
Dynamic Goals-Based Wealth Management
using Reinforcement Learning

Sanjiv R. Das
Santa Clara University

Subir Varma
Santa Clara University

October 11, 2019

Abstract

We present a reinforcement learning (RL) algorithm to solve for a dynamically
optimal goal-based portfolio. The solution converges to that obtained from dynamic
programming. Our approach is model-free and generates a solution that is based
on forward simulation whereas dynamic programming depends on backward recur-
sion. The paper presents a brief overview of the various types of RL. Our example
application illustrates how RL may be applied to problems with path-dependency
and very large state spaces, which are often encountered in finance.

1

Contents

1 Introduction 3

2 Portfolio Optimization: Statics and Dynamics 4

2.1 Mean-Variance Optimization . 4

2.2 Goals-Based Wealth Management . 5

2.3 Dynamic Portfolio Optimization as a Game 6

2.4 Reinforcement Learning Solutions . 7

3 Candidate Portfolios 8

4 Formulation as a Markov Decision Processes (MDP) 9

4.1 State Space . 10

4.2 Transition Probability . 11

5 RL Taxonomy: Methods for Solving the MDP 11

6 Our Algorithm 16

7 Experimental Results 20

8 Concluding Comments 23

2

1 Introduction

Reinforcement Learning (RL) has seen a resurgence of interest as the methodology has
been combined with deep learning neural networks. Advances in hardware and software
have enabled RL in achieving newsworthy successes, such as learning to surpass human-
level performance in video games (Mnih et al., 2013) and beating the world Go champion
(Silver et al., 2017). RL algorithms are particularly good at learning from experience and
at optimizing the “explore-exploit” trade-off inherent in dynamic optimization problems.
This is why they can be fine tuned to play dynamic games with superhuman levels of
performance. The capacity of RL algorithms to learn from repeated trial episodes of
games can be accelerated to a degree mankind cannot replicate. It is just not possible for
anyone to play a million games over a weekend, whereas a machine can.

The dynamic optimization of portfolio wealth over long horizons is similar to optimal
game play. Portfolio managers choose actions–that is, asset allocations, and hope to
respond to market movements in an optimal manner with a view to maximizing long run
expected rewards. In this paper, we show how RL may be employed to solve a particular
class of portfolio “game” known as goals-based wealth management (GBWM). GBWM
has recently gained widespread acceptance by practitioners and the use of RL will inform
the growth in this paradigm.

Since the seminal work of Markowitz (1952), there has been a vast literature on port-
folio optimization, broadly defined as allocating money to a collection of assets (portfolio)
with an optimal trade-off between risk and return. In practice, return is defined as the
weighted average mean return of the portfolio and risk is usually the standard deviation of
this weighted return. Markowitz’s early work detailed a static (one-period) optimization
problem that forms the kernel for many dynamic optimization problems, where a statically
optimal portfolio is chosen each period in a multiperiod model in order to maximize a
reward function at horizon T . The reward function may be (1) based on a utility function,
or (2) whether the final value of the portfolio exceeds a desired threshold. The latter type
of reward function underlies the broad class of goals-based wealth management (GBWM)
models, see Chhabra (2005), Brunel (2015), and Das et al. (2018).

In GBWM, we seek to maximize the probability that an investor’s portfolio value W
will achieve a desired level of wealth H—that is, W (T) ≥ H at the horizon T for the goal.
Starting from time t = 0, with wealth W (0), every year, we will choose a portfolio that
has a specific mean return (µ) and risk (denoted by the standard deviation of return σ)
from a set of acceptable portfolios, so as to maximize the chance of reaching or exceeding
threshold H. We may think of this as playing a video game where we see the portfolio
move in random fashion, but we can modulate the randomness by choosing a (µ, σ) pair
at every move in time. This game may be solved in two ways: (i) At time T , we consider
all possible values of wealth W (T) and assign high values to the outcomes where we
exceed threshold H and low values to outcomes below H. We then work backwards from
all these possible values of wealth to possible preceding values and work out which move
(µ, σ) offers the highest possible expected outcome. This approach is widely used and
is classic dynamic programming, see Das et al. (2019). It is known in the reinforcement

3

learning (RL) literature as solving the “planning problem.” We provide formal details on
this briefly in Section 5.

Dynamic programming (DP) via backward recursion is oftentimes hard to implement
because backward recursion is computationally costly, usually because (1) the number of
states in the game is too large, or (2) the transition probabilities from one state to another
are unknown and need to be estimated. Instead, we may resort to forward propagation
game simulations, and improve our game actions by playing repeated games and learning
from this play as to which actions are optimal for each state of the game we may be in.
This approach, known as RL, has also been widely studied, see for example, Sutton and
Barto (1998).1 The video game analogy for RL has become popular since Mnih et al.
(2013) used the approach to beat human-level performance at playing the Atari video
game and many more. In this paper, we survey the various kinds of RL and show how we
may solve a multiperiod retirement portfolio problem—that is, optimize GBWM.

This article proceeds as follows. In Section 2 we review static mean-variance optimiza-
tion and set up the dynamic multiperiod goal-based optimization problem as an example
of game playing that may be solved using RL. In Section 3, we review how the set of
efficient portfolios that comprise the action space in the model is computed, using the
mean-variance solution of Markowitz (1952). Section 4 formulates the dynamic problem
in terms of Markov Decision Processes (MDPs). Section 5 describes the various types of
DP and RL algorithms that we may consider. Our taxonomy discusses (i) model-based
versus model-free RL approaches, (ii) value iteration versus policy iteration as a solution
approach, (iii) on-policy versus off-policy approaches, and (iv) discrete-state space solu-
tions versus continuous-state space solutions that use deep learning neural nets. Section 6
presents the specific Q-Learning algorithm we use to solve the dynamic portfolio problem.
This approach will be model-free, policy iterative, off-policy, and embedded in a discrete
state space. Section 7 reports results of illustrative numerical experiments, and Section 8
offers concluding discussion.

2 Portfolio Optimization: Statics and Dynamics

In this section, we briefly recap static mean-variance optimization, define GBWM, re-
cast dynamic portfolio optimization as a game, and introduce RL as a feasible solution
approach.

2.1 Mean-Variance Optimization

The objective of Modern Portfolio Theory is to develop a diversified portfolio that min-
imizes risk—that is, the variance of portfolio return, for a specified level of expected
(mean) return. This problem, known as mean-variance portfolio optimization, takes as

1The latest (2018) version of this book is available here: http://incompleteideas.net/book/

the-book-2nd.html.

4

http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html

input a vector of mean returns M = [M1, ...,Mn]> and covariance matrix Σ of returns
of n assets. Once the investor specifies a required expected return µ for the portfolio, a
set of asset weights w = {wj} = [w1, ..., wj, ..., wn]>, 1 ≤ j ≤ n is chosen to minimize
portfolio return variance σ2. The portfolio expected return and standard deviation are
functions of the inputs—that is,

µ =
n∑
j=1

wjMj = w> ·M ; σ =
√
w> · Σ · w

The asset weights are proportions of the amount invested in each asset, and these must
add up to 1—that is,

∑n
j=1wj = w>O = 1, where O = [1, 1, ..., 1]> ∈ Rn. Also, the

portfolio must deliver the expected return µ. For every µ, there is a corresponding optimal
σ, obtained by solving this portfolio problem for optimal weights vector w. This collection
of (µ, σ) pairs is called the “Efficient Frontier” of portfolios.

An investor’s wealth is statically managed by choosing the best portfolio from this
“efficient set” at any point in time to dynamically meet her goals. This is the traditional
approach to the portfolio optimization problem and it proceeds by choosing the portfolio
that minimizes the overall portfolio risk σ, while achieving a given return µ. See Das
et al. (2018) for the static optimization problem and Merton (1969), Merton (1971), for
the dynamic programming solution to the multiperiod problem in continuous time.

2.2 Goals-Based Wealth Management

Recent practice is leaning towards an alternative formulation of the portfolio optimization
problem that uses the framework of GBWM. In this formulation risk is understood as
the probability of the investors not attaining their goals at the end of a time period, as
opposed to the standard deviation of the portfolios. However, there is a mathematical
mapping from the original mean-variance problem to the GBWM one, as explained in Das
et al. (2010). Whereas this problem is a static one, the dynamic version of this GBWM
problem is solved in Das et al. (2019), where DP is used to solve the long-horizon portfolio
problem.

DP has been used to solve multiperiod problems in finance for several decades. The
essence of the problem may be depicted as follows. At any point in time t, an investor’s
retirement account has a given level of wealth W (t). The investor is interested in picking
portfolios every year to reach a target level of wealth H at time T—that is, she wants
that W (T) ≥ H. Of course, this is not guaranteed, which means that the goal will only
be met with a certain level of probability. The GBWM optimization problem is to reach
the goal with as high a level of probability as possible—that is, with objective function:

max
w(t),t<T

Pr[W (T) ≥ H]

This entails choosing a portfolio at each t, with a corresponding level of mean return and
risk, w(t) ≡ (µ, σ)t, where these portfolios are chosen from a select set of “efficient”
portfolios, mentioned in the previous subsection 2.1 and described in the following section

5

3. (Be careful not to mix up w ∈ Rn, which is a vector of asset weights, and W (t),
which is a scalar level of wealth at period t.) Thus, we solve for an optimal “action”
w[W (t), t], a function of the “state” [W (t), t]. Here the state has only two dimensions
and the action chooses one of a collection of possible (µ, σ) pairs, which determines the
range of outcomes of the wealth at the next period, W (t+ 1).

2.3 Dynamic Portfolio Optimization as a Game

If you think of portfolio optimization as a game with a specific goal (with a corresponding
payoff known as the “reward function”), then DP delivers a strategy telling the investor
what risk-return pair portfolio to pick in every eventuality that may be encountered along
the path of the portfolio, such that it maximizes the probability of reaching and exceeding
the pre-specified threshold value H. The solution approach uses a method known as
“backward recursion” on a grid, which is intuitive. Create a grid of wealth values W
for all time periods—that is, [W (t), t] (think of a matrix with time t on the columns
and a range of wealth values W on the rows). The reward in column T is either 1 (if
W (T) ≥ H) or 0 otherwise, signifying the binary outcome of either meeting the goal
or not. From every wealth grid point at time T − 1, we can compute the probability of
reaching all grid points at time T . We then pick the portfolio—that is, a (µ, σ) pair,
that maximizes the expected reward values at time T for a single node at time T − 1,
and we do this for all nodes at time T − 1. Computing the expected reward assumes
that the transition probabilities from state i at time T − 1 to state j at time T—that
is, Pr[Wj(T), T |Wi(T − 1), T − 1], are known (we will describe these probabilities in the
next section). We have then found the optimal action—that is, A = (µ, σ) choice, for
all nodes at T − 1, and we can also calculate the expected final reward at each of the
T − 1 nodes. This expected final reward, determined at all states [W (T − 1), T − 1],
is known as the “value function” at each state. Then, proceed to do the same for all
nodes at T − 2, using the rewards at all nodes at time T − 1. This gives the optimal
action and expected terminal reward (value function) for each node at time T − 2. Keep
on recursing backwards until time t = 0. What we then have is the full solution to the
GBWM problem at every node on the grid—that is, in one single backward pass. This is
an extremely efficient problem-solving approach and gives the full solution to the problem
in one pass. This problem setup is called the “planning problem” and the DP solution
approach is easily implemented because the transition probabilities from one state to the
next are known.

So far, DP via backward recursion has served its purpose well because the size of the
problems has been small in terms of the number of state variables and action variables,
and the transition probabilities are known. The computational complexity of the problem
depends on the number of states—that is, the number of grid points we choose, which is
tractable when the state comprises just wealth W and time t. Complexity also depends
on the number of possible actions to choose from as each of these has to be explored. In
the GBWM case, this depends on the number of choice portfolios we consider. Backward
recursion considers all possible scenarios (states) that might be encountered in the portfolio

6

optimization game and computes the best action for each state. It exhaustively enumerates
all game positions and works well when the number of cases to be explored is limited.
Compare this approach to building a program to play chess, where the goal is to solve for
the best action for all possible board configurations, an almost impossible task even to
describe the state space succinctly.

2.4 Reinforcement Learning Solutions

When the state and action space becomes large, and it becomes difficult to undertake
exhaustive enumeration of the solution, then learning from experience through game play-
ing is often a more efficient solution approach. In situations where the model of the
environment is unknown—that is, transition probabilities in the large state space are not
available a-priori, then exploration through game playing is required to obtain an estimate
of transition probabilities. Note that backward recursion is really an attempt to specify
a solution to all possible game scenarios one may experience, which is a limit case of
learning from limited experience through game playing.

In the portfolio optimization game, a player experiences a level of wealth W at each
point in time and takes an action A = (µ, σ). A series of such state-action (S,A) pairs
in sequence, through to horizon T , is a single game and results in a reward of 1 or 0.
Clearly, we want to increase the likelihood of playing (S,A) pairs that lead to rewards of
1 and downplay those that lead to 0 rewards. That is, we “reinforce” good actions. RL
is the process of training our model through repeated play of portfolio optimization game
sequences. We note that in both DP and RL, actions are a function of the current state
and not preceding states. This property of the sequence of actions characterizes it as a
Markov decision process (MDP), which we will describe later in the paper.

Through the RL process the agent builds up a set of actions A(W (t), t) to be taken
in each state [W (t), t]. The set of actions is also known as the “policy,” which is a
function of the state space. As the agent plays more episodes, the policy is updated to
maximize expected reward. With the right game playing setup, the policy will converge
to the optimal in a stable manner.

Unlike DP, which is solved by backward recursion, RL is a forward iteration approach—
that is, we play the game forward and assess the ultimate reward. RL does not visit
each possible state, only a certain number, determined by how many games, known as
“episodes” in the RL pantheon, we choose to play and the behavior of the random process
governing the evolution of the system. The hope is that RL is efficient enough to approach
the DP solution with far less computational and algorithmic complexity. In this paper, we
solve the GBWM dynamic portfolio problem using a variant of RL, known as “Q-Learning”
(QL). We cross check that the solution obtained by DP is also attained by QL, affirming
that RL works as intended for dynamic portfolio optimization.

7

3 Candidate Portfolios

Our problem is restated as follows: Assume that the portfolios have to be chosen at fixed
intervals (h = 1 year) and discrete periods t = 0, 1, 2, ..., T and the amount of wealth
at time t is given by W (t), 0 ≤ t ≤ T . The threshold return is denoted as H, and the
dynamic GBWM game is to choose the action A[W (t), t] = (µ, σ)W (t),t driven by portfolio
weights at each time period wj(t), 1 ≤ j ≤ n, 0 ≤ t ≤ T − 1, such that the probability at
the final time T of the total wealth exceeding H, given by P (W (T) > H), is maximized.

Figure 1: The efficient frontier of (σ, µ) pairs, which are possible portfolio choices available
to the investor each year.

Each period, we restrict our portfolios to a discrete set of portfolios—that is, (µ, σ)
pairs, that lie along what is known as the “efficient frontier,” described in the previous
section as the solution to a problem where we find a locus of points in (σ, µ) space
(see Figure 1) such that for each µ we have the portfolio w that minimizes variance
σ2 = w>Σw. The mathematics in Das et al. (2018) shows that the equation for the
efficient frontier is as follows:

σ =
√
aµ2 + bµ+ c

This curve traces out a hyperbola, as shown in Figure 1. The values a, b, c are given
by a = hTΣh, b = 2gTΣh, c = gTΣg, where the vectors g and h are defined by g =
lΣ−1O−kΣ−1M

lm−k2 , h = mΣ−1M−kΣ−1O
lm−k2 , and the scalars k, l,m are defined by k = MTΣ−1O,

l = MTΣ−1M , m = OTΣ−1O. In these equations M = [M1, ...,Mn]> is the vector of
the n expected returns of the porfolio assets, O is the vector of n ones, and Σ is the
covariance matrix of the n assets.

In the rest of this paper we restrict the portfolio choice at all instants of time 0 ≤ t ≤ T
to one of a set of K evenly spaced portfolios that lie along the Efficient Frontier curve,

8

given by (µ1, σ1),...,(µK , σK). We note that the solution here is a one-period solution
that delivers the best locus of portfolios that are inputs into the action space of the
RL algorithm. The optimal one-period choice is applied each period in dynamic manner
leading to an optimal dynamic programming solution. Note that choosing the portfolio
with the best return may not be the optimal policy, since higher returns also come with
higher variance, which may cause degradation of the objective function.

4 Formulation as a Markov Decision Processes (MDP)

We now move from the static problem to considering the dynamic portfolio game. At any
given state—that is, level of wealth W (t), we choose an action w(t) ≡ A(t) ≡ [µ(t), σ(t)].
The next step in the game is to generate the next period state W (t + h), which is
stochastic. The time between transitions is h. For illustrative purposes, we choose a
stochastic process that transitions W (t) to W (t+h), and we choose geometric Brownian
motion (GBM), as in Das et al. (2019):

W (t+ h) = W (t) exp
{

[µ(t)− 1

2
σ2(t)]h+ σ(t)

√
h · Z

}
(1)

where Z ∼ N(0, 1). Therefore, randomness is injected using the standard normal random
variable Z. GBM is one of the most popular choices used in financial modeling and
therefore, we employ it here. However, the choice of Z as Gaussian is not strict and we
may use any other distribution without loss of generality.

We are now ready to formulate the portfolio optimization problem as a MDP. The
MDP state is defined as (W (t), t), where W (t) is the value of the portfolio at time t. For
example the portfolio value is W (0) at the start of the MDP, and the MDP terminates
at t = T when the portfolio value is W (T). RL is then used to find the optimal policy
for the MDP through playing repeated episodes. A policy is a mapping from the state
{W (t), t} to action A = {µ, σ}. Each episode will proceed as follows:

1. Starting with an initial wealth of W (0) at time t = 0, we implement one of the
k = 1...K portfolios, denoted by [µ(0), σ(0)]k. Which portfolio (action) is chosen
will depend on the current policy in place. (At the outset, we may initialize the
policy to be a guess, possibly random, or some predetermined k.)

2. Using the Geometric Brownian Motion model, the wealth W (t+h) at time t+h is
a random variable, given by the transition equation (1). Using this formula, we can
sample from the random variable Z to generate the next wealth value W (t + h)
at time t + h, conditional on choosing an action [µ(t), σ(t)]. We then once again
use our policy to choose the next portfolio [µ(t + h), σ(t + h)]. The sequence of
these portfolios is a MDP. In our example, we have chosen the transition equation
explicitly to generate the next state, but we are going to solve the problem as if we
do not know equation (1).

9

3. Set t→ t+ h. If t = T then stop, otherwise go back to step 2.

Figure 2: Evolution of the total portfolio value with time. Choose the portfolios at t =
0 . . . T − 1 so as to maximize the probability of W (T) being greater than the goal threshold.

The system described above evolves in discrete time and action space, but in con-
tinuous wealth space (see Figure 2). For implementing the Q-learning solution later we
will restrict the wealth space to be discrete as well. This approach may be generalized to
continuous spaces by using function approximations based on neural networks.

4.1 State Space

Our approach is to define a large range of

[Wmin,Wmax] = [W (0) exp(−3σmax
√
T),W (0) exp(+3σmax

√
T)]

at the end of the time horizon T , which will be an array of final values of W (T), suitably
discretized on a grid. Here σmax is taken to be the highest possible standard deviation
of return across all candidate portfolios from Section 3. The number of grid points
on the wealth grid are taken to be (10T + 1), so if T = 10, then we have 101 grid
points. The grid points are equally spaced in log-space—that is, equally over the range
[ln(Wmin), ln(Wmax)]. From the initial wealth W (0), we assume that it is possible to
transition to any wealth value on the grid at the end of the period (t = h), though the
probability of reaching extreme values is exceedingly small. From each wealth value at
t = h we assume transition is possible to all the wealth grid values at t = 2h, and so on.

10

Hence, the grid is “fully connected.” Transition probabilities from a node i at t to node
j at t+ h are described in the next subsection.

4.2 Transition Probability

Using equation (1) that describes the evolution of W (t), we can write down the following
equation for the transition probability from state Wi(t) at time t to state Wj(t + h) at
time t+ h (a transition from node i to node j):

Pr[Wj(t+ h)|Wi(t)] = φ

 ln
(
Wj(t+h)

Wi(t)

)
− (µ− 0.5σ2)h)

σ
√
h

where φ(·) is the normal probability density function (pdf) because the Z in equation (1)
is Gaussian. In order to fully define the MDP, we also need to specify the reward function.
In this model, the reward R is only specified for the final states W0(T), ...,W10T (T), and
is as follows: R = 1 if Wj(T) ≥ H , and 0 otherwise. This is akin to a video game
reward—that is, you get 1 if you win the game and 0 if you lose.

In the case where the investor is allowed to make infusions I(t) into the portfolio over
time, transition probabilities are adjusted to account for these additional cashflows coming
into the portfolio. The revised transition probabilities are as follows:

Pr[Wj(t+ h)|Wi(t), I(t)] = φ

 ln
(

Wj(t+h)

Wi(t)+I(t)

)
− (µ− 0.5σ2)h)

σ
√
h

Because the transition probabilities are known, but we solve the problem through forward
simulation, we are not explicitly using the transition probabilities in determining the opti-
mal actions. We only use the transition probabilities to generate the next state with the
correct probabilities. The analogy here to video gaming (for this portfolio game) is that
the game designer has to use some transition probabilities with which states are generated
in the game, but these are not given to the game player. So, as problem designer, we
define the system and its transition probabilities using equation (1) but we do not use
these explicitly to discover the solution, i.e., the optimal policy. Therefore, the RL solution
approach we employ in this paper is an example of model-free RL. The distinction between
model-based and model-free RL is discussed next and we describe a broad taxonomy of
RL approaches.

5 RL Taxonomy: Methods for Solving the MDP

A “policy” π(s) is defined as a mapping from the state s to one of the portfolios in the set
A of actions {(µ1, σ1), ..., (µK , σK)}. The optimal policy π∗(s) is the one that maximizes
the total expected reward, which in this case is the probability of the final value Wi(T)
exceeding the threshold H. Solving the MDP is the process of identifying this optimal
policy.

11

MDP solution methods can be classified into the following categories:

1. Model-based Algorithms: These algorithms assume that the state transition proba-
bilities are known. For a given policy π, they are based on the concept of a State
Value Function Vπ(s), s ∈ [W (t), t], and the State-Action Value Function Qπ(s, a),
a ∈ A. The Value Function Vπ(s) is the expectation of total reward starting from
state s under policy π, while the State-Action Value Function Qπ(s, a) is the ex-
pectation of total reward starting from state s and using a as the first action, and
policy π thereafter. Similarly, V∗(s) and Q∗(s, a) are the corresponding value func-
tions that are attained when using the optimal policy π∗. The value function under
the optimal policy satisfies the Bellman Optimality Equation (BOE), see Bellman
(1952), Bellman (2003), Bellman and Dreyfus (2015), which is a formal statement
of the backward recursion procedure described in Section 2.3:

V∗(st) = max
at

E[V∗(st+1)|st]

= max
at

E
{

max
at+1

E [V∗(st+2)|st+1] |st
}

(2)

= max
at,at+h,...,aT−h∈π(s)

E [V∗(sT)|st]

where the last equation follows from the law of iterated expectations and the Markov
property. This is a simple version of the Bellman equation because the reward is
only received at maturity and there are no intermediate rewards. The same equation
without the “maximization” is simply the Bellman Expectation Equation (BEE) and
gives the value of any policy, which may not be optimal. A similar equation holds
for the State-Action Value function, also known as the Q function (for “quality”):

Q∗(st, at) = max
at,at+h,...,aT−h∈π(s)

E [Q∗(sT)|st] (3)

Once we know either V∗(s) or Q∗(s, a), we can readily compute the optimal policy.

To arrive at these optimal functions, one of the following algorithms is used:

• Value Function Iteration.

• Policy Function Iteration.

Both of these are iterative algorithms that work by updating value and/or policy
functions through episodes of game playing. Value iteration iterates on the BOE,
whereas policy iteration iterates on the BEE.

RL may be implemented on a discrete or continuous state and action space. If both
state and action spaces are discrete and finite (and of small size), then it is feasible
to maintain grids (tensors of any dimension) for state and action, and solve for
V∗(s) and Q∗(s, a) at each point on the grid. This is known as “tabular” RL. In our
GBWM problem, the state space has two dimensions W (t) and t, and the action
space has one (K portfolios), so the tabular grid will be of dimension three—that
is, V∗(s) and Q∗(s, a) will be values on a 3-D tensor.

12

To get some quick intuition about the approach, we define the following components
of the algorithm.

• State s(t): The current value of variables on which the decision (action) is
based. In our example, this is the level of wealth W (t) and time t, and is
represented by a node on the grid.

• Action a(s(t)): Define the action a as an element in the index set {1, 2, .., K},
and the policy π(s) as a mapping from the state s to one of the elements in
the action set. In our case, this is the portfolio chosen until the next state
is realized, at which time another action will be taken. The series of actions
is often denoted as a “plan” and hence, learning is analogous to solving a
“planning” problem, the result of which is a policy—that is, resulting in a
series of actions (a0, ..., aT−h).

• Reward r(s(t), a(t)): At each state, the agent may or may not receive a reward
for the action taken. In our example, rewards are only received at the final
horizon T of the problem.

• Transition probability p[s(t + h) | {s(t), a(t)}]: This defines the likelihood of
moving to a probabilistic state the following period, conditional on the current
state and action.

The value function V (s(t)) is defined over the same grid. The solution procedure
for this problem consists of starting from time T and populating the value function
in the last section of the grid—that is, V (s(T)). For our problem, the value is
binary—that is, if W (T) ≥ H, then V (s(T)) = 1, else it is equal to 0. Once we
have populated the value function at time T , we can proceed to populate the value
function at time (T − h), using backward iteration based on the Bellman equation.

V (s(T − h)) = max
a(s(T−h))

E[V (s(T))] (4)

= max
a(s(T−h))

[
m∑
i=0

{p(s(T)|s(T − h) = i, a(T − h))} · V (s(T))

]

where an expectation has been taken over values V (T) in all m states in the next
period using the transition probability function p(s(T)|s(T − h), a(T − h)). This
equation embodies the “backward recursion” solution procedure, because the same
equation may be applied for all periods from t = T − h to t = 0. This procedure
is value iteration and we first solved the GBWM problem this way using DP to
determine the optimal value function.

In policy iteration, we choose a random policy, and then find the value function
of that policy (policy evaluation step). Find a new and better policy based on the
previous value function, and so on, until no further improvement is possible. During
each iteration of the algorithm, the BEE can be used to compute the value function
for the current policy. Here the policy is explicitly chosen, starting from an initial
functional guess. Standard DP is almost always amenable to policy iteration, and
we have solved the portfolio problem using RL that way.

13

When all the components of the problem s, a, r, p (state, action, reward, and transi-
tion probability) are known, the algorithm is denoted “model-based.” Often, one or
both of the r, p functionals are not known in advance, and have to be learned while
solving the problem, usually through repetitive play. This is denoted as “model-free”
learning.

2. Model-free Algorithms: If the state transition probabilities are not known in ad-
vance, then the MDP is solved by collecting sample-paths of the state transitions,
which are generated by the “environment” (latent transition probabilities), and the
corresponding rewards, and then estimating the optimal state-action value function
Q∗(s, a) using statistical averaging. Note that the state value function V∗(s) is no
longer useful in the model-free case, since even if it were known, the calculation
of the optimal policy still requires knowledge of the state dynamics. On the other
hand, once Q∗(s, a) is known, the optimal policy can be obtained by doing a sim-
ple maximization π∗(s) = arg maxaQ∗(s, a). The two main classes of Model Free
algorithms are:

• Monte Carlo (MC) Learning: These algorithms work for cases when the MDP
sample paths terminate, and proceed by estimating Qπ(s, a) by averaging the
total future rewards seen whenever the system is in state s and the agent takes
action a. This results in an unbiased estimate of Qπ(s, a), however it is subject
to a large variance, as a result of which a large number of sample paths are
needed to get a good estimate.

• Temporal Difference (TD) Learning: These algorithms work even for non-
terminating MDPs, and are lower variance and thus more sample efficient
than Monte Carlo methods. They use a one-step version of the BEE given by
the following iteration:

Qπ(s, a)← Qπ(s, a) + α[R + γQπ(s′, a′)−Qπ(s, a)]. (5)

The reward R, state s, and action a are seen at time t, and the state and action
next period are denoted s′ and a′, respectively. The parameter α proxies for
the “learning rate” and is usually chosen to be a small value. The “discount
rate” is γ ≤ 1 and it suffices to trade off later rewards against earlier ones in
an episode. It also helps to set a horizon on the importance of rewards when
episodes do not terminate in a short horizon.

We seek to obtain estimates of the State-Action Value Function Qπ(s, a) under
what is known as an “epsilon-greedy” policy π, using the generated sample
paths. Under this ε-greedy approach, the current action a is chosen based on
the current policy with probability (1 − ε) but with probability ε, a random
action is chosen. Using the current policy is known as “exploitation” and
using the random policy generates “exploration” behavior. Exploration is a
key ingredient in RL, because it enables better coverage of the state space.
This idea optimally implements the exploitation-exploration tradeoff. Staying
on the beaten track (exploitation) may not lead to the best solution and some
wandering (exploration) often leads to discovering better outcomes.

14

Note that for our specific portfolio problem, R = 0 except at time T , when it
takes a value in {0, 1}. The equation above can therefore, also be written as

Qπ(s, a)← Qπ(s, a)(1− α) + α(γ ·Qπ(s′, a′)) (6)

where we note that this update equation sets the new value of Qπ(s, a) to
a weighted average of the current value function and the value function in
the next period, and when α is small, the learning is of course slow, but
convergence is more stable.

This formula in equation (5) uses the following sample path transitions: Start
from state s and take action a (under policy π) to generate reward R, followed
by a probabilistic transition to state s′ from where the action a′ is taken, again
under policy π. This is followed by a version of the policy iteration algorithm,
to progressively refine the policy π, until it converges to the optimal policy π∗.
TD Learning comes in two flavors:

(a) SARSA-Learning: This is an “on-policy” version version of TD Learning,
in which the policy π being followed to generate the sample paths is the
same as the current iteration of the optimal policy. Note that the current
policy may not be optimal unless it has converged. In equation (6), both
a and a′ are chosen using the current policy. Therefore, it is called “on-
policy” learning.

(b) Q-Learning: This is an “off-policy” version of TD Learning, in which the
policy a, a′ being used to generate the sample paths (called the “behavior
policy”) may not be the same as the current iteration of the optimal policy
(called the “target policy”). This is a very beneficial property to have for
two reasons: (1) The behavior policy can be designed to explore more
states and actions, thus improving the Q-estimates. Using the optimal
target policy instead to generate sample paths leads to the problem that
not all states and actions will be fully explored. (2) Due to the off-policy
nature of Q-learning, state transitions can be stored and used multiple
times in order to improve the Q estimates. In contrast on-policy methods
need to generate new sample paths every time the policy changes. The
iteration in Q-Learning is given by:

Qπ(s, a)← Qπ(s, a) + α[R + max
a′

γQπ(s′, a′)−Qπ(s, a)]

In this equation π is the target policy, while the behavior policy is used
to choose the action a in state s. See that in Q-Learning the policy a′ is
chosen optimally from highest value function in state s′, unlike in the case
of SARSA, where it is chosen based on the current policy function. In this
paper, we implement Q-Learning on a 3-D tensor—that is, we implement
tabular RL.

3. Algorithms that use Function Approximators: The Reinforcement Learning algo-
rithms described so far are tabular in nature, since they work only for discrete

15

values of states and actions. If this assumption is not satisfied, or if the number of
states (or actions) is extremely large, then these methods don’t work any longer. In
their place we have a range of methods that use a function approximator, such as
a neural network, rather than a table, to represent the value function. This results
in the following two classes of algorithms:

• Deep Q-Learning: In this case a neural network is used to approximate the
state-action value function Qπ(s, a). The neural network is trained in a su-
pervised fashion, by using training sample paths from the MDP to generate
the ground-truth values for Q. Some recent successes of RL, such as the
Atari game playing system developed by DeepMind, were based on the deep
Q-learning algorithm. These are known as DQNs or deep Q nets, see Mnih
et al. (2013).

• Policy Gradients: This is an alternative approach to RL, in which the policy
is optimized directly (as opposed to indirectly obtaining the policy by first
estimating value functions). In order to do so, policies are represented using
neural networks, and the policy optimization proceeds by using well known
techniques such as stochastic gradient ascent. Policy gradient methods work
even for cases when the action space is continuous and can also accommodate
randomized polices. Applications of RL to areas such as robotics and finance
often use policy gradients.

Next, we describe the specifics of our algorithm for the GBWM problem.

6 Our Algorithm

We first solve the problem using classical DP based on equation (2). This gives us solutions
against which we may check our RL algorithm. We do not provide further details regarding
the standard Bellman approach for DP as it is well known.

The algorithm we use solve the MDP is the type of RL algorithm called tabular Q-
Learning and is stated below:

• Define a quality function Q that maps to each of the states and actions in the MDP
and initialize it to 0—that is, Q(W (t), t, ak) = 0, 0 ≤ t ≤ T, 1 ≤ k ≤ K. Note
that action ak corresponds to using the efficient frontier pair (µk, σk).

• Set W (0) to a constant corresponding to the initial wealth at time t = 0.

• Initialize time to t = 0 and repeat the following steps in a loop for M episodes (or
training epochs):

1. Choose action a as the one that maximizes Q(W (t), t; ak), 1 ≤ k ≤ K, as
modified by the ε-greedy algorithm. The ε-greedy approach is one that arbi-
trarily chooses a random strategy with probability ε to implement the “explore

16

versus exploit” tradeoff. We describe the exact specification of the ε-greedy
choice in the next section.

2. Transition to the next state (W (t + 1), t + 1), where W (t + 1) is sampled
using the MDP state transition probability values. While we know the exact
transition function, we operate as if this is generated by the environment and
is not known to the agent.

3. Choose the next action a′ in state (W (t+1), t+1), as the one that maximizes
Q(W (t+ 1), t+ 1, ak), 1 ≤ k ≤ K

4. Update the Q value of the original state (W (t), t) and action a, using

Q(W (t), t, a)← Q(W (t), t, a)+α[0+γQ(W (t+1), t+1, a′)−Q(W (t), t, a)].

Note that rewards are 0 for intermediate states t < T .

5. t→ t+ 1.

6. If t = T , then this is the end of the episode. Update the Q values for the final
state (W (T), T):

Q(W (T), T, a)← Q(W (T), T, a) + α[1−Q(W (T), T, a)] if W (T) ≥ H

Q(W (T), T, a)← Q(W (T), T, a) + α[0−Q(W (T), T, a)] if W (T) < H

Increase the number of episodes by 1, set t = 0 and re-initialize the state to
(W(0),0) to start a new episode.

7. If t < T then go back to step 1 to continue the current episode.

Both the DP (Planning) algorithm and the Q-Learning algorithm were implemented in
the Python programming language. The first component of the algorithm was to decide
the grid for portfolio wealth outcomes. Below we display only some snippets of code in
order to make the programming of the algorithm clearer.2 Think of these snippets as
pseudo-code.

1. Create the wealth grid. The code below creates an equally spaced grid in log wealth,
which is then translated back into wealth by exponentiation (line 8). W0 is initial
wealth. The number of periods is T (line 4). The infusions at each time t are I(t)

(lines 5, 6). The grid size was set to 101 nodes (line 7).

1 lnW = log(W0)

2 lnw_min = lnW

3 lnw_max = lnW

4 for t in range(1,T+1):

5 lnw_min = log(exp(lnw_min)+I[t]) + (mu_min - 0.5* sig*sig)*h

- 3*sig*sqrt(h)

6 lnw_max = log(exp(lnw_max)+I[t]) + (mu_max - 0.5* sig*sig)*h

+ 3*sig*sqrt(h)

7 lnw_array = linspace(lnw_min ,lnw_max ,101)

8 w_array = exp(lnw_array)

2If you wish to implement the code, you will need to wrap these code ideas into a full Python program.

17

2. Construct a blank 3-D tensor that combines the 2-D state space and the 1-D action
space. This will hold the tabular Q(S,A) function values. The first dimension of
the tensor is wealth, the second one is time (from 0 to T), and the third is the
action space, where NP= K is the number of portfolios available to choose from.

1 Q = zeros((len(w_array), TT+1, NP))

3. Initialize 3-D reward tensor in {W, t, a}. We see that rewards are only attained at
maturity in this problem if the final wealth value is greater than goal level H. We
see that the Q and R tensors are of the same dimension.

1 R = zeros((len(w_array), TT+1, NP))

2 for j in range(maxlenW):

3 if W[TT][j]>H:

4 R[j,TT ,:] = 1.0

4. State transition under the policy. Suppose we are at node Wi(t) at time t and
transition to a node at time t + 1, denoted Wj(t + 1). Which node we transition
to depends on the environment (transition probabilities), but these in turn depend
on the action taken—that is, ak = (µk, σk). We create a separate function to
generate state transitions—that is, to mimic the behavior of the portfolio’s wealth
from the underlying environment. Given current scalar w0,t0, and action a0, sample
a transition to wealth vector w1 at time t1 (line 1). Infusions are denoted by variable
I (lines 1, 4). Action a0 involves the choice of a pair mu, sigma (lines 2, 3). These
are drawn from a set of possible pairs of mean return from list EF mu and standard
deviation of return from list EF sig. We have to normalize probabilities from line
4 in line 5. The probabilistic transition under the policy is then selected in line 6.
We return the grid index of wealth in line 7.

1 def sampleWidx(w0 ,w1 ,I,a0): #to give the next state

2 mu = EF_mu[a0]

3 sig = EF_sig[a0]

4 p1 = norm.pdf((log(w1/(w0+I))-(mu -0.5* sig **2)*h)/(sig*sqrt(h

)))

5 p1 = p1/sum(p1) #normalize probabilities

6 idx = where(rand() > p1.cumsum ())[0]

7 return len(idx) #gives index of the wealth node w1 at t1

We may also easily replace the normal distribution with a t-distribution (or any
other). For example, line 4 above would be replace with

1 p1 = t.pdf((log(w1/(w0+I))-(mu -0.5* sig **2)*h)/(sig*sqrt(h)) ,5)

where we see that the function norm.pdf is replaced with t.pdf—that is, a t-
distribution with 5 degrees of freedom.

5. Temporal difference update at a single node. When we arrive at a node in the state
space (indexed by idx0, t0 in line 1 below), we then have to pick an action a0,
which we do using the epsilon-greedy approach (lines 2-9). Under that action we
will then call the preceding function to ascertain the next state idx1,t1. We then

18

update the State-Action Value Function Q[idx0,t0,a0] in lines 10-16 if we are
at t < T ; or lines 17-19 if we are at t = T . Note that, in line 16, we choose
the optimal policy at t1, as you can see the element Q[idx1,t1,:].max() in the
code. In TD Learning, we update at every step in an episode, so it is easy to
build all the update logic into a single generic function for one node, which we call
doOneNode(idx0,t0) here.

1 def doOneNode(idx0 ,t0): #idx0: index on the wealth axis , t0:

index on the time axis

2 #Pick optimal action a0 using epsilon greedy approach

3 if rand() < epsilon:

4 a0 = randint(0,NP) #index of action; or plug in best

action from last step

5 else:

6 q = Q[idx0 ,t0 ,:]

7 a0 = where(q==q.max())[0] #Choose optimal Behavior

policy

8 if len(a0) >1:

9 a0 = random.choice(a0) #randint(0,NP) #pick

randomly from multiple maximizing actions

10 #Generate next state S’ at t+1, given S at t and action a0,

and update State -Action Value Function Q(S,A)

11 t1 = t0 + 1

12 if t0 <TT: #at t<T

13 w0 = W[t0][idx0] #scalar

14 w1 = W[t1] #vector

15 idx1 = sampleWidx(w0 ,w1 ,infusions[t0],a0) #Model -free

transition

16 Q[idx0 ,t0,a0] = Q[idx0 ,t0,a0] + alpha *(R[idx0 ,t0,a0] +

gamma*Q[idx1 ,t1 ,:]. max() - Q[idx0 ,t0,a0])

17 else: #at T

18 Q[idx0 ,t0,a0] = (1-alpha)*Q[idx0 ,t0,a0] + alpha*R[idx0 ,

t0,a0]

19 idx1 = idx0

20 return [idx1 ,t1] #gives back next state (index of W and t)

6. String together a sequence of calls to the previous function to generate updates
through one episode, moving forward in time. At the beginning we set idx equal
to the wealth index for initial wealth W0. The kernel of the code for one episode is
just this. At every point in the episode, whichever state is visited experiences an
update, and the entire Q table evolves into a new policy.

1 for t in range(TT+1):

2 [idx ,t] = doOneNode(idx ,t)

7. We choose the number of episodes (epochs) as 105,000. Other parameters chosen
are α = 0.1, γ = 1, and ε = 0.3. We initialize the Q tensor to zeros and then begin
processing episode after episode. In order to examine if the algorithm is converging
to a stable policy, we compute the sum of squared differences between Q tensors
from consecutive episodes. At close to 50,000 epochs this metric becomes very small
and stabilizes. Still, we run 55,000 more epochs to be assured of convergence.

19

In the next section, we present illustrative results from a numerical implementation of the
Q-Learning algorithm.

7 Experimental Results

We present some experimental results from running the Q-Learning algorithm in Table 1.
The table shows the inputs to the problem, which are the mean vector of returns and the
covariance matrix of returns. These are then used to compute the K = 15 portfolio that
are available in the action space. The model outputs are the algorithm used, the number
of training epochs, and the final value function outcome. We also offer extensions and
observations. We recap some algorithm details and note the following:

1. Discussion of the Epsilon Greedy Algorithm: Q-Learning uses the epsilon-greedy
algorithm in order to choose the action (or portfolio in this case), from the state
(W (t), t) at each step in the episode. This algorithm is as follows:

• Sample x from the Bernoulli Distribution B(ε, 1− ε).

• If x < ε: Choose action ak, 1 ≤ k ≤ K with probability 1
K

,
else: Choose action a = arg max1≤k≤K Q(W (t), t, ak)

Most of the time this algorithm chooses the action that maximizes the Q value for
small ε. However every once in a while it chooses an action uniformly from the
set of available actions. This allows the Q-Learning algorithm to explore states and
actions that it otherwise would not if it were to strictly follow the optimal policy.
The value of ε has a significant effect on the working of the algorithm, and has to
be at least 0.30 in order to get good results. This shows that without a sufficient
amount of exploration, the algorithm may get stuck in states and actions that cause
it to under estimate the Q values. Also note that the epsilon-greedy policy is being
used here in an off-policy fashion, so that larger values of epsilon don’t affect the
accuracy of the Q values being estimated.

2. The results of Q-Learning algorithm are verified by comparing the value function at
t = 0, given by V (W (0), 0), with that computed using regular DP. Note that we
can obtain V readily from Q by using the formula:

V (W (0), 0) = max
1≤k≤K

Q(W (0), 0, ak)

By definition V (W (0), 0) is the maximum expected reward when starting with an
initial wealth of W (0) at t = 0. In this case the expected reward corresponds to
the probability of the final expected wealth value exceeding H. Applying regular
Dynamic Programming to this problem yields V (W (0), 0) = 0.72, and we can see
that Q-Learning also gives this answer after training for 100K episodes, provided the
value of the epsilon-greedy parameter is at least 0.30. Larger values of epsilon lead
to greater exploration of the state space, which ultimately improves the accuracy

20

Figure 3: Convergence of the algorithm over successive epochs. The solution is reached in
approximately 20,000 epochs.

of the Q values. However this comes at the cost of slower convergence, since the
algorithm wanders over a larger number of states and actions. This can be seen
in Table 1 for ε = 0.4. In this case the algorithm converges to a good estimate
of the optimal Q, but takes a larger number of iterations to do so. When the RL
algorithm is run to a very high number of epochs, say 500K, then it converges to
the DP result, as seen in the last line of Table 1.

3. Choice of parameters (α, γ): The parameter γ is used in the Q-Learning algorithm
as a discount factor for future rewards. Since the reward used in the GBWM problem
formulation does not require any discounting, we set γ = 1. The parameter α is
used to control the window of Q values that are averaged together. Experimentally
we observed that α = 0.1 works quite well, which corresponds to a moving average
over the last ten Q values.

4. In order to measure the convergence of the algorithm, we plot the moving average
squared difference between the Q-tensor from successive epochs. Figure 3 shows
that the algorithm stabilizes in about 20,000 epochs.

5. Solving GBWM with other algorithms: There are a number of other algorithms that
can be used to solve the GBWM problem. Since the state transition dynamics are
specified to follow the geometric Brownian motion model, we can apply classical
DP algorithms to this problem, as shown in Das et al. (2019). RL algorithms are
needed for the following cases in which Dynamic Programming is not applicable:

• The state transition dynamics are not known: In this case DP can no longer
be used, however Q-Learning is still applicable provided there is a collection of
sample paths that can be used for training.

• The state space is not discretized: DP is difficult to implement numerically if
we don’t discretize the state space, and unfortunately the tabular Q-Learning

21

Table 1: Results from the Q-Learning Algorithm. The parameters for these runs are as follows.
The initial portfolio wealth is W (0) = 100; target portfolio goal = 200; horizon is T = 10 years.
A total of 15 portfolios are used and these are generated from a mean vector of returns M and
a covariance matrix of returns Σ shown below, along with the mean and standard deviation of
the portfolios’ returns derived from M and Σ. The RL algorithm used the following parameters:
α = 0.10; γ = 1. We assume zero infusions. The run time for 50K epochs is ∼1.5 minutes and
for 100K epochs is ∼3 minutes. Dynamic programming, of course, takes 0.5 seconds. And the
solution is provided in the top row of the bottom panel below.

MODEL INPUTS

M =

 0.05
0.10
0.25

 ; Σ =

 0.0025 0 0
0 0.04 0.02
0 0.02 0.25

Portfolios

0 1 2 3 4 5 6 7

µ 0.0526 0.0552 0.0577 0.0603 0.0629 0.0655 0.0680 0.0706
σ 0.0485 0.0486 0.0493 0.0508 0.0529 0.0556 0.0587 0.0623

Portfolios
8 9 10 11 12 13 14

µ 0.0732 0.0757 0.0783 0.0809 0.0835 0.0860 0.0886
σ 0.0662 0.0705 0.0749 0.0796 0.0844 0.0894 0.0945

MODEL OUTPUTS

ε No of Epochs V [W (0), t = 0]

DP solution 1 0.72
0.10 50K 0.65
0.10 100K 0.65
0.20 50K 0.69
0.20 100K 0.71
0.25 100K 0.71
0.30 50K 0.72
0.30 100K 0.72
0.40 50K 0.73
0.40 100K 0.77
0.40 200K 0.75
0.40 500K 0.71

22

algorithm does not work either. However, continuous states can be handled by
deep Q-Learning using function approximators, or by the policy gradients al-
gorithm. Likewise, continuous-time, continuous-space versions of the Bellman
(1952) approach may be used for dynamic programming as in Merton (1971).

• The results with the t-distribution are not much different than the normal. This
suggests that the dynamic portfolio solution is robust to different distributional
choices.

8 Concluding Comments

DP may be used to solve multiperiod portfolio problems to reach desired goals with
the highest possible probability. This is known as GBWM. This paper introduced RL
as an alternate approach to solving the GBWM problem. In addition to providing a brief
taxonomy of RL solution approaches, we also implemented one such approach, Q-Learning,
and showed that we get the same results as DP. Our goal is to provide a quick introduction
to how dynamic portfolios may be modeled using RL. The RL approach is highly extensible
to larger state and action spaces. For example, if the action space (portfolios that may be
chosen) varies based on whether the economy is in normal times or in a recession, then
it adds the state of the economy as an additional dimension to the problem. This can
be easily handled with RL. RL especially shines in comparison to DP when the problem
becomes path-dependent, such as in the case of multiperiod portfolio optimization with
taxes, when keeping track of the cost basis across portfolio holdings is required and this
tax basis depends on the path of the portfolio, so that classic DP via backward recursion
becomes computationally expensive from an explosion in the state space.

The recent advances in hardware and software for RL suggests great potential for
finance applications that depend on dynamic optimization in stochastic environments that
are hard to estimate transition probabilities for, such as high-frequency trading (HFT).
HFT has been one of the areas of early investigation of RL in finance. There is a long
history of papers implementing RL models for trading, such as Moody and Saffell (2001),
Dempster and Leemans (2006), Li et al. (2007), Lu (2017), Du et al. (2018), and Zarkias
et al. (2019). Additional areas in which RL may be used are option pricing (Halperin,
2017), optimal hedging of derivatives (Halperin, 2018), market-making agents (Halperin
and Feldshteyn (2018), Zarkias et al. (2019), cryptocurrencies, optimal trade execution,
etc.

23

References

Bellman, R. (1952, August). On the Theory of Dynamic Programming. Proceedings of
the National Academy of Sciences 38(8), 716–719.

Bellman, R. E. (2003). Dynamic Programming. New York, NY, USA: Dover Publications,
Inc.

Bellman, R. E. and S. E. Dreyfus (2015, December). Applied Dynamic Programming.
Place of publication not identified: Princeton University Press.

Brunel, J. (2015). Goals-Based Wealth Management: An Integrated and Practical Ap-
proach to Changing the Structure of Wealth Advisory Practices. New York: Wiley.

Chhabra, A. B. (2005, January). Beyond Markowitz: A Comprehensive Wealth Allocation
Framework for Individual Investors. The Journal of Wealth Management 7(4), 8–34.

Das, S. R., H. Markowitz, H., J. Scheid, and M. Statman (2010). Portfolio Optimization
with Mental Accounts. Journal of Financial and Quantitative Analysis 45(2), 311–334.

Das, S. R., D. Ostrov, A. Radhakrishnan, and D. Srivastav (2018). Goals-Based Wealth
Management: A New Approach. Journal of Investment Management 16(3), 1–27.

Das, S. R., D. Ostrov, A. Radhakrishnan, and D. Srivastav (2019). A Dynamic Approach to
Goals-Based Wealth Management. Computational Management Science forthcoming.

Dempster, M. A. H. and V. Leemans (2006, April). An automated FX trading system using
adaptive reinforcement learning. Expert Systems with Applications 30(3), 543–552.

Du, X., J. Zhai, and L. Koupin (2018). Algorithm Trading using Q-Learning and Recurrent
Reinforcement Learning. Working Paper, Stanford University .

Halperin, I. (2017, December). QLBS: Q-Learner in the Black-Scholes (-Merton) Worlds.
SSRN Scholarly Paper ID 3087076, Social Science Research Network, Rochester, NY.

Halperin, I. (2018, January). The QLBS Q-Learner Goes NuQLear: Fitted Q Iteration,
Inverse RL, and Option Portfolios. SSRN Scholarly Paper ID 3102707, Social Science
Research Network, Rochester, NY.

Halperin, I. and I. Feldshteyn (2018, May). Market Self-Learning of Signals, Impact and
Optimal Trading: Invisible Hand Inference with Free Energy (Or, How We Learned to
Stop Worrying and Love Bounded Rationality). SSRN Scholarly Paper ID 3174498,
Social Science Research Network, Rochester, NY.

Li, H., C. H. Dagli, and D. Enke (2007, April). Short-term Stock Market Timing Prediction
under Reinforcement Learning Schemes. In 2007 IEEE International Symposium on
Approximate Dynamic Programming and Reinforcement Learning, pp. 233–240.

24

Lu, D. W. (2017, July). Agent Inspired Trading Using Recurrent Reinforcement Learning
and LSTM Neural Networks. arXiv:1707.07338 [q-fin] . arXiv: 1707.07338.

Markowitz, H. H. (1952). Portfolio Selection. Journal of Finance 6, 77–91.

Merton, R. (1969). Lifetime Portfolio Selection under Uncertainty: The Continuous-Time
Case. The Review of Economics and Statistics 51(3), 247–57.

Merton, R. C. (1971, December). Optimum consumption and portfolio rules in a
continuous-time model. Journal of Economic Theory 3(4), 373–413.

Mnih, V., K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller (2013, December). Playing Atari with Deep Reinforcement Learning.
arXiv:1312.5602 [cs] . arXiv: 1312.5602.

Moody, J. and M. Saffell (2001, July). Learning to trade via direct reinforcement. IEEE
Transactions on Neural Networks 12(4), 875–889.

Silver, D., J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert,
L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche,
T. Graepel, and D. Hassabis (2017, October). Mastering the game of Go without human
knowledge. Nature 550(7676), 354–359.

Sutton, R. S. and A. G. Barto (1998, March). Reinforcement Learning: An Introduction
(second edition edition ed.). Cambridge, Mass: A Bradford Book.

Zarkias, K. S., N. Passalis, A. Tsantekidis, and A. Tefas (2019, May). Deep Reinforcement
Learning for Financial Trading Using Price Trailing. In ICASSP 2019 - 2019 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
3067–3071.

25

	Introduction
	Portfolio Optimization: Statics and Dynamics
	Mean-Variance Optimization
	Goals-Based Wealth Management
	Dynamic Portfolio Optimization as a Game
	Reinforcement Learning Solutions

	Candidate Portfolios
	Formulation as a Markov Decision Processes (MDP)
	State Space
	Transition Probability

	RL Taxonomy: Methods for Solving the MDP
	Our Algorithm
	Experimental Results
	Concluding Comments

