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Abstract
We report a dynamic programming algorithm which, given a set of efficient (or
even inefficient) portfolios, constructs an optimal portfolio trading strategy that max-
imizes the probability of attaining an investor’s specified target wealth at the end of
a designated time horizon. Our algorithm also accommodates periodic infusions or
withdrawals of cash with no degradation to the dynamic portfolio’s performance or
runtime. We explore the sensitivity of the terminal wealth distribution to restricting
the segment of the efficient frontier available to the investor. Since our algorithm’s
optimal strategy can be on the efficient frontier and is driven by an investor’s wealth
and goals, it soundly beats the performance of target date funds in attaining investors’
goals. These optimal goals-based wealth management strategies are useful for inde-
pendent financial advisors to implement behavioral-based FinTech offerings and for
robo-advisors.
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1 Introduction

Goals-based wealth management (GBWM) refers to the management of an investor’s
portfolioswith a view tomeeting long-termfinancial goals, as opposed to only optimiz-
ing a risk-return tradeoff. In this paper,we present and analyze a dynamic programming
approach for GBWM that is fully optimal in meeting long-term goals, while also opti-
mizing risk-return tradeoff. We will show that our approach has several advantageous
features in terms of speed and adaptability, and that it soundly outperforms portfolios
based on current widespread approaches, such as the target-date paradigm.

GBWM is amodern implementation of behavioral ideas from earlywork by Shefrin
and Statman (2000) espousing behavioral portfolio theory that were further discussed
byNevins (2004) from a practitioner viewpoint. A specific framework for GBWMwas
initially proposed by Chabbra (2005) and is now followed by many practitioners (see
Brunel 2015). Our approach in this paper is also cognizant of prospect theory (Kah-
neman and Tversky 1979), which is aimed at modeling how people realistically make
decisions, rather than an optimization framework, which usually does not account
for all the criteria used by people when making tradeoffs between gains and losses.
Our framework also accommodates mental accounting (Thaler 1985, 1999), which
is the paradigm where people behave as if they have different risk-return preferences
depending on the goal being achieved, being risk averse in some settings and even risk
seeking in others. In our context, mental accounting is the idea that financial goals
may be sharply defined and better managed in separate portfolios. We also include
paradigms for how investors form both upside and downside goals, such as aspira-
tional goal-setting (Lopes 1987), a safety-first criterion (Roy 1952), and loss aversion
(Shefrin and Statman 1985).

We can combine these seminal GBWM ideas for achieving long term goals with
modernportfolio theory (Markowitz 1952) to achieve the short termgoal ofminimizing
the risk associated with any specific expected return. GBWM is fully consistent with
Markowitz’s mean-variance theory. This was developed in Das et al. (2010) as a static
model for mental accounts, and a full analysis of the static model in a GBWM context
is provided in Das et al. (2018).

These static models are not fully optimal, because they can only be implemented
period by period in a myopic manner. Previous fully optimal, dynamic approaches to
GBWM include solving continuous-time partial differential equations, as shown in the
early work by Merton (1969, 1971), Browne (1995, 1997), or using continuous-time
martingale methods based on seminal ideas in Cox and Huang (1989), as shown in
more recent work by Wang et al. (2011) and Deguest et al. (2015). In this paper we
introduce a discrete time fully optimal dynamic programming approach that has many
advantages, including being adaptable to many financial situations, being simple to
implement, and being fast to run. For example, our approach handles periodic infusions
and withdrawals of varying amounts, as well as bankruptcy, which is not always
easy to do with the aforementioned continuous-time approaches. Also, our approach
employs a polynomial time algorithm that corresponds in general to a runtime of only
a few seconds. These features give our algorithm wide applicability, enabling either
traditional financial advisors or robo-advisors to quickly and optimally determine the
best strategy for investors to pursue to meet their individual wealth goals.
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Dynamic portfolio allocation in goals-based wealth… 615

The essence of GBWM lies in choosing a different objective function for dynamic
optimization than that chosen in utility-based portfolio problems. The simplest form
of the GBWMobjective function is probabilistic: that is, define a portfolio goal wealth
G at the defined horizon T and find the dynamic portfolio strategy that maximizes the
probability of achieving the goal, i.e.,

max{A(0),A(1),...,A(T−1)} Pr [W (T ) ≥ G],

whereW (T ) is the terminal portfoliowealth value and A(t) are the possible allocations
among the funds available to the investor at each time t = 0, 1, 2, . . . , T − 1. The
optimal allocation at any time t is a function of W (t), the level of wealth at time t ; G,
the goal wealth; T , the timeframe; and other investor specific parameters.

This approach may be contrasted with a utility-based approach where the dynamic
strategy is chosen to maximize the expected utility from any consumption over time,
as well as the expected utility of the final wealth. This approach, as well as GBWM,
are attractive since they focus on long-run outcomes and are not myopic one-period
optimization models. Single-period optimization changes the focus from achieving
long-term goals to short-term risk-return tradeoffs. We see that strategies that are
aimed at meeting an upside goal with a lower threshold might result in very different
strategies than dynamic asset allocation based on utility function maximization, such
as taking on more risk when not reaching goals close to the investment horizon, see
Browne (1999b).

Hybrid approaches, where the objective function to bemaximized is expected utility
subject to goals as constraints, have also been attempted as in Browne (1999a, 2000),
Deguest et al. (2015). However, this approach requires choosing a utility function
for the investor which is hard to determine, and therefore an ad-hoc choice is often
required. In this paper, we do not require a utility function to be specified. We provide
an optimal solution procedure to the GBWM problem and examine the properties of
the trading strategy dictated by the algorithm.

The following briefly characterizes our solution: (i) In our numerical experiments,
the backward recursion algorithm that solves the dynamic problem is approximately
quadratic in its dependence on the timeframe T , between linear and quadratic with
a growth exponent of 1.5 in its dependence on the granularity of the wealth grid,
and approximately linear in its dependence on the number of portfolio choices. Our
results are quite robust to the granularity of the wealth grid and the number of port-
folio choices, which suggests that expanding the scale of the problem with additional
features, such as tax optimization, can be performed without significantly degrading
run times or the solution’s accuracy. (ii) In our base case timeframe of 10years with
annual rebalancing, having a wealth grid granularity of at least three wealth nodes
per yearly standard deviation in portfolio performance, and allowing for 15 portfo-
lio choices, our algorithm runs in under 5 s. (iii) As the markets move up or down
through the investment tenure, we rebalance the portfolio such that the probability of
reaching the goal wealth continues to remain the highest. The optimal allocation and
rebalancing is intuitive in the sense that when the portfolio is far from its goal due to
underperformance, risk is increased in order to enhance the probability of reaching

123



616 S. R. Das et al.

the goal, and when the portfolio is outperforming, risk is dialed back to reduce the risk
of missing the goal. Therefore, the strategy depends on both time and state (wealth),
unlike target-date fund strategies,which only depend on time and cannot accommodate
investor-specific goals. (iv) The dynamic program uses a collection of exogenously
provided portfolios, that may or may not be chosen to be on the efficient frontier,
so an asset management team can develop the set of model portfolios, while, acting
separately, the optimization team can tune the dynamic programming algorithm. This
offers a plug-and-play approach to GBWM, where portfolio construction is separated
from portfolio allocation.

Our GBWM strategy allows for a variety of important features and results: (i)
The final wealth distribution may be modulated by limiting the range of available
portfolios (i.e., controls), which exogenously alters the risk that is taken. Raising the
minimum risk of the portfolios that are available to the investor increases the right tail
of the wealth distribution more than the left tail. Conversely, raising the maximum
risk available to the investor, increases the left tail more than the right tail. This
suggest that investors in a GBWM environment who wish to have higher returns are
better off raising their minimum risk, instead of the more intuitive move of raising
their maximum risk. That said, raising the minimum risk will decrease the chance of
attaining the investor’s goal wealth, while raising the maximum risk will increase this
chance. (ii) The algorithm is flexible: (a) If desired, the algorithm can optimize for
multiple wealth goals at the end of the portfolio horizon instead of a single wealth
goal, with weights for the relative importance of these multiple goals that the investor
can decide. (b) The algorithm can include an investor’s specified portfolio infusions
and withdrawals. We will see that even small infusions can increase the probability of
reaching the goal wealth substantively. When there are withdrawals, there is a chance
that the investorwill run outmoney (i.e., go bankrupt) during the investment timeframe.
Our algorithm can determine this chance of bankruptcy, and much more importantly,
show how to minimize it. (c) The algorithm can accommodate any desired time period
between rebalancing and between infusions or withdrawals. (iii) Our algorithm allows
us to determine how to optimize retirement savings. For example, our algorithm will
allow us to explore the effect of infusions on the minimized probability of going
bankrupt in retirement. In particular, we will consider a 50 year old investor who
currently has 100 thousand dollars in their retirement account and intends to take out
50 thousand present day dollars every year after they turn 65 through the age of 80.
We show that to attain a 58.6% probability of maintaining this income stream would
require the investor to make annual inflation-adjusted infusions of 15 thousand dollars
a year until retiring at age 65. (iv) Finally, we compare our GBWMoptimal strategy to
the performance of target date funds (TDFs), by considering a TDFwith a typical glide
path for three index funds representing total domestic bond, total international stock,
and total domestic stock. Because our GBWM strategy is on the efficient frontier, uses
a wealth-dependent strategy, and accounts for investor-specific goals, we will see that
our GBWM strategy, which uses the same three index funds, shows a much higher
probability of reaching an investor’s goals. For example, we will show that using our
TDF in the case presented in the previous point reduces the probability of maintaining
the desired income stream from 58.6% down to 26.6%.
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The rest of this paper is organized as follows. In Sect. 2 we describe the algorithm
and in Sect. 3 the extensions of the algorithm to deal with other cases are presented.
The results of our study are set out in Sect. 4 and our conclusions are summarized in
Sect. 5.

2 Algorithm

2.1 Notation

We describe the notation used in the paper here.

• Let t = 0, h, 2h, . . . , Nh = T be the N time periods in the model. Here, h is the
time step, usually taken to be 1 year. Therefore, the time frame of the model is
0 ≤ t ≤ T .

• Initial wealth: W (0).
• Target wealth (goal G) at the horizon: W (T ) ≡ G.
• We have n equity assets indexed by i = 1, 2, . . . , n.
• C(t): knowncashflowsC(t)of capital into the portfolio eachyear.WhenC(t) > 0,
we have an infusion into the portfolio.WhenC(t) < 0, we have a withdrawal from
the portfolio. All of these cash flows are assumed to be determined at t = 0, so
they are pre-committed by the investor.

Our goal is to dynamically allocate the portfolio among these n assets so that we
maximize the probability at t = T of attaining a final portfolio worth at leastW (T ) =
G, our goal wealth.

2.2 The efficient frontier for stock portfolios

For any given portfolio volatility, σ , it is always optimal to maximize the portfolio
expected return, μ. Modern portfolio theory, which was developed by Markowitz, see
Markowitz (1952), gives a method for the exact allocation among the n assets that
gives the maximum μ. If, for every value of σ , we plot the point (σ, μ) where μ is
the maximum portfolio expected return frommodern portfolio theory, we sketch out a
hyperbola in the (σ, μ) plane, which is called the efficient frontier. It is always optimal
to maintain the portfolio on the efficient frontier. The question that remains is how to
optimally adjust ourselves along the efficient frontier over time.

As shown in Das et al. (2018), the specific hyperbola for the efficient frontier is the
equation

σ =
√
aμ2 + bμ + c. (1)

The constants, a, b, and c are defined bym, which is a vector of the n expected returns;
o, which is a vector of n ones; and �, which is the n × n covariance matrix of the n
assets, via the following equations:
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a = h��h

b = 2g��h

c = g��g,

where the vectors g and h are defined by

g = l�−1o − k�−1m
lp − k2

h = p�−1m − k�−1o
lp − k2

,

and the scalars k, l, and p are defined by

k = m��−1o

l = m��−1m

p = o��−1o.

We allow for restrictions on the segment of the efficient frontier available to the
investor, due, for example, to restrictions such as disallowing short positions. We will
consider this truncated efficient frontier as the set of potential portfolios fromwhichwe
optimize the probability of attaining our goal wealth G. More specifically, we define
μmin and μmax to be the smallest and largest values of μ in this truncated efficient
frontier. The optimal policy or “control” in our problem is a value ofμ ∈ [μmin, μmax],
where the corresponding value of σ , the volatility, is given by Eq. (1).

Because it is optimal, we stay on the efficient frontier in this paper. However, we
note that themethod presented in this paper also applies to any fixed group of allowable
portfolios on or off the efficient frontier. So, for example, if there are limitations on
the fractions that can be devoted to specific assets within the portfolio, our method
can still be applied.

2.3 The state space gridpoints

The state space consists of time values, t , and wealth values, W (t), which are dis-
cretized, so that we consider annual rebalancing (and, later, non-annual rebalancing
in Sect. 3.1) at times t = 0, 1, 2, . . . , T and, at each of these times, we use wealth
grid points, Wi , where the index i ∈ {0, 1, 2, . . . , imax}. The smallest wealth grid
point, W0, should correspond to the smallest possible wealth, Wmin, attainable, and
the largest wealth grid point, Wimax , should correspond to the largest possible wealth,
Wmax, attainable. We next determine values for imax,Wmin, and Wmax.

To move forward in time, we require a stochastic model for the evolution of the
initial portfolio wealth,W (0). We have chosen to use geometric Brownian motion for
this paper. That is,

W (t) = W (0)e

(
μ− σ2

2

)
t+σ

√
t Z

, (2)
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where Z is a standard normal random variable, however, we could have just as easily
worked with other stochastic models, including those containing tails that are fat-
ter than normal distributions to more accurately reflect observed volatility. The only
restriction on the evolution model is that it is Markovian. That is, the evolution model
is not affected by previous events.

For our geometric Brownian motion model, we will assume that Z realistically
takes values between −3 and 3, so the smallest realistic value for W (t) corresponds
to computing Eq. (2) after setting Z = −3, μ = μmin, and σ equal to σmax, which is
the value of σ from Eq. (1) when μ = μmax. The largest realistic value is computed
by again using σ = σmax, but replacing Z with 3 and μ with μmax.

Since we must also include the effects of the cashflows, C(t), as well as the initial
investment, W (0), and both are affected by the same geometric Brownian motion
model, we have that

Ŵmin = min
τ∈{0,1,2,...,T }

⎡

⎣W (0)e

(
μmin− σ2max

2

)
τ−3σmax

√
τ

+
τ∑

t=0

C(t)e

(
μmin− σ2max

2

)
(τ−t)−3σmax

√
τ−t

⎤

⎦ (3)

Ŵmax = max
τ∈{0,1,2,...,T }

⎡

⎣W (0)e

(
μmax− σ2max

2

)
τ+3σmax

√
τ

+
τ∑

t=0

C(t)e

(
μmax− σ2max

2

)
(τ−t)+3σmax

√
τ−t

⎤

⎦ , (4)

where C(0) = 0, since any cash flow at t = 0 is incorporated into W (0). For the
moment, we assume that Ŵmin > 0, because the C(t) are not sufficiently negative that
bankruptcy is a realistic possibility; in Sect. 3.2 we will explore the case where C(t)
are sufficiently negative that bankruptcy is a realistic possibility.

We next look to fill in the grid points between Ŵmin and Ŵmax. First, analogous to
our σmax definition, we define σmin to be the value of σ from Eq. (1) when μ = μmin.
We then define the exogenously selected wealth grid density parameter, ρgrid, which
corresponds to the number of wealth grid points chosen per each σmin in the following

sense: After setting t and Z to one in Eq. (2) and ignoring the drift term
(
μ − σ 2

2

)
t , we

see that σ is proportional to the logarithm of wealth. Therefore, we compute ln(Ŵmin)

and ln(Ŵmax) and then, starting with ln(Ŵmin), we add a grid point every σmin
ρgrid

units,

stopping once we reach or surpass ln(Ŵmax). This yields a total of imax +1 grid points

where imax equals
(ln(Ŵmax)−ln(Ŵmin))ρgrid

σmin
after rounding up to the nearest integer.

Next, we equally shift all of these imax+1 values downward by the smallest amount
necessary tomatch one of these values to ln(W (0)), the logarithmof the initial portfolio
wealth. Finally, we exponentiate all imax + 1 values to obtain our wealth grid values,
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W0 through Wimax , noting the following: (1) One of the grid points will equal W (0),
which will be important for computing the probability distribution for the wealth in
Sect. 2.5. (2) We define Wmin = W0 and Wmax = Wimax , observing that the small
downward shift will have created a small difference between Ŵmin and Wmin and
between Ŵmax and Wmax. (3) While the values of ln(Wi ) where i = 0, 1, 2, . . . , imax
are equally spaced, the values ofWi are not. The spacing betweenWi values increases
exponentially as the wealth increases.

2.4 Dynamic programming for optimizing the chance of obtaining the investor’s
goal

The value function, V (W (t)), is the probability that the investor will attain their goal
wealth, G, or more at the time horizon T , given they have a worthW (t) at time t . This
means that at time T ,

V (Wi (T )) =
{
0 if Wi (T ) < G
1 if Wi (T ) ≥ G.

(5)

We next determine the Bellman equation so that we can determine V at year t =
T − 1, then t = T − 2, etc., iterating backwards in time until we finish at t = 0.
We begin by determining the transition probabilities, p(Wj (t + 1)|Wi (t), μ). The
transition probability is the normalized relative probability that wewill be at thewealth
node Wj at time t + 1 if we start at the wealth node Wi at time t and, between times
t and t + 1, our portfolio is run with an expected return of μ and its corresponding
volatility, σ , from Eq. (1). Defining φ(z) to be the value of the probability density
function of the standard normal random variable at Z = z, we have from Eq. (2) the
following probability density function values

p̃(Wj (t + 1)|Wi (t), μ) = φ

(
1

σ

(
ln

(
Wj

Wi + C(t)

)
−

(
μ − σ 2

2

)))
. (6)

Normalizing these probability density function values yields the desired transition
probabilities:

p(Wj (t + 1)|Wi (t), μ) = p̃(Wj (t + 1)|Wi (t), μ)
∑imax

k=0 p̃(Wk(t + 1)|Wi (t), μ)
.

Since V (W (t)) is the expected value of V (W (T )), our Bellman recursion equation
is simply

V (Wi (t)) = max
μ∈[μmin,μmax]

⎡

⎣
imax∑

j=0

V (Wj (t + 1))p(Wj (t + 1)|Wi (t), μ)

⎤

⎦ . (7)

We denote μi,t as the value of μ at which the maximum is attained in the Bellman
equation, and σi,t is, of course, its corresponding volatility on the efficient frontier. As
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a computational matter, we select an integer m, divide the interval [μmin, μmax] into
an array ofm equally spaced values, and letμi,t and V (Wi (t)) be determined from the
μ value within this array that optimizes the sum in the right-hand side of the Bellman
recursion equations. In practice m = 15 was generally sufficient to maintain accuracy
in our results, as we further discuss in Sect. 4.2.1.

First setting t = T − 1, we solve the Bellman equation (7) to determine μi,T−1
and V (Wi (T − 1)) for each i ∈ [0, imax]. We then continue backwards in time to
t = T −2, t = T −3, etc., until we reach t = 0. The value of V (W (0)) is the optimal
probability of the investor attaining their wealth goalG from their initial wealthW (0).

2.5 Probability distribution for the investor’s wealth at future times

To determine the probability distribution for the investor’s wealth at future times,
we use the optimal strategy information, μi,t and σi,t , determined previously from
dynamic programming to evolve the probability distribution forward in time, starting
with t = 0, then t = 1, ending at t = T − 1. At any given value of t , we determine
for each j ∈ [0, imax]

p(Wj (t + 1)) =
imax∑

i=0

p(Wj (t + 1)|Wi (t), μi,t ) · p(Wi (t)). (8)

Define i0 so that Wi0 is the wealth node that equals W (0). We then start at t = 0 with
p(Wi0(0)) = 1 and p(Wi (0)) = 0 for all i �= i0 to generate the entire set of proba-
bilities for t = 1, i.e., p(Wj (1)) for each j ∈ [0, imax]. After that, moving forward in
time, we recursively apply Eq. (8), until we obtain the probability distribution for the
wealth nodes in every year of the lifetime of the portfolio.

2.6 Summary

We summarize the flow andmeaning of the dynamic procedure from the investor point
of view in four broad steps:

1. The investor determines an initial investmentwealth, a goalwealth and a timeframe
by which they hope to grow their initial investment into their goal wealth. The
investor may also specify annual cash flows for the portfolio, i.e., infusions or
withdrawals, if desired.

2. Lower and upper bounds on the mean along the efficient frontier are chosen.
(Alternatively, these can be specified through lower and upper bounds on the risk,
given by the corresponding standard deviations on the frontier.) These bounds,
which determine the specific range of the efficient frontier to which we restrict
portfolio choice, can depend on the investor’s goal wealth and timeframe, as well
as the desire to limit downside or increase upside, as we will explore in Sect. 4.3.3.

3. As the markets move up or down through the investment tenure, our program
rebalances the portfolio so that the probability of reaching the goal continues to
remain the highest.
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4. At any given point in time, we keep track of the portfolio’s current wealth, the
conditional probabilities of transitioning to different wealth levels at future points
in time, and also the probability of meeting the goal under the optimal strategy.
This is information that enables the investor to keep track of the performance of
the portfolio strategy.

An alternative solution approach ismulti-stage stochastic linear programming using
an asset-liability management context [see Birge and Louveaux (1997) for a good
reference; examples in financial optimization, including wealth goals, are in Wallace
and Ziemba (2005)]. This approach can be adapted to an objective function similar
to our GBWM objective function. These optimization models are also flexible in
allowing a multitude of possible constraints such as risk exposure limits, and they
have the advantage of using discrete scenarios that do not require an assumption about
the distribution of returns. On the other hand, they are computationally very hard and
sometimes require heuristic solutions and small scenario trees.

3 Expanding our dynamic programming algorithm to other cases

As stated earlier, we can easily extend our results to caseswhere the available portfolios
are not on the efficient frontier, and we can also extend our model from geometric
Brownian motion to any other Markovian portfolio evolution model. Here are three
additional extensions of our model:

3.1 Non-annual updates

Our main algorithm is written for annual updates. Annual updates particularly make
sense in taxable accounts where short-term capital gains rates are levied on gains
realized from stocks held less than a year. For other accounts, however, it might make
more sense to update the portfolio every h years, where h �= 1. For example, we
might choose h = 0.25 if we want quarterly updates. In this context, the integer t now
becomes the index of the update, so if h = 0.25, then t = 4 corresponds to the state
of the portfolio after 1year and, say, T = 40 means that we look to see if we have
attained our goal, G, in the 40th update at the end of 10 years.

The main change needed to accommodate these cases where h �= 1 is to note that
since ht now represents the actual time represented by index t , Eq. (2) becomes

W (t) = W (0)e

(
μ− σ2

2

)
ht+σ

√
ht Z

,

where we note that W (t) is the wealth at index t , which is time ht . This means that
the Eqs. (3) and (4) for Ŵmin and Ŵmax become
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Ŵmin = min
τ∈{0,1,2,...,T }

⎡

⎣W (0)e

(
μmin− σ2max

2

)
hτ−3σmax

√
hτ

+
τ∑

t=0

C(t)e

(
μmin− σ2max

2

)
h(τ−t)−3σmax

√
h(τ−t)

⎤

⎦

Ŵmax = max
τ∈{0,1,2,...,T }

⎡

⎣W (0)e

(
μmax− σ2max

2

)
hτ+3σmax

√
hτ

+
τ∑

t=0

C(t)e

(
μmax− σ2max

2

)
h(τ−t)+3σmax

√
h(τ−t)

⎤

⎦ .

It also means that we replace σmin by σmin
√
h if we continue to want to have ρgrid

wealth grid points for every period’s minimum standard deviation, so imax becomes
(ln(Ŵmax)−ln(Ŵmin))ρgrid

σmin
√
h

after rounding up to the nearest integer. Finally, it means that

Eq. (6) becomes

p̃(Wj (t + 1)|Wi (t), μ) = φ

(
1

σ
√
h

(
ln

(
Wj

Wi + C(t)

)
−

(
μ − σ 2

2

)
h

))
.

Otherwise, our main algorithm is the same.

3.2 Incorporating bankruptcy

When investor withdrawals, C(t) < 0, are sufficiently negative, they may cause the
investor to go bankrupt. That is, we must consider how to alter our algorithm for these
bankruptcy cases where Wi + C(t) ≤ 0.

To do this, for each time t , we define i pos(t) to be the smallest index i such that
Wi + C(t) > 0. (The notation “pos” reflects the fact that Wi + C(t) is positive.)
This means that for each i < i pos(t), we have a state of bankruptcy after the time t
withdrawal, since Wi + C(t) ≤ 0, while for each i ≥ i pos(t), the investor still has
money after the time t withdrawal. We note that an investor, once bankrupt, cannot
attain their goal wealth, therefore V (Wi (t)) = 0 for any i < i pos(t).

If i pos(t) fails to exist at any time t , it means that Wimax + C(t) ≤ 0 at this time,
so, from the point of view of our algorithm, the investor is guaranteed to be bankrupt
by time t . If i pos(t) exists for each t , we only need to make the following adjustments
to our algorithm:

• In Sect. 2.3, the potential for bankruptcymeans that Eq. (3) wouldmake Ŵmin ≤ 0,
which is undesirable. We therefore replace Eq. (3) with a value for Ŵmin that is
positive, but near bankruptcy, like ten dollars, Ŵmin = 10, or one dollar, Ŵmin = 1,
or even a penny, Ŵmin = 0.01.
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• In Sect. 2.4, we still determine the transition probabilities, p(Wj (t+1)|Wi (t), μ),
for all j values, but now only for i values where i ≥ i pos(t). After that, the Bellman
equation (7) is only used to compute V (Wi (t)) for i ≥ i pos(t). For i < i pos(t),
we have that V (Wi (t)) = 0, as stated before.

• Finally, in Sect. 2.5, we alter Eq. (8) for the probability of being at a wealth node
so that the summation over i is from i pos(t) to imax instead of from 0 to imax.

We note that the probability of going bankrupt due to the withdrawal at a given time

t is
∑i pos (t)−1

i=0 p(Wi (t)), while the probability of being bankrupt prior to this time is

1 − ∑imax
i=0 p(Wi (t)). In particular, since there is no cash flow at the final time T , the

probability of the investor going broke by time T is 1 − ∑imax
i=0 p(Wi (T )).

3.3 Multiple weighted goals

An investor may hope to attain a wealth goal, while at the same time also valuing
the goal of not falling below a lower wealth threshold. Further, the investor may want
to emphasize the relative importance of one of these wealth goals over the other.
Mathematically, this corresponds to letting the lower wealth goal value, G1, have
a weight of w1 and the higher wealth goal value, G2, have a weight of w2, where
w1 + w2 = 1 and the higher w1 is, the more important goal G1 is relative to goal G2.
To accommodate these two goals, we simply replace the terminal value Eq. (5) with

V (Wi (T )) =
⎧
⎨

⎩

0 if Wi (T ) < G1
w1 if G1 ≤ Wi (T ) < G2
1 if Wi (T ) ≥ G2,

and run the algorithm as before, noting that the value function V no longer represents
the probability of attaining the goal wealth, since there is no longer a single goal
wealth. If desired, we can easily extend this to k wealth goals G1 < G2 < · · · < Gk

with weights w1, w2, . . . , wk that sum to one, by replacing the terminal value Eq. (5)
with

V (Wi (T )) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if Wi (T ) < G1
j∑

l=1
wl if G j ≤ Wi (T ) < G j+1 for j = 1, 2, . . . , k − 1

1 if Wi (T ) ≥ Gk .

4 Results

In this section,we begin by describing a base case,whichwe then fine tune by adjusting
our algorithm’s parameters so as to optimize the algorithm’s speed vs. accuracy trade-
offs. We then demonstrate the results of the algorithm for a number of cases, both
with and without periodic infusions and withdrawals. At the end of the section we
demonstrate how our algorithm can be used to minimize the probability of an investor
going bankrupt during retirement, how an investor can understand the effect of periodic

123



Dynamic portfolio allocation in goals-based wealth… 625

Table 1 Summary statistics on returns from January 1998 to December 2017 for our three index funds

Index fund category Mean return Covariance of returns

U.S. Bonds 0.0493 0.0017 − 0.0017 − 0.0021

International Stocks 0.0770 − 0.0017 0.0396 0.03086

U.S. Stocks 0.0886 − 0.0021 0.0309 0.0392

infusions on the minimum probability of going bankrupt, and how our algorithm
compares to target date fund performance for achieving goals.

4.1 Base case

We create a base case from which we will later compute comparative statics. For
our base case, we assume the investor begins with a $100 investment at t = 0, so
W (0) = 100. The investor’s goal is to maximize their probability of reaching a goal
wealth of G = $200 at the end of year T = 10. We note that the ratio of these wealth
values is all that is important here. That is, the maximum probability of going from a
wealth of $100 to at least $200 at T = 10 in our base case is the same as the maximum
probability of doubling any initial investment at T = 10. So, for example, we can think
of W (0) = 100 thousand dollars and G = 200 thousand dollars. The calculations are
not changed.

No cash flows are present in the base case, although we will certainly explore their
effect later. The base case value for m, the number of potential portfolios we consider
along the efficient frontier, is 15. The base case value for ρgrid, the grid point density
per minimum annual standard deviation in the portfolio’s performance, is 3.0. These
values form and ρgrid have been chosen for reasons that will be explained in Sect. 4.2.

The efficient frontier arising from the investments available to the investor in our
base case is exogenously determined. For illustrative purposes, we have generated this
efficient frontier using historical returns from the 20 year period between January 1998
to December 2017 for index funds representing U.S. Bonds, International Stocks, and
U.S. Stocks.1 The mean and covariance of returns for these indexes are given in Table
1.

The data from this table is used in conjunction with the mathematics in Sect. 2.2
to generate the efficient frontier, shown in Fig. 1. The range for μ is restricted so that
μmin ≤ μ ≤ μmax. The bounds, μmin and μmax, can be chosen through a variety
of methods, including bounds on the investor’s tolerance for risk via the standard
deviation on the efficient portfolio or, as we will explore in Sect. 4.3.3, the investor’s
interest in limiting the downside or increasing the potential upside in the portfolio’s
final wealth distribution. For our base case, we have selected μmin = 0.0526 to

1 The three index funds used are (i) Vanguard Total Bond Market II Index Fund Investor Shares (VTBIX),
representative of U.S. Fixed Income (Intermediate-Term Bond), (ii) Vanguard Total International Stock
Index Fund Investor Shares (VGTSX), representative of Global Equity (Large Cap Blend), (iii) Vanguard
Total StockMarket Index Fund Investor Shares (VTSMX), representative of U.S. Equity (Large CapBlend).
These three funds have been chosen only as representatives of their respective asset categories for illustrative
purposes.
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Portfolio Weights
Portfolio U.S. International U.S.
number Bonds Stocks Stocks

0 0.9098 0.0225 0.0677
1 0.8500 0.0033 0.1467
2 0.7903 -0.0160 0.2257
3 0.7305 -0.0352 0.3047
4 0.6707 -0.0545 0.3837
5 0.6110 -0.0737 0.4628
6 0.5512 -0.0930 0.5418
7 0.4915 -0.1122 0.6208
8 0.4317 -0.1315 0.6998
9 0.3719 -0.1507 0.7788
10 0.3122 -0.1700 0.8578
11 0.2524 -0.1892 0.9368
12 0.1927 -0.2085 1.0158
13 0.1329 -0.2277 1.0948
14 0.0731 -0.2470 1.1738

Fig. 1 Top: The efficient frontier generated from the data shown in Table 1 for the returns of our three
indexes. Bottom: The table gives the portfolio weights in the three indexes for 15 consecutive portfolios on
the efficient frontier, starting from the low point to the high point. Both long-only and long-short portfolios
are permissible

correspond to the lowest possible portfolio standard deviation on the efficient frontier,
which is σ = 0.0374. We have selected μmax = 0.0886, the highest mean return
of the three index funds, so as to avoid long-short portfolios. This value of μmax
corresponds to σ = 0.1954. These numbers are realistic and match those in related
research, see for example Exhibit 5 in Wang et al. (2011). From Sect. 2.3, we can
now compute that there are 327 nodes in our wealth grid (i.e., imax = 326) ranging
between Wmin = 21.72 and Wmax = 1269. We consider m = 15 portfolios on the
efficient frontier whose μ values are equally spaced over the interval [μmin, μmax]. At
each year and wealth node in the state space, the dynamic strategy determines which
of these 15 portfolios is optimal.
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Fig. 2 Annual evolution of the probability distribution for wealth under the optimal dynamic strategy. The
plot shows the probability of having at least the corresponding wealth on the curve at each time

Under the optimal dynamic strategy, we find that the highest achievable probability
of reaching the goal wealth or more is Pr [W (T ) ≥ G = 200] = 0.669. The initial
portfolio has μ = 0.0835 and σ = 0.1686. Figure 2 shows the plot of one minus
the cumulative distribution of wealth for all t = 1, 2, . . . , 10 years. Using one minus
the cumulative distribution is more natural than using the cumulative distribution in
the context of this paper, because one minus the cumulative probability depicts the
optimal probability of meeting a given level of wealth at each horizon, so higher values
on the graph are better. For example, the point (100, 0.63) for the t = 1 curve means
the investor has a 63% chance of having at least $100 after a year, and, of course, the
investor would have been happier if the graph had been higher since that would mean
a higher chance of having at least $100 after a year.

The evolution of the distribution in Fig. 2 shows the shift of these wealth distribu-
tions to the right as time proceeds, but,more interestingly, it also shows the adjustments
the distribution shape makes so as to maximize the probability of exceeding the value
of G = 200 by the final year T = 10. In the earlier years, the distribution has a slight
positive skew, as is the case for a lognormal distribution, but the adjustments to attain
the goal wealth eventually reverse this and create a negative skew to the distribution
as it progresses to its time horizon. In Fig. 2, this corresponds to the development of
a hump that evolves to finally lift the curve higher at G = 200 when T = 10, so as to
maximize the probability of meeting the investor’s goal wealth.

Figure 3 shows the optimal probability of reaching our goal wealth G = 200 (i.e.,
the value function) at each point in time and for any level of wealth in the state space;
that is, at each {t,Wi (t)} grid point. As is expected, higher wealth levels are associated
with higher probabilities of reaching the goal wealth. The figure also reflects the fact
that as we reach the final time T = 10, we have more certainty about whether we will
attain the goal wealth.

In Fig. 4,we show the optimal portfolio strategy at each {t,Wi (t)}grid point. That is,
we show which of the 15 μ values are optimal, where portfolio number 0 corresponds
to μmin (and the lightest color) and portfolio number 14 corresponds to μmax (and the
darkest color). When the portfolio has a lot of money, it moves towards lower portfolio
numbers, since the corresponding decrease in volatility makes it less likely to incur
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Fig. 3 The value function, which is the optimal probability of reaching the goal wealth G = 200 at each
wealth node and time found by our dynamic strategy. The darker the color on the graph, the higher the value
function is. The x-axis shows the time in years and the y-axis depicts the level of wealth. Note that the
y-axis is an exponentially increasing scale. The figure truncates the displayed wealth values from its full
range between Wmin = $21.72 and Wmax = $1269 to the range of wealths between $37 and $226 where
the optimal probability varies

big losses that could remove investors from the path to attaining the goal wealth that
they are currently on. When the portfolio has less money, it moves towards higher
portfolio numbers, since the increase in both expected return and volatility makes it
more likely to attain the goal wealth.

4.2 Fine tuning the parameters to balance algorithm speed vs. accuracy

4.2.1 Effect of changing,m, the number of portfolio strategies

In Table 2, we consider the effect on the base case of changing the number of interme-
diate strategies we consider on the efficient frontier betweenμ = μmin andμ = μmax.
Because the efficient frontier is part of a hyperbola, it becomes progressively linear
as μ increases. This means the intermediate strategies matter more near μmin. From
Table 2, we see that m = 15, our base case value (denoted by an asterisk in this table,
as will all base case values in later tables), is more than sufficient for providing enough
accuracy in determining the probability of the initial investment W (0) = 100 gaining
at least 50% and at least 100% of its initial worth after 10 years. The table also shows
that the rate of growth in the run time asm increases is initially slightly sub-linear, but
then becomes linear for larger m values.

4.2.2 Effect of changing the grid point density,�grid

In Table 3, we consider the effect on the base case of changing the grid point density,
ρgrid, recalling fromSect. 2.3 that ρgrid represents the number of grid points (i.e., wealth
nodes) per σmin, the minimum annual portfolio volatility. Analyzing the run time data
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Fig. 4 Optimal portfolio strategy at each wealth node and time. Note that portfolio numbers run from 0, the
lightest color corresponding to μmin, to 14, the darkest color corresponding to μmax, for them = 15 model
portfolios on the efficient frontier. The x-axis shows the time in years and the y-axis depicts the level of
wealth on an exponentially increasing scale. The figure truncates the displayed wealth values from its full
range between Wmin = $21.72 and Wmax = $1269 to the range of wealths between $37 and $226 where
the portfolio choice varies

Table 2 Effect of changing m, the number of strategies

Value of m Run time (s) Pr [W (T ) ≥ 150] Pr [W (T ) ≥ G = 200]
5 1.8 .775 .665

10 2.4 .776 .668

15* 2.9 .777 .669

20 3.4 .777 .669

40 8.5 .777 .669

60 12 .777 .669

80 15 .777 .669

100 18 .777 .669

*denote the base case

in Table 3 shows that the rate of growth in the run time asρgrid increases has an exponent
of 1.5, directly between linear and quadratic growth. The optimal probabilities of the
initial investment gaining at least 50% and at least 100% of its initial worth have some
noise that dies down rather slowly as ρgrid increases. We choose ρgrid = 3 for the base
case (again, denoted with an asterisk), since the noise is within reason while the run
time has not grown too large.

4.3 The effect of the investor making changes

4.3.1 Effect of changingW(0), the initial investment

At the end of Sect. 2.4, our algorithm has determined the value function V at time
t = 0 for the investor’s specified initial investment,W (0), but it has also determined V
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Table 3 Effect of changing ρgrid, the grid point density

Value of ρgrid Run time (s) Pr [W (T ) ≥ 150] Pr [W (T ) ≥ G = 200]
1.0 0.64 .777 .662

1.5 1.1 .776 .673

2.0 1.6 .780 .676

2.5 2.2 .773 .666

3.0* 2.9 .777 .669

3.5 3.7 .780 .673

4.0 4.6 .779 .674

4.5 5.5 .778 .669

5.0 6.5 .777 .670

5.5 7.7 .779 .673

6.0 9.5 .778 .668

*denote the base case

Fig. 5 Initial optimal probability of reaching the goal wealthG = 200 if we start at different levels of initial
wealth W (0). The red dot corresponds to our base case of W (0) = 100, where the optimal probability is
66.9%

at time t = 0 for all of the other wealth nodes between Wmin and Wmax. This enables
an investor to determine the effect that increasing or decreasing their initial investment
will have on V , the optimal probability of their attaining their wealth goal G at time
T . In Fig. 5, we can see precisely how increasing the initial investment, W (0), from
its base case value of $100, increases the optimal probability of attaining the goal of
$200 at T = 10.

We can also see the effect of decreasing the initial investment, seemingly until we
reach the cutoff in the figure’s graph at Wmin = 21.72. However, near this cutoff, our
results are questionable, since the accuracy of the graph near Wmin requires that the
value function atWmin be very near zero, which is not quite the case here. The remedy
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Table 4 Effect of changing T , the portfolio’s time horizon

Time horizon T Run time (s) Goal wealth, G Pr [W (T ) ≥ G]
5 0.86 150 .574

10* 2.9 200* .669

15 6.1 250 .763

20 10 300 .843

25 16 350 .913

30 23 400 .957

40 44 500 .995

*denote the base case

for this problem is easy: simply reduce Wmin so that the full range of potential W (0)
values stays well above the newly chosen value of Wmin. Similarly, if Wmax creates a
cutoff, it should be increased.

4.3.2 Effect of changing T , the portfolio’s time horizon

In Table 4, we look at the effect of changing the time horizon T for the portfolio.
In this table, we let the goal wealth G increase linearly with T , although G actually
scales exponentially with T . As a result, we see the associated probability of attaining
G grow as T increases in the table. We also note from the table’s data that the growth
rate in the run time as T increases starts out being below quadratic growth for small
T , but increases to quadratic growth for large T .

4.3.3 Effect of changing�min or�max for the efficient frontier truncation

Our algorithm can accommodate any given set of funds from which it then forms
allowable portfolios along the efficient frontier. This has two benefits. First, because
the funds are selected independently from themechanics of the algorithm, the determi-
nation of the funds and the efficient frontier can be determined by a different operating
team in the fund management business from the team running the dynamic program-
ming algorithm. Further, if different sectors of the fund management business need
to work with different funds, our algorithm can easily accommodate each sector sep-
arately. Second, the spread in the wealth distribution at time T can be controlled to
some degree by changing the endpoints of the interval μ ∈ [μmin, μmax] that restrict
the (σ, μ) pairs on the efficient frontier available to our algorithm. In this subsection
we explore this second benefit by altering μmin and then μmax in our base case.

Recall that in our base case we consider 15 (σ, μ) pairs on the efficient frontier, with
the lower end of the frontier at (0.0374, 0.0526) and the upper end at (0.1954, 0.0886),
so μmin = 0.0526 and μmax = 0.0886. In the top panel of Fig. 6, we see the effect
on the terminal distribution of wealth when we chose four different values for μmin:
0.0526, 0.06, 0.065, and 0.07. As μmin increases, the probability of attaining the goal
wealth G = 200 goes down since the interval of available controls shrinks. Also, the
wealth distribution has a higher variance, as is to be expected. But these higher risk
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Fig. 6 Graphs for the probability distribution of the terminal wealth when μmin and μmax are varied. All
other parameters from the base case remain the same. The ranges are: μmin = {0.0526, 0.06, 0.065, 0.07}
and μmax = {0.07, 0.0886, 0.10, 0.15}

distributions also have higher positive skewness, evident from the longer right tails.
Therefore, choosing the value of μmin corresponds to choosing a trade-off between
variance and skewness. More notably, the left tails of all three distributions are very
similar, indicating that modulating μmin has a much stronger effect on the right side
of the wealth distribution.

The lower panel of Fig. 6 shows the effect of varying μmax by considering four
different μmax values: 0.07, 0.0886, 0.10, and 0.15. Again, the probability of attaining
the goal wealthG = 200 increases asμmax increases, because the interval of available
controls grows. However, in this case we notice that both the left and right sides of
the probability distribution are affected, although the effect on the downside is more
pronounced than that on the upside, suggesting that varying μmax has a greater effect
on the left tail.
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Table 5 Effect of changing annual infusions, C(t) ≥ 0

Value of C(t) Pr [W (T ) ≥ 150] Pr [W (T ) ≥ G = 200]
0* .777 .669

1 .832 .730

2 .881 .789

3 .926 .848

4 .961 .901

5 .984 .944

6 .996 .976

7 .999 .992

8 .999 .998

9 .999 .999

*denote the base case

An investor that is more accepting of risk would tend to first want to increase μmax,
but Fig. 6 suggests that increasing μmin might be the wiser course of action, since we
can see in this case that increasing μmin appears to have a stronger influence on the
upside potential whereas increasing μmax appears to have a stronger influence on the
downside, risking significant losses without that much compensating gains.

The reason for this is actually straightforward: The algorithm is only interested in
attaining the goal wealth, so the optimal strategy for a well-off investor is to move
μ to μmin so as to reduce volatility and the chance of major losses resulting in no
longer being on track to attain the goal wealth. Because the well-off investor uses
μmin, increasing μmax has little effect on the right tail, while increasing μmin has a
significant effect. Similarly, when the investor is worse off, they select μmax because
that increases both μ and σ , which increase the chance of big gains and attaining the
goal wealth. Of course this also increases the chance of big losses, which inflates the
left tail of the wealth distribution.

4.3.4 The effect of cash flows: infusions or withdrawals

1. Annual infusions: C(t) > 0

We continue to work with our base case where we have an initial investment of
W (0) = 100 thousand dollars and a goal of having at least W (T ) = G = 200
thousand dollars at the end of T = 10 years. In Table 5, we look at how constant
annual infusions of C(t) = 1, 2, . . . , 9 thousand dollars affect the maximum
probability of reaching this goal, as well as the probability of reaching at least
150 thousand dollars. We note from the table that even small infusions can have a
significant effect on increasing these probabilities.

2. Annual withdrawals: C(t) < 0 and the probability of going bankrupt.

We now look at the same situation, but with constant annual withdrawals instead
of infusions, so C(t) is now a negative constant. Should the annual withdrawal
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Table 6 Effect of changing annual withdrawals, C(t) ≤ 0

Value of C(t) Pr [W (T ) = 0] Pr [W (T ) ≥ 150] Pr [W (T ) ≥ G = 200]
0* 0 .777 .669

−1 0 .720 .609

−5 .002 .491 .387

−10 .124 .246 .182

−15 .492 .099 .072

−20 .796 .034 .021

−25 .937 .004 .001

*denote the base case

amount become significant, the investorwill now risk bankruptcy (i.e.,W (T ) = 0).
In Table 6, we see how increasing the withdrawal rate increases the chance of the
investor going bankrupt, while decreasing both the probability of reaching 150
thousand dollars and the probability of reaching the goal wealth of 200 thousand
dollars at time T = 10.

4.3.5 Attaining retirement goals: our algorithm versus a target date approach

Our algorithm can be used to solve a variety of important problems for optimizing
retirement savings. Here, for example, we consider the effect of infusions on the
maximized probability of not running out of money in retirement. In particular, we
consider at t = 0 a 50 year old investor who currently has 100 thousand dollars in
their retirement account and intends to take out 50 thousand present day dollars every
year after they turn 65 through the age of 80, where t = T = 30. We assume that
the annual rate of inflation is 3%, so, in thousands of dollars, that means that at age
66, C(t) = −50 · 1.0316, at age 67, C(t) = −50 · 1.0317, up through age 79 where
C(t) = −50 ·1.0329. BecauseC(t) isn’t defined at time T , which corresponds to when
the investor is 80, we need to set the goal wealth G equal, in thousands of dollars, to
G = 50 · 1.0330 = 121.4, so that the investor can make their final withdrawal without
going bankrupt.

Our algorithm now optimizes the chance that the investor does not go bankrupt,
but it finds, unfortunately, that this optimal probability is only 12.8%. The investor,
therefore, considers making infusions of c thousand present day dollars each year until
retiring at age 65, starting with an infusion of c · 1.03 at the age of 51. The effect of
increasing c on the maximized probability of remaining solvent at age 80 is given in
the first two columns of Table 7.

Target Date Funds (TDFs) play an important role in the space of retirement invest-
ing. They provide a logical investment strategy that has the advantage of being
customized to the age of an investor. Our GBWM approach allows the investment
strategy to be further customized to the investor’s needs by considering their goals,
timeframe, cash flows, and state of wealth over time, in addition to their age.

To quantify the advantages this additional customization provides, we have, for
comparison to our GBWM results, created a hypothetical TDF using the same three
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Table 7 Effect of changing
pre-retirement infusions, c, for
our algorithm with the goal of
staying solvent and for our
Target Date Fund

Value of c Our GBWM algo-
rithm: probability
of staying solvent
(%)

Our Target Date
Fund: probability
of staying solvent
(%)

0 12.8 0.7

5 25.8 3.9

10 42.0 11.9

15 58.6 26.6

20 73.5 45.0

25 85.4 62.7

30 93.8 77.0

35 98.4 86.6

40 99.8 92.8

Table 8 Our Target Date Fund glide path

Age range 50–54 (%) 55–59 (%) 60–64 (%) 65–69 (%) 70–74 (%) 75–80 (%)

1. U.S. Stock 44 40 35 28 20 18

2. International Stock 29 26 23 19 13 12

3. U.S. Bond 27 34 42 53 67 70

index funds representative of U.S. Bonds, International Stocks, and U.S. Stocks used
by our GBWM algorithm, along with a typical glide path, shown in Table 8, for an
investor transitioning from age 50 to age 80. Using the allocations from the glide path
in this table, we use simulation to determine the probabilities of an investor remaining
solvent at age 80. This gives us the results shown in the Target Date Fund column in
Table 7.

We see from Table 7 that our algorithm shows a significantly higher ability to
achieve the investor’s goal of staying solvent. More specifically, the advantage in
using our GBWM algorithm is greater than 30 percentage points when c = 10 or 15
and remains high for the other values of c as well.

There are a number of reasons for our algorithm’s considerable outperformance.
One reason is that the TDF retirement allocations are not generally on the efficient
frontier, so they incur some additional volatility that is not compensated by increased
expected returns. A second reason is that the allocation within TDFs is time depen-
dent, but does not depend on the level of the investor’s wealth, whereas our algorithm’s
allocation strategy depends on both time and the level of wealth. Finally, our algorithm
takes into account the investor’s stated goals and decisions, specifically the infusions
and the withdrawals the investor has pre-determined, as well as the investor’s time-
frame and the goal of staying solvent at the end of this timeframe. By allowing our
optimization to be customizable to an individual investor’s circumstances, specifica-
tions, and goals, our algorithm gains a considerable advantage over the one-size-fits-all
nature of target date funds. Table 7 shows that these differences are not small.
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Fig. 7 The distribution of wealth, given as one minus the cumulative distribution function, as it evolves
across t = {5, 10, 15, 20, 25, 30} years when the contribution level, c, is 15 from t = 1 to t = 15. The
top panel depicts the wealth evolution when the goal of our GBWM methodology is to remain solvent at
T = 30. We note that wealth curve presented for t = T = 30 already has the final goal wealth, G = 121.4,
subtracted from it, since G is to be withdrawn at T = 30. The bottom panel shows the wealth evolution for
our Target Date Fund. Comparing the two t = 30 curves at W = 0, we see the jump from 26.6 to 58.6% in
the probability of remaining solvent that our GBWM strategy provides, as shown in Table 7

We can better understand the trade-offs between our GBWM algorithm and our
Target Date Fund by comparing the two panels in Fig. 7, where we present one minus
the cumulative probability distributions at t = {5, 10, 15, 20, 25, 30} years for our
GBWMmethodology andourTargetDateFund. For this figurewehave chosen c = 15.
We note that the right tail of our Target Date Fund at t = 30 is higher. We also note at
times like t = 20 that the chance of not going bankrupt, which is the value of the graph
at W = 0, is slightly lower for our GBWMmethodology than our TDF. These are the
trade-offs that lead to our GBWM methodology attaining its goal of a much higher
probability of not going bankrupt than our TDF (58.6% versus 26.6%) at t = 30.

In Table 9, we change the goal of our algorithm from staying solvent to ending with
a balance at or above $500,000. This has no effect on our Target Date Fund numbers, of
course, but for our algorithm, as expected, it lowers the probability of staying solvent,
while increasing the probability of ending above $500,000. Again, we see that the
advantage in using our GBWMmethodology is greater than 30 percentage points, this
time when c = 15, 20, or 25, and, again, it remains high for the other values of c as
well. The effect of changing the GBWMgoal to having a balance at or above $500,000
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Table 9 Effect of changing
pre-retirement infusions, c, for
our algorithm with the goal of
ending with at least $500,000
and for our Target Date Fund

Value of c Our algorithm: proba-
bility of ending with≥
$500,000 (%)

Our Target Date Fund:
probability of ending
with ≥ $500,000 (%)

0 8.9 0.2

5 18.5 1.2

10 31.2 4.2

15 45.1 12.0

20 58.7 24.5

25 70.9 39.9

30 81.2 55.6

35 89.2 69.5

40 94.9 80.1

Fig. 8 The distribution of wealth, given as one minus the cumulative distribution function, as it evolves
across t = {5, 10, 15, 20, 25, 30} years when the contribution level, c, is 15 from t = 1 to t = 15. The
top panel depicts the wealth evolution when the goal of our GBWM methodology is to deliver an amount
greater than $500,000 at T = 30. The bottom panel displays the wealth evolution when we split the goal
for our GBWMmethodology between staying solvent with a 60% weight and delivering an amount greater
than $500,000 with a 40% weight at T = 30. In both panels, the wealth curve presented for t = T = 30
already has the final goal wealth, G = 121.4, subtracted from it, since G is to be withdrawn at T = 30
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Table 10 Effect of changing
pre-retirement infusions, c, for
our algorithm with the split goal
of staying solvent with a 60%
weight and ending with at least
$500,000 with a 40% weight

Value of c Our algorithm: proba-
bility of staying sol-
vent (%)

Our algorithm: proba-
bility of ending with≥
$500,000 (%)

0 11.8 8.1

5 23.8 16.9

10 38.9 28.8

15 54.5 42.2

20 68.7 55.5

25 80.5 67.8

30 89.5 78.5

35 95.6 87.2

40 98.8 93.8

on the wealth distribution over time can be seen in the top panel of Fig. 8. Note in this
panel the evolution of the advantageous kink that finally lands at $500 thousand in the
t = T = 30 curve.

Finally, in Table 10, we show the results of dividing our goal, as discussed in
Sect. 3.3, between staying solvent with a 60% weight and ending with a balance at or
above $500,000 with a 40%weight. Comparing the results in Table 10 with the results
in Table 7, we see that having a 60% weight, as opposed to the full weight, on the goal
of staying solvent leads to losses in the probability for attaining this goal of less than 5
percentage points, while comparing Table 10 with Table 9 for the goal of attaining at
least $500,000, we only observe losses of less than 4 percentage points. The evolution
of the distribution for this mixed GBWM goal when c = 15 can be seen in the bottom
panel of Fig. 8. Note that, as one would expect, we now see two advantageous kinks
at $0 and $500 thousand in the t = T = 30 curve.

5 Concluding discussion

In this paper, we have developed an algorithm that can quickly determine (generally
within a few seconds to a minute) an optimal dynamic trading strategy for goals-based
wealth management (GBWM). The objective function we maximize in our GBWM
framework is the probability of reaching a given goal wealth at the end of a given
investment horizon, in contrast to maximizing the expected utility of the wealth at
the end of a given time horizon. Without any sacrifice in runtime, our algorithm can
optimally allocate from among any given set, large or small, of chosen portfolios,
which can be determined outside of our algorithm. Also, without any sacrifice in
runtime, our algorithm can accommodate periodic specified infusions or withdrawals.
Further, we can easily compute the probability of running out of money at each period
due to any of these withdrawals.

Thedynamic programming approach,whose computationworks backwards in time,
has important advantages over approaches that work forwards in time. Dynamic pro-
gramming addresses the fact that the optimal portfolio allocation will shift over time.
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Attempting to consider this with a forwards in time algorithm is computationally
infeasible, so these algorithms are reduced to myopic approaches, where the alloca-
tion chosen at a point in time is only optimal under the assumption that no further
reallocation will occur. That is, the forwards in time algorithms are restricted to the
inferior approach of repeated static optimization. Interestingly, despite this, the results
from the repeated static optimization method described in Das et al. (2018) end up
being very similar to the results obtained from our dynamic programming approach,
however, that paper’s method, which relies on the solution to a stochastic differential
equation (SDE), cannot be extended to infusions or withdrawals and it has a longer
computational time. Most forwards in time approaches rely on simulation instead of
solving an SDE, which leads to even longer computational times to be reasonably
accurate.

We can modulate the left and right tails of the terminal wealth distribution by
varying the chosen range of allowable portfolios on the efficient frontier. If we remove
either the most risky investments at the top of this range or the least risky investments
at the bottom of this range, we lower the probability of reaching our goal wealth, since
we are restricting the set of controls available to the algorithm. However, removing the
most risky investments has the benefit of lowering the left tail in the distribution, as it
lowers the chance of significant losses, while removing the least risky investments has
the benefit of raising the right tail in the distribution, making it more likely to attain
wealth values that are significantly higher than the goal wealth.

Target date (or life-cycle) funds have the important feature of being able to reallo-
cate funds based on time, specifically on the age of the investor. They cannot, however,
reallocate based on the investor’s wealth or the investor’s specific goals. Nor are the
allocations underlying a target date fund necessarily on the efficient frontier. The nat-
ural question arises as to weather incorporating these GBWM features and efficiency
constraints, which require individualized attention through automation and/or human
advisors, adds much value to the investor. Our paper concludes that they can actually
add considerable value. We explored the case of a 50 year old saving for retirement at
age 65, who then takes out inflation adjusted withdrawals until the age of 80. Working
with just three index funds representative of U.S. Bonds, International Stocks, and
U.S. Stocks, we show examples where our algorithm’s optimal dynamic reallocation
strategy increases the chance of this investor remaining solvent at age 80 by more than
30 percentage points over using a Target Date Fund during this period.

The approach in this paper can be expanded to answer questions arising in other
important financial situations. These include incorporating the effect of taxes or incor-
porating stochastic efficient frontier models. Because our algorithm runs so quickly,
it is unlikely that these additional features will degrade the runtime particularly sig-
nificantly.
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