the example from
Subsection 4.3 that leads to Table 1, but now, in addition
to the initial wealth of W (0) = $20,000, we will add an
infusion stream from, say, a pension. Assume this pension
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Figure 7. The Efficient Frontier (in orange), which allows shorting
each of the three index fund positions, versus the modified frontier
(in blue) if we are restricted from shorting any of the three positions.
Note the small difference between the two frontiers.

Goal Time Cost Desired Probabilities Probabilities Utilities for
(p = (in (in minimum from pprox if from pprox if pprox if W (0)

partial) years) 1000s) probabilities W (0) = $20K W (0) = $39.7K = $39.7K
1 10 $7 80% 58% 80% 100.00
2 10 $20 90% 55% 91% 325.50
p ” $9 91% 82% 91% 129.86
3 15 $40 60% 19% 60% 452.10
p ” $30 80% 44% 82% 369.25
p ” $20 85% 60% 87% 228.69
p ” $10 86% 74% 87% 84.21
4 30 $90 80% 40% 86% 826.94
p ” $50 95% 70% 97% 439.00

Table 5. The update to the results from Table 1 when we prohibit
short selling. Note that the difference from Table 1 is quite small.

Goal Time Cost Desired Probabilities Probabilities Utilities for
(p = (in (in minimum from pprox if from pprox if pprox if W (0)

partial) years) 1000s) probabilities W (0) = $20K W (0) = $33.7K = $33.7K
1 10 $7 80% 57% 83% 100.00
2 10 $20 90% 73% 92% 304.15
p ” $9 91% 86% 92% 123.56
3 15 $40 60% 25% 60% 420.77
p ” $30 80% 55% 81% 337.15
p ” $20 85% 75% 87% 187.96
p ” $10 86% 80% 87% 53.75
4 30 $90 80% 50% 87% 709.78
p ” $50 95% 83% 98% 370.92

Table 6. The update to the results from Table 1 when we add the
effect of the infusions, I(t), from the pension specified in equation
(14).

starts in year 20 by paying $2000, and then increases each
year by a projected inflation rate of 3%; that is,

I(t) =

{
0 if t < 20
2× 1.03(t−20) if t ≥ 20.

(14)

These infusions clearly will increase the optimal probability
of attaining the goals when t ≥ 20, but they also increase
the probability of attaining the goals when t < 20, since
knowledge of the later infusions frees the use of the initial in-
vestments for earlier goals. The beneficial effect of the infu-
sions in equation (14) are shown in Table 6. Note that these
infusions decrease the minimal initial investment needed
to attain all the desired goal probabilities from $39,400 to
$33,700.

Investors, of course, may not be able to find the additional
$39,400 (or $33,700) at t = 0 needed to attain all their
desired goal probabilities. Instead, they may wonder what
minimal constant nominal annual contributions, I(t) = c
(such as payouts from a constant annuity), would allow
them to attain all their desired goal probabilities in place of
the additional upfront contribution. Or they may want the
minimal constant real annual contributions,

I(t) = c× 1.03t, (15)

assuming, as before, a 3% inflation rate.

The method in Subsection 4.1 can easily be adapted to an-
swer this question by replacing the role of W (0) in that
subsection with the role of c in these infusion models. Ap-
plying this adapted method to the example from Subsection
4.3, which leads to Table 1 where W (0) = $20,000, we find
that c = 1.05 is the minimal value in equation (15) needed to
attain all the desired goal probabilities. The corresponding
version of Table 1 is shown in Table 7.

For many investors, these payments over time represent a
more realistic option than investing more money initially.
These single factor models for paying over time, however,
can lead to infusions that are unnecessarily high, as is the
case here. The infusion model in equation (15) is not optimal
for our problem in that c must be high enough to ensure
attaining the early goals’ desired probabilities, but because
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Goal Time Cost Desired Probabilities Probabilities Utilities for
(p = (in (in minimum from pprox if from pprox if pprox if

partial) years) 1000s) probabilities c = 0 c = 1.05 c = 1.05

1 10 $7 80% 56% 81% 100.00
2 10 $20 90% 55% 91% 301.51
p ” $9 91% 82% 91% 96.81
3 15 $40 60% 19% 63% 429.23
p ” $30 80% 44% 82% 337.41
p ” $20 85% 60% 92% 192.04
p ” $10 86% 74% 92% 52.72
4 30 $90 80% 40% 89% 799.40
p ” $50 95% 70% 99% 413.33

Table 7. The update to the results from Table 1 when we add the
effect of infusions over time of the form I(t) = c × 1.03t. The
initial investment, W (0) = $20,000.

it maintains the same infusion in real dollars in later years,
it overfunds the final goals. This can be observed by noting
the unnecessarily high probabilities attained for the t = 30
goals in Table 7, which implies that the infusions after t =
15 can be reduced while still maintaining the desired goal
probabilities.

5. Concluding Comments
This paper introduces a new efficient frontier in the con-
text of goals-based wealth management called the efficient
goals probability frontier (EGPF). Just as the Markowitz
(1952) mean-variance efficient frontier presents the opti-
mized trade-off between risk and return in investment port-
folios, the EGPF presents the optimized trade-offs between
the probabilities of attaining two or more competing goals
that occur at various times with varying costs. While the
Markowitz (1952) mean-variance efficient frontier resides
in a static framework, the EGPF lives in a dynamic opti-
mization framework.

The EGPF enables investors to select the specific set of trade-
offs — which corresponds to a specific point on the EGPF
— that best fits their preferences. Behind each point on the
Markowitz efficient frontier is a static portfolio, whereas
behind each point on the EGPF is a set (i.e., a vector) of
utility values for each of the goals, which corresponds to the
optimal dynamic investment strategy for trading between
investment portfolios over time and the optimal goals-taking
strategy for determining which goals an investor is best off
fulfilling or forgoing. These utility values are intentionally
behind the scenes in the EPGF, since investors intuitively
understand the concept of the probabilities of attaining their
goals, not the utility values assigned to their goals.

In contrast to the Markowitz frontier, the EGPF has limita-
tions, despite the advantages mentioned above: (i) Unlike
the mean-variance efficient frontier, the EGPF is not avail-
able in closed form, because generating it requires numerical
optimization. (ii) Since, for n goals, the EGPF is an n−1 di-
mensional hypersurface in n dimensional probability space,
it is hard to visualize graphically when the number of goals,
n, exceeds three. (iii) Generating the EGPF is computation-

ally heavy, as the multiple goals probability optimization has
to be repeated for all chosen utility weight vectors, which
can take a few minutes of computational time.

The intuitions provided by the EGPF, however, can be ex-
ploited to determine three key results that are not affected by
the limitations in (ii) and (iii) above. Each of these three key
results requires the investor to specify desired probabilities
for attaining each of their goals. The first key result is the
ability to determine a set of attainable probabilities that are
close to the desired probabilities. These attainable proba-
bilities correspond to a specific point on the EPGF for the
initial investment worth. The second key result is the ability
to determine the minimum initial investment necessary to
obtain each of the desired probabilities. The third key result
is the ability to determine the minimum of a one-parameter
family of infusions necessary to obtain each of the desired
probabilities. For example, we can determine the minimum
yearly constant infusions in either nominal dollars or in real
dollars necessary to obtain the desired probabilities. In each
of these three cases, we know the utilities associated with
these key results and can therefore determine the optimal
investment strategy and the optimal goals-taking strategy
to obtain them. Further, these three key results can be de-
termined when we have partial goals, as well as full goals,
such as when an investor is okay with buying cheaper car
models if that is wiser than purchasing the fancy car model
they might ideally want.

In future work, we look to explore the question of delaying
the purchase of a goal to a better year. At the moment, each
goal has a time associated with it, and the investor must pur-
chase the goal (or a partial version of the goal) at that time
or decide to forgo it completely. But investors may wish
instead to simply put off the goal to a later year. Because
the underlying analysis in this paper uses dynamic program-
ming, which evolves information backwards in time, it is
a poor tool to use with delayed goal-taking, which is a
forwards-in-time concept. Recent approaches connected to
machine learning, i.e., deep reinforcement learning, show
hope for making progress with this difficult but important
problem.
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Appendices
A. Algorithm For Dynamic Optimization With

Multiple Goals
Large-scale dynamic optimization with hundreds of goals
over decades is elaborated in Das, Ostrov, Radhakrishnan,
and Srivastav (2021). That paper’s model considers each of
n goals, where, for each goal, we know the time at which
the goal can be fulfilled, the cost of fulfilling the goal, and
the utility that fulfilling a goal provides to the investor. We
also assume that we know all infusions, I(t), such as money
received from Social Security or an annuity, over time. The
intent is to maximize the sum of the utility values from the
fulfilled goals.

This is done by optimizing over both a finite choice of
goals-taking strategies, indexed by k, and a finite choice of
available investment portfolios, indexed by l. A goals-taking
strategy states which goals at a given time the investor will
choose to fulfill versus forgo given their portfolio worth,
W , at that time. Each goals-taking strategy at a time t
has an associated cost, ck(t), representing the sum of the

costs of the goals to be fulfilled according to the strategy.
The available investment portfolios have known expected
returns, µl, and volatilities, σl, which can correspond to
locations on the efficient frontier, such as in Figure 3, or
locations below the frontier.

This model also accommodates partial goals. That is, the
investor may ideally have a goal of purchasing an expensive
car, but also be open to partial goals, meaning less expensive
cars that also bring less utility to the investor.

We briefly summarize the approach here.

A.1. Basic Setup

We solve the multiple goals optimization problem using
dynamic programming on a grid of portfolio wealth and
time, i.e., (W, t). For this paper’s examples, the values of
time, t = 0, 1, 2, ..., T , are in years. The values of W lie in
a range of possible wealth values determined by geometric
Brownian motion, which, for a given goals-taking strategy,
k, and a given portfolio investment, l, is given by:

W (t+ h) = [W (t) + I(t)− ck(t)]e

(
µl−

σ2
l
2

)
h+σl

√
hZ

,
(16)

where h = 1 (year) in the examples in this paper.

We determine [Wmin,Wmax], the possible range for W (t),
by determining the lowest and highest possible values of
W over time through applying equation (16) with, as appro-
priate, the smallest or largest possible values for ck, µl, σl,
and Z, assuming that, realistically, |Z| ≤ 3. We then place
the interior grid points for W between Wmin and Wmax so
that the natural logarithm of their values are equally spaced
apart. This spacing offers greater accuracy and stability for
the solution.

A.2. Transition Probabilities

Define ϕ(z) to be the value of the probability density func-
tion of the standard normal random variable at Z = z.
Assume we start at time period t with Wi(t) + I(t)− ck(t)
dollars and progress a year to the time period t+ 1. Here,
Wi(t) is the wealth amount at node i on the solution grid
at time t. We are interested in computing the probability of
transitioning from Wi(t) to node Wj(t+1), i.e., the wealth
level at node j in the next year. Rearranging equation (16)
with h = 1, we obtain the relative transition probabilities, q̃,
from Wi(t) to Wj(t+ 1):

q̃(Wj(t+ 1)|Wi(t)) =

ϕ

 ln
(

Wj(t+1)
Wi(t)+I(t)−ck(t)

)
−

(
µl − σ2

l

2

)
σl

 . (17)

These are relative because their discrete sum over all the j
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nodes at time t+1 is not necessarily equal to one. Therefore,
we normalize the relative transition probabilities, q̃, to obtain
q, our transition probabilities, which sum to one:

q(Wj(t+ 1)|Wi(t)) =
q̃(Wj(t+ 1)|Wi(t))∑
j q̃(Wj(t+ 1)|Wi(t))

. (18)

The transition probabilities, q, are used for dynamic pro-
gramming and provide the probability of going from the
wealth level Wi(t) at time t to each possible wealth level
Wj(t + 1) at time t + 1. Note that, from equation (17),
the transition probabilities depend on the chosen investment
portfolio, l, at Wi(t).

A.3. Backwards Recursion

We are now ready to solve the dynamic optimization prob-
lem in which we look to maximize the expected utility ag-
gregated over all present and future goals, which we denote
as the value function. More specifically, the value function,
V (Wi(t), t), at time t at a given level of wealth, Wi, on
the grid is the highest possible expected sum of the utilities
from fulfilled goals from time periods ≥ t, given that the
investor starts with wealth Wi at time t. In obtaining the
value function at a grid point, (Wi, t), we must also deter-
mine the optimal goals-taking strategy, k∗, and the optimal
investment strategy, l∗, at this grid point.

To determine V , k∗, and l∗ at each grid point (Wi(t), t), we
apply the Bellman (1952) equation,

V (Wi(t), t) = max
k,l

[
Uk(t)

+
∑
j

V (Wj(t+ 1)) · q(Wj(t+ 1)|Wi(t))

]
, (19)

to solve the dynamic programming problem. The value of
Uk(t) in equation (19) is the combined utility of the goals
that are chosen to be fulfilled at time t using goals-taking
strategy k. The values of k∗ and l∗ are the maximizing k and
l values on the right-hand side of the Bellman equation (19).
The Bellman equation is applied backwards in time: At time
T , for each Wi(T ), we can easily determine V and k∗ (there
is no l∗ at time T ) by selecting the goals-taking strategy k
where Uk is highest, subject to ck ≤ Wi. We can then use
the Bellman equation to determine V , k∗ and l∗ at each grid
point (Wi(T − 1), T − 1) (that is, each wealth level Wi

when t = T − 1), then each grid point (Wi(T − 2), T − 2),
etc., until we finish with each grid point (Wi(0), 0). At the
end, we have V (i, t), k∗(i, t), and l∗(i, t); that is, we have
the value function, the optimal goals-taking strategy, and the
optimal investment portfolio at every (Wi(t), t) grid point.

A.4. Forward Calculation Of Goal Probabilities

Once we have the q(Wj(t+1)|Wi(t)), k∗(i, t), and l∗(i, t),
we can use them to determine the unconditional probability

distribution, p(Wi(t), t), for the investor’s wealth at each
time t. To do this, we evolve the unconditional probability
distribution forward in time, starting with t = 0, then t = 1,
and ending with t = T . This is called the “forward pass”
that delivers the unconditional probability of reaching any
level of wealth at any time, given that we know the investor’s
initial wealth, W0, at time t = 0.

More specifically, at t = 0, p(W0(0), 0) = 1 and
p(Wi(0), 0) = 0 for all Wi ̸= W0. Given that we know
p(Wi(t), t), the unconditional wealth probability distribu-
tion at time t for each i, we can obtain the distribution at
time t+1 by using the following “forwards equation,” which
we can apply to each wealth level Wj :

p(Wj(t+ 1), t+ 1) =∑
i q(Wj(t+ 1)|Wi(t)) · p(Wi(t), t) (20)

for t = 0, 1, 2, . . . , T − 1.

Once this recursive application of equation (20) ends, we
have p(Wi(t), t), the unconditional probability distribution
for every point in the wealth grid at every time period of the
portfolio.

Combining this p(Wi(t), t) with k∗(i, t), we can determine
the probability of fulfilling each goal or partial goal at any
given time t by summing p(Wi(t)) over each Wi node
where the goal is taken according to the optimal goals-taking
strategy k∗(i, t).

A.5. Relationship To The Efficient Goal Probability
Frontier

The system diagram shown in Figure 8 provides a high-level
depiction of the process described here in the backward
recursion and forward pass steps in the algorithm. Overall,
the algorithm maps a set of goals whose times, costs, and
utilities are known to a set of corresponding optimized goal
probabilities. In reality, the times and the costs of the goals
would be known, but not the utilities. One set of utilities
leads to a single point on the EGPF (efficient goal probabil-
ity frontier). By varying the utilities for the goals, we can
trace out the EGPF.

Because the EGPF only displays probabilities, not utilities,
it works in a language investors can understand. Once they
see the trade-offs between the probabilities of attaining their
goals, they can select the best trade-off for their preferences,
meaning the best point for them on the EGPF. This then
specifies the set of utilities, and allows us to compute the
optimal goals-taking strategy and the optimal investment
strategy tailored to the investor’s preferences using this Ap-
pendix’s algorithm.
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Figure 8. Process flow of the algorithm. The investor inputs the
dates for when each of their goals can be fulfilled, along with the
cost of fulfillment. The algorithm then uses possible investment
portfolios based on capital market expectations to compute both the
optimal goals-taking strategy and the optimal investment strategy
by solving the Belllman equation for dynamic programming. These
optimal choices are then injected into the forward pass of the
algorithm to get one point on the EGPF. By rerunning this for a
selection of utility sets for the goals, the full EGPF is generated.

Page 17 of 17


