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Abstract

We develop a facile methodology using dynamic programming for goals-based wealth
management over long horizons where rebalancing uses the standard securities and also
derivative securities. A kernel density estimation approach is developed to accommodate
any number of derivative assets, solving a high dimensional problem with fast computation.
The approach easily accommodates skewed and fat-tailed distributions. Portfolio perfor-
mance is much better with the use of options, especially for investors with aggressive goals.
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1 Introduction

Dynamic portfolio management has had a long history since the work of Merton (1969); Merton
(1971), extending static optimization ideas in Markowitz (1952). Long-horizon wealth manage-
ment has usually been undertaken using equities and bonds, but not derivatives, though there are
several arguments made for the use of these securities, such as diversification, hedging, specula-
tion, enhancing leverage, downside protection, reaching for goals, e�cient rebalancing, etc., as
noted in Hoogendoorn et al. (2017). Since the crisis of 2008, diversification across asset classes
has declined, triggering the need for alternate approaches to improve the risk-return trade-o↵ in
portfolios through the use of options and volatility derivatives (Guobuzaite and Martellini (2012);
Jones (2014)) because positions in volatility help hedge market risk (Bakshi and Kapadia (2003);
Arsic (2005)).

It has been argued that structured products such as options are unsuitable for retail investors
as they are too complex to be understood and pose risks that may be unacceptable (McCann
and Luo (2006)), or these products are used inappropriately with little benefit (Branger and
Breuer (2008)). Even institutional asset managers have not reaped the benefits of derivatives
use in their portfolios, see Fong et al. (2005); Beber and Perignon (2013). However, in recent
times, the wealth management industry has begun focusing on goals, and it is also becoming
clear that achieving goals is likely to become easier when options are used. In this paper, we
implement an enhanced goals-based wealth management algorithm (GBWM, see Shefrin and
Statman (2000); Nevins (2004); Chhabra (2005); Brunel (2015)) that includes taking positions
in call and put options on the index. This extends existing GBWM algorithms [Browne (1995);
Browne (1997); Browne (1999a); Browne (1999b); Browne (2000); Das et al. (2010); Wang et al.
(2011); Deguest et al. (2015); Das et al. (2018); Das et al. (2020)] that only include stocks,
bonds, and indexes but not derivative securities. One can envisage that the use of options will
make it easier to manage a portfolio over time to reach specified goals. This paper assesses
how much the performance of GBWM models can be improved through the use of options in
addition to standard securities. This paper also develops an interesting new approach to dynamic
programming of the wealth management strategy using dimension reduction via kernel density
estimators.

Options are especially useful in reaching goals, as we will show subsequently in this paper. The
results in this paper complement a history of work on the construction of options portfolios where
the mean-variance paradigm is inapplicable, see for example early work by Liu and Pan (2003),
and recent work by Faias and Santa-Clara (2017) who maximize expected utility (accounting
for all moments of returns) instead of the Sharpe ratio (which trades o↵ mean versus variance
of returns). In our modeling, utility maximization is replaced by maximizing the probability of
reaching the investor’s goals. This is analogous to imposing VaR constraints as in Kleindorfer
and Li (2005). Our approach applies whether or not the conditions for two-fund separation (Cass
and Stiglitz (1970)) apply, especially since, with options, return distributions are not compatible
with mean-variance assumptions.

This paper makes methodological advances and also o↵ers analyses showing how simple op-
tions may be used to improve dynamic wealth management. The contributions are as follows:
First, standard mean-variance methods in static models are woefully inadequate for structuring
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dynamic goal-based portfolios with options, as the dynamics of geometric Brownian motion do
not capture higher-order moments of returns, and do not capture properly the complexities of
multivariate return distributions that are involved. In standard dynamic portfolio problems, there
is only a single stochastic variable, i.e., portfolio return, composed of a weighted sum of asset
returns, usually assumed to be Gaussian. With more asset classes, optimal portfolios may need
to be chosen using multivariate Gaussian distributions, which poses no issues because the for-
mulations of much of the computation involved are available in closed form. However, when
derivatives are included, multivariate distributions are no longer Gaussian, nor are they amenable
to implementation via copula functions. The conditional distribution of portfolio wealth needed
for dynamic programming is a univariate composition over highly skewed, non-Gaussian multi-
variate distributions. We also need to compute these conditional distributions exceedingly fast
in order to be able to implement a practically useful dynamic model. Section 2.3.4 shows how
this is done using a combination of simulation and fast kernel density estimation. This approach
is extensible to projecting any high dimensional distribution of asset and option returns on the
univariate wealth transition probability function.

Second, since the approach taken in this paper is a numerical one, it extends the results in Liu
and Pan (2003) by enabling additional features that may not yield closed-form solutions. These
are features such as di↵erent objective functions that are di↵erent from utility maximization,
including infusions and withdrawals in the portfolios, closing out and rolling options positions
over time, and permitting any distribution of asset returns, especially non-Gaussian ones.

Third, in the setting of goals-based optimization, we show that call options are e↵ective and
put options are not. There are two reasons for this. One is that puts are negative expected return
investments and unless they are absolutely necessary to meet goals, they are mathematically in-
optimal instruments. Two, since goals are usually high thresholds and not floors on portfolio
value, calls are the natural choice.

Fourth, we see that as goals become more aggressive, calls are used more, and the di↵erence
in performance of a wealth management strategy with and without the use of options becomes
more marked. Investors with higher goals are better o↵ when using options. For example, for an
investor with an initial wealth of $100, and a 10-year goal of reaching $250, who can invest up
to 30% of the portfolio at any time in calls, the probability of reaching her goal increases from
69% without the use of options to 86% when call options are used.

Fifth, we also assess whether a mostly options strategy may be su�cient and find this not to
be the case. This is simply because using index options only is less e↵ective than using a range of
portfolios from the e�cient frontier. Of course, using a large range of possible options on many
assets may improve comparative performance.

Sixth, we consider how the use of options helps when we do not restrict the use of options
to only 30% of the portfolio, allowing, when optimal to increase option use to 90% of the
portfolio. The improvement in outcomes is material, especially for aggressive goals, such as the
one mentioned earlier. In that case, more option use pushes up the probability of reaching the
goal from 86% to 96%, suggesting that the use of options results in a first-order improvement in
portfolio outcomes, complementing the results of Guidolin (2013).

Finally, we also explore the e↵ect of fat-tailed distributions by changing the mean-variance
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portfolios from being based on Gaussian distributions to fatter-tailed ones (a t distribution with 5
degrees of freedom). This helps proxy for the fat-tails induced by jumps and stochastic volatility.
Interestingly, we find that the probability of reaching goals reduces by a very small amount
(⇠ 1%). However, mean returns on the portfolio increase but are o↵set by increases in return
standard deviation, which is only to be expected as the tails of the distributions are substantially
fatter.

The rest of the paper proceeds as follows. Section 2 describes the dynamic programming
algorithm and the novel procedure for accommodating derivatives in wealth management through
the use of kernel density estimation. Section 3 o↵ers several analyses and insights related to the
results above. Concluding discussion is in Section 4.

2 Dynamic Programming

This paper undertakes standard dynamic programming as in papers like Deguest et al. (2015);
Das et al. (2020). The approach assumes standard stochastic processes for the evolution of
wealth in a goals-based portfolio and an objective function defined in the ensuing subsections.

2.1 Objective Function

The GBWM objective function stipulates the maximization of the probability of reaching a thresh-
old level of wealth H at time horizon T , i.e.,

max
w(t),t<T

Pr[W (T ) > H] (1)

where a sequence of portfolios w(t), t = 0, h, 2h, ..., T � h, at periodic interval h, are chosen to
dynamically achieve the highest probability of exceeding threshold H.1 This is a standard optimal
control problem.

2.2 Portfolios in the Choice Set

For the examples in this paper, we ensure that all portfolios used in the dynamic solution lie
on the e�cient frontier. These portfolios are solved for using the seminal solution in Markowitz
(1952). This solution provides all possible portfolios that are mean-variance optimal over a single
period. At each time t, we choose any one e�cient portfolio w(t) 2 Rn, comprised of n possible
choice assets. This portfolio is characterized by a mean return µ = w

>
M and variance of return

�
2 = w

>⌃w, where M 2 Rn is a vector of expected returns on the n assets in the portfolio, and
⌃ 2 Rn⇥n is the covariance of returns. We require that

Pn
j=1 wj = 1, i.e., all the money is fully

allocated to the portfolio assets.

The mean-variance optimization problem yields the minimized portfolio return variance �
2

for a chosen level of portfolio expected return µ, subject to the full wealth allocation constraint.

1Note that w(t) is a vector of portfolio weights and W (t) is the scalar value of the portfolio through time.
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The solution to this problem is available from Markowitz (1952). For di↵erent chosen µ we get
a collection of optimal portfolio pairs (µ, �), known as the “e�cient frontier”, from which we
may choose to compile a sequence of optimal portfolios, w(t), each of which map onto a mean
and standard deviation of return [µ(t), �(t)]. In other words, we solve the dynamic programming
problem of goals-based wealth management by optimally rebalancing to one of a set of e�cient
portfolios at every discrete time point in the model. This set of candidate e�cient portfolios
may be independently determined and may even be chosen using criteria that are di↵erent from
Markowitz mean-variance optimization.

In addition to mean-variance portfolios, we also allow the investor to buy call and put options
on any asset. In the examples in the paper, we restrict ourselves to at-the-money options on a
stock index and therefore the benefits from trading options that we evidence in our analyses may
be understated.

2.3 Wealth Transition Functions

2.3.1 Transitions without options

Without loss of generality, we define the stochastic change in wealth in the portfolio to be
governed by geometric Brownian motion, i.e.,

W (t+ h) = W (t) exp

✓
µ(t)� 1

2
�(t)2

◆
h+ �

p
h · Z(t)

�
, Z(t) ⇠ N(0, 1) (2)

This is standard, but not required, any other stochastic process can be substituted here. The
transition probability function is directly derived from equation (2).

Pr[W (t+ h)|W (t)] = �(x) (3)

where

x =
ln(W (t+ h)/W (t))� (µ(t)� 1

2�(t)
2)h

�
p
h

(4)

where �(·) is the standard normal probability function.

2.3.2 Grid points

We establish a discrete set of grid points in wealth levels to define the two-dimensional state
space [W (t), t] for our problem. These points should cover a wide range of values of wealth that
are likely to be reached from initial wealth W (0). Our scheme establishes the maximal range of
wealth as follows, accounting for a 4� move, up or down, in log wealth over time, using a high
level of standard deviation, denoted �max:

W (t+ h) 2 [expln(W (0))�4�max
p
T
, expln(W (0))+4�max

p
T ] (5)

This range is discretized on a grid of (m + 1) values [W0(T ),W1(T ), ...,Wm(T )], with an odd
number of points over m intervals of width k in logspace, i.e.,

lnWi(T )� lnWi�1(T ) = k, 8i = 1, 2, ...,m (6)
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Figure 1: Sample grid with the following parameter values: time interval h = 1 year; multiplier g = 4;
horizon T = 2 years; time points j = 0, 1, 2; and the number of nodes at each time point, i = g · j +1.
Notice that there will be an additional g nodes for each additional period added to the grid.

The number of time intervals is T/h. We define an even numbered multiplier g, such that
the number of grid points at the end of interval j will be (g · j + 1). Note that at time T ,
m = g · (T/h), and the number of grid points at time T is (m + 1). Figure 1 shows a sample
grid for just two periods.

We will solve the dynamic program on this grid using the Bellman equation, detailed in Section
2.4, by implementing standard backward recursion, computing the value function starting from
time t = T backwards to time t = 0. To take expectations for computing the value function, we
need to compute transition probabilities between portfolio wealth valuesW (t) andW (t+1), which
depend on the stochastic process above and for options. With options, this is more complicated
than in Section 2.3.1. We turn to describing this aspect of the dynamic program next.

2.3.3 Transitions with options

A fraction of the portfolio wealth may be invested in call and put options. This will change the
transition probability function, without necessitating a change in the grid itself. Define as C(t)
the value of an at-the-money call option on the stock index I(t), and P (t) is the corresponding
put value. Assume that the chosen horizon for these options is always the time per period, i.e.,
interval h. We can use any option pricing model to get these prices, but for simplicity we assume
that the Black and Scholes (1973); Merton (1973) model is deployed. In this case the index
follows a geometric Brownian motion, which is

I(t+ h) = I(t) exp

✓
µI �

1

2
�
2
I

◆
h+ �I

p
h · ZI

�
(7)
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where µI is the mean return on the index and �I is the standard deviation. The correlation
between Brownian motions Z and ZI is denoted as ⇢. The value of an at-the-money call option
on the index with maturity h is

C(t) = I(t)[N(d1)� e
�rh

N(d2)] ⌘ I(t) ·Xc (8)

and for puts the price is

P (t) = I(t)[e�rh
N(�d2)�N(�d1)] ⌘ I(t) ·Xp (9)

where the risk free rate is denoted r and

d1 =
1

�I

✓
r +

1

2
�
2
I

◆p
h (10)

d2 =
1

�I

✓
r � 1

2
�
2
I

◆p
h (11)

We assume that there is a fixed proportion ↵c of the portfolio that may be invested in calls,
and ↵p in puts. If no investment is made in any option, then the situation defaults to the
transitions described in equation (3).

The number of calls and puts invested in is as follows, i.e., the wealth invested in options
divided by the price of the option:

nc(t) =
↵c(t) ·W (t)

C(t)
=

↵c(t) ·W (t)

I(t) ·Xc
(12)

np(t) =
↵p(t) ·W (t)

P (t)
=

↵p(t) ·W (t)

I(t) ·Xp
(13)

The net wealth left for investment in non-derivatives after investment in the options is

W
0(t) = W (t)[1� ↵c � ↵p] (14)

where ↵c,↵p could also be zero. This wealth will evolve under equation (2) with chosen mean
and standard deviation [µ(t), �(t)].

Given the value of the stock index I(t) at time t, the payo↵ of at-the-money options at time
t + h will be max[0, I(t + h) � I(t)] for calls and max[0, I(t) � I(t + h)] for puts. Therefore,
total wealth will evolve as follows:

W (t+ h) = W
0(t) exp

✓
µ(t)� 1

2
�(t)2

◆
h+ �(t)

p
h · Z(t)

�
(15)

+nc(t)max[0, I(t+ h)� I(t)] + np max[0, I(t)� I(t+ h)]

The transition probability density function is now dependent on joint outcomes of the wealth
invested in options, which depends on the evolution of I(t), and that not invested in options,
which depends on the evolution of W 0(t). The correlation ⇢ between the index and wealth also
matters.
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We elaborate equation (15) as follows:

W (t+ h) = W (t)[1� ↵c � ↵p] exp

✓
µ� 1

2
�
2

◆
h+ �

p
h · Z

�

+
↵c(t) ·W (t)

I(t) ·Xc
max[0, I(t+ h)� I(t)] (16)

+
↵p(t) ·W (t)

I(t) ·Xp
max[0, I(t)� I(t+ h)]

which can then be written as follows, noting that the right-hand side of the equation is independent
of wealth levels:

W (t+ h)

W (t)
= [1� ↵c � ↵p] exp

✓
µ� 1

2
�
2

◆
h+ �

p
h · Z

�

+
↵c(t)

Xc
max[0, I(t+ h)/I(t)� 1] (17)

+
↵p(t)

Xp
max[0, 1� I(t+ h)/I(t)]

Using equations (7), (10), and (11), we further obtain:

W (t+ h)

W (t)
= [1� ↵c � ↵p] exp

✓
µ� 1

2
�
2

◆
h+ �

p
h · Z

�
(18)

+
↵c(t)

[N(d1)� e�rhN(d2)]
max

⇢
0, exp

✓
µI �

1

2
�
2
I

◆
h+ �I

p
h · ZI

�
� 1

�

+
↵p(t)

[e�rhN(�d2)�N(�d1)]
max

⇢
0, 1� exp

✓
µI �

1

2
�
2
I

◆
h+ �I

p
h · ZI

��

We are therefore able to write the transition W (t) to W (t+ h) as a ratio, R(t) = W (t+h)
W (t) , which

is a function only of the primitives of the problem, i.e., the 8 parameters

{↵c,↵p, µ, �, µI , �I , h, r}

and two correlated random variables {Z,ZI}, which have correlation ⇢. As we can see, R(t+h),
which is 1 plus the return, is independent of the level of wealth W (t). This means we can
compute the probability density (pdf) for returns, ln(R) for a given set of parameters only once
and re-use it repeatedly. In other words ln(R(t)) does not depend on t or W (t) and may be
written simply as ln(R).

How many sets of pdfs will we need? Suppose we have 15 possible (µ, �) e�cient portfolios
and choose the proportion in calls to be either of {0,↵c}, and the proportion in puts to be
{0,↵p}. Then, all told, we pre-compute 60 = 15⇥ 2⇥ 2 sets of pdfs and store these to provide
all possible transition probability functions.

2.3.4 Transition probabilities with options using kernel density estimators

In order to generate the probability density function (pdf) for R we need to use the joint distri-
bution for {Z,ZI}. The simplest way to do this is to generate a large number M of correlated
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pairs of values from this joint distribution, and then use these values in equation (18) to generate
M values of ln(R), all of which are equally likely. We then fit a kernel density function to the
data on ln(R) to get the pdf. The procedure would be as follows:

1. Generate M correlated random variable pairs {Z,ZI} using the following scheme (say,
M = 5, 000):

• Generate an independent standard random normal variate pair (e1, e2) ⇠ N(0, 1).

• Set Z = e1.

• Set ZI = ⇢ · e1 +
p

1� ⇢2 · e2.
• Repeat M times and store the final results.

2. Given a configuration of the parameters, generate M values of ln(R) using equation (18).

3. Fit a kernel density estimator to the M values of lnR to get the pdf. Denote this as
f(lnR). We fit a Gaussian kernel density estimator (KDE) to the returns using standard
Python functions, i.e., the fast gaussian kde function, based on O’Brien et al. (2016).

4. Repeat this for all 60 parameter configurations.

Given a level of wealth W (t), and future levels of wealth on grid points [W0(t+h), ...,Wm(t+
h)], we get ratios of wealth by dividing the latter by the former, to get [R0, R1, ..., Rm]. Because
these are discrete points, we convert the transition probability pdf into a discrete probability
vector where

Pr(lnRi) =
f(lnRi)Pm
i=0 f(lnRi)

� 0 (19)

which assures that
Pm

i=0 Pr(lnRi) = 1.

Sample program code to implement this scheme in Python is shown in Figure 2.

Figure 2: Python code to generate the transition probability kernel. In practice, especially for the
implementation of the dynamic programming algorithm, the basic kernel density estimation (KDE)
function runs somewhat slow and we use a fast KDE algorithm available in Python as well, O’Brien
et al. (2016).
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We implemented the code to generate four density functions for cases with and without
options and these are displayed in Figure 3.

Figure 3: Probability density functions (pdfs) for the distribution of R = W (t+ h)/W (t) when calls
and puts are used. The following parameters are used to generate the density functions: the fraction
of the portfolio in calls (puts) is ↵c (↵p); returns: µ = 0.07, � = 0.12, µI = 0.08, �I = 0.18, ⇢ = 0.6;
time interval is h = 1 and the risk free rate is r = 0.01. All four cases are shown with the base case
being no options, and the other cases use one of or both calls and puts.

2.4 Optimization using backward recursion

Our approach is to determine a dynamic trading strategy to maximize the probability of exceeding
the goal threshold H, as specified in equation (1). This is a standard dynamic programming
problem that calls for backward recursion on a two-dimensional grid in wealth W (t) and time t,
constructed as per Section 2.3.2. For ease of notation, we index this grid with i for wealth and
j for time. Therefore, the grid is denoted as a set {Wij}. The grid defines the “state space” of
the problem.

The probability of achieving the goal wealth H is the “value function” of the problem and
is defined on the grid points in the state space, i.e., denoted as a set {Vij}. Since the value
function is also a probability, it is bounded at all points in the state space in the range (0, 1).

The actions taken are denoted as a set {Aij} over each point on the state space, where each
action is the choice of a portfolio, i.e., a mean and standard deviation of return pair, denoted
[µij, �ij] 2 {µ, �}. The vectors µ and � are chosen from a set of admissible portfolios that the
investor may use. These pairs are presented in Table 1. Therefore, the action comprises choosing
the amount to invest in calls (fraction ↵c of the portfolio), puts (fraction ↵p), and a proportion
of (1 � ↵c � ↵p) in one of the 13 portfolios in Table 1, indexed by k. The action taken is also
denoted as the “control” in standard dynamic programming parlance. Therefore, the action is a
chosen amount of calls, puts, and the remaining balance in one of the portfolios k.

Optimization of the goal is undertaken by backward recursion on the grid. At time T , either
Wi,T > H, in which case the probability of achieving the goal is Vi,T = 1 or it does not, i.e.,
Wi,T  H and Vi,T = 0. There is no question of optimal action at time T because the portfolio
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Table 1: List of mean and standard deviation pairs representing returns based on 13 portfolios that
may be chosen for the dynamic investment algorithm. We also may use at-the-money calls and puts on
the index, whose mean and standard deviation of return are also shown below.

Portfolio# Mean (µ) Standard Deviation (�)

1 0.01 0.01479219
2 0.02 0.02955101
3 0.03 0.04609701
4 0.04 0.05903944
5 0.05 0.07547269
6 0.07 0.10410154
7 0.08 0.11911284
8 0.09 0.13401761
9 0.10 0.14892206
10 0.11 0.16382636
11 0.12 0.17873056
12 0.13 0.19647591
13 0.14 0.20533005

Index 0.0762 0.11349763

strategy terminates at that time.

Next, we do wish to decide the optimal action at time (T � h). For each node i at time
j = T � h, we choose the action Ai,T�h that maximizes the expected value function at Vi,T�h

at state space grid point Wi,T�h. That is, we maximize the value function at each node at time
T � h using the Bellman (1952) equation:

Vi,T�h = max
w

X

u

Vu,T · Pr

⇢
ln

✓
Wu,T |w

Wi,T�h|w

◆�
, 8i (20)

where w is an e�cient portfolio choice, u is the set of grid points in the state space at time T .

The transition probability, conditional on choice of e�cient portfolio w, is Pr

n
ln
⇣

Wu,T |w
Wi,T�h|w

⌘o
is

determined using equation (18) in Section 2.3.3 in conjunction with the probability kernel fitted
using the methodology specified in Section 2.3.4.

The backward recursion from T to T � h may be repeated for all periods going back in time
till time t = 0, using the general recursion:

Vi,j = max
w

X

u

Vu,j+h · Pr

⇢
ln

✓
Wu,j+h|w

Wi,j|w

◆�
, 8i, 8j = 0, h, 2h, ..., T � 2h (21)

The implementation of this algorithm is easy and has low run time. The complexity is of order of
the number of nodes in the state space, i.e., |{Wij}| times the number of portfolio choices to be
examined at each node. The latter in our base case example works out to be four possible choices
of option components, i.e., (i) no options are used in the portfolio strategy; (ii) ↵c = 10% of the
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portfolio may be invested in calls; (iii) ↵p = 10% of the portfolio may be invested in puts; or (iv)
10% of the portfolio may be invested in calls and another 10% in puts. Given there are 4 ways
in which we may structure the options component of the strategy and 13 ways in which we can
choose the non-options component, we have 52 possible portfolios to be examined in the action
space at each node. Therefore, the scale of the run time is 52 times the size of the state space
grid.

After backward recursion via equation (21) is complete, the node V0,0 in the grid contains the
optimized probability of reaching the goal. The corresponding action A0,0 tells us which of the
52 portfolio choices we will begin the trading strategy with at the outset.

3 Analysis and Insights

In this section, we explore the potential improvement from using index call and put options in
addition to using standard e�cient portfolios. Since this allows more degrees of freedom in
portfolio choice, we have to do at least as well, if not better, in maximizing the probability
of reaching investor goals. This enables an examination of whether a material improvement is
possible via the use of call and put options.

We begin with the following baseline case. An initial wealth of W (0) = $100 is invested with
a target goal of H = $200 at a horizon of T = 10 years. As mentioned earlier the optimization
problem aims to maximize the probability of reaching goal H. We also examine the probability
of falling below a lower floor threshold of L = $100. We then report the mean and standard
deviation of the distribution of optimal terminal wealth W (T ).

The input data for the problem is an e�cient frontier comprised of 13 portfolios in order of
increasing risk and return. At any point in time the wealth in the portfolio is invested as follows:
proportion ↵c in calls and ↵p in puts. The remaining amount (1� ↵c � ↵p) is invested in one of
the e�cient portfolios.

There are four cases we explore for the base case. (i) no options are used in the portfolio
strategy; (ii) 10% of the portfolio may be invested in calls; (iii) 10% of the portfolio may be
invested in puts; or (iv) 10% of the portfolio may be invested in calls and another 10% in puts.
We then examine how these options vary in results for the base case.

3.1 Using options in the base case

The results for the four possible models in the base case are shown in the Table 2. First, from
a comparison of case (1) versus the other cases, especially cases (2) and (4), we see that using
options improves the outcomes. Second, the improvement comes from using calls, not puts.
Third, the probability of exceeding the threshold H rises by around 8%, though the probability
of exceeding the lower threshold L remains unchanged. The reason for this is that H = 200
is an aggressive upper threshold and call options are especially good instruments to target this
goal. On the other hand the lower threshold is easily achieved and therefore can be attained
without options. Therefore, there is little change in the probability of staying above the floor
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Table 2: Comparison of portfolio outcomes in four cases: (i) no options are used in the portfolio
strategy; (ii) ↵c = 10% of the portfolio may be invested in calls; (iii) ↵p = 10% of the portfolio may
be invested in puts; or (iv) 10% of the portfolio may be invested in calls and another 10% in puts. The
base case parameters are: initial wealth W (0) = 100; goal threshold H = 200; loss threshold L = 100;
portfolio horizon T = 10.

Cases
Parameters (1) (2) (3) (4)

↵c 0.00 0.10 0.00 0.10
↵p 0.00 0.00 0.10 0.10

Pr[W (T ) � H] 0.805 0.885 0.811 0.877
Pr[W (T ) � L] 0.957 0.960 0.960 0.955
Mean W (T ) 210.78 223.42 212.33 220.80
Stdev W (T ) 45.91 50.17 46.65 49.23

even if options are used. This also explains why for this case, call options are more useful than
put options.

We note that the expected wealth when options are used is higher than the base case, but it
comes with additional variance as well, as is only to be expected when levered instruments like
options are used. We see also that when both calls and puts are allowed, the outcomes (case
4) are very slightly lower than in case (2). This is because of the kernel density approximation,
which is attenuated at the edges of the domain of the wealth distribution to a greater extent
when both calls and puts are applied.

3.2 Assessing di↵erent goals

We examine how the use of options changes as the goals change, i.e., as we vary thresholds H
and L. For parsimony, we only consider cases (1) and (4) and use easily achievable lower bounds,
i.e., calls are more important than puts. Results are shown in Table 3. As we can see when the
goal becomes more aggressive as we move H higher, the use of options becomes much more
important. When the goal is only H = 150, the improvement in the probability of reaching this
goal when options are used is about 3%. But when H = 250 the improvement in goal probability
is four times as much, i.e., 12%. (Likewise, the standard deviation of terminal wealth is also
almost three dollars higher, as is appropriate, for there can be no free lunch.) For completeness,
the goal probability Pr[W (T ) � H] is shown in Figure 4. We see clearly how call options make
the most di↵erence.

3.3 The e↵ect of approximating the true distribution

The joint distribution of one of the 13 portfolios shown in Table 1 along with the distribution of
payo↵s from the options on the index is approximated by the scheme presented in Section 2.3.4.
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Table 3: Comparison of portfolio outcomes in two cases: (i) Case (1): no options are used in the portfolio
strategy; (ii) Case (4) ↵c = 10% of the portfolio may be invested in calls and another ↵p = 10% in puts.
The base parameters are: initial wealth W (0) = 100; portfolio horizon T = 10. All other parameters
are shown in the table below.

Goals
H = 150 H = 175 H = 200 H = 225 H = 250

Parameters L = 80 L = 90 L = 100 L = 110 L = 120

Pr[W (T ) � H]
Case (1): 0.917 0.870 0.805 0.751 0.691
Case (4): 0.948 0.918 0.877 0.848 0.814

Pr[W (T ) � L]
Case (1): 0.983 0.973 0.957 0.946 0.930
Case (4): 0.982 0.972 0.955 0.946 0.934

Mean W (T )
Case (1): 169.54 190.16 210.78 229.83 247.32
Case (4): 175.20 197.20 220.80 242.95 267.03

Stdev W (T )
Case (1): 25.78 34.36 45.91 58.21 70.26
Case (4): 27.89 37.52 49.23 59.87 72.30
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Figure 4: Comparison of goal probability Pr[W (T ) � H] in four cases: (i) no options are used in the
portfolio strategy; (ii) ↵c = 10% of the portfolio may be invested in calls; (iii) ↵p = 10% of the portfolio
may be invested in puts; or (iv) 10% of the portfolio may be invested in calls and another 10% in puts.
The base case parameters are: initial wealth W (0) = 100; goal portfolio horizon T = 10. The goal and
loss thresholds are varied and depicted in the graph on the x-axis.

Theoretically, the process followed by the joint process of (i) returns on one of the portfolios
and (ii) returns on the index are assumed to be bivariate normal in this paper, and these returns
are weighted and projected onto the univariate return distribution for wealth using the kernel
density estimator (KDE) shown in Figure 2. Because the KDE only approximates the true joint
distribution, the solution to the dynamic program will perforce be inferior to a situation when
the transition probabilities are analytical. The question is, how much attenuation in accuracy is
experienced when using the KDE approximation? The KDE does not have an infinite domain and
since it is truncated there is some displacement of probability density versus the true analytical
distribution.

Since we do not have the true transition probability density when options are used, we instead
compare the performance of our algorithm when no options are used to get a baseline error
from the numerical KDE approximation. For this case, we are able to use the true analytical
transition probability function in backward recursion equation (21). Table 4 displays the results.
The di↵erence in optimized probability ranges from 2-4% and increases as the goals become more
aggressive. Therefore, the KDE-based algorithm performs very well and is a useful way to capture
complex projections of multivariate distributions in an optimization context.

3.4 The usage of calls and puts

It is of interest to examine in which states [W (t), t] on the wealth grid options are included in
the portfolio, and when they are not.
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Table 4: Comparison of portfolio outcomes when the true analytical distribution is used versus the
numerical approximation from the KDE. We coded a corresponding dynamic program for the analytical
case. This is done for the case where no options are used in the portfolio strategy. The base parameters
are: initial wealth W (0) = 100; portfolio horizon T = 10. All other parameters are shown in the table
below. We report the percentage improvement relative to the KDE estimator.

Goals
H = 150 H = 175 H = 200 H = 225 H = 250

Parameters L = 80 L = 90 L = 100 L = 110 L = 120

Pr[W (T ) � H]
Analytical: 0.933 0.890 0.835 0.781 0.721
% improvement vs KDE: 1.79 2.31 3.73 4.08 4.38

Pr[W (T ) � L]
Analytical: 0.988 0.979 0.967 0.956 0.943
% improvement vs KDE: 0.46 0.58 1.11 1.09 1.31

Mean W (T )
Analytical: 171.30 192.27 214.73 233.27 251.99
% improvement vs KDE: 1.04 1.11 1.88 1.50 1.89

Stdev W (T )
Analytical: 23.31 31.86 42.91 53.49 65.65
% improvement vs KDE: -9.55 -7.29 -6.53 -8.10 -6.56
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We note that calls are used extensively but puts are not. Intuitively, calls help reach the goal,
especially when the hurdle is high, whereas puts do not. It is well known from option pricing
theory, see Coval and Shumway (2001), that under the risk-neutral pricing measure, both calls
and puts have an expected return equal to the risk free rate. However, for the portfolio the
expected return is taken under the physical probability measure, where the index is assumed to
grow at its expected return, which is greater than the risk free rate. As a consequence, the drift
of the index under the physical probability measure is greater than the risk free rate, making the
return on calls positive and greater than that of the risk free rate, but making the return on puts
correspondingly less than the risk free rate and usually negative. Therefore, since the expected
return on calls is positive and that on puts is negative, puts are not an entirely sound investment
unless they o↵set another risk that cannot be met by holding any other sort of security, such as
a floor requirement on the portfolio.

On another note, many financial advisors use puts to hedge their clients’ portfolios. Our
analysis shows that this is unnecessary in most cases and that using a judicious mix of assets and
options will also deliver a high floor on wealth while reaching optimally for goals.

Therefore, we extended the proportions of the portfolio that we might invest in calls to the
following proportions: {0, 0.1, 0.2, 0.3}. There is a wide range of cases in which we use all levels
of calls to improve the probability of meeting the investor’s goal. The performance improvement
is non-trivial as we see in Table 5. For instance, note that at low levels of goals, where H = 150,
the improvement in the probability of reaching the goal is about 4.5% (from 0.917 to 0.959).
However, when the goal is far more aggressive (H = 250), then without calls the probability
of reaching the goal is only 0.691, whereas the goal probability is 0.864 when calls are allowed,
i.e., an improvement of 17%, which is substantial. The benefit of using options, especially for
investors with high goals is clear. The expected final wealth is higher when calls are used, as
we see for all the five levels of goals in Table 5. At a goal level of H = 150, the percentage
improvement in mean wealth is about 5% whereas at a goal level of H = 250, the improvement is
about 11%, much higher, as expected. Of course, these gains from options do not come for free,
investors ends up with portfolios that have higher risk, as the standard deviation also increases
in lockstep.

In order to see when calls are used more often we also plotted the state space to show what
proportion of the portfolio is held in calls, see Figure 5. In this figure, we can see that calls are
used when the portfolio is below its initial level and tend to get used more as the portfolio grows.
However, when the portfolio does poorly, we see that very few calls are used. Most of the time,
we let calls go all the way to 30% of the portfolio. Therefore, either no calls are used, but if they
are, then we tend to use the highest allowable levels of calls.

3.5 Using mostly options

We also examined a mostly pure options portfolio by using the following choices for the proportion
of options in the portfolio: ↵c = {0.6, 0.7, 0.8, 0.9}. These choices imply extremely high levels
of portfolio leverage, often as much as 10x. This leads naturally to much higher returns, but
also much higher standard deviation. Table 6 compares this new case with the case where the
options proportion is in the set ↵c = {0, 0.1, 0.2, 0.3}. It is clear from the table that using mostly
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Table 5: Comparison of portfolio outcomes in the case where the proportion in calls ranges over
{0, 0.1, 0.2, 0.3}. The base parameters are: initial wealth W (0) = 100; portfolio horizon T = 10. All
other parameters are shown in the table below. We consider the cases with no calls and compare it to
the case when calls are used.

Goals
H = 150 H = 175 H = 200 H = 225 H = 250

Parameters L = 80 L = 90 L = 100 L = 110 L = 120

Pr[W (T ) � H]
No calls: 0.917 0.870 0.805 0.751 0.691
With calls: 0.959 0.938 0.913 0.890 0.864

Pr[W (T ) � L]
No calls: 0.983 0.973 0.957 0.946 0.930
With calls: 0.977 0.965 0.949 0.936 0.920

Mean W (T )
No calls: 169.54 190.16 210.78 229.83 247.32
With calls: 177.41 200.78 227.07 250.29 274.93

Stdev W (T )
No calls: 25.78 34.36 45.91 58.21 70.26
With calls: 31.63 42.27 55.63 68.52 83.44
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Figure 5: Extent of calls held in the portfolio as a function of the level of wealth. The proportion
in calls ranges over {0, 0.1, 0.2, 0.3}. The base parameters are: initial wealth W (0) = 100; portfolio
horizon T = 10. The top plot shows call holdings for a goal wealth of 150 and the lower plot shows the
goal wealth for a position of 250.
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Table 6: Comparison of portfolio outcomes when the proportion of options in the portfolio is: ↵c =
{0.6, 0.7, 0.8, 0.9} (i.e., high leverage), versus the case when we have low usage of options, i.e., ↵c =
{0, 0.1, 0.2, 0.3} (low leverage). The base parameters are: initial wealth W (0) = 100; portfolio horizon
T = 10. All other parameters are shown in the table below. The KDE is used in both cases.

Goals
H = 150 H = 175 H = 200 H = 225 H = 250

Parameters L = 80 L = 90 L = 100 L = 110 L = 120

Pr[W (T ) � H]
Low leverage: 0.959 0.938 0.913 0.890 0.864
High leverage: 0.745 0.752 0.734 0.718 0.702

Pr[W (T ) � L]
Low leverage: 0.977 0.965 0.949 0.936 0.920
High leverage: 0.817 0.828 0.815 0.804 0.794

Mean W (T )
Low leverage: 177.41 200.78 227.07 250.29 274.93
High leverage: 3396 3874 3906 3931 3957

Stdev W (T )
Low leverage: 31.63 42.27 55.63 68.52 83.44
High leverage: 10120 10938 10989 11029 11071

options gives extremely di↵erent results, but weaker in the sense that the goal probability drops
by a material factor. This suggests that using this approach is not ideal in goals-based wealth
management. Also, the probability of exceeding the lower threshold is also lower and this is not
ideal. Because most of the time, the strategy maxes out the proportion of calls at 90% of the
portfolio, we see that this is high enough leverage that both the mean wealth and its standard
deviation explode.

It is of course interesting to allow a wide range of options (upto 0.9 of the portfolio’s wealth)
to see if this makes a di↵erence and indeed, it does. See Table 7 and Figure 6.

We see a substantial increase in the probability of reaching goals, even more so for the
aggressive goals than for the less aggressive ones. For example, when the goal is H = 150,
the goal probability increases by around 4% but when the goal is H = 250 the increase in goal
probability is 10%. Clearly, using more options o↵ers a greater chance of hitting “reach” goals.
As is also natural, the mean return is higher but so is the standard deviation of return. There is
no free lunch, more return comes with more risk.
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Table 7: Comparison of portfolio outcomes when the proportion of options in the portfolio is:
↵c = {0, 0.1, 0.2, 0.3, 0.5, 0.7, 0.9}, versus the case when we have low usage of options, i.e., ↵c =
{0, 0.1, 0.2, 0.3}. The base parameters are: initial wealth W (0) = 100; portfolio horizon T = 10. All
other parameters are shown in the table below. The KDE is used in both cases.

Goals
H = 150 H = 175 H = 200 H = 225 H = 250

Parameters L = 80 L = 90 L = 100 L = 110 L = 120

Pr[W (T ) � H]
Low leverage: 0.959 0.938 0.913 0.890 0.864
More leverage: 0.991 0.986 0.979 0.971 0.962

Pr[W (T ) � L]
Low leverage: 0.977 0.965 0.949 0.936 0.920
More leverage: 0.993 0.989 0.983 0.977 0.970

Mean W (T )
Low leverage: 177.41 200.78 227.07 250.29 274.93
More leverage: 247.76 269.26 296.06 321.27 343.80

Stdev W (T )
Low leverage: 31.63 42.27 55.63 68.52 83.44
More leverage: 124.94 143.71 166.07 189.92 213.27
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Figure 6: Extent of calls held in the portfolio as a function of the level of wealth. The proportion in
calls ranges over {0, 0.1, 0.2, 0.3, 0.5, 0.7, 0.9}. The base parameters are: initial wealth W (0) = 100;
portfolio horizon T = 10. The top plot shows call holdings for a goal wealth of 150 and the lower plot
shows the goal wealth for a position of 250.
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Table 8: Comparison of portfolio outcomes when the normal distribution is used versus the t distribution
(degrees of freedom = 5) from the KDE. The base parameters are: initial wealth W (0) = 100; portfolio
horizon T = 10. All other parameters are shown in the table below. The KDE is used in both cases.

Goals
H = 150 H = 175 H = 200 H = 225 H = 250

Parameters L = 80 L = 90 L = 100 L = 110 L = 120

Pr[W (T ) � H]
Normal: 0.959 0.938 0.913 0.890 0.864
t-dist: 0.950 0.929 0.905 0.883 0.860

Pr[W (T ) � L]
Normal: 0.977 0.965 0.949 0.936 0.920
t-dist: 0.970 0.956 0.941 0.928 0.913

Mean W (T )
Normal: 177.41 200.78 227.07 250.29 274.93
t-dist: 190.77 214.80 243.93 268.50 294.57

Stdev W (T )
Normal: 31.63 42.27 55.63 68.52 83.44
t-dist: 156.15 198.15 240.13 272.15 308.46

3.6 The e↵ect of fat-tailed distributions

The implemented strategy will change if the stochastic process is fat-tailed, as is often the case.
This is easily implemented in our framework by changing the random numbers generated in step
1 of Section 2.3.4 from being normal to being drawn from a t-distribution with the required low
degrees of freedom (< 10) to be fat-tailed. A comparison of results between the normal and the
t-distribution is shown in Table 8.

The results for fat-tailed case are interesting. We see a small decrease in the probability of
reaching goals, by around 1%. The same is noticed for the probability of exceeding the lower
threshold. This is because the distribution entails more risk and the model is not optimized with
reference to the lower bound. However, there is a material increase in the mean terminal wealth,
o↵set by a substantial increase in standard deviation, which is expected given the tails of the
distribution are much fatter than that of the Gaussian.

3.7 Including more complex options and structured products

Our approach is completely extensible and computationally feasible when including more complex
derivative securities in the portfolio. As an example, we consider a volatility product, known
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Figure 7: Graphical description of the Barrier M-note. The x-axis denotes the gross return R(t+ h) =
I(t+ h)/I(t), i.e., a return of zero means R = 1. Here K = 0.25. The payo↵ is max[0, |R�K|]

as a “Barrier M-Note”, which has a payo↵ that is dependent on volatility of the stock index.2

Assuming an index value normalized to 1, a M-note pays o↵ a return equal to Rm(t) = |I(t)� 1|
if Rm(t)  K, else it pays zero. For example, if K = 0.25, then the payo↵ return at maturity
of the note will be 0.20 if the index reaches 1.20 or 0.80. However, if the index ends up above
(1 + K) or below (1 � K) then the M-note pays nothing. Therefore, the payo↵ profile looks
like a truncated straddle. By truncation, the seller of the note keeps the price of the truncated
straddle a↵ordable. A depiction of the payo↵ profile of the M-note is shown in Figure 7.

The M-note was analyzed in Das and Statman (2013) where it is shown that the note can be
decomposed into 6 simpler options, which are as follows:

1. A long call at strike 1.

2. A long put at strike 1.

3. A short call at strike 1 +K.

4. A short put at strike 1�K.

5. K short cash-or-nothing unit payo↵ calls at strike 1 +K.

6. K short cash-or-nothing unit payo↵ puts at strike 1�K.

We have seen the pricing equations for calls and puts earlier in the paper. The price of a unit
payo↵ cash-or-nothing option pays o↵ $1 if the option ends up in the money. The cash-or-nothing
unit payo↵ call price is as follows:

C
(cn) = e

�rh
N(dc2); d

c
1 =

ln
�

1
1+K

�
+ (r + 1

2�
2
I )h

�I

p
h

; d
c
2 = d

c
1 � �

p
h (22)

2Indexes are usually used for the underlying so as to minimize the probability of manipulation of the market in
which these indexes trade.
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And the corresponding put price is:

P
(cn) = e

�rh
N(�d

p
2); d

p
1 =

ln
�

1
1�K

�
+ (r + 1

2�
2
I )h

�I

p
h

; d
p
2 = d

p
1 � �

p
h (23)

Using these equations, we can price the M-note at time t, denoted M(t) and the return on the
M-note is the payo↵ divided by the price, i.e., max[0, |R(t+ h)�K|]/M(t).

Now we are ready to extend the model in Section 2.3.3 to include the M-note as an option in
the portfolio. Let ↵m(t) be the proportion of wealth W (t) invested in the M-note. The number
of units of the M-note will be:

nm(t) =
↵m(t) ·W (t)

M(t)
(24)

The net wealth invested in the equity portfolio is

W
0(t) = W (t)[1� ↵c(t)� ↵p(t)� ↵m(t)] (25)

which corresponds to equation (14) from earlier. Total wealth will evolve as follows:

W (t+ h) = W
0(t) exp

✓
µ(t)� 1

2
�(t)2

◆
h+ �(t)

p
h · Z(t)

�
(26)

+nc(t)max[0, I(t+ h)� I(t)]

+np max[0, I(t)� I(t+ h)]

+nm(t)max[0, |I(t+ h)/I(t)�K|]

Equation (18) is then extended to the following:

W (t+ h)

W (t)
= [1� ↵c � ↵p � ↵m] exp

✓
µ� 1

2
�
2

◆
h+ �

p
h · Z

�
(27)

+
↵c(t)

[N(d1)� e�rhN(d2)]
max

⇢
0, exp

✓
µI �

1

2
�
2
I

◆
h+ �I

p
h · ZI

�
� 1

�

+
↵p(t)

[e�rhN(�d2)�N(�d1)]
max

⇢
0, 1� exp

✓
µI �

1

2
�
2
I

◆
h+ �I

p
h · ZI

��

+
↵m(t)

M(t)
·M(t+ h)

where

M(t+ h) =

���� exp
✓

µI �
1

2
�
2
I

◆
h+ �I

p
h · ZI

�
� 1

���� (28)

if M(t + h)  K, else M(t + h) = 0. (Note that the last term contains the absolute sign
function.) The same fast kernel density estimator may be applied using the simulated values of
{Z,ZI} in equation (27). Results are in Table 9. The probability of reaching the goal is improved
with a much lower risk strategy as well, because less leverage is adopted.
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Table 9: Comparison of portfolio outcomes when the proportion of options in the portfolio is: ↵c =
{0, 0.1, 0.2, 0.3, 0.5, 0.7, 0.9}, versus the case when we have all these options plus the M-note with
K = 0.25. The base parameters are: initial wealth W (0) = 100; portfolio horizon T = 10. All other
parameters are shown in the table below. The KDE is used in both cases.

Goals
H = 150 H = 175 H = 200 H = 225 H = 250

Parameters L = 80 L = 90 L = 100 L = 110 L = 120

Pr[W (T ) � H]
M-note & Calls: 0.998 0.997 0.996 0.995 0.993
Calls only: 0.991 0.986 0.979 0.971 0.962

Pr[W (T ) � L]
M-note & Calls: 0.999 0.999 0.998 0.997 0.996
Calls only: 0.993 0.989 0.983 0.977 0.970

Mean W (T )
M-note & Calls: 182.38 217.69 253.34 279.96 308.89
Calls only: 247.76 269.26 296.06 321.27 343.80

Stdev W (T )
M-note & Calls: 33.84 62.60 83.07 95.00 113.04
Calls only: 124.94 143.71 166.07 189.92 213.27
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4 Concluding Discussion

In this paper we develop a dynamic programming solution for goal-based wealth management
when options are included in the trading strategy. This involves a sharp increase in both, the di-
mensionality of the problem’s state space and also highly non-Gaussian distributions. We develop
a facile mathematical approach to address both these issues using kernel density estimators. This
approach is also computationally e�cient.

Using this approach we find that portfolio outcomes, especially for long-horizon portfolios,
are much improved when options use is permitted. We explore the use of calls versus puts,
and find that the former are mostly used, and puts are unnecessary unless floor constraints are
paramount. The use of calls makes it much more likely that an investor will achieve aggressive
wealth management goals. We also find that pure options strategies are not su�cient, and
derivatives need to be mixed with equities and bonds (standard mean-variance portfolios) to get
best results. The optimal dynamic strategy also varies widely in how much of the portfolio is
invested in options, depending on the state of the portfolio relative to its goals. The methodology
is easily extended to including structured products and volatility derivatives and an example using
an M-note is also presented. The results in this paper strongly advocate for the use of options in
dynamic goals-based wealth management.

References

Arsic, B., V. (2005). Using Futures and Options in Equity Portfolio Management. The 7th Balkan
Conference on Operational Research, BACOR 05, Constanta, Romania.

Bakshi, G. and N. Kapadia (2003, April). Delta-Hedged Gains and the Negative Market Volatility
Risk Premium. Review of Financial Studies 16 (2), 527–566.

Beber, A. and C. Perignon (2013). The Unintended Consequences of Banning Derivatives in Asset
Management. Working paper, HEC Paris and Cass Business School, City University London.

Bellman, R. (1952, August). On the Theory of Dynamic Programming. Proceedings of the
National Academy of Sciences 38(8), 716–719.

Black, F. and M. Scholes (1973, May). The Pricing of Options and Corporate Liabilities. Journal
of Political Economy 81(3), 637–654.

Branger, N. and B. Breuer (2008, March). The Optimal Demand for Retail Derivatives. SSRN
Scholarly Paper ID 1101399, Social Science Research Network, Rochester, NY.

Browne, S. (1995, November). Optimal Investment Policies for a Firm With a Random Risk Pro-
cess: Exponential Utility and Minimizing the Probability of Ruin. Mathematics of Operations
Research 20(4), 937–958.

Browne, S. (1997, May). Survival and Growth with a Liability: Optimal Portfolio Strategies in
Continuous Time. Mathematics of Operations Research 22(2), 468–493.

27

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Browne, S. (1999a). Reaching Goals by a Deadline: Digital Options and Continuous-Time Active
Portfolio Management. Advances in Applied Probability 31(2), 551–577.

Browne, S. (1999b, July). The Risk and Rewards of Minimizing Shortfall Probability. The Journal
of Portfolio Management 25(4), 76–85.

Browne, S. (2000, September). Risk-Constrained Dynamic Active Portfolio Management. Man-
agement Science 46(9), 1188–1199.

Brunel, J. (2015). Goals-Based Wealth Management: An Integrated and Practical Approach to
Changing the Structure of Wealth Advisory Practices. New York: Wiley.

Cass, D. and J. E. Stiglitz (1970, June). The structure of investor preferences and asset returns,
and separability in portfolio allocation: A contribution to the pure theory of mutual funds.
Journal of Economic Theory 2(2), 122–160.

Chhabra, A. B. (2005, January). Beyond Markowitz: A Comprehensive Wealth Allocation Frame-
work for Individual Investors. The Journal of Wealth Management 7 (4), 8–34.

Coval, D., J. and T. Shumway (2001). Expected Option Returns. The Journal of Finance 56 (3),
983–1009.

Das, S. R., H. Markowitz, H., J. Scheid, and M. Statman (2010). Portfolio Optimization with
Mental Accounts. Journal of Financial and Quantitative Analysis 45(2), 311–334.

Das, S. R., D. Ostrov, A. Radhakrishnan, and D. Srivastav (2018). Goals-Based Wealth Man-
agement: A New Approach. Journal of Investment Management 16(3), 1–27.

Das, S. R., D. Ostrov, A. Radhakrishnan, and D. Srivastav (2020). Dynamic Portfolio Allocation
in Goals-Based Wealth Management. Computational Management Science 17(June), 613–640.

Das, S. R. and M. Statman (2013). Options and structured products in behavioral portfolios.
Journal of Economic Dynamics and Control 37(1), 137–153.

Deguest, R., L. Martellini, V. Milhau, A. Suri, and H. Wang (2015). Introducing a Comprehensive
Allocation Framework for Goals-Based Wealth Management. Working paper, EDHEC Business
School .

Faias, J. A. and P. Santa-Clara (2017, February). Optimal Option Portfolio Strategies: Deepening
the Puzzle of Index Option Mispricing. Journal of Financial and Quantitative Analysis 52(1),
277–303.

Fong, K., D. R. Gallagher, and A. Ng (2005, March). The Use of Derivatives by Investment
Managers and Implications for Portfolio Performance and Risk*. International Review of Fi-
nance 5(1-2), 1–29.

Guidolin, M. (2013). The Economic Value of Derivatives and Structured Products in Long-
Horizon, Dynamic Asset Allocation. Working paper, Bocconi University, Milan.

28

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Guobuzaite, R. and L. Martellini (2012). The Benefits of Volatility Derivatives in Equity Portfolio
Management. Working paper, EDHEC Business School .

Hoogendoorn, G.-J., Y. Janssens, and A. S. Jensen (2017). Derivatives in Wealth Management.
White Paper, Saxo Bank .

Jones, M. W. (2014, July). Seeking diversification through e�cient portfolio construction using
cash-based and derivative instruments. British Actuarial Journal 19(2), 468–498.

Kleindorfer, P. R. and L. Li (2005). Multi-Period VaR-Constrained Portfolio Optimization with
Applications to the Electric Power Sector. The Energy Journal Volume 26 (Number 1), 1–26.

Liu, J. and J. Pan (2003). Dynamic Derivative Strategies. Journal of Financial Economics 69,
401–430.

Markowitz, H. H. (1952). Portfolio Selection. Journal of Finance 6, 77–91.

McCann, C. and D. Luo (2006). Are Structured Products Suitable for Retail Investors? Working
Paper, Securities and Litigation Group.

Merton, R. (1969). Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case.
The Review of Economics and Statistics 51 (3), 247–57.

Merton, R. (1971). Optimum consumption and portfolio rules in a continuous-time model. Journal
of Economic Theory 3(4), 373–413.

Merton, R. C. (1973). Theory of Rational Option Pricing. The Bell Journal of Economics and
Management Science 4(1), 141.

Nevins, D. (2004, January). Goals-Based Investing: Integrating Traditional and Behavioral Fi-
nance. The Journal of Wealth Management 6 (4), 8–23.

O’Brien, T. A., K. Kashinath, N. R. Cavanaugh, W. D. Collins, and J. P. O’Brien (2016, Septem-
ber). A fast and objective multidimensional kernel density estimation method: fastKDE. Com-
putational Statistics & Data Analysis 101, 148–160.

Shefrin, H. and M. Statman (2000). Behavioral Portfolio Theory. The Journal of Financial and
Quantitative Analysis 35(2), 127–151.

Wang, H., A. Suri, D. Laster, and H. Almadi (2011, April). Portfolio Selection in Goals-Based
WealthManagement. The Journal of Wealth Management 14 (1), 55–65.

29

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 


