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Matrix Metrics: Network-Based 
Systemic Risk Scoring
Sanjiv Ranjan Das

Morpheus: Unfortunately, no one can be told what the 
Matrix is. You have to see it for yourself.

 —The Matrix (Wachowski and Wachowski 
[1999])

This article proposes a new mea-
sure of aggregate systemic risk 
and additional system-wide and 
entity-specific metrics as a com-

plement to existing measures of systemic 
risk. This measure provides a quantif ica-
tion of system-wide risk based on the level 
of vulnerability of each node in the system 
and the interconnectedness of all nodes in 
the network (see Alter, Craig, and Raupach 
[2014] for an approach that also uses these 
two quantities). This metric is easy to com-
pute and has many appealing characteristics.

Systemic risk (as opposed to system-
atic risk) has become an important concern 
since the financial crisis of 2008. Measuring 
and managing such risk are two salient goals 
of this analysis. Although systemic risk is 
not always easy to define, there exist some 
universally accepted characteristics in the 
extant literature (discussed later), including 
(1) having a large impact, (2) being wide-
spread (i.e., affecting a large number of entities 
or institutions), and (3) having a ripple effect 
that endangers the existence of the financial 
system. The mortgage/financial crisis of 2008 
certainly had these three characteristics, but 
the market crash of 1987 affected only a small 

set of assets (equities) and did not endanger 
the financial system. Definitions of systemic 
risk abound, however, and economists may 
not agree on any single one. We describe and 
discuss some popular measures that are related 
to our new measure.

There is a growing literature on systemic 
risk measurement in finance and although we 
mention some representative articles here, a 
range of similar articles exist. Much of this 
literature uses equity returns of f inancial 
institutions and the correlations of these 
returns to construct systemic risk measures. 
One such important article is by Billio et al. 
[2012], in which the authors applied return 
correlations and Granger causality regressions 
on returns to construct network maps and 
develop network measures of systemic risk. 
Joint extreme tail risk, such as the well-known 
conditional value at risk (CoVaR) metric 
of Adrian and Brunnermeier [2010], is also 
used as a systemic risk measure. The systemic 
expected shortfall (SES) measure of Acharya 
et al. [2011] examines the tail risk for a finan-
cial institution when the aggregate system is 
under stress. This is similar to the distressed 
insurance premium (DIP) metric of Huang, 
Zhou, and Zhu [2011]. Kritzman et al. [2011] 
developed the absorption ratio (AR) based 
on situations in which the co-movement of 
returns of assets in a principal components 
analysis becomes concentrated in a single 
factor. A modification of this approach by 
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Reyngold, Shnyra, and Stein [2013] denoted the credit 
absorption ratio (CAR), which extends AR to default risk 
data. Levy-Carciente et al. [2015] developed a method-
ology for stress testing banks for systemic risk using a 
bipartite graph of financial institutions and assets.

The systemic risk measure in this article is dif-
ferent from the ideas in these related articles. First, it 
does not depend only on equity returns because it is 
general and can be used with any measure of intercon-
nectedness. For example, a network graph generated 
from interbank transactions (foreign exchange, credit 
default swap [CDS], loans, etc.) may be used as devel-
oped by Burdick et al. [2011], as could the network gen-
erated from the Granger causality analysis performed by 
Billio et al. [2012, 2014]. Second, the measure separates 
two aspects of overall risk: compromise level (i.e., the risk 
score at each node) and connectivity (i.e., the network 
graph) across nodes and explicitly uses the network con-
figuration in scoring systemic risk. Third, an important 
property of this aggregate systemic risk measure is that 
it is additively decomposable into individual contribu-
tions to systemic risk, enabling regulators to impose a 
tax on financial institutions for individual institutional 
contributions to aggregate risk, as also suggested by 
Acharya et al. [2011].

In addition to these features of the systemic risk 
score, other useful attributes and applications of this 
measure are as follows. One, it may be used in com-
bination with network centrality scores to manage the 
risk of the financial system (the criticality of a node in 
the financial system is defined as the product of its risk 
[compromise] level and its centrality). Two, we pro-
pose a measure of fragility that is related to concentration 
risk (i.e., resembles a Herfindahl–Hirschman Index). 
This enables assessment of the speed at which contagion 
can spread in the system. Three, we compute the risk 
increments of the aggregate systemic risk score (i.e., the 
extent to which each node in the system contributes to 
aggregate risk if its level of compromise increases by a 
unit amount), thereby enabling identification of critical 
nodes, even though they may not be compromised at 
the current time. Fourth, we also define a normalized 
systemic risk score that quantif ies the network effect 
present in the system and complements the fragility 
score.

In addition to these stand-alone static metrics, we 
explore a few comparative statics in order to under-
stand the dynamics of the network without a full-blown 

dynamic analysis. First, we examine cross risk (i.e., the 
externality effect of one node’s increase in risk on the 
risk contribution of other nodes). We explore this risk 
numerically and find that cross risk is low; that is, it is 
not easy for a badly performing node to impose large 
externalities on the other nodes in terms of our metric, 
thus making cross risk robust for practical use. Second, 
we examine whether breaking large banks into smaller 
banks helps reduce systemic risk and f ind that this 
remedy does not work. Instead, eliminating too-big-to-
fail banks exacerbates systemic risk as it increases points 
of failure in the system.

This article proceeds as follows. In the next sec-
tion we present the notation and structure of the new 
systemic risk score as well as related network measures. 
We then extend the measure to a normalized one and 
provide more examples. To set this metric in context, we 
provide discussion in a follow-up section that compares 
the new metric to other systemic risk measures, sum-
marized in Appendix. The final section provides brief 
concluding discussion.

MODELING

Notation

Risk in a connected network arises from com-
promised nodes and their connections. We propose and 
define a parsimonious and intuitive metric for quanti-
fying the aggregate risk in a network of related entities 
and explore its properties.

Assume that the network comprises n nodes 
and is formally defined as the graph G (V, E) where 
V ∈  nR  is the vertex (node) set of entities or banks 
and E ∈  n nR ×  is the edge (link) set comprising elements 
E(Vi, Vj) ≡ Eij ∈ {0,1}, denoting which nodes are con-
nected to each other. The graph may be assumed to be 
directed (i.e., Eij ≠ Eji, and undirected graphs are special 
cases). Also, Eii = 1, ∀i, which is necessary for computing 
the risk score shown later. The link Eij in this network 
is to be interpreted as a f low/effect from node i to node 
j in the sense that if bank i is affected economically, it 
will then transmit this impact to bank j.

The network is represented by an (n × n) adjacency 
matrix with all elements in {0,1}. However, one may 
imagine more complex networks in which the connec-
tivity is not binary, but depends on the degree of interac-
tion between nodes. These matrices may be normalized 
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such that the diagonal Eii = 1, ∀i and the off-diagonal 
elements are scaled to values Eij/max(Eij), ∀i,j,  i ≠  j, 
thereby extending the adjacency matrix from the binary 
{0,1} case to values in the range [0,1]. Higher values 
would denote a connection with greater inf luence.1 The 
set up is simple, yet general (see Exhibit 1 for an example 
of the network and matrix).

For each node Vi we def ine the level of com-
promise as Ci  ≥  0. The risk vector for all nodes is 

C C Cn
nR�C [ , , , ]1 2= … ∈ . Our risk score is agnostic 

as to how compromise is def ined. For example, the 
inverse of the Altman [1968] Z-score would be a good 
measure of compromise to use. Another choice would 
be the expected loss measure for a financial institution 
as used by Acharya et al. [2011]. We may also use credit 
spreads or credit ratings.

In this formulation, there is no notion of the 
relative size of the nodes. For example, a small hedge 
fund could have the same credit score as a very large, 
low-rated investment bank. This is not, however, a 
severe limitation because the investment bank might 
have a greater inf luence on other banks than does the 
hedge fund, either through a greater number of links in 
the network or via stronger links using the more gener-
alized version of the E matrix, where values Eij ∈ [0,1].

Systemic Risk Score (S)

We now define a single systemic risk score for 
the aggregate system that accounts for the connections 
between institutions and the level of individual com-
promise at each node in the network, which is the main 
measure developed in this artcile. Note that bold font in 
the equations represents either a vector or matrix.

The risk score for the entire network is defined as:

	 =S C E C E C( , ) � 	 (1)

where scalar S is a function of the compromise level 
vector C for all nodes and the connections between 
nodes, given by adjacency matrix E.

The function S(C, E) has some useful mathemat-
ical properties. First, it is linear homogenous in C, and 
this will be shown to be useful in the ensuing analytics 
in which we need to decompose the aggregate risk score 
into contributions from each node. Second, as long as 
all numbers in the C vector and E matrix are posi-
tive, the value of S remains positive as well. Third, the 

metric is analogous to portfolio return standard devia-
tion in which we have replaced portfolio weights with 
C and the covariance matrix of returns with E. The 
pre- and post-multiplication of the adjacency matrix E 
with the credit score vector C ensures that we obtain a 
scalar quantity as well as a linear homogeneity in C. The 
difference between E and the covariance matrix in the 
standard portfolio problem is that E is not symmetric, 
although it is positive definite.

This measure is heuristic, but the economic 
motivation for the metric comes from two important 
economic underpinnings of systemic risk. This risk is 
characterized by (1) the interconnectedness of financial 
institutions (nodes), and (2) the credit quality of these 
nodes, as suggested by Billio et al. [2012, pp. 4-5]:

From a theoretical perspective, it is now well 
established that the likelihood of major financial 
dislocation is related to the degree of correlation 
among the holdings of financial institutions, how 
sensitive they are to changes in market prices and 
economic conditions (and the directionality, if 
any, of those sensitivities, i.e., causality), how 
concentrated the risks are among those financial 
institutions, and how closely linked they are with 
each other and the rest of the economy.

As an example, suppose we have 18 nodes in a net-
work, depicted by the adjacency matrix (i.e., the directed, 
unweighted graph shown in Exhibit 1). The compro-
mise vector is =C [0,0,1,2,2,2,2,2,1,0,2,2,2,2,1,0,1,1]�,  
where 0 is no compromise, 1 is a low level of com-
promise, and 2 indicates a highly compromised node. 
We may think of these values as credit rating scores, 
in which the higher the score, the worse the credit 
quality of the financial institution.2 The risk score using 
Equation (1) is S = 11.62. This can be interpreted as 
the systemic risk  score of the f inancial system. The 
value does not connote any meaning, per se; changes 
in the systemic score S, however, may be tracked by 
a regulator over time. When a sudden spike in S occurs, 
regulators investigate which financial institution is most 
responsible for incrementing systemic risk, as computed 
using a risk decomposition metric which we develop 
in a later section of this article. Before turning to this 
metric, we present in the next section an older, very 
useful metric for the importance of a node, denoted as 
centrality.
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E x h i b i t  1
Directed Network of 18 Nodes

Notes: One-way arrows mean that risk f lows in the direction of the arrow. Two-way arrows mean risk f lows in both directions. The network is summarized 
in the adjacency matrix. Note that the diagonal values are all 1. The diameter of this network—the maximal shortest distance between any two nodes—is 2.
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Centrality (x) and Criticality (y)

Although the main metric developed in this article 
is S, understanding systemic risk and drilling down into 
its constituents leads us to many other measures that 
relate to attributes of systemic risk. In this and subse-
quent sections, we explore these other measures as well.

We often wish to know which node in the network 
is most central, (i.e., which network has the most impor-
tant location in terms of connection to other nodes in the 
network). In a complicated network, this is not a particu-
larly easy question to answer. Here, we employ the well-
known notion of centrality, developed by sociologists a 
few decades ago. We note that the inf luence of any node 
in a network (denoted xi) stems from the other nodes to 
which j is connected (denoted by the edges in the adjacency 
matrix, Eij); these nodes in turn are affected by the nodes 
to which they are connected, and so on. This circularity 
may be represented in the following system of n equations:

	 , 1, ,
1

∑= ∀ = …
=

x E x i ni ij
j

n

j 	

The left-hand side of this system of equations is 
a n-vector x that provides a score for the inf luence or 
centrality of each node in the network. This leads to the 
following definition of centrality: Eigenvalue centrality 
is the normalized principal eigenvector x ∈  nR  that, for 
scalar λ, satisfies the eigensystem:

	 λ =x E x 	 (2)

Centrality was first defined by Bonacich [1987] 
and popularized more recently as Google’s PageRank 
algorithm (Brin and Page [1998]).

We computed centrality for this network and plot 
it in Exhibit 2.

Centrality is normalized when the highest centrality 
node is set to value 1 and the other node values have rela-
tive centrality to this node. Neither centrality nor fragility 
(defined later in the paper) depend on the compromise 
vector C since it is computed only using adjacency matrix 
E. To expand the concept of centrality to also account 
for the compromise levels at each node, we define a new 
metric called criticality, which is compromise-weighted 
centrality. This new measure is defined as y = C × x 
where y, C, and x ∈  nR . Note that this is an element-
wise multiplication of vectors C and x.

Critical nodes need immediate attention either 
because they are heavily compromised, of high cen-
trality, or both. Centrality offers a way for regulators to 
prioritize attention to critical financial institutions and 
preempt systemic risk from blowing up. We compute 
criticality for this network and plot it in Exhibit 3.

The node numbers in Exhibits 2 and 3 are the 
same nodes in our continuing example. In an applica-
tion of the model to a financial system the nodes would 
be individual financial institutions. Note that the cen-
trality scores in Exhibit 2 are ordered differently than the 
criticality scores in Exhibit 3. This is because centrality 
ordering does not depend on the credit quality of the 
banks (C). Hence, node 1, which is the most connected, 
is the node with the highest centrality, and node 5 has 
low centrality (for a visual sense, see Exhibit 1). How-
ever, criticality depends on both centrality and credit 
quality; thus, node 1 has very low criticality as this bank 
has a high credit quality, whereas node 5 now has high 
criticality. Some nodes, such as 11 and 12, have moderate 
centrality and credit quality and hence remain high in 
terms of metrics of centrality and criticality, as shown 
in Exhibits 2 and 3.

E x h i b i t  2
Centrality

Note: Normalized centrality for each node in the network shown in 
Exhibit 1, rank ordered for display.
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Risk Decomposition (D)

We exploit the linear homogeneity of the function 
S(C, E) in C using Euler’s equation, which decomposes 
first-order homogenous functions, resulting in a repre-
sentation of the aggregate systemic risk score into node-
wise components.

Risk decomposition is the attribution of the aggre-
gate network risk score S to each node’s individual risk 
contribution Di, i = 1, 2, …, n, such that S Dii

n
1= ∑ = . The 

risk contribution of each node is = ∂
∂

D
S
C

Ci
i

i.

This decomposition formula is the result of 
applying Euler’s theorem3 to the function S(C, E) and 
decomposes the system-wide risk score S into the con-
tribution of each node to total risk. The formula also 
shows that the individual risk contributions sum up to 
the total systemic score S:

	 �
1

1
2

2S
S
C

C
S

C
C

S
C

C
n

n= ∂
∂

+ ∂
∂

+ + ∂
∂

	 (3)

When a node fails and exits the network, the sys-
temic risk score for the network and the risk contribu-
tion of each node within the network will also change. 
Ceteris paribus, removal of a node will lower systemic 
risk; the effect is analogous to quarantining a node. 
When a node fails, it may also affect the credit quality 
of other nodes (i.e., some Ci will worsen, even though 
the adjacency matrix E becomes smaller as some con-
nections are removed). The overall effect on the sys-
temic risk score S and risk contributions Di is therefore 
indeterminate. To establish an expected change in these 
risk scores, the model here needs to be extended from a 
static model to a dynamic one.

We computed the risk decomposition of the net-
work in Exhibit 1, and this is shown in Exhibit 4 where 

Dii
n 11.621∑ == . Note that the numbers Di for each 

node i depend on both the compromise vector C and 
the network adjacency matrix E. In this risk network, 
nodes 5 and 8 contribute the most to system-wide risk. 
We note that even though these nodes are not central 
in the network, they have a high level of compromise 
(Ci, i = 5,8) and therefore are the nodes to be monitored 
most closely.

This risk decomposition is especially useful for 
pinpointing the network effect when a sudden rise in 
systemic risk score S occurs. By examining the changes 

E x h i b i t  3
Criticality

Note: Criticality for each node in the network shown in Exhibit 1, rank 
ordered for display.

E x h i b i t  4
Risk Decomposition

Notes: The risk contribution Di  for each node in the network shown in 

Exhibit 1, rank ordered for display. The aggregate risk is  Dii 11.62.1
20∑ ==
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in risk contribution for each node from one period to 
the next, critical causal nodes are quickly identif ied. 
Further, one may determine whether the increase in 
a node’s risk contribution arises from an increase in its 
compromise level or from an increase in its connectivity.

Risk Increment (I)

A regulator may be interested in assessing how 
a node in the financial network is likely to affect the 
system should that node become excessively compro-
mised. This is determined by computing risk increments, 
or the change in the aggregate network risk score S 
when the compromise score Ci of an asset changes, 

that is, = ∂
∂

I
S
Ci

i

.

Given S = C EC[ ]1/2�  , the derivative with respect 
to C is the vector

	
S

S
n= ∂

∂
= + ∈I

C
EC E C

1

2
[ ] R� 	

which is easy to compute even for large n.
We computed the risk increments of the network 

in Exhibit 1, and the results are shown in Exhibit 5. 
Note that the numbers Ii for each node i depend on both 
the compromise vector C and the network adjacency 
matrix E.

We see that although node 1 has a very low cur-
rent risk contribution (as shown in Exhibit 4), it has 
the potential to be very risky as it has the highest risk 
increment (see Exhibit 5) because it is a highly con-
nected node.

Both risk contribution and risk increment are 
useful in identifying the source of system vulnerabili-
ties and in remediation. In assessing whether a node 
should be allowed to fail, we may disconnect it from 
the network and assess how these metrics are affected.

Fragility (R)

A more concentrated network is one in which a 
few nodes have many connections whereas most nodes 
have very few. A highly concentrated network tends 
to have a greater risk of transmission because once a 
highly central node is compromised, the malaise rapidly 
spreads to other nodes. This propensity for risk to spread 
through a network is denoted as fragility.

Let d be the degree of a node (i.e., the number of 
connections it has to other nodes). We then define the 
fragility of the network to be:

	
( )

( )

2

= ε
ε

R
d
d 	

where the function ε(⋅) stands for the expectation of the 
random variable in the function.

Keeping ε(d) constant, an increase in concentra-
tion results in an increase in ε(d2) with a corresponding 
increase in fragility R. This definition is intuitive and the 
fragility measure is similar to a normalized Herfindahl–
Hirschman Index (which is the numerator). If the net-
work’s connections are concentrated in a few nodes, we 
obtain a hub-and-spoke network (also known as a scale-free 
network) on which the spread of a shock is rapid; once 
a node with many connections is infected, disease in a 
network spreads rapidly.

Consider, for example, a network with four nodes 
each with degree 2 and which is not fragile (i.e., the fra-
gility score is low, R = 2) and the same network of four 
nodes with degrees {4,2,1,1}, which has the same mean 

E x h i b i t  5
Risk Increment

Note: Ii for each node in the network shown in Exhibit 1, rank ordered for 
display.
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degree but is much more fragile (R = 11). Concentration 
of degree induces fragility. This metric is a useful com-
plement to the systemic risk score S. The fragility of 
the example network used in this article is computed 
to be 7.94.

One may wish to simply look at the often-used 
Herfindahl Index ε(d2), but in this case the normaliza-
tion by ε(d) is relevant because it ensures that a smaller, 
more concentrated network with fewer connections is 
more fragile than a network with many connections but 
less concentration. For example, consider the following 
two networks shown in Exhibit 6.

Network A is the typically fragile hub and spoke 
network, but network B is less fragile as it does not have 
this structure. If we merely computed the Herfindahl 
Index ε(d2) for A and B, these networks would have 
values of 7 and 7.67, respectively, indicating that net-
work B is more fragile because B has more overall degree. 
Therefore, we normalized by ε(d) to yield 2.14 and 2.67, 
respectively. After normalization, fragility is higher for 
network A, equal to 3, whereas for B is it equal to 2.67.

Finally, although fragility is a measure for the 
entire network, centrality is a measure for each node; 
hence, they are different but still linked because a net-
work that has concentrated centrality in a few nodes will 
likely be more fragile.

EXTENDED METRICS

The previous section introduced several new net-
work-based systemic risk measures, such as the aggregate 
systemic risk score, risk decomposition, risk increment, 

fragility, and criticality. In this section, we further 
modify and extend these metrics.

Normalized Risk Score (S–)

The units of systemic risk score S are determined 
by the units of compromise vector C. If C is a rating, 
then systemic risk S is measured in rating units. If C is a 
Z-score (for instance), then S is a system-wide Z-score, 
and if C is expected loss, then S is in system-wide 
expected loss units.

To compare the network effect across systems, we 
extend the score S to normalized score S–:

	 S
S= =

C E C

C C

�

	 (4)

where �C C C=  is the norm of vector C. When no 
network effects are present, E = I, the identity matrix, 
and S– = 1 (i.e., the normalized baseline risk level with 
no network [system-wide] effects is unity). We can use 
this normalized score to order systems by systemic risk. 
For the system in our example, the normalized score is 
S– = 1.81.

We note that this normalized measure may mask 
high levels of risk (i.e., if all firms were rated CCC). It 
is always better for a regulator to only look at S and not 
at S–. Therefore, this measure is useful in separating out 
the network effect, but it is not to be used for measuring 
overall systemic risk.

Varying Risk or Connectivity

The addition of a link in the network will increase 
both S and S–, ceteris paribus, and a reallocation of risk 
among nodes in vector C will also change S and S–. 
Limiting or setting constraints on entries in matrix E 
is akin to controls on counterparty risk in an interbank 
system, and limiting each entry in vector C constrains 
own risk. A network regulator may choose limits in dif-
ferent ways to manage systemic risk. Simulating changes 
to C and E allows for generating interesting test case 
scenarios of systemic risk.

For example, with increasing risk at a node, if we 
keep the example network unchanged but reallocate the 
compromise vector by reducing node 3’s risk by 1 and 
increasing the risk of node 16 by 1, we find that the risk 
score S goes from 11.62 to 11.87, and the normalized risk 

E x h i b i t  6
Fragility Comparison
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score S– goes from 1.81 to 1.85. This is because node 16 
is marginally more central than node 3 (as may be seen 
in Exhibit 2).

In this manner, we may examine how adding a 
link to the network or removing a link from the network 
may help in reducing system-wide risk. Alternatively, 
we may examine how additional risk at any node leads 
to more systemic risk. A system regulator can run these 
analyses to determine the best way to keep system-wide 
risk in check.

Cross/Spillover Risk (ΔDij)

An increase in the risk level at any node i not only 
affects its own risk contribution Di, but also that of other 
nodes (Dj,  j ≠  i) and throughout the network matrix. 
A single financial institution mismanaging its own risk 
might impose severe externalities in terms of poten-
tial risk on other banks in the system through network 
effects. In a situation in which banks are taxed for their 
systemic risk contributions, for example, and required 
to keep additional capital based on their individual risk 
contributions (Di), externalities may instigate retaliatory 
actions that result in escalation in the systemic score S. 

Hence, it is important to compute the severity of cross 
risk. In their model of financial surveillance, Espinosa-
Vega and Sole [2010] pointed out that spillover risk is 
an important motivation for proposed capital surcharges 
for systemic risk.

We analyzed our sample network by computing 
each node’s effect on risk contribution if any other node 
has a unit increase in compromise level. We denote the 
cross risk of node i when node j has a unit increase in 

compromise level Cj as ∆ =
∂
∂

D
D

Cij
i

j

, keeping the network 

topology E constant. The results are shown in Exhibit 7. 
It is apparent that cross risk is insignificant compared 
to own risk contribution. This suggests that regulators 
need not be overly concerned with moral hazard on net-
works in which one node can impose severe externalities 
on other nodes. It also means that the risk metric S is 
not easily gamed for externalities (i.e., if institutions are 
taxed based on their risk contributions, then any single 
institution cannot affect the taxes of another in a mate-
rial way). To this extent, the measure is robust.

The analysis of cross risk assumes that network 
adjacency matrix E does not change with C. It is hard to 
say in what way network topology will change. It may be 

E x h i b i t  7
Change in Risk Contribution When Any Node Experiences a Unit Increase in Compromise Level

Note: The impact from each node on every other node is shown.
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that the worsening credit quality of a given bank reduces 
the number of connections as some other banks stop 
trading with it, thereby reducing systemic risk. On the 
other hand, that bank may reallocate trading in a manner 
in which trading becomes more concentrated in a few 
nodes, thus raising fragility and possibly systemic risk.

Risk Scaling and Real World Application

We assess three questions here to derive a deeper 
understanding of the properties of the systemic risk 
score  S. These questions pertain to how the score 
changes when we scale the level of compromise, the 
level of interconnectedness, and the breaking down of 
connected nodes into less connected ones. We also pro-
vide a summary of the application of the model to real 
world data.

First, ceteris paribus, how does an across-the-board 
change in compromise vector C affect S? The answer 
is simple: Since S is linear homogenous in C, this effect 
is purely linear.

Second, how does an increase in connectivity 
impact systemic risk S? Is this a linear or non-linear 
effect? We ran a simulation of a 50-node network and 
examined S as the number of connections per node was 
increased. Simulation results are shown in Exhibit 8. 
The plot shows how the risk score increases as the 
probability of two nodes being bilaterally connected 
increases from 5% to 50%. For each level of bilateral 
probability, a random directed network of 50 nodes was 
generated.4 We then set the diagonal to 1 as required. 
The rest of the off-diagonal elements are 1 or 0 and were 
generated by the random graph function. This is the 
simulated E matrix. A compromise vector C was also 
generated with equally likely values {0,1,2}. Using C 
and E, we computed the systemic risk score S. This was 
repeated 100 times, and the mean risk score across 100 
simulations is plotted on the y-axis against the bilateral 
probability on the x-axis. These results, based on random 
graph generation, show that the risk score increases 
with connectivity as expected, but in a less than linear 
fashion (i.e., the plot is mildly concave). This relates to 
the results obtained by Vivier-Lirimont [2006]; Blume 
et al. [2011]; and Gai, Haldane, and Kapadia [2011], who 
showed that dense interconnections destabilize networks 
as risk increases with increasing density. In our case, the 
systemic risk score also increases, but less than linearly, 
with the number of connections.5

Third, we examine whether partitioning nodes 
into more numerous, smaller entities reduces sys-
temic risk (a question also addressed in very different 
models by Cabrales, Gottardi, and Vega-Redondo 
[2014] and Vivier-Lirimont [2006]). The idea here is 
to assess whether fracturing too-big-to-fail banks into 
smaller entities will result in a reduction in systemic 
risk. Whereas the first two questions did not consider 
an increasing or decreasing the number of nodes, in 
this case we explicitly increase the numbers of nodes 
and reduce the average number of connections per 
node so as to keep the overall connectivity unchanged 
while changing the structure of the network. The pro-
gram logic is very much the same as in the previous 
simulation except that the C and E matrix are con-
structed differently and the x-axis in the exhibits is 
the number of nodes in the network. Exhibit 9 shows 
that the risk score S in fact increases. Thus, splitting 
large banks into smaller banks does not reduce systemic 
risk. Risk increases because the number of points of 

E x h i b i t  8
The Increase in Risk Score S as the Number of 
Connections Per Node Increases

Notes: The graph shows how the risk score increases as the probability 
of two nodes being bilaterally connected increases from 5% to 50%. 
For each level of bilateral probability, a random network was generated 
for 50 nodes. A compromise vector was also generated with equally 
likely values {0,1,2}. This was repeated 100 times, and the mean risk 
score across 100 simulations is plotted on the y-axis against the bilateral 
probability on the x-axis.
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cascading failure increase when a large bank is split into 
smaller ones.

I would caution the reader to take this result on 
splitting banks with a grain of salt. The fact that splitting 
large banks into smaller ones increases S, thus keeping 
the number of connections overall constant, is a reduced-
form result to evaluating a possible policy prescription 
to remedy the too-big-to-fail problem. It may be too 
simplistic an approach for the analysis of what is clearly 
a highly complex and controversial issue. This approach 
lacks a notion of size and implies that splitting small 
banks into even smaller ones will raise systemic risk, 
which may not be the case. Does this mean that it is best 
to collapse all banks into one large global bank? Obvi-
ously not, as other factors come into play, and the ceteris 
paribus nature of this analysis in which we assume that 
credit quality remains the same is not valid in extreme 
cases. The outcome of the simple analysis conducted 

here seems related to the network result in which adding 
an extra road to a network to relieve traffic congestion 
has the effect of increasing congestion for all. Therefore, 
despite its simplicity and myriad assumptions, this result 
does offer one starting point for the analysis of policies 
around too-big-to-fail banks.

Fourth, the program code for systemic risk net-
works was applied to real world data in India to pro-
duce daily maps of the Indian banking network, as 
well as the corresponding risk scores.6 The credit risk 
vector C was based on credit ratings for Indian financial 
institutions (FIs). The network adjacency matrix was 
constructed using ideas in the article by Billio et al. 
[2012], who created a network using Granger cau-
sality. This directed network comprises an adjacency 
matrix of values (0,1) where node i connects to node j 
if the returns of bank i Granger cause those of bank j 
(i.e., edge Eij = 1). This was applied to U.S. f inancial 
institution stock return data as well as in a follow-up 
article using CDS spread data from the United States, 
Europe, and Japan (see Billio et al. [2014]) in which 
the global f inancial system was also found to be highly 
interconnected. In applying the methodology of this 
article to an Indian context, the network matrix was 
created by applying this Granger causality method to 
Indian FI stock returns.

The system used here is available in real time and 
may be accessed directly through a browser. To begin, 
different selections of a subset of FIs may be made for 
analysis. See Exhibit 10 for screenshots of this step. Once 
these selections are made and the “Submit” button is 
clicked, the system generates the network and the various 
risk metrics, shown in Exhibits 11 and 12, respectively.

Discussion of Other Measures  
of Systemic Risk

As a practical matter, several measures of systemic 
risk have been proposed and each implicitly defines sys-
temic risk as that risk being quantitatively determined 
by their measure. This is definition by quantification, 
or measurement as one sees it. In our setting of risk 
networks, the system-wide risk scores {S,S–} capture sys-
temic risk as a function of the compromise vector C and 
the network of connected risk entities E. Other research 
conducts this step differently. Some measures of systemic 
risk are network-based, but most of the measures are 
based on stock return correlations.

E x h i b i t  9
The Change in Risk Score S as the Number of Nodes 
Increases While Keeping the Average Number of 
Connections Between Nodes Constant

Notes: This exhibit mimics the case in which banks are divided into 
smaller banks, each of which then contains part of the transacting volume 
of the previous bank. The graph shows how the risk score increases as the 
number of nodes increases from 10 to 100 while expected number of total 
edges in the network remains the same. A compromise vector was also 
generated with equally likely values {0,1,2}. This was repeated 5,000 
times for each fixed number of nodes, and the mean risk score across 
5,000 simulations is plotted on the y-axis against the number of nodes on 
the x-axis.
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E x h i b i t  1 0
Screens for Selecting the Relevant Set of Indian FIs to Construct the Banking Network

Notes: Panel A shows selecting only banks. Panel B chooses within banks, and we select all of them. Panel C shows the date of the selection.
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E x h i b i t  1 1
Screens for the Indian FIs Banking Network

Notes: Panel A shows the entire network. Panel B shows the network when we mouse over the bank in the middle of the plot. Lighter lines show that the 
bank is affected by the other banks, and darker lines indicate that the bank affects others in a Granger causal manner.
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The Appendix provides a brief summary of some of 
the popular systemic-risk measures proposed in the lit-
erature, including the Granger causality–based network 
of Billio et al. [2012], the CoVaR metric of Adrian and 
Brunnermeier [2010], the AR of Kritzman et al. [2011], 
the CAR measure of Reyngold, Shnyra, and Stein 
[2013], and the SES measure of Acharya et al. [2011].

An important difference exists between the 
between the Granger causality–based network, AR, and 
CoVaR versus the SES measure. The three former mea-
sures assess the impact a single bank has on the system 

whereas the latter measure assesses the reverse (i.e., the 
impact of system-wide risk on each bank). The new 
measures of system-wide risk {S, S–} proposed in this 
article are akin to the first approach, and I believe that 
this is the more relevant view of systemic risk, which 
also offers an aggregate risk score. Both approaches, 
however, are relevant in computing extra systemic risk 
capital requirements.

There are some salient differences between these 
measures of systemic risk and the network score in 
this article. First, these measures focus on the effect a 

E x h i b i t  1 2
Screens for Systemic Risk Metrics of the Indian FIs Banking Network

Notes: In Panel B, we see that the number of firms ( f lattish line) does not change much over time. Of the other two lines, the upper is the systemic score S 
and the lower is fragility. These lines track each other closely.
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given institution’s failure has on others and thus they 
are pairwise and conditional. In contrast, network risk 
scores are system-wide and unconditional. Second, these 
measures are based on correlations, and correlations 
tend to be high in crisis periods but are not empirically 
established as early warning indicators of systemic risk. 
Relying on stock return correlations as an early warning 
indicator of network risk is likely to be futile, as cor-
relation matrixes ref lect systemic risk after, rather than 
before, the risk has arisen. Network-based measures may 
be better at identifying a systemic vulnerability prior to 
a system shock, but these measures need empirical vali-
dation as well. Third, correlation-based measures tend 
to be removed from the underlying mechanics of the 
system and are in the nature of implicit statistical met-
rics. Network-based measures directly model the under-
lying mechanics of the system because the adjacency 
matrix E can be developed based on physical transac-
tion activity. Furthermore, the compromise vector is a 
function of firm quality that may be measured in mul-
tidimensional ways. This separation of network effect 
(connectivity) and individual bank risk (compromise) 
and their combination into a single aggregate risk score 
offers a simple, practical, and general approach to mea-
suring systemic risk.

This article is not only related to the growing lit-
erature on measures of systemic risk, but also to the 
network literature in economics in articles like those of 
Acemoglu, Ozdaglar, and Tahbaz-Salehi [2013]; Allen 
and Gale [2000]; Allen, Babus, and Carletti [2012], and 
the literature on risk in clearing systems (see Eisenberg 
and Noe [2001]; Duffie and Zhu [2011], and Borovkova 
and El Mouttalibi [2013]). Systemic risk measures based 
on dynamic conditional correlations are also proposed 
(see Brownlees and Engle [2010] and Engle, Jondeau, 
and Rockinger [2012]). Therefore, the novel framework 
in this article may be used as a complement to existing 
approaches. Whether the network is derived from a 
physical deal f low or from returns data, the risk score 
S may be computed, decomposed by node, and risk 
increments derived therefrom, along with many other 
metrics, to provide a useful dashboard for managing 
systemic risk.

CONCLUSION

This framework for network-based systemic risk 
modeling developed system-wide risk scores such as a 

new aggregate systemic risk score (S), a normalized 
score (S–), a fragility score (R), and entity-specific risk 
scores—a risk decomposition (Di), risk increments (Ii), 
criticality (yi), and a score for spillover risk (ΔDij). All 
of these metrics use simple data inputs: an institution 
specific compromise vector C and the adjacency matrix 
of the network graph of financial institution linkages E. 
The risk metrics are general (i.e., independent of the par-
ticular definitions of C, E) and complement and extend 
systemic risk measures in the extant literature.

Modeling extensions are also envisaged. In the 
current version of the model, the compromise vector C 
is independent of the connectivity matrix E. Making C 
a function of E (and vice versa) leads to interesting addi-
tional implications, and of course, fresh econometric 
questions. For example, C may be an increasing func-
tion of E, but then again E may be a decreasing func-
tion of C, making it unclear whether an increase in risk 
or transaction volume always leads to a higher level of 
potential systemic risk. Issues such as the structure of the 
network and the interaction of its components have been 
addressed in the models of Allen, Babus, and Carletti 
[2012], Glasserman and Young [2013], and Elliott, 
Golub, and Jackson [2014]. The welfare implications 
of over-linking have been discussed in the contagion 
model of Blume et al. [2011].

The question of how to construct composite con-
nectivity matrixes across markets is also an interesting 
issue.7 One may obtain a network matrix from transac-
tions in the CDS market (for example, see Getmansky, 
Girardi, and Lewis [2014]) and another from the bond 
markets, but the question of combining these two 
matrixes (call them E1 and E2) into one composite E 
matrix requires a weighting scheme or other collapsing 
technical condition. One solution to this would be to 
construct E from bilateral credit valuation adjustment 
(CVA) numbers because this directly measures the expo-
sure of each financial institution to another across all 
products and asset classes. Using counterparty expo-
sures as a device is also considered in the 10-by-10-by-10 
systemic risk measurement approach recommended by 
Duffie [2011].

From a regulatory point of view, there are many 
applications for this framework. First, the imposition of 
additional capital requirements may be based on a com-
posite score computed from risk decomposition num-
bers, taking into account additional informative metrics 
such as criticality, risk increments, and spillover risk.  
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(See a proposal for this by Espinosa-Vega and Sole 
[2010].) Second, this composite score may be used to 
allocate supervision money across various financial insti-
tutions. Third, the systemic score can be tracked over 
time, and empirical work will be needed to backtest 
whether the systemic score S is a useful early warning 
predictor of systemic risk events. Using a different 
approach, Kritzman et al. [2011] and Reyngold, Shnyra, 
and Stein [2013] found predictability of systemic risk. 
Fourth, an analysis of network robustness in addition 
to measuring systemic risk is a complementary analysis 
(see, for example, those conducted by Allen and Gale 
[2000] and Callaway et al. [2000].

A p p e n d i x

OTHER SYSTEMIC RISK MEASURES

This appendix provides a brief summary of some of the 
popular systemic risk measures proposed in the literature and 
discussed in this article.

Systemic Risk

Billio et al. [2012] defined two measures of systemic 
risk across banks, hedge funds, broker/dealers, and insurance 
companies. Their idea was to measure correlations among 
institutions directly and unconditionally using principal com-
ponents analysis (PCA) and Granger causality regressions and 
thereby to assess the degree of connectedness in the financial 
system.

In their framework, the total risk of the system is 
the variance of the sum of all f inancial institution returns, 
denoted 2σS. PCA comprises an eigenvalue decomposition 
of the covariance matrix of f inancial institutions’ returns, 
and systemic risk is higher when the number of principal 
components n that explain more than a threshold H of the 
variation in the system is small. Using the notation employed 
in their article:

	 =
ω
Ω

>h Hn
n 	 (A-1)

where hn is the fraction of 2σ s  that is explained by the first n 

components (i.e., ii
N

1Ω = λ∑ =  and n ii
n

1ω = λ∑ = , where λi is the 
i-th eigenvalue). We note that σS is linear homogenous and 
therefore can be decomposed to obtain the risk contribution 
of each financial institution in the same manner as is done 
for our network risk measure S.

In addition to this covariance matrix–based measure 
of systemic risk, Billio et al. [2012] also created a network 
using Granger causality. This directed network is represented 
by an adjacency matrix of values (0,1) where node i con-
nects to node j if the returns of bank i Granger cause (in a 
linear or nonlinear way) those of bank j (i.e., edge Ei,j = 1). 
This adjacency matrix is then used to compute connectedness 
measures of risk such as the number of connections, fraction 
of connections, centrality, and closeness. These measures cor-
respond to some of those presented in the exposition earlier, 
and the first two measures report an aggregate measure of 
system-wide risk, different from the S measure developed 
in this article. Again, since system-wide risk is defined as a 
count of the number of connections, it is easy to determine 
what fraction is ascribable to any single financial firm. Billio 
et al. [2012] applied the metrics to U.S. financial institution 
stock return data and, in a follow-up article, to CDS spread 
data from the United States, Europe, and Japan (see Billio 
et al. [2014]) in which the global system is also found to be 
highly interconnected.

Overall, we note a strong complementarity between 
the analyses performed by Billio et al. [2012] and those in 
our article, and using the network matrix in their article, 
we may implement our systemic risk score S as well. Hence, 
this article can be extended to use the results found in this 
earlier work.

CoVaR

The CoVaR measure of Adrian and Brunnermeier 
[2010] estimates a bank or the financial sector’s value at risk 
(VaR) given that a particular bank has breached its VaR. 
The authors used quantile regressions on asset returns (R) 
using data on market equity and book value of debt. Pairwise 
CoVaR( j|i) for bank j given bank i is at VaR is def ined 
implicitly as the quantile α satisfying

	 R j i R ij iPr[ CoVaR ( | )| VaR ( )]≤ − = − = αα α 	 (A-2)

where VaR(i) is also defined implicitly as Pr[Ri ≤ – VaRα(i)] = α. 
The actual measure of systemic risk is then

	 j i j i jCoVaR ( | ) CoVaR ( | ) VaR ( )∆ = −α α α 	 (A-3)

The intuition here is one of undercapitalization when a 
systemic event occurs; that is, extra capital is needed because 
capital needed for solvency at the time of a systemic event 
(CoVaRα( j|i)) is greater than capital needed in normal times 
(VaRα( j)). Replacing j with the system’s value ΔCoVaRα(S|i) 
gives an aggregate measure of systemic risk. This is still, how-
ever, not an aggregate measure of risk (such as S in this article) 
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but rather one that assesses the systemic risk increment or 
contribution of the i-th financial institution.

AR

The AR metric of Kritzman et al. [2011] uses another 
approach to measure systemic risk. It calculates how many 
eigenvectors are needed to explain the variation in industry 
returns. We can infer that the fewer eigenvectors needed, the 
greater the systemic risk since the sources of risk are more 
unified. If the AR is low, then the sources of risk are disparate. 
The AR is computed as follows:

	

∑
∑

=
σ

σ
=

=

AR
2

1

2

1

Ei

n

Aj

N
i

j 	

where n is the number of eigenvectors used (in their article, 
Kritzman et al. [2011] used 1/5 the number of assets (N )). 
The variance of the eigenvectors is denoted 2σEi

 and that of the 
assets is 2σAj

. Reyngold, Shnyra, and Stein [2013] implemented 
a modified version of the AR ratio by using the covariance 
matrix of asset (not equity) returns only for financial firms, 
where asset values are derived from a structural credit model. 
They also only used the f irst eigenvector’s variance since 
the data were restricted to a single industry. This measure is 
known as the CAR.

SES

The SES measure of Acharya et al. [2011] captures the 
amount by which an otherwise appropriately capitalized bank 
is undercapitalized in the event of a systemic crisis. It is related 
to marginal expected shortfall (MES), which is the average 
return of a financial institution for the 5% worst days in the 
market. Mostly, SES is analogous to CoVaR where value-
at-risk is replaced with expected shortfall (ES), though the 
implementation details and variables used differ in the article 
of Acharya et al. We may think of SES as the equity shortfall 
a f irm experiences when aggregate banking equity e(S) is 
below a threshold H:

	 j E H j e j e S HSES( ) [ ( ) ( )| ( ) ]= − ≤ 	 (A-4)

where H( j) is the desired threshold level of equity for bank j, 
with equity level e( j). SES has useful properties in that it is 
in dollar terms and scales with institutional size and thus is 
easily aggregated. The DIP measure of Huang, Zhou, and 
Zhu [2011] is similar to the SES of Acharya et al. [2011] in 
that it also captures the expected losses of a financial institu-
tion conditional on losses being greater than a threshold level.
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implementation of this article on real time data in India, and 
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1The networks in this article are not required to be 
symmetric (Eij = Eji) or regular (Σi≠j Eij = Σi≠j Eji = constant) as 
defined by Acemoglu, Ozdaglar, and Tahbaz-Salehi [2013].

2This is a static model, and at any point in time the credit 
scores for each bank are a given quantity. To the extent that 
banks’ fortunes are correlated based on common economic 
factors, these credit scores are likely to ref lect that correla-
tion. In a static model, however, we do not require dynamics 
with an underlying correlation of credit scores. Also, the net-
work adjacency matrix will capture some of the connections 
between banks’ fortunes, and so correlation of credit quality 
may be implicit, despite no explicit modeling of correlations.

3Euler’s theorem states that if a function f(x), x ∈ nR  is 

homogenous of degree 1, then it may be written as 
1

f

x
x

i
i

n

i∑ ∂
∂=

.
4We used the R programming language and the package 

igraph for these analyses. Random networks were generated 
using the function erdos.renyi.game. Another more complex 
approach is to use the law of preferential attachment to gen-
erate only scale-free networks, although the results are likely 
to be the same as we are exploring the density of the network 
rather than its structure. 

5The shape of the plot in Exhibit 7 is unsurprising in 
retrospect, as the metric S contains the adjacency matrix E 
under the square root sign. As E becomes denser, S will 
resemble a plot of the square root of increasing numbers, in 
mildly concave shape.
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6Our thanks to the Reserve Bank of India for sponsorship 
and to InnovAccer (www.innovaccer.com) for collecting the 
data and hosting the site that runs the program code.

7Levy-Carciente et al. [2015] have an interesting model 
in which a network of banks intersects with a network of 
asset markets. 

REFERENCES

Acemoglu, D., A. Ozdaglar, and A. Tahbaz-Salehi. “Systemic 
Risk and Stability in Financial Networks.” Working paper, 
Michigan Institute of Technology, 2013.

Acharya, V., L.H. Pedersen, T. Philippon, and M. Richardson. 
“Measuring Systemic Risk.” Working paper, New York 
University, 2011.

Adrian, T., and M. Brunnermeier. “CoVaR.” Working paper, 
Princeton University, 2010.

Allen, F., and D. Gale. “Financial Contagion.” Journal of 
Political Economy, Vol. 108, No. 1 (2000), pp. 1-32.

Allen, F., A. Babus, and E. Carletti. “Asset Commonality, 
Debt Maturity and Systemic Risk.” Journal of Financial 
Economics, 104 (2012), pp. 519-534.

Alter, A., B. Craig, and P. Raupach. “Centrality-Based 
Capital Allocations and Bailout Funds.” Working paper, 
International Monetary Fund, 2014.

Altman, E.I. “Financial Ratios, Discriminant Analysis and 
the Prediction of Corporate Bankruptcy.” Journal of Finance, 
Vol. 23, No. 4 (1968), pp. 189-209.

Billio, M., M. Getmansky, A. Lo, and L. Pelizzon. “Econo-
metric Measures of Connectedness and Systemic Risk in the 
Finance and Insurance Sectors.” Journal of Financial Economics, 
Vol. 104, No. 3 (2012a), pp. 536-559.

Billio, M., M. Getmansky, D. Gray, A. Lo. R. Merton, and 
L. Pelizzon. “Sovereign, Bank and Insurance Credit Spreads: 
Connectedness and System Networks.” Working paper, 
International Monetary Fund, 2014.

Blume, L., D. Easley, J. Kleinberg, R. Kleinberg, and 
E. Tardos. “Network Formation in the Presence Of Conta-
gious Risk.” Proceedings of the 12th ACM Conference on Electronic 
Commerce, 2011.

Bonacich, P. “Power and Centrality: A Family of Measures.” 
American Journal of Sociology, Vol. 92, No. 5 (1987), pp. 1170-1182.

Borovkova, S., and H.L. El Mouttalibi. “Systemic Risk 
and Centralized Clearing of OTC Derivatives: A Network 
Approach.” Working Paper, VU Amsterdam, 2013.

Brin, S., and L. Page. “The Anatomy of a Large-Scale Hyper-
textual Web Search Engine.” Computer Networks and ISDN 
Systems, 30 (1998), pp. 107-117.

Brownlees, C.T., and R.F. Engle. “Volatility, Correlation, 
and Tails for Systemic Risk Measurement.” Working paper, 
New York University, 2010.

Burdick, D., S. Das, M.A. Hernandez, H. Ho, G. Koutrika, 
R. Krishnamurthy, L. Popa, I. Stanoi, and S. Vaithyanathan. 
“Extracting, Linking and Integrating Data from Public 
Sources: A Financial Case Study.” IEEE Data Engineering 
Bulletin Vol. 34, No. 3 (2011), pp. 60-67.

Cabrales, A., P. Gottardi, and F. Vega-Redondo. “Risk-
Sharing and Contagion in Networks.” Working paper, 
University College London, 2014.

Callaway, D.S., M.J. Newman, S.H. Strogatz, and D.J. Watts. 
“Network Robustness and Fragility: Percolation in Random 
Graphs.” Physical Review Letters Vol. 85, No. 25 (2000), 
pp. 5468-5471.

Duff ie, D. “Systemic Risk Exposures: A 10-by-10-by-10 
Approach.” In Systemic Risk and Macro Modeling, edited by 
M.  K. Brunnermeier and A. Krishnamurthy. Chicago: 
University of Chicago Press, 2011.

Duffie, D., and X. Zhu. “Does a Central Clearing Counter-
party Reduce Counterparty Risk?” Review of Asset Pricing 
Studies, 1 (2011), pp. 74-95.

Eisenberg, L. and T. Noe. “Systemic Risk in Financial Sys-
tems,” Management Science, Vol. 47, No. 2 (2001), pp. 236-249.

Elliott, M., B. Golub, and M. Jackson. “Financial Networks 
and Contagion.” American Economic Review, Vol. 104, No. 10 
(2014), pp. 3115-3153.

Engle, R., E. Jondeau, and M. Rockinger “Dynamic Con-
ditional Beta and Systemic Risk in Europe.” Working paper, 
New York University, 2012.

T
he

 J
ou

rn
al

 o
f 

A
lte

rn
at

iv
e 

In
ve

st
m

en
ts

 2
01

6.
18

.4
:3

3-
51

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.ii

jo
ur

na
ls

.c
om

 b
y 

on
 0

4/
06

/1
6.

It
 is

 il
le

ga
l t

o 
m

ak
e 

un
au

th
or

iz
ed

 c
op

ie
s 

of
 th

is
 a

rt
ic

le
, f

or
w

ar
d 

to
 a

n 
un

au
th

or
iz

ed
 u

se
r 

or
 to

 p
os

t e
le

ct
ro

ni
ca

lly
 w

ith
ou

t P
ub

lis
he

r 
pe

rm
is

si
on

.

http://www.iijournals.com/action/showLinks?crossref=10.1093%2Frapstu%2Frar001
http://www.iijournals.com/action/showLinks?crossref=10.1093%2Frapstu%2Frar001
http://www.iijournals.com/action/showLinks?crossref=10.1016%2Fj.jfineco.2011.07.003
http://www.iijournals.com/action/showLinks?crossref=10.1016%2Fj.jfineco.2011.07.003
http://www.iijournals.com/action/showLinks?crossref=10.1287%2Fmnsc.47.2.236.9835
http://www.iijournals.com/action/showLinks?crossref=10.1016%2FS0169-7552%2898%2900110-X
http://www.iijournals.com/action/showLinks?crossref=10.1016%2FS0169-7552%2898%2900110-X
http://www.iijournals.com/action/showLinks?crossref=10.1103%2FPhysRevLett.85.5468
http://www.iijournals.com/action/showLinks?crossref=10.1257%2Faer.104.10.3115
http://www.iijournals.com/action/showLinks?crossref=10.1111%2Fj.1540-6261.1968.tb00843.x
http://www.iijournals.com/action/showLinks?crossref=10.1086%2F262109
http://www.iijournals.com/action/showLinks?crossref=10.1086%2F262109
http://www.iijournals.com/action/showLinks?crossref=10.1086%2F228631
http://www.iijournals.com/action/showLinks?crossref=10.1016%2Fj.jfineco.2011.12.010


The Journal of Alternative Investments      51Spring 2016

Espinosa-Vega, M., and J. Sole. “Cross-Border Financial 
Surveillance: A Network Perspective.” Working paper, Inter-
national Monetary Fund (WP/10/105), 2010.

Gai, P., A. Haldane, and S. Kapadia. “Complexity, Con-
centration and Contagion,” Journal of Monetary Economics, 
58 (2011), pp. 453-470.

Getmansky, M., G. Girardi, and C. Lewis. “Interconnected-
ness in the CDS Market.” Vanderbilt Owen Graduate School 
of Management Research Paper, 2014.

Glasserman, P., and H.P. Young. “How Likely Is Contagion 
in Financial Networks?” Working paper #0009, Columbia 
University, 2013.

Huang, X., H. Zhou, and H. Zhu. “Systemic Risk Contri-
butions.” Working paper, Divisions of Research & Statistics 
and Monetary Affairs, Federal Reserve Board, Washington, 
D.C, 2011.

Kritzman, M., Y. Li, S. Page, and R. Rigobon. “Principal 
Components as a Measure of Systemic Risk,” The Journal of 
Portfolio Management, Vol. 37, No. 4 (2011), pp. 112-126.

Levy-Carciente, S., D.Y. Kenett, A. Avakian, H.E. Stanley, 
and S. Havlin. “Dynamical Macroprudential Stress Testing 
Using Network Theory.” Journal of Banking and Finance, 
59 (2015) pp. 164-181.

Reyngold, A., K. Shnyra, and R. Stein. “Aggregate and Firm-
level Measures of Systemic Risk from a Structural Model of 
Default.” The Journal of Alternative Investments, Vol. 17, No. 4 
(2015), pp. 58-78.

Vivier-Lir imont, S. “Contagion in Interbank Debt 
Networks.” Working paper, Reims Management School and 
CES, Paris I Pantheon Sorbonne University, 2006.

Wachowski, A., and L. Wachowski. The Matrix. DVD. 
Directed by A. Wachowski and L. Wachowski. Burbank, 
CA: Warner Home Video, 1999.

To order reprints of this article, please contact Dewey Palmieri 
at dpalmieri@iijournals.com or 212-224-3675.

T
he

 J
ou

rn
al

 o
f 

A
lte

rn
at

iv
e 

In
ve

st
m

en
ts

 2
01

6.
18

.4
:3

3-
51

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.ii

jo
ur

na
ls

.c
om

 b
y 

on
 0

4/
06

/1
6.

It
 is

 il
le

ga
l t

o 
m

ak
e 

un
au

th
or

iz
ed

 c
op

ie
s 

of
 th

is
 a

rt
ic

le
, f

or
w

ar
d 

to
 a

n 
un

au
th

or
iz

ed
 u

se
r 

or
 to

 p
os

t e
le

ct
ro

ni
ca

lly
 w

ith
ou

t P
ub

lis
he

r 
pe

rm
is

si
on

.

http://www.iijournals.com/action/showLinks?system=10.3905%2Fjai.2015.17.4.058
http://www.iijournals.com/action/showLinks?crossref=10.1016%2Fj.jmoneco.2011.05.005
http://www.iijournals.com/action/showLinks?system=10.3905%2Fjpm.2011.37.4.112
http://www.iijournals.com/action/showLinks?system=10.3905%2Fjpm.2011.37.4.112
http://www.iijournals.com/action/showLinks?crossref=10.1016%2Fj.jbankfin.2015.05.008

