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Lifestyle, Longevity, and Legacy Risks
with Annuities in Retirement Portfolio Decumulation

March 5, 2023

Abstract

Investors planning for retirement balance three “L”s: (1) lifestyle risk, hoping to maintain
a consumption stream that provides a chosen standard of living, (2) longevity risk, hoping to
remain solvent throughout their lifetime, and (3) legacy risk, hoping to leave a bequest to
their heirs. We solve this multiple objective problem for a wide range of consumption and
annuitization scenarios. For each scenario we apply dynamic programming to optimally evolve
the investments in the non-annuitized portion of the portfolio so as to minimize longevity
risk. Our dynamic programming approach has the advantages of (1) generating results that
are far superior to what standard Monte Carlo methods, static portfolios, and target date
fund glide paths can provide, and (2) not requiring utility functions, which are hard to specify
for individuals. We show that investors who want to minimize their longevity and legacy
risk and who are unable to annuitize their full consumption stream are best off avoiding
even partial annuitization of their portfolio. For investors who are able to annuitize their full
consumption stream, we quantify their longevity versus legacy risk trade-offs, enabling them
to select the best annuity for their needs.

Highlights/Key Takeaways:

1. Reflecting a retiree’s perspective, we consider the effect of choosing an annuity and
choosing an annual consumption rate on the probability of remaining solvent during
the retiree’s lifetime and the expected bequest when they pass.

2. Dynamic programming is used to trade investments in the non-annuitized portion of
the portfolio so as to optimize the retiree’s solvency probability. Unlike traditional
dynamic programming, probability, not utility, is optimized.

3. We find over a wide variety of annuity features that retirees increase their solvency
probability the more they annuitize only if they are able to annuitize all their consumption
needs. Otherwise, their solvency probability is optimized by eschewing annuities
completely.

Keywords: annuities, retirement planning, longevity risk, bequest, dynamic programming

JEL Codes: G11, G41, G51
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1 Introduction

“Andre-Francois Raffray thought he had a great deal 30 years ago: He would pay a
90-year-old woman 2,500 francs (about $500) a month until she died, then move into
her grand apartment in a town Vincent van Gogh once roamed.

But this Christmas, Mr. Raffray died at age 77, having laid out the equivalent of more
than $184,000 for an apartment he never got to live in.

On the same day, Jeanne Calment, now listed in the Guinness Book of Records as the
world’s oldest person at 120, dined on foie gras, duck thighs, cheese and chocolate
cake at her nursing home near the sought-after apartment in Arles, northwest of
Marseilles in the south of France.

She need not worry about losing income. Although the amount Mr. Raffray already
paid is more than twice the apartment’s current market value, his widow is obligated
to keep sending that monthly check. If Mrs. Calment outlives her, too, then the
Raffray children and grandchildren will have to pay.

‘In life, one sometimes makes bad deals,’ Mrs. Calment said on her birthday last
Feb. 21.”

— The New York Times, December 29, 1995. (https://tinyurl.com/mj2x6z82)

Jeanne Calment passed away in Arles, on August 4, 1997, at the age of 122. While she was
one of the oldest people who ever lived, the basic issues and concerns she had pertain to most
retirees. Like Jeanne Calment, most retirees worry about outliving their savings, known in the
financial planning community as “longevity risk.”

There are reasons for retirees to be more concerned about longevity risk than before. Although
most investors will live nowhere near as long as Jeanne Calment, recent advances in medicine
have increased life expectancy. For example, in the United States, life expectancy has increased
from 73.7 years in 1980 to 77.3 years in 20201. Further, longevity risk has been exacerbated in
the United States by a strong shift from employers away from defined benefit plans, like pensions,
in favor of 401(k)s and Roth accounts (Department of Labor, 2019). This means that other than
the small income Social Security provides, fewer Americans have guaranteed sources of income for
life — like the Raffrays agreed to provide Jeanne Calment — even though they are living longer.

Therefore, it is increasingly important that financial planners, financial advisers, and insurance
providers seek ways to hedge these newly heightened longevity risks. Annuities, especially as a
replacement for the dwindling presence of pensions, can play an important role in this hedging
process. This paper provides a dynamic programming framework for helping an investor choose the
best annuity (amount, timing, and type) given a specified consumption rate during the investor’s
(uncertain) lifetime.

The dynamic programming approach we present reflects a different perspective from traditional
dynamic programming approaches in that we use dynamic programming to evolve the non-
annuitized investments in the investor’s portfolio to maximize the probability of lifelong solvency,

1https://www.healthsystemtracker.org/chart-collection/u-s-life-expectancy-compare-countries/
#item-life-expectancy-september-2021-update-chart-1. Comparable countries have higher life expectan-
cies, with an increase from 74.5 years in 1980 to 82.1 years in 2020. Life expectancy peaked in 2019 at 78.9 years
for the US and 82.6 years for comparable countries with the 2020 Covid pandemic unsurprisingly resulting in a
downtick in longevity.
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reflecting the same priority as the annuity. In contrast, traditional dynamic programming approaches
look to maximize either the sum of the expected annual utility of consumption during the retiree’s
lifetime or the expected utility of the bequest, or a weighted combination of the two. In our
perspective, the investor is more likely to be concerned about maximizing their probability of
remaining solvent throughout their lifetime; that is, minimizing their longevity risk. This is more
likely to reflect the priorities of an investor, especially one who is considering annuities, in that
they are generally more concerned with staying solvent while maintaining a reasonable standard of
living than they are with spending every dollar they can during their lifetime or prioritizing their
heirs’ bequest over their own needs.

This leads to the central questions of our paper: Given that the non-annuitized portion of the
investor’s portfolio is optimized to keep the investor solvent, is the investor more likely to stay
solvent throughout their lifetime if (a) they put all of their portfolio into an annuity, (b) they put
none of their portfolio into an annuity, or (c) they put a specific fraction of their portfolio into an
annuity? And if the investor does put some or all of their portfolio into an annuity, how much
legacy risk does the annuity generate? — or more specifically, what quantitative decrease does
the annuity induce in the expected present value of the investor’s bequest?

A fortunate byproduct of our prioritizing solvency in the non-annuitized portion of the portfolio
is the considerable advantage of no longer requiring that utility functions be specified for annual
consumption nor for bequests, which is notoriously difficult to accurately determine for individual
investors. Nor do we need to make decisions for the investor regarding how to weigh the utility of
consumption during the retiree’s lifetime versus the utility of their bequest. Instead of maximizing
the sum of the expected utility of annual consumption, we address lifestyle risk, that is, the
concern of choosing the wrong annual consumption level, by having the investor select from an
array of annual consumption levels that are constant over time in real dollars throughout the
investor’s lifetime. The investor can also select from a range of possible annuity choices to partially
address these consumption needs. We then dynamically optimize the non-annuitized portion of
the investor’s wealth so as to minimize longevity risk. This generates a range of corresponding
outcomes depicting (a) the (minimized) longevity risk by showing the (maximized) probability
of remaining solvent throughout the (unknown) lifetime of the investor and (b) the legacy risk,
which is measured by the expected bequest to the investor’s heirs in present valued dollars.

The main results of the paper are:

1. Our approach allows investors a method of balancing lifestyle, longevity, and legacy risks
that better reflects the way most retirees approach this balancing act. Specifically, it allows
them to consider choosing a lifestyle (annual consumption) and an annuity, and then seeing
the effect on the minimized longevity risk and the corresponding legacy risk. This enables
investors to choose both a lifestyle and an annuity that best fits their longevity and legacy
risk preferences.

2. By using dynamic programming, we are able to take advantage of optimal management of
the non-annuitized portion of the retiree’s wealth, rather than using Monte Carlo simulation
over predetermined portfolio strategies, which is guaranteed not to produce a better result
than our approach. Further, because we focus on minimizing longevity risk, our results
are not dependent on significant and difficult utility function assumptions inherent in the
traditional dynamic programming approaches that seek to maximize utility.

3. The results of our approach and analysis suggest that annuities are less desirable for a
large class of investors than most utility maximization approaches suggest. Specifically,
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for investors who do not have enough money to purchase an annuity that will cover all
their consumption needs, our results show that completely eschewing annuities is actually
the best strategy. In these cases, the presence of annuities not only reduces the expected
bequest, which is to be expected, but also reduces the investor’s solvency probability. This
result holds under the wide variety of annuities we consider, including changing the inflation
adjustment of the annuity payouts, changing the means and volatilities of the investments
available in the non-annuitized portion of the portfolio, and deferring the start of annuity
payments.

4. In contrast however, we find that investors who are able to annuitize all of their consumption
needs are best off doing so, and if they are unable to completely annuitize their consumption
needs, then they are best off annuitizing as much as possible, since the more they annuitize,
the higher their probability solvency becomes, at least with annuities whose payouts start
immediately. That said, if the investor decides that losing some probability solvency is
worthwhile to create a higher expected bequest, we provide a number of tables that allow
them to do this in the way that best fits their needs. Specifically, these tables help the
investor select annuity characteristics like the potential deferral of starting payouts, potential
inflation adjustments to payouts once they start, and potentially having a bequest clause
to give some protection to heirs if the investor passes away early, so the investor’s chosen
annuity best suits their desire to balance longevity and legacy risk given their chosen lifestyle.
For investors who are able to obtain a 100% solvency probability, these tables enable locating
the annuity that maximizes their expected bequest, meaning their legacy risk is minimized
subject to having no longevity risk.

We note that the definition of “consumption needs” in this paper is investor dependent. That is,
an investor might define consumption needs as what they would ideally like to spend each year, or
what they project they will likely spend each year, or what they believe they must spend each year
to maintain a minimally acceptable lifestyle. Our results must therefore be interpreted in light of
which definition the investor wishes to consider.

The paper proceeds as follows: Section 2 briefly summarizes some previous literature on
annuities in light of our approach. Section 3 presents the framework for our approach and analysis.
Section 4 presents several illustrative results and their implications. We conclude in Section 5.

2 Previous Literature

In this section, we look at some of the previous approaches to annuities in the context of the
approach we take in this paper. There is a considerable body of research on annuities and how
best to use them. While no source could cover all the work on the subject, Richards et al. (2004)
and Milevsky (2013) offer excellent reviews of the nature of longevity risk and the arguments in
favor of various types of annuities.

Annuities are optimal for an investor with fixed living costs and no bequest motive (Yaari,
1965), although Horneff et al. (2007) offers a dissenting view that advocates for variable annuities
and annuitization in a gradual manner. Annuities have disadvantages. They generally reduce
bequests substantially (that is, they create more legacy risk), and they also pose liquidity risk as
the cash inflows from annuities do not always match the uncertain cash outflows that arise over
the course of life. The more annuities an investor purchases, the more they fail to realize gains
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from good years in the market that can build a financial buffer for later years. Further, provider
risk must be taken into account, especially over a very long horizon.

On the other hand, a pure investment portfolio approach to retirement with no fail-safe income
sources like annuities may incur greater longevity risk due to its volatility. This can especially
be the case if the investor relies on simple rules of thumb, such as the 4% rule in which the
investor consumes 4% of the worth of their portfolio in the first year and increases this amount by
inflation in each successive year (Bengen, 2004; Cooley et al., 1998; Finke et al., 2013), or if the
investor relies on target-date funds, whose glide paths may not be optimal (Guillemette, 2017). In
this paper, we seek to minimize the inherent risks in an investment portfolio by using dynamic
programming to optimally change investments each year so that this non-annuitized portion of the
investor’s portfolio maximizes the chance of the investor staying solvent throughout their lifetime.
Further, this optimization takes into account the effect of an annuity if there is one.

Our dynamic programming strategy dynamically hedges longevity risk with evolution models
that best fit investment portfolios containing instruments like stocks and bonds. Static hedging
of longevity risk, on the other hand, has been considered with many instruments, including (1)
survivor bonds (Blake and Burrows, 2001), (2) longevity bonds, swaps, and derivatives, where
the payouts are indexed to mortality (Ngai and Sherris, 2011), (3) forward-start inflation indexed
securities, see SELFIES (Merton and Muralidhar, 2017), and (4) retirement bonds, such as those
designed in Martellini et al. (2019) and Martellini et al. (2020). These approaches are generally
evaluated via forward simulations, whereas dynamic programming is approached via backward
recursion, which is deterministic and computationally efficient, in addition to generating optimal
dynamic, instead of static, strategies.

A comparison of optimal decumulation (that is, withdrawal rate) strategies when there is
no bequest motive is undertaken in Blanchett et al. (2012) using forward simulation, assuming
a power law (i.e., constant relative risk aversion) utility function to measure the value of the
annual withdrawals. In contrast, we favor a preset consumption stream, where risk is measured by
insolvency probability. That is, because we take a goals-based perspective, we are not interested
in optimizing the utility of the money taken from the portfolio. We are instead interested in
optimizing the probability that the investor remains solvent while achieving their consumption
stream goal, which does not rely on specifying a utility function.

Regarding more common decumulation strategies, a subcase of our formulation can conform
to the 4% rule (Bengen, 2004) with a projected rate of inflation, although it improves on the 4%
rule in key ways, including optimally dynamically changing investments to minimize longevity risk,
as well as optimally incorporating annuities, which the 4% rule does not address. Another common
decumulation strategy is simply to follow the IRS-imposed required minimum distributions (RMDs),
which Blanchett et al. (2012) and Blanchett (2013) find works better than the 4% rule. The
RMD strategy has no longevity risk, but it has considerable lifestyle risk, specifying considerable
changes to an investor’s consumption stream over the long term and also, when there are market
changes, in the short term. The RMD method is not a goals oriented strategy, nor, as with the
4% rule, is it designed to work with, or say anything about, annuities.

We restrict ourselves in this paper to fixed annuities (that is, annuities with deterministic payouts
while the investor is alive). A more detailed analysis would also allow for the possibility of variable
annuities2 (where stochastic payout amounts depend on an underlying market). These variable
annuities can also come with a guaranteed lifetime withdrawal benefit (GLWB) implemented

2https://www.investopedia.com/terms/v/variableannuity.asp
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through a guaranteed minimum withdrawal benefit (GMWB) clause.3 The GMWB rider enables
retirees to take more risk in their portfolio accounts to retain some market upside, though there
will be correlation between the annuity portfolio and the investor’s own investment portfolio, so
that this upside may not be available when it is most needed.

In this paper, the decision to purchase a fixed annuity is made strictly at the current time.
The investor may choose a single-premium immediate annuity (SPIA), where the payouts begin
immediately, or they may choose a deferred immediate annuity (DIA)4 (such as a QLAC), where
the initial payout is deferred for a specified number of years. The value of a DIA depends on the
long end of the yield curve, so a full analysis of a DIA would need to consider the yield curve’s
stochasticity, as undertaken in Huang et al. (2017) in a continuous-time utility framework.

Our requirement that the annuity decision be made at the current time ignores the fact that
deferring the decision to annuitize also has value, considered in Milevsky (1998) and Milevsky and
Young (2001). We leave adaptation of our dynamic programming approach to consider this real
option and understand how much value it has to later work. This real option is mostly ignored
in the literature but is important to consider as its value depends on medical advancements
countervailed by increasing risks in the labor market around human capital, and requires a much
more detailed treatment in a follow-up paper.

In this paper, we explore an algorithm for determining the best mix of annuities and a
dynamically rebalanced portfolio so as to achieve a balance between managing longevity risk while
maintaining a healthy standard of living, and giving due consideration to the bequest motive (see
arguments for a smaller SPIA in the mix by Kitces and Pfau (2013)). By assessing the best mix
at different consumption levels, we enable the investor to make knowledgeable decisions about the
size and other characteristics of the annuity they decide to purchase, including possible deferral of
the initial annuity payout, possible inflation adjustments to the annuity’s payouts once they start,
and possible inclusion of bequest clauses to protect heirs if the investor passes away early. These
decisions are critical because the annuity locks in the investor once and for all; it is a decision
that is not reversible, nor one that is easily unwound through portfolio rebalancing. Given that
the aging investor faces market risk, longevity risk, and inflation risk, retirement planning with
annuities is a long-horizon problem, calling for careful analysis. For a good overview of several
issues related to longevity risk and financial planning, see Finke and Blanchett (2016).

Our paper complements existing work on annuities by considering in more detail the trade-offs
between investor solvency and bequest size, giving greater attention to legacy motives than in
the extant literature. Further, it shows how we can take advantage of recent techniques for
rebalancing investment portfolios so that the non-annuitized portion of the portfolio can optimally
complement annuity purchases, instead of working separately from them.

3 Details Of The Model

In our model, two decisions are initially made:
3https://www.investopedia.com/terms/g/glwb.asp
4DIAs are becoming more popular since a recent decision by the US Treasury department (July 2014) to

permit the purchase of DIAs inside tax-sheltered retirement plans and to exempt them from certain distributional
requirements at age 72, as long as the annuity commences payouts prior to age 85, see Huang et al. (2017).
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3.1 The Consumption Stream

The first decision is choosing an annual consumption stream for the investor over their lifetime,
which we will also refer to as a “standard of living,” a “lifestyle,” or, especially in Section 4’s
tables, “living expenses.” While the consumption stream can be any desired function of time, our
examples in Section 4 will generally let this be a given initial amount that is then adjusted by a
2% inflation rate in future years, i.e., a fixed amount in real dollars. We note that the 4% rule
(Bengen, 2004) is an example of this model of a fixed amount in real dollars.

3.2 The Annuitized Portion Of The Portfolio

The second decision that is initially made is choosing which annuity the investor wants to purchase.
There are a plethora of annuities that can be selected due to a wide range of available features.
The typical questions that must be answered to determine these features are: (1) Is the annuity
payout adjusted for inflation? If so, is the rate of increase fixed in advance? Or is it indexed to
CPI? Is it capped? (2) Is the annuity a SPIA or a DIA? (3) Is there a bequest clause? If so, what
is its nature? (4) Is there a GLWB clause? (5) Is the annuity fixed term or mortality based? (6)
Do we have a variable annuity or a fixed annuity?

In this paper we will consider annuities with the following features: (1) We assume a fixed
rate of inflation, which we may or may not use. When it is used, we will set it to be 2%, so that
it matches the inflation rate assumed for the consumption stream. We do not examine more
complicated models for inflation in this paper, although we could easily expand our model to,
say, a constant inflation rate that differs from the consumption stream’s rate of inflation. (2)
We will consider both SPIA and a variety of DIA models. (3) We will consider the effect of
selecting one of the most common bequest clauses, which pays the heirs a lump sum equal to
any positive difference between the nominal price paid to purchase the annuity and the nominal
payouts made prior to the annuity holder passing away. (4) While our model can be very easily
altered to accommodate a GLWB clause, we will not explore it here. (5) Similarly, while our model
can also be very easily altered to accommodate annuities with a fixed term, we will not explore it
here. (6) We will only consider fixed annuities; variable annuities require a more complex analysis,
which we leave to subsequent papers.

We will assume that we know the cost of each annuity and that we know how much each
annuity pays out each year until the investor passes away. The date of the investor passing,
however, is unknown, so we must use mortality tables to determine the likelihood of the investor’s
passing each year.5

3.3 The Non-Annuitized Portion Of The Portfolio

Once a consumption stream and an annuity have been selected, we are able to compute the
remaining consumption needs, as well as the initial size of the non-annuitized portion of the
portfolio that must address these remaining consumption needs. We note that if the annuity
payment is bigger than the consumption, then the difference will become an infusion into the
non-annuitized portion of the portfolio. We are easily able to accommodate any additional
projected external infusions over time into the non-annuitized portion of the portfolio, such as

5Alternatively, see Huang et al. (2017) for a fascinating analysis of thinking about mortality as a function of
stochastic biological time.
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Social Security income, although, in the interests of simplicity, this paper’s examples do not
explore this. (This can be accommodated by simply altering C(t) in Appendix A to reflect these
external infusions.)

With the remaining consumption needs and infusions known, we can use the backwards
recursion method of dynamic programming (Bellman, 1952) to determine the optimal strategy for
the non-annuitized portion of the portfolio. Specifically, we determine at each time and wealth
value, the optimal investment portfolio that maximizes the investor’s solvency probability (i.e.,
minimizes longevity risk) in light of the fact that we can change the investment portfolio in each
future year.

The details of the solution to this dynamic programming algorithm are given in Appendix
A, which follows the approaches used in Das et al. (2020) and Das et al. (2021). As a quick
summary, the optimal dynamic portfolio problem is solved using backward recursion on a state
space comprising wealth and time. The optimal investment portfolio strategy at each point in the
state space is determined from a set of candidate investment portfolios that generally lie on the
efficient frontier, but are not restricted to this. We note that the optimization takes into account
the effect of payouts from the annuity, possible infusions, planned annual expenses, and mortality
risk.

The fact that our optimization takes all of these factors into account and is optimizing solvency
can have a huge positive impact on the investor’s outcome. In contrast, target date funds only
take the age of the investor into account. Section 4.3.5 of Das et al. (2020) compares our dynamic
programming approach to a common target date fund glide path for a 50 year old investor with
$100,000 who contributes $15,000 real dollars to their nest egg each year until they retire at age
65, after which they consume $50,000 real dollars in each of the next 15 years. If the investor
chooses the target date fund, they have a 26.6% chance of remaining solvent, but if they optimize
their investment portfolio choice by using our dynamic programming strategy, the chance of
remaining solvent becomes 58.6%, a considerable improvement.

Once we know the optimal portfolio investment strategy, it is straightforward to determine the
probability distribution for each of the wealth states (including bankruptcy) occurring in any given
year. Combining this knowledge with the mortality tables allows us to compute the expected
present value of the bequest given a consumption stream rate and a specific annuity.

3.4 Determining The Best Annuity and Consumption Stream

Given that both the annuitized and the non-annuitized portions of the portfolio are designed to
keep the investor solvent, it is unclear what allocation between these two portions will best attain
the investor’s solvency goal. For typical market costs for annuities, is it optimal to annuitize all,
none, or a specific fraction of the investor’s portfolio? This is one of the key questions we look to
answer in this paper.

If the answer is that it is best to annuitize some or all the investor’s portfolio to maximize
solvency probability, the investor may still, as a secondary consideration, want to know how much
the annuity decreases the expected present value of their bequest. For example, an investor may
find that by purchasing a large annuity, they have a 99.8% chance of remaining solvent for their
lifetime, but if they choose an annuity that is only 80% as large, they will still have a 99.7%
chance of remaining solvent, but their expected bequest will increase by $40,000. Which size
annuity they should select is a matter of personal preference, but it should be unarguable that the
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investor should be able to see these trade-offs so they are able to make an informed choice.

Therefore, we will present both the solvency probabilities and the expected present value of the
bequest for a variety of annuity choices and consumption stream rates. This allows the investor
to knowledgeably choose the consumption stream rate and annuity that best fits their desired
outcomes.6 Because these choices are inherently individual, they are choosing from a Pareto
frontier that we call the “solvency-bequest frontier.” This choice enables an investor to balance
the trade-offs between lifestyle risk, longevity risk, and legacy risk in a manner that is optimized
where it can be and personalized where it must be.

The next section details examples of these solvency-bequest frontiers and their implications.

4 Examples And Analysis Of Results

4.1 External inputs

We detail our market assumptions for the cost of annuities, for the investment portfolios available
in the non-annuitized portion of the portfolio, and for mortality:

Annuity costs: We consider typical rates for purchasing annuities in Table 1. For each of Table
1’s three panels, the investor is assumed to be 65 years old and can choose an annuity
where the payouts start immediately (an SPIA) or where the first payout is deferred until
the investor is 70, 75, 80, or 85 years old (a DIA). Payouts, once started, continue annually
until the investor passes away. The top panel is for annuities whose initial payments are
increased each year by a 2% inflation rate. So, for example, if the investor pays $250,000 for
a deferred annuity that starts at age 70, they will receive the value in the table, $16,891, the
year they are 70, then receive $16,891×1.02 when they are 71, $16,891×(1.02)2 when they
are 72, etc. The middle panel is for annuities whose initial payments stay constant, so the
value in the table is the payment received every year once the annuity payments start. The
bottom panel is for annuities that, as in the top panel, have initial payments that increase
each year by a 2% inflation rate. Additionally, these annuities contain a bequest clause that
returns to the heirs any positive difference between the upfront nominal lump sum paid to
purchase the annuity and the nominal payouts made prior to the investor’s passing away.

Note, as expected, that the payout amounts are proportional to the cost of the annuity.
That is, within each of the three panels, the payout from the annuity costing $500,000 is
twice the payout from the annuity costing $250,000; the payout from the annuity costing
$750,000 is thrice the payout from the annuity costing $250,000; and so on.

6We note that while the annuity has the further disadvantage of inflexibility in regards to sudden spending
needs, we will not consider this further due to the difficulty in quantifying this disadvantage. Similarly, we do not
consider the fact that as the investor gets closer to bankruptcy, they might look to decrease their consumption,
since the amount and negative effect of this potential decrease is also inherently difficult to quantify.
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Inflation adjustment = 2% | Bequest refund = No
Annuity Start Age

Cost 65 70 75 80 85

$2,000,000 $93,230 $135,130 $210,370 $352,520 $664,160
$1,750,000 $81,576 $118,239 $184,074 $308,455 $581,140
$1,500,000 $69,923 $101,348 $157,778 $264,390 $498,120
$1,250,000 $58,269 $84,456 $131,481 $220,325 $415,100
$1,000,000 $46,615 $67,565 $105,185 $176,260 $332,080

$750,000 $34,961 $50,674 $78,889 $132,195 $249,060
$500,000 $23,308 $33,783 $52,593 $88,130 $166,040
$250,000 $11,654 $16,891 $26,296 $44,065 $83,020

$0 $0 $0 $0 $0 $0

Inflation adjustment = none | Bequest refund = No
Annuity Start Age

Cost 65 70 75 80 85

$2,000,000 $115,820 $163,520 $247,290 $402,860 $740,360
$1,750,000 $101,343 $143,080 $216,379 $352,503 $647,815
$1,500,000 $86,865 $122,640 $185,468 $302,145 $555,270
$1,250,000 $72,388 $102,200 $154,556 $251,788 $462,725
$1,000,000 $57,910 $81,760 $123,645 $201,430 $370,180

$750,000 $43,433 $61,320 $92,734 $151,073 $277,635
$500,000 $28,955 $40,880 $61,823 $100,715 $185,090
$250,000 $14,478 $20,440 $30,911 $50,358 $92,545

$0 $0 $0 $0 $0 $0

Inflation adjustment = 2% | Bequest refund = Yes
Annuity Start Age

Cost 65 70 75 80 85

$2,000,000 $81,540 $119,930 $173,920 $267,790 $465,610
$1,750,000 $71,348 $104,939 $152,180 $234,316 $407,409
$1,500,000 $61,155 $89,948 $130,440 $200,843 $349,208
$1,250,000 $50,963 $74,956 $108,700 $167,369 $291,006
$1,000,000 $40,770 $59,965 $86,960 $133,895 $232,805

$750,000 $30,578 $44,974 $65,220 $100,421 $174,604
$500,000 $20,385 $29,983 $43,480 $66,948 $116,403
$250,000 $10,193 $14,991 $21,740 $33,474 $58,201

$0 $0 $0 $0 $0 $0

Table 1: Initial annual annuity payouts for an investor who is currently 65 years old and purchases an
annuity now, given a variety of possible times for the payouts to start and a variety of levels for the cost
of the annuity purchase. (i) The annuities in the top panel have initial payouts that grow by 2% each year.
(ii) The annuities in the middle panel have payouts that do not change over time, so they have a larger
initial payout than in the top panel. (iii) The bottom panel has the lowest initial payouts, since the initial
payouts not only grow at 2%, as in the top panel, but there is also a bequest refund clause; specifically,
the annuity refunds to the heirs anything left from the nominal cost of the annuity after deducting the
nominal value of all payouts made prior to the investor’s passing.
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Investment Portfolio Options In The Non-Annuitized Portion Of The Portofolio: We
will assume for our examples that each possible investment portfolio evolves by geometric
Brownian motion (although any Markovian distribution is just as easily accommodated).
Given this, we only need to specify the mean (µ) and volatility (σ) of each investment
portfolio’s returns. Preferably these (µ, σ) pairs are on the efficient frontier, although this is
not required. We will assume the investor has access to each of the 15 investment portfolio
options contained in Table 2. The dynamic programming strategy discussed in Subsection
3.3 allows us to optimally switch between these 15 investment portfolios every year so as
to optimize the investor’s probability of remaining solvent. Note that these 15 investment
portfolios are quite conservative: the most aggressive has a µ of only 5.28%. This can make
the annuity more attractive by comparison. We will later look at the effect of increasing the
µ values or the σ values by a given amount in all 15 investment portfolios. This will provide
some understanding for how robust our results are to errors in forecasting µ and σ.

Portfolio 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

µ (%) 2.64 2.83 3.02 3.21 3.40 3.59 3.77 3.96 4.15 4.34 4.53 4.72 4.90 5.09 5.28
σ (%) 3.70 4.11 4.63 5.22 5.86 6.53 7.23 7.95 8.68 9.43 10.18 10.94 11.71 12.47 13.25

Table 2: The expected returns (µ) and volatilities (σ) for 15 possible investment portfolios.

Mortality Tables: Recall from Section 3 that we need mortality tables both to optimize the
investment portfolio strategy in the non-annuitized portion of the portfolio and to determine
the expected present value of the bequest. In our examples, we have used the unisex
mortality tables published by the Internal Revenue Service, which are shown in Figure 1.
These give the conditional probability of mortality, meaning the probability of dying in the
next year conditioned on being alive at the beginning of the year. Due to the rarity of
individuals living past the age of 115, these tables assume the conditional probability of
mortality is 0.5 between the ages of 115 and 120. Because living past 120 is even more
rare, the table assumes no one lives past the age of 120 — despite occasional exceptional
cases like Jeanne Calment from the Introduction!

4.2 Investor-specific inputs

We assume the following investor-specific information for the remaining inputs that are needed to
run our examples:

Age: We assume the investor is currently 65 years old to fit with the annuity costs presented in
the previous subsection.

Initial wealth: We assume the investor currently has $2,000,000. They can choose to initially
allocate all, some, or none of this to an annuity.

Consumption Rates: The investor will choose from a set of eight discrete consumption rates
that range from $50,000 to $120,000 in steps of $10,000. These consumption rates are the
initial annual amounts. They will increase by 2% each year regardless of the annuity chosen
by the investor, although, obviously, if the investor chooses an annuity that increases its
payouts by 2% each year, that will match the consumption increase rate.
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Figure 1: Mortality as a function of age. The mortality probabilities in the graph are conditional, i.e.,
they give the probability of passing away in a given year conditioned on being alive at the beginning of
the year. The values shown are based on a unisex table from the Internal Revenue Service (IRS); see
https://www.irs.gov/pub/irs-drop/n-19-26.pdf. The table assumes that the maximum age is 120 years.

Annuity Choice: The investor will only consider the annuities presented in Table 1. Note that
these are all priced for a 65 year old, so if the investor purchases an annuity, it will be now,
not later, even if the annuity they purchase now may be a DIA whose payouts do not start
until later.

4.3 Illustrative Examples

4.3.1 Our Base Case Annuities: Payments Start Immediately, Payouts Grow At 2%
Each Year, No Bequest Clause

Our base case annuities correspond to the first column of the top panel in Table 1. That is, a
65 year old retiree selects an annuity to purchase at one of the variety of annuity prices in the
table and begins to receive payouts from this annuity immediately (an SPIA). The initial payout
amounts shown in Table 1 grow each year by 2% and continue until the retiree passes away. When
the retiree passes away, the annuity pays nothing to the heirs. In later subsections, we will see
the effect on these base case annuities if (1) we keep the payouts constant instead of increasing
them by 2% each year, or (2) we add a bequest clause that pays the heirs any money left over
from the nominal initial cost of the annuity after removing the nominal cost of the payouts made
before the retiree passed away, or (3) for each of the 15 possible investment portfolios shown in
Table 2, the expected return is increased by 2 percentage points or the volatility is increased by
4 percentage points, representing errors in projecting µ or σ, or (4) we defer payouts from the
annuity until the retiree is 70, 75, 80, or 85.

For each of our base case annuities, we see in Figure 3 both the solvency and the expected
present value of the bequest given various consumption rates. The upper panel in the figure,
which generally will not qualitatively change much in later subsections, allows us to answer the key
question we posed earlier: Should we annuitize all, none, or a specific fraction of the investor’s
portfolio if we want to optimize the probability of lifetime solvency for the investor?
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Table 3: Solvency-bequest trade-offs for our base case annuities. In this example, the investor is 65
years old, has a current wealth of $2 million, and buys an annuity whose payouts being immediately
and then increase by 2% each year. The figure shows the solvency probability in the top panel and the
expected present value of the bequest in the bottom panel for a range of annuity prices and for a range of
living expenses (i.e., consumption rates) that, like the payouts, increase by 2% each year. The annuities
presented here do not include a bequest refund when the investor passes away.

The top panel in Table 3 shows that if the retiree has initial living expenses that are $90,000
or lower, the investor should annuitize as much of their living expenses as possible. However, if
the retiree has initial living expenses that are $100,000 or higher, the investor should annuitize
none of their portfolio. In particular, it is optimal to annuitize all or none of the portfolio, never
some of it.

Why does the behavior change between $90,000 and $100,000? Since both the annuity payouts
and the consumption rates are assumed to increase at exactly 2%, we actually know the exact
number at which it changes: $93,230, the annual payout generated at age 65 if the entire portfolio
is annuitized, as shown in the upper left-hand corner of the table in the top panel of Table 1. Any
consumption rate below this number is completely addressed by full annuitization, while any rate
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above this cannot be completely addressed by full annuitization and causes the retiree to become
insolvent in their first year, which is reflected by the top row of the Solvency Probability panel in
Table 3, where the solvency probability is either 100% or 0%.

What is more interesting is that this pattern holds when the cost of the annuity is reduced.
That is, if the retiree is capable of annuitizing all of their expenses, then the bigger the annuity,
the better, but if they are not, then the smaller the annuity, the better.

This observation has important implications for advising retirees considering annuities. Franco
Modigliani, in his Nobel Prize acceptance lecture,7 discussed the apparent low levels of annuitization
in the US. He wrote—

“Indeed, in view of the practical impossibility of having negative net worth, people
tend to die with some wealth, unless they can manage to put all their retirement
reserves into life annuities. However, it is a well known fact that annuity contracts,
other than in the form of group insurance through pension systems, are extremely
rare. Why this should be so is a subject of considerable current interest and debate
(see, e.g., Friedman and Warshawsky (1985a); Friedman and Warshawsky (1985b)).”

This rarity of individual annuity contracts, which continues to today,8 is known as the “annuitization
puzzle.” Experts in behavioral economics and finance have looked to explain this phenomenon.
See, for example, Hu and Scott (2007) and Benartzi et al. (2011).

Our results, however, show that there is a rational explanation in addition to the behavioral
explanations for eschewing annuities for the large class of investors with considerable consumption
needs. For these investors, annuities not only reduce their bequest (as expected but now quantified
in the lower panel of Table 1), but also their probability of remaining solvent. Annuitization is
therefore best considered by the well-off investor, not the poor investor, at least if the investor’s
goal is to optimize their probability of remaining solvent given fixed consumption rates.

While increased annuitization increases the solvency probability for well-off investors, they
must balance this with the fact that increased annuitization also decreases the expected present
value of their bequest. This balancing is made possible by using both panels in Table 3.

For example, an investor with initial living expenses of $70,000 is guaranteed to stay solvent
if they annuitize all their spending, which would cost $1,501,652. (This cost is determined by
interpolating the results for the annuities that cost $1,500,000 and $1,750,000 in the first column
of the top panel in Table 1.) But by looking at the $70,000 columns in both panels of Table 3,
we realize that if the investor instead purchased an annuity that only cost $1,250,000, they would
still have a 100.0% solvency probability, but would gain a little more than $21,000 in the expected
present value of their bequest. Or, if they reduced the annuity to one that only cost $1,000,000
instead of $1,501,652, they would still maintain a 99.9% solvency probability, but would gain a
little more than $48,000 in the expected present value of their bequest compared to annuitizing
all their spending. For many investors, even those whose original stated goals were to maximize
solvency probability, the trade-off to obtain the additional expected bequest money might well be
judged to be worthwhile.

7https://www.nobelprize.org/uploads/2018/06/modigliani-lecture.pdf
8https://www.marketwatch.com/story/why-dont-retirees-like-annuities-11652296853. An interesting aspect of

retirement plans is that they focus on accumulation and little attention is paid to the decumulation phase and its
risks, such as insolvency, for which annuities are a possible solution. Decumulation is barely optimized, left to
thumb-rules such as the 4% rule or the IRS mandated required minimum distributions.
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These choices for how to best balance solvency probability with the expected present value
of a bequest innately depend on individual preferences. In this regard we have a Pareto frontier,
which we refer to as the “solvency-bequest frontier.” That is, the two panels in Table 3 form
this “solvency-bequest frontier,” which enables investors to knowledgeably balance their desire for
solvency probability with their desire (if any) to have a larger bequest when they pass away.

In the remainder of this subsection, we consider the effect of changing individual characteristics
of our base case annuities.

4.3.2 Constant Payout Annuities

What happens if the yearly annuity payouts are held constant over time instead of increasing
annually at a rate of 2%? The constant annuity payout amounts are given in the first column of
the middle panel of Table 1, which, of course, have higher values than the corresponding initial
payouts that increase annually by 2% contained in the first column of the top panel of Table 1.
The solvency-bequest frontier for these constant payout annuities is given in Table 4.
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Table 4: The solvency-bequest frontier when the annual annuity payouts remain constant. The initial
annual living expenses are still assumed to increase by 2% each year.

We compare and contrast the results in Table 4 to the results for the base cases in Table
3. First we note that, as in our base cases, we maintain our key observation that the solvency
probability increases with more annuitization if the consumption rate is $90,000 or below, but it
decreases with more annuitization if the consumption rate is $100,000 or above. So, as before, we
conclude that retirees with high consumption rates (or more specifically an inability to annuitize
their consumption) should eschew annuities.

While these retirees with high consumption rates are best off completely eschewing annuities,
we do note that they are better off with the constant payout annuity than with the base case 2%
annual payout increase annuity, because the solvency probabilities are higher and, at the same
time, the expected bequests are higher. On the other hand, for retirees with consumption rates
that are $90,000 or below, switching to the constant payout annuity leads to lowering the solvency
probability but increasing the expected bequest. So, again, the preference between the base cases
and constant payout annuities becomes a matter of personal preference, and these tables enable
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the investor to make these trade-offs knowledgeably.

Because the payouts are constant, we note that the top row, for which the entire portfolio is
used to purchase the annuity, is no longer either 100% or 0%, as it was for the base cases. For this
row, the constant payout rate is $115,820, as shown in the upper left-hand entry in the middle
panel of Table 1. If the consumption rate is higher than that, then the retiree becomes bankrupt
immediately, as we can see in the upper right-hand corner of the top panel in Table 4. But consider
the case where the entire portfolio is used to purchase the annuity and the consumption is, say,
$100,000. Initially, the $115,820 payout pays for all the consumption, and then the remaining
$15,820 becomes the non-annuitized portion of the portfolio. Since we assume consumption is
increasing at a 2% rate, eventually the $115,820 is not large enough to satisfy all of the retirees
consumption needs. At this point, the retiree must pay for any remaining consumption needs
by using the non-annuitized portion of their portfolio due to optimally investing the excesses
from the previous annuity payments. Eventually, of course, these funds become exhausted by the
ever-increasing consumption needs. Should the investor pass away before this happens, they have
succeeded in remaining solvent for their lifetime. Table 4 shows that there is a 35.2% chance that
this will occur.

The fact that so much more money comes to the investor in the early years increases the
expected bequest. This increase more than makes up for the generally slight reduction in solvency
probability (when a reduction occurs), which decreases the expected bequest. This results in the
observed overall increase to all the expected bequest values seen in the bottom panel of Table 4
when compared to the bottom panel for the base cases in Table 3.

4.3.3 Inclusion Of A Bequest Clause

What happens if we add a bequest clause to our base cases? The annuity payouts now correspond
to the first column of the bottom panel of Table 1, which, to account for the bequest clause, have
lower values than those for the base cases in the first column of the top panel of Table 1. Recall
that when the retiree passes away, the bequest clause provides to the heirs any money left over
from the initial cost of the annuity minus all annuity payouts during the retiree’s lifetime, with no
adjustments for inflation to any of these numbers.

The resulting solvency-bequest frontier is given below in Table 5. The expected bequest in
the lower panel of Table 5 is computed, as before, by providing no money to the heir if the retiree
becomes bankrupt during their lifetime, but now we make an exception for any money from the
bequest clause, which is included in the expected bequest whether or not the investor becomes
bankrupt.
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Table 5: The solvency-bequest frontier when a bequest clause is added to the annuity. The bequest
clause refunds to the heirs any money left over from the initial purchase of the annuity after subtracting
all payouts made from the annuity while the retiree was living.

As expected, the reduced annual payouts due to the bequest clause cause the solvency
probabilities in the upper panel of Table 5 to be smaller than those in the base cases shown in
the upper panel of Table 3. Further, since the initial annual payout for the retiree annuitizing
their entire $2,000,000 savings is reduced from $93,230 in the base case to $81,540 in the case
of adding the bequest clause (which comes from the upper left-hand entries in Table 1’s top
and bottom panels), we now have that the retiree becomes immediately bankrupt if their living
expenses are initially $90,000. Note that this change is reflected in the $90,000 column in Table
5, which confirms our previous observation that even partial annuitization is unwise for investors
seeking to maximize their solvency probability if they are unable to completely annuitize all of
their living expenses.

Unsurprisingly, the bequest clause causes the expected bequest to increase. The specific
magnitudes for these increases can be seen by comparing the bottom panel of Table 5 with the
bottom panel for the base cases in Table 3. Note that the largest increases, which can be as
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high as $282,000, occur in the columns where the initial living expenses are $90,000 or above.
The numbers in these columns are irrelevant, since the higher the annuity cost is, the lower the
solvency probability is and the lower the expected bequest is. That is, these large increases merely
represent the final effect of the bequest clause in cases where the investor has a high chance of
becoming bankrupt due to purchasing annuities that should be completely avoided.

The relevant columns of Table 5 are where the initial living expenses are $80,000 or less, in
which case the investor must balance their priorities. For example, if the investor has $80,000 of
initial living expenses and wants to purchase an annuity for $250,000, the addition of the bequest
clause reduces their solvency probability from 87.4% to 86.1%, but increases their expected
bequest by $28,000 (from $799,000 to $827,000). This may or may not be worthwhile to the
retiree. However, the table also indicates cases where the bequest clause clearly makes sense. For
example, if the initial living expenses are $60,000 and the investor is intending to spend $1,250,000
on an annuity, adding the bequest clause provides an additional $10,000 to the expected bequest,
while the solvency probability remains at 100.0%.

4.3.4 Changing The Expected Returns Or The Volatilities Of The Investment
Portfolios

All of our previous results have relied on the investor having access in the non-annuitized portion
of their portfolio to each of the 15 investments contained in Table 2. What happens if the
values for the underlying expected returns, µ, or the volatilities, σ, given in Table 2 are incorrect?
To gauge this effect, we stress test our results for the base cases by first increasing µ by two
percentage points for each of the 15 investments, leaving the volatilities alone. This leads to
the solvency-bequest frontier given in Table 6. Then we restore each µ to its Table 2 value, but
increase each of the 15 values for σ in Table 2 by four percentage points. This leads to the
solvency-bequest frontier given in Table 7.
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Table 6: The solvency-bequest frontier when each of the values for µ in Table 2 are increased by two
percentage points.
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Table 7: The solvency-bequest frontier when each of the values for σ in Table 2 are increased by four
percentage points.

Unsurprisingly, when we increase the µ values of the investments, both the solvency probability
and the expected bequest increase. Comparing Table 6 to the base cases in Table 3 quantifies the
sensitivity of the these increases.

The effect of increasing the σ values, given by comparing Table 7 to Table 3, is more complex.
We start with the solvency probabilities given in the top panels of the two tables. When the
solvency probability is small, having additional volatility increases the probability of unusually good
returns that allow the retiree to remain solvent until they pass away. So, for example, when the
cost of the annuity is $1,500,000 and the initial annual living expenses are $120,000, the solvency
probability increases from 18.5% in the base case to 19.4% when the volatilities increase by four
percentage points. On the other hand, when the solvency probability is larger, the additional
volatility decreases the probability of remaining solvent, since it increases the chance of unusually
poor returns. For example, if there is no annuity and the retiree has initial living expenses of
$70,000, then the additional volatility decreases the solvency probability from 93.0% to 86.0%.
At what solvency probability does the additional volatility make no difference? We can see that
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when the cost of the annuity is $1,500,000 and the initial annual living expenses are $110,000, the
solvency probability is 30.5%, with or without the additional volatility. For any case in the chart
where the solvency probability is above 30.5%, the additional volatility decreases the solvency
probability, and for any case in the chart where the solvency probability is below 30.5%, the
additional volatility increases the solvency probability.

What is the effect of the additional volatility on the expected bequest shown in the bottom
panels of Tables 7 and 3? There are two underlying effects: one is due to the change to the
solvency probability. When the solvency probability goes down, it decreases the expected bequest,
since bankrupt portfolios contribute nothing to the expected bequest. The other effect is that the
solvent portfolios, on average, are bigger due to the nature of compounding. That is, if we have a
portfolio worth $100 and average the two cases of a 5% loss versus a 5% gain in each of 10 years,
we have an expected portfolio worth of $100×(.9510+1.0510)/2 = $111.38, but if we consider a
10%, instead of 5%, loss or gain, the expected portfolio worth increases to $100×(.9010+1.1010)/2
= $147.12. In the cases where the additional volatility either increases the solvency probability or
changes it very little (e.g., it stays at or close to 100%), we see the expected bequest increase
due to the first effect either ameliorating or not outweighing the second effect. In the cases where
the additional volatility decreases the solvency probability significantly enough, however, the first
effect can outweigh the second effect. For example, in the case we discussed in the previous
paragraph with no annuity and initial living expenses of $70,000, the probability solvency decreased
significantly, from 93.0% to 86.0%, and we see the expected bequest decrease from $965,000 to
$956,000.

4.3.5 Deferred Payouts (DIAs)

What happens if instead of assuming the annuities’ payouts begin immediately for the 65 year old
retiree, as in the base cases, we allow the option of purchasing annuities whose initial payouts
are deferred until the retiree reaches age 70 or 75 or 80 or 85? The corresponding initial annuity
payouts are given in the 2nd through 5th columns in the top panel of Table 1. If we restrict ourselves
to the case where the initial annual living expenses are $80,000, the resulting solvency-bequest
frontier is given in Table 8.

Deferring the annuity is generally worthwhile if there is enough money in the non-annuitized
portion of the portfolio that its dynamically optimized investments have a high probability of
keeping the retiree solvent until the annuity payouts start. This means the smaller the cost of the
annuity, the longer it makes sense to defer payouts, since the smaller annuity increases the size of
the non-annuitized portion of the portfolio, making it last longer.
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Table 8: The effect of deferring the start of annuity payments. Note that unlike the previous five
tables, the horizontal axis is now the annuity starting age, not the initial living expenses. The initial living
expenses are assumed to be $80,000 throughout both panels in this table.

This effect can clearly be seen in the top panel of Table 8. If the cost of the annuity is
$2,000,000, it leaves nothing for the non-annuitized portion of the portfolio, meaning any deferral
of the annuity leads to immediate bankruptcy, which is reflected in the top line of the top panel.
If the annuitized and non-annuitized portions of the portfolio are both $1,000,000, we see that
the solvency probability is maximized (and 100%) by deferring the annuity until the age of 75.
This makes sense since the non-annuitized $1,000,000 can address the first 10 years of annual
living expenses, which range from $80,000 to $80,000×(1.02)9 = $95,607, and then the annuity
pays $105,185, which is bigger than $80,000×(1.02)10 = $97,520, the next year’s living expenses.
In addition, since both the annuity payouts and the living expenses increase by 2% each year,
all future living expenses will be completely covered by the annuity. Further, of all the annuities
that yield a 100% solvency probability, this is the best choice, since it has the highest expected
bequest, as we can see from the bottom panel of Table 8.

It is important to be aware that the solvency probability panel hides an important factor that
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must be taken into account with deferred annuities, which is that the solvency probability tells us
nothing about when bankruptcies will occur. With deferred annuities, bankruptcy is more likely
to occur before the annuity payouts start. So while an investor intending to spend $250,000 on
an annuity could say they were wiser to defer their payouts until they were 85 years old because
their solvency probability increased from 87.4% with an immediate payout annuity to 91.1%, they
would be failing to take into account the fact that bankruptcies with the immediate annuity are
much more likely to happen later in life, while with the deferred annuity, they are more likely to
happen before the age of 85.

The top panel in Table 8 also shows that our rule for immediate annuities — namely, that a
retiree who seeks to optimize their solvency probability should annuitize as much as possible if
they are able to annuitize all their consumption needs, but should completely eschew annuities
otherwise — does not hold for deferred annuities. Observing each of the columns in the panel, we
see that the optimal fraction of the portfolio that should be annuitized changes as we change the
age at which the annuity payouts begin. For example, if we intend to defer the annuity payouts
until the age of 85, we are best off only spending $250,000 on the annuity, which corresponds to
a 91.1% solvency probability, the highest solvency probability in the age 85 column. Of course,
restricting consideration of annuities only to those whose payouts start at age 85 can be a mistake.
Indeed, it is a mistake here. It would be better to choose an annuity that cost $750,000 and
started paying out immediately, since that leads to a higher solvency probability (91.7% versus
91.1%) with, on average, later bankruptcies, and a higher expected bequest ($595,000 versus
$552,000).

In each row of the lower panel in Table 8, we generally see that the expected bequest decreases
as we defer the start of the annuity payouts to later. This is because the early annuity payouts
enable the investor to take a longer term view of the non-annuitized portion of their portfolio,
which corresponds to more aggressive investment portfolios and therefore, as we have shown,
higher expected bequests. The exception is when the cost of the annuity is either $500,000 or
$750,000, in which case the expected bequest increases when the annuity start age increases from
80 to 85. This is because the payout amounts starting at age 80 are generally used to address
living expenses, while at age 85 the payout amounts almost double, quickly amassing a significant
nest egg that is not needed to address living expenses. Nevertheless, these annuities that start
payouts at age 85 and cost $500,000 or $750,000 are inferior to the one costing $250,000, since
that has both a higher solvency probability and a higher expected bequest.

Finally, we consider the effect of deferring the annuity payouts on a case where the living
expenses are high enough that we know the immediate annuity should be avoided from our base
cases analysis in Subsection 4.3.1. In Table 9, we consider what happens when the initial living
expenses are $100,000, where the immediate annuity reduced solvency probability, as opposed to
$80,000, where the immediate annuity increased solvency probability. From the upper panel in the
table, we see that deferring the annuity only makes matters worse: that is, the more the annuity
payments are deferred, the lower the solvency probability is. This means that for the cases we
saw before where the retiree was best off avoiding immediate annuities, they should also avoid
deferred annuities.
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Table 9: The effect of deferring the start of annuity payments when the initial yearly living expenses
are $100,000. From the top panel, we see that deferring the start of the annuity payments reduces the
solvency probability. Worse, from the bottom panel, we also see that deferring the start of the annuity
payments also generally reduces the expected bequest.

5 Concluding Comments

This paper considers a simple model for determining what, if any, annuity is most appropriate for
a retiree, given their need to balance longevity risk, legacy risk, and lifestyle risk. It is assumed
that investors who are interested in annuities care more about reducing longevity risk than legacy
risk. Given this, we allow the investor to split their portfolio into annuitized and non-annuitized
portions, but then dynamically optimize the investments in the non-annuitized portion of the
portfolio to minimize longevity risk. We determine this minimized longevity risk (i.e., maximized
solvency probability) and also the corresponding legacy risk (measured by the expected present
value of the bequest).

We then investigated the effects of selecting various annuities on both the solvency probability
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and the expected present value of the bequest, given a variety of lifestyle risks (i.e., consumption
rates/living expenses). Our main findings are:

1. The retiree should first look at SPIAs, that is, annuities whose payouts start immediately. If
they are not able to afford annuitizing all of their consumption needs with an SPIA annuity,
they should avoid any annuities. That is, the more they annuitize, the lower their solvency
probability is. These findings are robust across varying expected capital market conditions,
SPIAs with or without inflation adjustments, and annuities with or without bequest clauses.
Deferring the start of payouts (DIAs) only reduces solvency probability further.

2. If the retiree is able to afford annuitizing all of their consumption, then they are best off
doing so, since their primary goal is to optimize solvency probability. If they are legally
prevented from completely annuitizing their consumption, then they are best off annuitizing
as much as they can. However, the more they annuitize, the lower their expected bequest
will be, which we quantify. Further, retirees may be able to maintain a nearly 100% chance
of lifetime solvency without annuitizing all of their consumption, in which case they may
prefer this lower level of annuitization since it will increase their expected bequest.

These retirees may also wish to consider annuities with different inflation rates for their
payouts, or with bequest clauses, or, in particular, deferred payout annuities (DIAs). These
choices may give a more desirable solvency probability versus expected bequest payout or,
in some cases, increase both the solvency probability and the expected bequest payout. Our
results quantify this process, allowing each individual investor to knowledgeably make an
annuity selection that is optimal for them.

The annuities in this paper cover standard, single-payment, fixed annuities with or without (a)
inflation adjustments, (b) deferred payout starts, and (c) bequest refund clauses. However, the
universe of annuities is large and may include other special features, such as stochastic payments
indexed to macro-economic or market state variables, varied tax treatments, minimum withdrawal
benefits, and guaranteed lifetime withdrawals, all of which inject option-like features or make the
analysis path dependent. In future work, we can investigate the implications of features like these
through different approaches, such as reinforcement learning, while still optimizing the investment
strategy in the non-annuitized portion of the portfolio.

A Appendix: The Dynamic Programming Algorithm

The dynamic programming section of our algorithm determines the optimal investment strategy
at a given wealth, W , and time, t. We note that W is the post-tax worth of all the investor’s
accounts, except, of course, for the annuity.

We consider a variety of possible investment portfolios indexed by l. These may be chosen,
for example, to lie on the efficient frontier, though this is not required. Define µl and σl to be the
mean and volatility of investment portfolio l. Let Wi be a grid of potential wealth values, W ,
indexed by i = 0, 1, . . . , imax, where W0 = 0 represents bankruptcy, W1 is a very small amount,
and the logarithm of the Wi are equally spaced as i increases from 1 to imax. We consider times
t = 0, 1, . . . , T , where t is assumed to be in years, although it can be other units of time, and
t = T corresponds to a time when the probability that the investor is still alive is extremely small,
such as T corresponding to the investor being 120 years old, as we use for our examples in this
paper.
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The state space is a rectangular grid of (Wi, t) points over the range of i and t. Our goal
is to find the optimal value of l at each point in the state space. From the optimal l, we can
determine the value function V (Wi, t), which is the optimal probability of remaining solvent if the
investor is worth Wi at time t. It also gives the optimal investment portfolio strategy, which is
simply to have the investor annually switch their investment portfolio to the optimal investment
portfolio l associated to the closest Wi to the investor’s wealth and the current time t.

We begin with the small assumption that the few investors that have not already died or
become insolvent by t = T will die at t = T , which implies the final time condition V (Wi, T ) = 1
for all i > 0 (and V (W0, T ) = 0, since the investor is bankrupt in this case). We then iteratively
evolve the value function backwards in time using three stages for each year. In Stage 1, we
consider the possibility of death during the year, which, for simplicity, we address only here, at
the end of the year. In Stage 2, we consider the evolution of the investment portfolio during the
year, which is where we determine the optimal l. In Stage 3, we consider the consumption, which,
again for simplicity, we address only here, at the beginning of the year. We next detail each of
these three stages more concretely:

Stage 1: Mortality. Let pM(t) be the probability, as determined by the investor’s mortality
table, that an investor dies during year t, conditioned on their being alive at the beginning of the
year. Since, for our model, we combine these deaths so they occur at the end of year t, the first
intermediate value function, V1(Wi, t), just prior to these end of the year deaths is

V1(Wi, t) =

{
1× pM(t) + V (Wi, t+ 1)× (1− pM(t)) if i > 0
0 if i = 0.

This simply reflects the fact that should the investor die with W > 0, they remained solvent
throughout their lifetime. We note that W does not reflect any money gained from the annuity
after an investor becomes bankrupt. That is, once an investor becomes bankrupt, W = 0 in each
subsequent year.

Stage 2: Investment evolution. We now look at the probability that a portfolio worth Wi at
the beginning of year t will transition to being worth Wj at the year’s end if it is in portfolio l.
For this paper, we assume geometric Brownian motion, although any other Markovian evolution
model can be used instead if desired. For geometric Brownian motion, the probability density, f ,
for transitioning from a given wealth grid point Wi if i > 0 to wealth grid point Wj if j > 0 is

f(Wj|Wi, l) = ϕ

(
1

σl

(
ln

(
Wj

Wi

)
−
(
µl −

σ2
l

2

)))
,

where ϕ(z) is the value of the probability density function of the standard normal random variable
at Z = z. If i = 0 and j > 0 or vice versa, then f(Wj|Wi, l) = 0. Finally, f(W0|W0, l) = 1, since
an investor that starts bankrupt stays bankrupt. Normalizing these probability density function
values yields the desired transition probabilities:

p(Wj|Wi, l) =
f(Wj|Wi, l)

imax∑
k=0

f(Wk|Wi, l)

.

This in turn gives the Bellman equation for the second intermediate value function V2(Wi, t):

V2(Wi, t) = max
l

[
imax∑
j=0

V1(Wj, t)p(Wj|Wi, l)

]
.
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The l that maximizes the right hand side in this Bellman equation is the optimal l we sought. It
gives the optimal investment portfolio for the investor to select if they are worth Wi at this stage
during year t.

Stage 3: Consumption. Let C(t) represent any remaining consumption needs in year t not
met by that year’s annuity payout. We model this by taking out all of C(t) at the very beginning
of the year from the non-annuitized portion of the portfolio. Ideally, this would mean

V (Wi, t) =

{
0 if Wi − C(t) ≤ 0
V2(Wi − C(t), t) if Wi − C(t) > 0.

However, Wi − C(t) is not generally a grid point and V2 is only defined on grid points, so if
Wi − C(t) > 0, we determine V (Wi, t) by interpolating the values of V2 at the two grid points
just below and above Wi − C(t). Should the annual annuity payout be greater than the annual
consumption during year t, we just have C(t) < 0 and follow the same process.
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