
Reinforcement learning for Multiple Goals
in Goals-Based Wealth Management

Sanjiv R. Das
Department of Finance
Santa Clara University

Santa Clara, USA
srdas@scu.edu

Sukrit Mittal
AI & Digital Transformation

Franklin Templeton Investments
Hyderabad, India

sukrit.mittal@franklintempleton.com

Daniel Ostrov
Mathematics and Computer Science

Santa Clara University
Santa Clara, USA

dostrov@scu.edu

Anand Radhakrishnan
AI & Digital Transformation

Franklin Templeton Investments
Hyderabad, India

andy.radhakrishnan@franklintempleton.com

Deep Ratna Srivastav
AI & Digital Transformation

Franklin Templeton Investments
San Ramon, USA

deepratna.srivastav@franklintempleton.com

Hungjen Wang
AI & Digital Transformation

Franklin Templeton Investments
New York, USA

hungjen.wang@franklintempleton.com

Abstract—We formulate the goals-based wealth management
(GBWM) problem as a Markov Decision Process (MDP) and
assess deep reinforcement learning (RL) and dynamic program-
ming (DP) algorithms for dynamic solutions. These algorithms
seek to (i) optimally choose from multiple goals over time and
(ii) optimally switch between several model investment portfolios
over time. In RL, we implement a proximal policy optimization
(PPO) algorithm with a customized environment in which the
goal-taking choices and investment portfolio selections are im-
plemented with a discrete two-dimensional action space using
a deep neural network. We show this RL approach performs
almost as well as exact DP solutions. By showing that RL works
well for GBWM in a comparative setting with DP, we see that RL
may be a suitable method in other GBWM models whose larger
state spaces render DP methods computationally infeasible.

Index Terms—Goals-based wealth management, reinforcement
learning, proximal policy optimization

I. INTRODUCTION

This paper develops a custom environment for a rein-
forcement learning (RL) algorithm that dynamically optimizes
an investor’s actions in a goals-based wealth management
(GBWM) context and compares it to existing dynamic pro-
gramming (DP) algorithms used to solve this problem. We
establish that RL is effective for GBWM.

In our GBWM context, the investor looks to maximize the
expected value of the total utility/reward they accumulate over
time from each financial goal they attain, like purchasing a car
or paying for a child’s college tuition. They may opt to forgo
goals even if they have enough money to attain them, because
it might sufficiently increase the chance of obtaining future
goals that are more important to the investor. Therefore, our
action space is two-dimensional in that it requires both making
the binary decision of whether or not to take a goal when one
is available, as well as selecting the best investment portfolio
each rebalancing period. GBWM focuses on maximizing the
probability that investors achieve their goals, taking into ac-
count each investor’s individual circumstances. It expands the

scope of traditional retirement planning [1] to cover the entire
accumulation and decumulation phases of long-term wealth
management.

In this paper, we compare the results from RL to the exact
optimal expected utility, which can be determined using DP.
We find for various sets of investor goals that the actions
determined by using RL achieve 94–98% of the optimal
expected utility determined by using DP.

We use a multi-objective genetic algorithm to help select hy-
perparameters that optimize performance balanced by keeping
the runtime short. Performance is measured by the “RL Effi-
ciency,” meaning the percentage of the optimal expected utility
(determined from DP) that is attained by the RL algorithm. On
a simple Mac mini with an M2 chip, the RL algorithm runs
in just over a half of a minute without even using a GPU,
which is remarkable for such large-scale RL problems. Short
runtimes are important in many practical applications such as
robo-advising, where investors are generally watching a screen
while waiting for results to be generated.

In traditional wealth management, risk is usually defined
as the volatility of portfolio returns. Risk in GBWM, on the
other hand, is associated with the probability of not achieving
either a single goal [2], [3] or multiple goals weighted by their
importance to the investor [4]. These notions of risk are often
inconsistent with each other. For example, a 100% bond, 0%
stock portfolio in an account looking to attain a stretch goal
is a low risk portfolio in traditional wealth management, but
a high risk portfolio in GBWM.

Early work on formulating GBWM was developed in a
series of qualitative papers [5]–[7], summarized and expanded
in subsequent papers, like [8] and [9]. The connection between
GBWM and traditional mean-variance optimization was de-
veloped in [2], which gave a static, quantitative approach to
GBWM for a single goal. Dynamic approaches to GBWM
for a single goal were developed in [3], [10], [11]. This
was extended to multiple goals in [4], which only requires



investors to state their relative goal preferences; see also [12]
and [13]. Related early works by Browne look at meeting a
series of liabilities [14] and also meeting goals by a deadline
[15]. Papers like [16] look to examine GBWM with minimum
replacement income constraints.

RL for goals-based optimization has been considered in
[17], using Tabular-Q learning to optimize the probability of
attaining a single future goal, and [18], using Q-learning and
Deep RL to identify optimal savings rates across multiple
goals and sources of income. The paper [19] extends the work
of [20] to multiple targeted cashflows using G-learning, which
was introduced in [21]. In [19], G-learning is applied in model-
free RL where environment detection is noisy.

This paper uses Proximal Policy Optimization (PPO), an
actor-critic method, which is model-free and on-policy, though
off-policy variants have also been developed (e.g., [22]). PPO
was introduced in [23] as an extension of Trust Region Policy
Optimization (TRPO) in [24].1 We believe this is the first paper
to implement RL for GBWM in a way that attains solutions
both very accurately and very quickly computationally.

The rest of this paper proceeds as follows: Section II de-
scribes our GBWM problem and the RL algorithm we deploy
to solve it. Section III presents various numerical GBWM
examples, comparing their RL and DP solutions and discussing
the effect on the RL solutions of varying the hyperparameter
choices. We offer a concluding discussion in Section IV.

II. REINFORCEMENT LEARNING (RL) FOR GBWM

A. GBWM Model

We define a trajectory (a.k.a., a path) to be an investor’s
financial circumstances along with both their investment port-
folio decisions and goal-taking decisions over the course of
time. Time, t, over the course of a trajectory takes integer
values measured in years, so t = 0, 1, 2, ..., T years. Along
a trajectory, there are times, t, when financial goals may be
fulfilled, such as choosing to buy a vacation at, say, t = 5 or
buying a specific annuity to retire at the final time horizon,
t = T . At each time t where there is a goal, the cost of
fulfilling the goal (resulting in a portfolio drawdown) will be
denoted by C(t), and the utility of the goal, which is the
reward if the goal is fulfilled, will be denoted by U(t).

The utility values in our GBWM context are just relative
weights across goals that correspond to the relative importance
of the goals to the investor. The overall aim of the investor is
to optimize the expected value of the reward total, that is the
sum of the utilities from fulfilled goals over t ∈ [0, T ].

The investor starts with wealth W = W0 at t = 0. We
denote the evolution of wealth over a trajectory by {t,W (t)}
where t = 0, 1, 2, ..., T . This evolution depends, of course, on
which goals the investor decides to fulfill and the investment
portfolio chosen each year.

1For a simple introduction to PPO, see
https://towardsdatascience.com/proximal-policy-optimization-ppo-explained-
abed1952457b. See also https://jonathan-hui.medium.com/rl-proximal-
policy-optimization-ppo-explained-77f014ec3f12 for exposition of various
technicalities.

At each time t where there is a goal, the investor must
make a binary decision, denoted by i, either not to take the
goal (i = 0) or to take the goal (i = 1). When i = 1 (that is,
the goal at time t is fulfilled), the cost of the goal, C(t), is
subtracted from the wealth W (t), and the utility, U(t), attained
from taking the goal is added to the investor’s accumulated
reward total. Of course, if W (t) < C(t), then the investor
does not have enough money to be able to fulfill the goal, so
i = 0. An investor with W (t) ≥ C(t) on the other hand, may
choose not to fulfill a goal (i.e., choose i = 0) so as to preserve
cash in the hopes of fulfilling future goals that correspond to
attaining a higher overall utility sum.

We will assume there are n investment portfolios to choose
from, with annualized return means and standard deviations
{µj , σj}, where j = 1, 2, ..., n.2 The values of {µj , σj}
may correspond to locations on the Markowitz mean-variance
efficient frontier [25] (that is, the best return portfolios for
different levels of volatility), but they don’t need to.

The investment portfolio—that is, the value of j—can
change each year. Over the course of any year, we will assume
that the investments evolve by the most common, basic model
for stock evolution, which is geometric Brownian motion:

W (t+ 1) = W (t) exp

[(
µj −

1

2
σ2
j

)
+ σjZ

]
, (1)

where Z has a standard normal distribution. We could choose
another Markovian model in place of geometric Brownian
motion if desired. As a simple example, we could replace the
Z distribution in equation (1) with a t-distribution.

B. RL Setup

State Space: The “state space” S in our problem is two-
dimensional, comprising time and wealth. We adopt the nota-
tion st = {t,W (t)}, to denote a specific location in the state
space, meaning a specific time t = 0, 1, ..., T and wealth at
that time.

Action Space: The “action space” A comprises two differ-
ent sets of actions: the value of i, meaning the binary choice
of whether or not to take a goal if one is available at the
beginning of year t, and the value of j, meaning the choice
for year t from the n possible investment portfolios. We define
at = {i(st), j(st)}, noting that at ∈ A, a 2 × n array of
possible choices for the actions. At the final time, t = T , only
i is used (that is, j is masked), since there is no portfolio
evolution after the time horizon, T , is reached. Similarly, in
years where there is no goal, i, as opposed to j, is masked.

Policy Function when t < T: When t < T , the action will
not always be a deterministic function of the location in the
state space. Indeed, in our RL algorithm, it will generally be a
stochastic function. We define the “policy function” π(at|st)
to give the probability of taking action at if we are at the
point st in the state space. Our RL algorithm using PPO looks
to generate an optimal policy function. This policy function

2These investment portfolios are determined by the investor’s preferences.
For example, an aggressive investor would enable access to more volatile
investment portfolios than a conservative investor.

https://towardsdatascience.com/proximal-policy-optimization-ppo-explained-abed1952457b
https://towardsdatascience.com/proximal-policy-optimization-ppo-explained-abed1952457b
https://jonathan-hui.medium.com/rl-proximal-policy-optimization-ppo-explained-77f014ec3f12
https://jonathan-hui.medium.com/rl-proximal-policy-optimization-ppo-explained-77f014ec3f12


is then used to obtain a deterministic function π(st) defined
by π(st) = at = argmaxa∈A π(a|st). This deterministic
function, π(st), is our final recommended optimized strategy,
associating a specific action to each point in the sample space.

Algorithm over a Single Time Step when t < T: At
the beginning of the year t < T , we are at a location
st = {t,W (t)} in the state space. We then choose an action at
either stochastically or deterministically based on the policy
function applied to this location. If there is an available goal at
time t, the value from i specified by at determines whether or
not we take this goal and therefore reduce W (t) by C(t) and
add U(t) to our reward total. Next, the value of j specified
by at determines our investment portfolio for the year, which
gives our probability distribution for W (t+1) via equation (1)
above, where W (t) in equation (1) is the value of the wealth
after purchasing the goal if i = 1. We then determine the value
of W (t+1) by drawing a random value for Z in equation (1)
from a standard normal distribution.

State Transitions: Putting all of this together for a year
t < T allows us to define the “state transition probability
density function” f(st+1|st, at). This is the probability density
function for reaching state st+1 (defined by W (t+1) at time
t+ 1), given that we start at state st and choose action at.

Policy Function and Algorithm when t = T: At t = T ,
we only take or do not take the final goal, and this action, aT ,
is deterministic: if W (T ) < C(T ), then i = 0, and if W (T ) ≥
C(T ), then i = 1. In other words, the final goal at time T is
fulfilled if possible, since there is no reason not to take the
goal if the investor is able to. This defines a (deterministic)
policy function, which is used at all stages of RL when t = T .

Rewards: We define rt(at), the rewards function, by the
following: rt(at) = U(t) if at specifies that i = 1, and
rt(at) = 0 otherwise. Our overall goal is to find the determin-
istic policy function π∗(st) that maximizes E

[∑T
t=0 rt(at)

]
,

the expected value of the accumulated utilities from fulfilled
goals. The value function, v∗(st), is defined to be this optimal
expected value, conditioned that we are currently at the point
st = {t,W (t)} in the state space. That is,

v∗(st) = Eπ∗
t

[
T∑

u=t

ru(au)

∣∣∣∣ st
]
. (2)

DP is able to directly generate the optimal policy, π∗
t (st),

and the value function, v∗(st), by using backwards-in-time
recursion to implement the well-known Bellman equation [26].

C. Proximal Policy Optimization (PPO)

PPO is a deep-RL learning algorithm that uses deep neural
networks to approximate π∗

t (st) and v∗(st), the optimal policy
function and the value function, defined over a continuous
state space. We will use the notation πθ to emphasize the
dependence of the policy function, π, on θ, the weights for
the connections between the nodes (i.e., the neurons) of the
network. We evolve the θ parameters so as to optimize πθ.

In PPO, the approximated gradient of the total rewards
with respect to θ is computed from batch data. Parameter

updates use the gradient modulated by the learning rate, whose
initial value is denoted by η, to move the current θ to θnew.
However, because the jump between θ and θnew suggested
by the gradient can create a change in the policy function
that is too big for stability, PPO also uses a clip parameter,
ϵ > 0, to restrict the size of the jump in the policy function.
More specifically, the smaller ϵ is, the closer the ratio πθnew

πθ

must stay near one. This indirectly prevents large movements
between the current θ and θnew.

D. A Custom Environment for GBWM

This section describes our custom environment for GBWM
that leverages OpenAI’s environments,3 and it describes the
hyperparameters used in the RL PPO algorithm. Our algorithm
uses the Stable Baselines library [27] to implement RL using
PPO4. We created a new custom environment, which inherits
the Env class from the gymnasium library. The main com-
ponents of the environment are as follows:

1) Initialize the action space to be MultiDiscrete,
where our discrete, two-dimensional action space is 2×n,
reflecting the binary goal-taking choice and the n invest-
ment portfolio choices.

2) Initialize the state space to be continuous in two-
dimensions for time t ∈ [0, T ] and wealth W (t) ∈
[0,Wmax

t ]. While the state space is continuous in t, we
will only be using t at the discrete values 0, 1, 2, ..., T .
The action space is a stochastic function of the state
space, as defined by the policy function πθ(at|st). We
initialize the state space at t = 0 with the initial wealth,
W (0) = W0.

3) Define a function to take one time step by following the
“Algorithm over a Single Time Step” for t < T and for
t = T , which are both given in Subsection II-B.

4) A trajectory (also called an “episode” in this context)
sequentially uses this single time step function at t = 0,
then t = 1, then t = 2, etc., until finishing at t = T . For
each trajectory, τ , the total accumulated rewards, R(τ) =∑T

t=0 rt(at), is determined.
For each epoch (equivalent of “iteration”) in RL, we run a

batch of M trajectories (or episodes) using the same parameter
set θ. The PPO algorithm then determines the next parameter
set θnew, which is used in the next epoch. The overall process
flow of an RL run is depicted in Figure 1. This RL algorithm
depends on five hyperparameters (or variables):

1) Ntraj is the total number of trajectories in an RL run.
Given T time steps in each trajectory, the number of time
steps that will be simulated in an RL run is Ntraj × T .

2) M is the batch size, meaning the number of trajectories
taken between updates to the parameter set θ. The number

3OpenAI’s gym has now been converted into Gymnasium. See:
https://gymnasium.farama.org. This GitHub repo offers a simple introduction
to programming PPO: https://github.com/ericyangyu/PPO-for-Beginners.

4The Stable Baselines 3 library is here: https://github.com/DLR-RM/
stable-baselines3. Since we have a multi-discrete action space, we are re-
stricted to implementing PPO, as other RL algorithms in this library do not
support a multi-discrete action space

https://gymnasium.farama.org
https://github.com/ericyangyu/PPO-for-Beginners
https://github.com/DLR-RM/stable-baselines3
https://github.com/DLR-RM/stable-baselines3
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Fig. 1. Process flow of an RL run, starting with a randomly initialized policy, πθ , to obtaining the optimal policy π∗
θ .

of time steps per batch is therefore M×T , and the number
of epochs in an RL run is Ntraj ÷M .

3) η is the initial learning rate used in PPO. This initial
learning rate decays linearly to zero across the Ntraj

trajectories simulated by the algorithm.
4) ϵ is the clip parameter used in PPO.
5) Nneur is the number of neurons in each hidden layer

of the neural networks for both the policy function and
the estimated value function. Both neural networks have
two inputs (the state variables t and W (t)) and have two
hidden layers5 of Nneur neurons each. The output for the
policy neural network is a two-dimensional (2×n) layer,
comprising the goal-taking and the investment portfolio
choices. The output for the estimated value function is
an approximation of the optimal expected reward for the
remainder of the trajectory after time t, for a given W (t).

E. Measuring RL’s Efficiency
Once an RL run is finished (having run all Ntraj tra-

jectories), it produces a final stochastic policy function,
πθfinal

(a|st). From this, we obtain our desired deterministic
policy function, πRL(st), using the formula

πRL(st) = at = argmax
a∈A

πθfinal
(a|st).

We want to see how close in performance πRL(st) is to
πDP (st) = π∗(st), the optimal policy function that we
determine from DP using the algorithm detailed in [4]. We
therefore run 100,000 Monte Carlo trajectories using πRL

and then run 100,000 Monte Carlo trajectories using πDP ,
making sure that the T × 100, 000 standard normal sam-
ples needed for the geometric Brownian motion model in
equation (1) are the same sequence for RL and for DP.
We then average the total rewards for the RL trajectories:
RRL,avg = 1

100,000

∑100,000
j=1 RRL(τj), and for the DP trajec-

tories: RDP,avg = 1
100,000

∑100,000
j=1 RDP (τj), where τj is the

jth trajectory. Their ratio is the RL Efficiency metric:6

RL Efficiency =
RRL,avg

RDP,avg
≤ 1. (3)

5We note that performance diminished when we changed the number of
hidden layers away from two.

6In practice, using 100,000 Monte Carlo trajectories is easily a large enough
number to prevent the numerical possibility of a pathological case where the
calculated RL Efficiency is greater than one.

For the results in Section III, we run the entire RL algorithm
30 times (unless otherwise specified) and average the results
of these 30 runs to find the “Mean RL Efficiency.” That is,

Mean RL Efficiency =

∑30
k=1 (RL Efficiency)k

30
. (4)

Obviously, the closer the Mean RL Efficiency is to one,
the better our RL algorithm’s approximation is to the optimal
policy function.

F. Tuning the Hyperparameters

To determine the optimal hyperparameter values, we first
found rough ranges for the hyperparameters in which we have
a reasonable RL Efficiency, as well as runtime. These rough
ranges were Ntraj ∈ [25,000, 5,000,000], M ∈ [3200, 8000],
η ∈ [0.001, 0.100], ϵ ∈ [0.05, 0.75], and Nneur ∈ [32, 128].

Executing the RL algorithm for each combination of hyper-
parameters in such large rough ranges is computationally ex-
pensive. To reduce these ranges to be computationally feasible,
we used a surrogate-assisted approach. In this approach, we
first trained a metamodel to capture the relationships between
the hyperparameters and our two objectives of maximizing RL
Efficiency and minimizing runtime. We then ran the multi-
objective genetic algorithm NSGA-II [28] using the trained
metamodel for function evaluations. The specifics of this
process are listed below:

1) Within the given rough bounds, we sampled about 2000
combinations of the five hyperparameters and executed
an RL run for each combination. This created a dataset
with hyperparameter combinations as the inputs, and the
corresponding RL Efficiency and runtime as the outputs.

2) We tried nine metamodels found within four different
machine learning methods.7 From those, we selected the
extra-trees regression [29], because it achieved the highest
coefficient of determination (that is, R2 score).

3) Next, we ran the NSGA-II algorithm using the pymoo
framework8 for 500 iterations. This was used to produce
100 points on the Pareto frontier where the hyperparam-
eter combinations produce RL Efficiency and runtime

7Specifically, we tried linear methods: standard linear regression, ridge re-
gression, and elastic-net regression; tree-based methods: extra-trees regression
and random forest regression; boosting methods: XGBoost and AdaBoost; and
non-linear methods: kNN and support vector regression.

8https://pymoo.org/algorithms/moo/nsga2.html

https://pymoo.org/algorithms/moo/nsga2.html


results that cannot be dominated by other hyperparameter
combinations. From this frontier, we selected the two
most extreme points, which correspond to the highest
RL Efficiency and to the lowest runtime. At the highest
RL Efficiency, the hyperparameter values were Ntraj =
100,000, M = 4800, η = 0.01, ϵ = 0.50, and Nneur =
128. At the lowest runtime, the hyperparameter values
were Ntraj = 25,000, M = 4800, η = 0.01, ϵ = 0.75,
and Nneur = 32. We then tightened our hyperparameter
bounds considerably by only considering values within
the ranges between these two extreme cases.

Analyzing combinations of hyperparameters within these
reduced bounds led to selecting the following base case
hyperparameter values: Ntraj = 50,000; M = 4800; η = 0.01;
ϵ = 0.50; Nneur = 64. Tables II and III, which will later be
presented in Subsection III-E, explore the sensitivity of these
base case choices, confirming that they do indeed implement
a satisfactory trade-off between RL efficiency and runtime.

III. GOALS AND SOLUTIONS

Section II described a class of GBWM problems and our
RL approach to solving them. This section defines examples
from this class of GBWM problems by specifying (i) initial
wealth values, (ii) the times, costs, and utility values of various
sets of goals, and (iii) n possible investment portfolios that
the investor can switch between each year. As discussed in
Subsection II-E, we note that the RL or DP results stated
in this section are based on averaging 100,000 Monte Carlo
trajectories using the deterministic policy function produced
from an RL run or from DP.

A. Model Setup and Goals

We consider a 16-year time horizon for meeting a number
of goals, NG = 1, 2, 4, 8, or 16 goals. The goals are equally
spaced over these 16 years, so, for example, in the case of 2
goals, the goals occur at t = 8 years and t = 16 years. In the
case of 4 goals, they occur at t = 4, 8, 12, and 16 years.

We have selected the cost of each goal in our model to be
C(t) = 10×1.08t dollars (noting that other currency units can
be used in place of dollars, of course). When a goal occurs,
the investor can either forgo taking the goal, meaning they pay
nothing and accrue no utility, or they can fulfill the goal, in
which case they pay the cost of the goal and accrue a utility
that we have selected for our model to be U(t) = 10+t. While
both C(t) and U(t) increase with time here, U(t) obviously
grows linearly, while C(t) grows exponentially.

The investor is looking to optimize the sum of the utility
from all their fulfilled goals. We let the investor start with
W0 = 12 · (NG)0.85 dollars, meaning the investor starts with
more money when they have more goals. This scaling for the
initial investment generally leads to the optimal expected value
of the sum of the utility from fulfilled goals being about 70-
80% of the total utility sum that would be obtained if it were
possible to attain all the goals.

TABLE I
RL PERFORMANCE RELATIVE TO DP AS THE NUMBER OF GOALS
VARIES. THE METRIC FOR PERFORMANCE IS THE RL EFFICIENCY

DEFINED IN EQUATION (3) OF SUBSECTION II-E. THE RL
RESULTS REPORTED HERE USE THE BASE CASE

HYPERPARAMETER VALUES GIVEN IN SUBSECTION II-F.

Number RL Efficiency Average 30 run
of
Goals

Mean Median Standard
Devia-
tion

Skewness RL
runtime
(min-
utes)

noise
confi-
dence
interval

1 0.974 0.973 0.0080 -0.653 0.540 ±0.0041
2 0.948 0.950 0.0100 -0.378 0.543 ±0.0052
4 0.961 0.963 0.0088 -0.451 0.541 ±0.0045
8 0.978 0.978 0.0051 -0.296 0.541 ±0.0026
16 0.978 0.979 0.0058 -0.371 0.543 ±0.0030

B. Model Investment Portfolios

Our investment portfolio policy is discrete. More specifi-
cally, we select from among n = 15 investment portfolios on
the efficient frontier.9 The efficient frontier is generated using
Markowitz portfolio optimization [25] with the following
mean return vector (µ) and return covariance matrix (Σ):

µ =

 0.0493
0.0770
0.0886

, Σ =

 0.0017 −0.0017 −0.0021
−0.0017 0.0396 0.0309
−0.0021 0.0309 0.0391

 .

These numbers correspond to historical returns for U.S. bonds,
U.S. stock, and international stock.

We have chosen the 15 model portfolios on the efficient
frontier to have mean returns that are equally spaced over
the range [0.052632, 0.088636]. This corresponds to return
standard deviations in the range [0.037351, 0.195437]. The
portfolios are labeled (from #1 to #15) in order of being
increasingly aggressive, as is used in [3], [4], [30], [31].

C. Analysis for RL using Base Case Hyperparameters

We obtain solutions for the setup, goals, and investment
portfolios just described in Subsections III-A and III-B, using
RL and DP, as described in Section II. For RL, we use the
base case hyperparameters specified in Subsection II-F.

Each row of Table I represents a specific case for the
number of goals (NG). For each of these cases, we ran our RL
algorithm 30 times. The mean and the median RL Efficiency
(defined in equation (3)) from these 30 runs are shown in Table
I. We note the median strays no more than 0.002 from the
mean, and the average expected utility produced by RL stays
within 94–98% of DP’s optimal expected utility. Further, the
RL Efficiency from any single run strayed no more than 0.02
from the mean RL Efficiency given in the table.

The standard deviation and the skewness of the efficiency
metric given in Table I are determined using 200 runs, instead

9“The efficient frontier is the set of optimal portfolios that offer the highest
expected return for a defined level of risk or the lowest risk for a given
level of expected return. Portfolios that lie below the efficient frontier are
sub-optimal because they do not provide enough return for the level of risk.
Portfolios that cluster to the right of the efficient frontier are sub-optimal
because they have a higher level of risk for the defined rate of return.”–
https://www.investopedia.com/terms/e/efficientfrontier.asp.

https://www.investopedia.com/terms/e/efficientfrontier.asp


of 30. Given how close the mean (and median) are to one,
which is their theoretical maximum, it’s no surprise that 1)
the standard deviation is small (0.01, at most), 2) the closer
the mean/median is to one, the smaller the standard deviation,
and 3) the distributions are skewed to the left, although this
skewness is mild, ranging from −0.3 to −0.7.

The average runtime of a single run for our RL algorithm
stays in the range of 0.540–0.543 minutes; that is, 32–33
seconds. These runs were performed on a Mac Mini with an
M2 chip. Since these runs only use the Mac Mini’s CPU,
not the GPU, they could be performed even faster with RL
programs that can take advantage of the GPU.

We note the mean RL Efficiency presented in Table I’s
“Mean” column corresponds to the definition of the “Mean
RL Efficiency" given in equation (4). The last column in Table
I gives a 95% confidence interval for the difference between
two independently determined Mean RL Efficiencies. Since
the Mean RL Efficiency is, by the central limit theorem, ap-
proximately normally distributed and the difference of normal
random variables is normal, the 95% confidence interval for
the difference between two Mean RL Efficiencies is well ap-
proximated by ±2 ·SD

[
X1 −X2

]
= ±2 ·

√
V
[
X1 −X2

]
=

±2 ·
√
V
[
X1

]
+ V

[
X2

]
≈ ±2 ·

√
s2

30 + s2

30 = ±2 · s√
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,
where s is the (sample) standard deviation reported in Table
I. This formula corresponds to the last column of Table I,
which provides a range for differences in reported Mean RL
Efficiencies that can be attributed just to noise, which we will
use in Subsection III-E.

D. Comparison to Benchmarks and Comparing Efficiency
Loss from RL’s Investment and Goal-taking Strategies

The results in Table I’s “Mean” column are shown graphi-
cally in the top plot in Figure 2 by the blue path for the Mean
RL Efficiency and the straight orange line at 1 for the DP
efficiency. But how effective is RL versus other benchmark
strategies? The top plot in Figure 2 also shows the mean
efficiency of three benchmark strategies compared to DP:

• Greedy goal-taking (in purple): Greedy goal-taking uses
the optimal investment portfolio policy from RL, but
its goal-taking policy is simply to take any goal if the
portfolio has sufficient funds (i.e., the portfolio wealth is
greater than or equal to the cost of the goal).

• Buy and hold (in red): Buy and hold maintains a single
investment portfolio throughout all 16 years by rebal-
ancing back to it each year. For illustrative purposes,
we chose investment portfolio #8, because it is in the
middle of our 15 possible investment portfolios, striking
a balance between being conservative and aggressive.
We randomize goal-taking for t < T with a half and
half chance of taking or not taking a goal when there is
sufficient wealth to be able to take the goal.

• Random (in green): We follow the same randomized goal-
taking strategy as in the buy and hold case, and we also
randomly select from one of the 15 possible investment
portfolios each year.

Fig. 2. A comparison of the efficiency of various portfolio strategies.
The top plot compares the optimal solution (DP) for our five different
numbers of goals with (i) the RL solution, as well as with (ii) random
investment portfolios and random goal choices, (iii) a buy and hold
investment portfolio strategy, and (iv) the greedy strategy for goal-
taking. The lower plot shows the comparison of DP and RL with
two intermediate strategies: (i) the DP investment portfolio strategy
combined with the RL goal-taking strategy and (ii) the DP goal-
taking strategy combined with the RL investment portfolio strategy.

RL outperforms all three of these benchmarks. The largest
drop in efficiency occurs when we go from the greedy goal-
taking strategy to the buy and hold strategy.

This large drop suggests that obtaining the optimal in-
vestment portfolio choice is more important than obtaining
the optimal goal-taking choice. Further evidence for this is
demonstrated in the lower plot in Figure 2 where we compare
DP (which is the same orange line as in the top plot) and
RL (which is the same blue path as in the top plot) with two
intermediate strategies:

• the DP strategy for investment portfolio choice combined
with the RL strategy for goal-taking (in magenta), and

• the DP strategy for goal-taking combined with the RL
strategy for investment portfolio choice (in olive).

Since the magenta path stays well above the olive path,
it is clear that RL’s investment portfolio strategy moves the
investor further from the ideal DP strategy than RL’s goal-
taking strategy does.

E. Sensitivity to Changing the Hyperparameter Values

We next explore the sensitivity of the Mean RL Efficiency to
changing each hyperparameter from its base case value given
in Subsection II-F. These sensitivity results are shown in Ta-
bles II and III. For each individual hyperparameter sensitivity,
30 runs are performed, and the resulting Mean RL Efficiency,
as defined in equation (4) of Subsection II-E, is reported. Table
II also shows the effects on the mean runtime of changing two
of our five hyperparameters, Ntraj and Nneur. Table III shows



TABLE II
RL ALGORITHM PERFORMANCE FOR A GIVEN NUMBER OF GOALS
AS EITHER THE TOTAL NUMBER OF TRAJECTORIES, Ntraj , OR THE
NUMBER OF NEURONS IN BOTH POLICY AND VALUE FUNCTIONS,
Nneur , ARE DECREASED (TOP ROW), LEFT ALONE (MIDDLE ROW),
OR INCREASED (BOTTOM ROW) FROM THEIR BASE CASE VALUES.
ALL OTHER HYPERPARAMETERS REMAIN AT THEIR BASE CASE
VALUES GIVEN IN SUBSECTION II-F. RESULTS ARE GIVEN FOR

THE MEAN RL EFFICIENCY (DEFINED IN EQUATION (4) OF
SUBSECTION II-E) AND THE MEAN RL RUNTIME.

Number
of
Goals

Total
number
of
trajec-
tories,
Ntraj

Mean
RL Ef-
ficiency

RL
runtime
(min-
utes)

Number
of neu-
rons,
Nneur

Mean
RL Ef-
ficiency

RL
runtime
(min-
utes)

1 25000 0.952 0.295 32 0.974 0.497
50000 0.974 0.540 64 0.974 0.540
100000 0.982 1.018 128 0.975 0.623

2 25000 0.928 0.295 32 0.947 0.497
50000 0.948 0.543 64 0.948 0.543
100000 0.962 1.010 128 0.948 0.619

4 25000 0.939 0.297 32 0.960 0.496
50000 0.961 0.541 64 0.961 0.541
100000 0.960 1.008 128 0.965 0.614

8 25000 0.938 0.300 32 0.975 0.497
50000 0.978 0.541 64 0.978 0.541
100000 0.972 1.010 128 0.975 0.612

16 25000 0.947 0.301 32 0.977 0.499
50000 0.978 0.543 64 0.978 0.543
100000 0.971 1.019 128 0.979 0.612

the effects of changing our three other hyperparameters, M,η,
and ϵ, none of which affect runtime.

Table II shows that the runtime is linear in Ntraj, the total
number of trajectories per run, as would be expected. While
the Mean RL Efficiency is always worse at Ntraj = 25,000, it
tends to be better at Ntraj = 50,000 than at Ntraj = 100,000
when there are many goals, but this reverses when there are
fewer goals. Additional increases to Ntraj, even going as
high as 5,000,000, does not improve the Mean RL Efficiency.
Indeed, it becomes slightly worse, which cannot be explained
by the noise given in the final column of Table I.

Table II shows that changing Nneur, the number of neurons
per hidden layer in both the policy function and the value
function, makes no statistically meaningful difference. That is,
the variation shown in Table II is within the noise calculated
in the last column of Table I. The results are worse when one
or three hidden layers are used instead of two in the base case.

In Table III we see that the effect of varying M , the batch
size, parallels the effect of varying Ntraj in Table II. That is,
while the Mean RL Efficiency is almost always worse at M =
7200, it tends to be better at M = 4800 than at M = 2400
when there are many goals, but this reverses when there are
fewer goals. And again, this effect cannot be explained by the
noise given in the final column of Table I.

Both η, the initial learning rate, and ϵ, the PPO clip
parameter, limit how much change there can be between
successive batch run conditions. When they are too small, they
will slow down the algorithm’s convergence, but when they are
too large, instability can occur, giving worse results. Table III

TABLE III
ALGORITHM PERFORMANCE AS EITHER THE BATCH SIZE, M , THE

INITIAL LEARNING RATE, η, OR THE PPO CLIP PARAMETER, ϵ,
ARE DECREASED (TOP ROW), LEFT ALONE (MIDDLE ROW), OR
INCREASED (BOTTOM ROW) FROM THEIR BASE CASE VALUES.
ALL OTHER HYPERPARAMETERS REMAIN AT THEIR BASE CASE
VALUES GIVEN IN SUBSECTION II-F. RESULTS ARE GIVEN FOR

THE MEAN RL EFFICIENCY (DEFINED IN EQUATION (4) OF
SUBSECTION II-E).

# of
Goals

Batch
size, M

Mean
RL Ef-
ficiency

Initial
learning
rate, η

Mean
RL Ef-
ficiency

PPO
clip pa-
rameter,
ϵ

Mean
RL Ef-
ficiency

1 2400 0.977 0.005 0.972 0.25 0.969
4800 0.974 0.010 0.974 0.50 0.974
7200 0.971 0.050 0.791 0.75 0.969

2 2400 0.954 0.005 0.944 0.25 0.945
4800 0.948 0.010 0.948 0.50 0.948
7200 0.943 0.050 0.859 0.75 0.950

4 2400 0.960 0.005 0.961 0.25 0.960
4800 0.961 0.010 0.961 0.50 0.961
7200 0.958 0.050 0.911 0.75 0.964

8 2400 0.969 0.005 0.976 0.25 0.967
4800 0.978 0.010 0.978 0.50 0.978
7200 0.967 0.050 0.928 0.75 0.977

16 2400 0.967 0.005 0.977 0.25 0.972
4800 0.978 0.010 0.978 0.50 0.978
7200 0.968 0.050 0.934 0.75 0.973

demonstrates this well. The results are slightly worse when η
or ϵ are below their base case values (although often by an
amount small enough to be explained by the noise given in
the final column of Table I). However, when η is above its
base case value, we see that instability sets in, making the
results much worse, and when ϵ is above its base case value,
we begin to see instability affecting some, although not all, of
these cases as well, although, again, often by an amount small
enough to be explained by the noise.

IV. CONCLUDING DISCUSSION

This paper solves a variety of GBWM problems using
RL (PPO) on a custom environment, leveraging the OpenAI
gym library. Optimal hyperparameters are determined with the
aid of a multi-objective genetic algorithm (NSGA-II). RL is
efficient, coming to within 94–98% of the optimal DP solution,
and, further, RL easily beats other benchmarks such as greedy
goal-taking, buy and hold investing strategies, and random
policies. The underperformance of RL relative to DP may be
ascribed more to RL’s marginally weaker investment portfolio
policy than to RL’s weaker goal-taking policy. Runtimes for
RL in this paper were quite fast, requiring only 33 seconds
on an Apple Mac Mini with an M2 chip, and only using the
CPU, not the GPU.

This paper’s GBWM problems were purposely chosen to
be solvable using DP, so the optimal solution can be obtained
with the Bellman equation [26]. This allowed us to measure
our RL solution’s accuracy. With its high accuracy now shown,
we can explore extending the RL algorithm (in this paper) to
additional dimensions in the state space, where DP becomes
completely impractical. Some examples include new state



variables for stochastic inflation or stochastic interest rates.
Further, because the Bellman equation is computed backwards
in time, DP cannot be applied to many forwards-in-time phe-
nomena that RL can be applied to. Examples include tracking
the history of stock purchases for determining capital gains
taxes, or how best to defer taking goals until later. Further
research is predicated on the interpretability of policy and
value function neural networks to support their understanding
and wider adoption.
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