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Abstract

Applying concepts related to pre-training foundation models from the realm of gen-
erative AI, we develop a meta reinforcement learning approach (denoted MetaRL)
that is pre-trained on thousands of goals-based wealth management (GBWM) sce-
narios. This is analogous to pre-training LLMs on large training datasets. The
MetaRL model enables producing near-optimal dynamic decisions for (i) goal-
taking and (ii) investment portfolio selection within a few hundredths of a second
in inference mode on new investor problems, by not requiring separate training
and optimization for each new investor scenario. Using inference with MetaRL
delivers expected utilities that are, on average, 97.8% of the optimal expected
utilities (determined via dynamic programming). Further, the MetaRL approach
can enable solving problems with larger state spaces where dynamic programming
becomes computationally infeasible. JEL codes: G11, C61

1 Introduction

“One Ring to rule them all...” (Lord of the Rings)

This paper introduces a new meta-model approach that brings the benefits of AI and large neural
networks to find optimized dynamic portfolio strategies in wealth management for any investor
problem without solving it explicitly. We train a reinforcement learning (RL) model on thousands
of individual investors’ retirement scenarios, to optimize achieving their financial goals. We show
that this pre-trained meta-model, denoted “MetaRL,” can be queried via inference to determine
a near-optimal strategy for a new investor’s financial scenario in hundredths of seconds without
re-training the model. This provides a substantial advantage over dynamic programming (DP) (see
Bellman (1952) or Bellman (1966)), where each problem has to be re-solved individually, as shown in
papers such as Brandt et al. (2005) and Das et al. (2020). Solving using inference with a meta-model
is much faster than solving from scratch. This is especially the case as the state space grows, which
slows down re-solving from scratch using RL and slows down DP so much that DP quickly becomes
computationally impossible.
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The MetaRL model mimics ideas in large language models (LLMs), which are trained on large
text corpora (e.g., Brown et al. (2020); Wei et al. (2022); Izacard et al. (2022); Kojima et al. (2023);
Team et al. (2024)).1 LLMs are pre-trained and may be applied to text tasks without re-training the
model. Similarly, the MetaRL model in this paper is trained on thousands of goals-based investor
problems with varying financial circumstances. Analogous to the use of LLMs in inference mode,
MetaRL provides zero-shot answers to both goal-taking and investment portfolio decisions. While
LLMs are pre-trained using self-supervised learning, MetaRL, as we will see, is pre-trained using
reinforcement learning.

MetaRL is similar to training a single model that can play many different types of Atari games
(Mnih et al., 2013, 2016). A video game can be thought of as a controlled digital arena in which an
agent/player tries to develop the best way to get to a destination while collecting the most rewards.
Goals-based wealth management (GBWM) is similar in that the investor wants to achieve over time
as many financial goals (weighted by their importance) as possible. To achieve this, the investor must
manage their wealth in an optimal manner by choosing the best investment portfolios in response to
market conditions and their desired goals. The investor must also make decisions regarding which
goals they should obtain and which goals they should abandon so they are more likely to have
the wealth needed to obtain more important future goals. To the best of our knowledge, such a
meta-model has not been developed in the literature in finance for dynamic portfolio optimization
with utility maximization, nor has it been used for goals-based wealth management. At a practical
level, MetaRL can be deployed on thin clients for inference. Its parameters and weights can be
distributed for inference, mirroring the release of open models in the realm of LLMs.

Traditional wealth management does not address each investor’s financial situation individually.
Instead, investors are generally bracketed into three to five risk/return appetite groups and then
assigned a single, static investment portfolio to that group. This “three-to-five-sizes-fits-all” approach
leaves investors dissatisfied, since it fits no one in particular. An important objective of GBWM is
the customization of a dynamic portfolio strategy tailored to best address the specific goals over
time of each individual investor. However, solving large-scale bespoke problems from scratch every
time can be very expensive. With the MetaRL model in this paper, a one-time pre-training of the
meta-model may be undertaken and then every new problem can be handled by using the pre-trained
model in inference mode. That is, without re-training the MetaRL model, we can change parameters
like the nature of the investor’s goals (how many goals, when they occur, the cost of each goal, and
the importance of each goal to the investor), the time horizon, the initial wealth, future infusions (how
many infusions, when they occur, and the amount of money in each infusion) — or even the nature of
the investment portfolios available to the investor, such as the number of the investment portfolios or
where they lie on the efficient frontier or even the efficient frontier changing. In contrast, a change to
any of the above parameters would require re-solving the entire problem if we are using dynamic
programming.

We implement an interesting variant of a popular RL approach known as PPO (Proximal Policy
Optimization—see Schulman et al. (2015, 2017) and Haarnoja et al. (2018)) to create the MetaRL
model. The main aspects of this process are described in Section 3, with full technical details
contained in the Appendix. We will see that even when all the parameters above are fixed, RL
inference (with 26 state variables) is still over 100 times faster than DP (with 2 state variables) for
determining the current best strategy, meaning whether or not to take a currently available goal and
which investment portfolio is best to select over the next time step. Further, we will see that repeatedly
querying the MetaRL model at every time step will lead to results that are, on average, 97.8% as good
as the exact optimal dynamic strategy over time, which DP produces.

1.1 Previous Literature

Dynamic optimization of investment portfolio decisions over time was introduced in Merton (1969)
and Merton (1971). These papers helped establish the theoretical underpinnings for life-cycle
investing and consumption-portfolio decisions. They also laid the foundations for optimal lifetime
investment portfolio selection under uncertainty using a continuous-time framework. Merton showed
how consumption and investment portfolio choice should adapt over the life-cycle in response to
changes in the state space (wealth and time). Wealth management decisions also change with

1These models are closed (only API access) or they may be open (some of the code, training data, and model
weights are publicly available).
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employment status, health status, etc. Several additional papers comprise this literature (e.g., Browne
(1999); Guidolin and Timmermann (2007); Infanger (2008); Topaloglou et al. (2008); Vo and Maurer
(2013); Singhal and Biswal (2019)). Dynamic portfolio strategies with regime shifts have also been
modeled (e.g., Ang and Bekaert (2002); Zhou and Yin (2003); Ang and Bekaert (2004); Brandt et al.
(2005); Brandt and Santa-Clara (2006); Guidolin and Timmermann (2007); Bernhart et al. (2011);
Bulla et al. (2011); Grobys (2012); Vo and Maurer (2013); Jiang et al. (2015); Dapena et al. (2019);
Singhal and Biswal (2019); Bellalah et al. (2020); Lewin and Campani (2020); Das et al. (2022, b)).
Examples of other AI applications in finance are in papers that research insurance markets (Zhang
et al., 2023), explainable financial anomalies (Sabharwal et al., 2024), and credit scoring (Chang
et al., 2024; Das et al., 2023, b), to name a few.

The target date fund or life-cycle fund concept aims to mimic optimal portfolio allocations over
the life-cycle by adjusting risk exposure (stocks vs. bonds) as retirement approaches. That is, its
investment portfolio strategy is based solely on the time until an investor retires, and nothing else
about the investor. Subsequent research has found significant shortcomings in such a simple approach.
For example, Duarte et al. (2021) and Duarte et al. (2024) used machine learning algorithms to solve
for optimal investment portfolio choices over the life-cycle, accounting for variations in factors like
wealth, business cycles, stock valuations etc. They found substantial gains from using customized
rules, rather than simple “age-based” rules.

Two decades ago, Chhabra (2005) proposed a more holistic wealth allocation framework that
integrated factors like human capital, real estate, health, and mortality risk in addition to just financial
assets. This provides a more comprehensive view of lifetime risks. This line of work eventually lead
to the approach known as goals-based wealth management (GBWM). Brunel (2015) provides an
overview of goals-based wealth management and proposes changes to traditional wealth advisory
practices.

A series of papers (Deguest et al., 2015; Dempster and Medova, 2011; Wang et al., 2011; Pakizer,
2017; Kim et al., 2020; Martellini et al., 2020; Parker, 2020, 2021; Mohammed et al., 2021; Das et al.,
2018, 2020, 2023, a) introduced GBWM to the retirement and pension planning industries. Stochastic
dynamic programming for multi-stage problems been used to obtain solutions to many related
asset-liability management optimization problems in papers such as Mulvey and Vladimirou (1992),
Dempster and Consigli (1998), Consigli and Dempster (1998), Mulvey and Shetty (2004), Infanger
(2008), and Topaloglou et al. (2008). But solving these large-scale, long-horizon optimization
problems poses interesting computational difficulties as the state space grows.

Das et al. (2022, a) and Capponi and Zhang (2023) develop dynamic programming methodology
for goals-based wealth management that seeks to maximize outcomes over multiple investor goals like
retirement, home purchase, education, etc. This approach uses individual investor preferences about
their goals to determine the optimal dynamic strategy for when to fulfill and forgo goals and what
investment portfolio should be selected as time changes. The approach can be computed quickly even
for many goals over different times, where goals may allow full or partial fulfillment. It computes the
probabilities of attaining each goal fully or partially under the optimal dynamic strategy, so investors
can ensure their preferences are accurately reflected. It significantly outperforms both target-date
funds and commonly used Monte Carlo-based static goal-taking and investment portfolio strategies.

Reinforcement learning (RL) has become popular recently. The classic book by Sutton and
Barto (2018) introduces RL concepts like Markov decision processes and common RL algorithms
like value-based and policy-based methods. The survey paper Hambly et al. (2021) reviews recent
developments and applications of reinforcement learning in finance, including for optimal execution
(Zheng et al., 2023; Nevmyvaka et al., 2006), portfolio optimization (Jiang et al., 2017), option
pricing, market making, order routing, and robo-advising, see also Osterrieder and Gpt (2023).

RL is also being used for dynamic optimization of goals-based portfolios. Das and Varma (2020)
leveraged seminal developments in papers on Reinforcement Learning, such as Sutton (1988), which
introduced the temporal-difference (TD) learning algorithm, a breakthrough in prediction and control
methods for reinforcement learning, and Watkins (1989), which introduced Q-learning, one of
the most widely used model-free reinforcement learning algorithms. Dixon and Halperin (2020)
and Halperin (2021) propose a reinforcement learning approach called G-Learner for goals-based
wealth management problems like retirement planning or target-date funds, and GIRL, an inverse
reinforcement learning algorithm that can infer the reward parameters of a G-Learner agent from
observed behavior data, allowing it to mimic the G-Learner.
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Various algorithms have been applied in RL, some based on deep learning (also known as DeepRL).
Mnih et al. (2013, 2015) solved optimal playing of Atari games, demonstrating the successful
application of deep neural networks as function approximators in reinforcement learning, leading
to the rise of deep reinforcement learning. These works showed that a deep reinforcement learning
agent could achieve human-level performance across many Atari games, culminating in the beating
of the Go champion, Lee Sedol (Silver et al., 2016).

The MetaRL model in this paper comprises deep neural net policy functions that take in the values
of state variables and return the concomitant policy actions. We are in a class of RL algorithms
known as “actor-critic” models, where the policy function is the actor and the RL value function is
the critic used to evaluate the quality of the policy function. Sutton (1988) was the first to formally
introduce and analyze the actor-critic framework. This was improved in the paper by Schulman et al.
(2017), which introduced the Proximal Policy Optimization (PPO) algorithm, a widely used policy
gradient method for reinforcement learning. Haarnoja et al. (2018) proposed the “soft actor-critic”
algorithm, a maximum entropy reinforcement learning method that is robust and sample-efficient.
We implement a variant of the PPO algorithm in this paper with a separate actor and critic for the
goal-taking strategy and for the investment portfolio strategy of an investor. Hence, there will be
two policy functions and two RL value functions, all trained simultaneously, i.e., a dual actor-critic
formulation.

In this paper, we implement our dual-PPO algorithm on thousands of investor problems to train a
MetaRL model. This complements related papers in MetaRL (Finn et al., 2017; Gupta et al., 2018;
Finn and Levine, 2018; Humplik et al., 2019; Lin et al., 2022), and for a survey, see Beck et al.
(2023). These papers have made significant contributions to the field of meta reinforcement learning,
introducing key algorithms, theoretical foundations, and novel approaches for enabling fast adaptation
and generalization with reinforcement learning across different tasks and environments.

1.2 Contributions And Organization Of This Paper

Just as Large Language Models (LLMs) have opened a remarkable number of new possibilities for
synthesizing written information, the MetaRL approach in this paper, which is similar in its training
to LLMs, opens a number of new possibilities for helping investors with wealth management and
retirement planning. The contributions and key aspects of the MetaRL approach are the following:

• Universality: The MetaRL algorithm covers a remarkably wide set of scenarios, and
therefore, like LLMs, once it is trained, it does not need to be re-trained. It can be used in
inference-only mode on new scenarios. The trained MetaRL model is not only able to work
with different investors, who will have different wealths, time frames, goals, and planned
infusions, but also different companies, who will use different investment portfolios with
different assumptions about their expected returns and volatilities, which may change over
time. In contrast, DP must be rerun whenever the investor or the company changes anything
in their scenario.

• Speed: Because we can use RL inference with the already trained MetaRL model but have
to rerun DP, RL inference can determine both what current goals to fulfill or forgo and the
best investment portfolio for the next time step over 100 times faster than DP can. We note
this is the case even though the MetaRL model has 26 state variables and DP only has 2
state variables. Determining some other properties of the solution, such as the expected
utility or the probability of attaining future goals, requires repeatedly querying the MetaRL
model, leading to essentially the same runtime as DP for simple cases, but progressively
better runtimes compared to DP as the scenarios become more complicated.

• Accuracy: The fact that RL inference uses scenarios that differ from the scenarios on which
the MetaRL model is trained may lead to concerns about how optimal the RL inference
solution is. However, we will see that it is very accurate: Over 66 new test scenarios,
many of which are well outside the training scenarios, we will find that, on average, the
RL inference solution achieves 97.8% of the expected utility from fulfilled goals compared
to the exact optimal solution, which can be obtained by DP for these examples. Even the
worst of these 66 scenarios still achieves 91.7% of the expected utility from fulfilled goals.
Further, the 97.8% average is not diminished by changing the efficient frontier for these 66
test scenarios to something different from the efficient frontier used to train the MetaRL
model.
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• Extendibility: Perhaps more important than all of the above points is the fact that the
MetaRL algorithm is extendable to more complex GBWM problems that DP cannot address.
In Subsection 5.2, we consider the GBWM problem in the context of stochastic inflation.
For DP, this means changing the state space from 2 variables to 4 variables. Due to the
so-called “curse of dimensionality,” the computational time for DP increases exponentially
with the number of state space variables. Having 4 or more state space variables is too many
for DP to be a computationally feasible method. But RL inference with the MetaRL model,
as we have said, can work with 26 state variables blindingly quickly. In fact the change to 27
state variables needed to address stochastic inflation creates no discernible change to the RL
inference computational time. Further, even when the capital market inputs are changed, the
model does not need to be retrained for a new environment, which shows how robust this
approach is. This means that entire classes of GBWM problems with more sophisticated
modeling that were out of reach with DP approaches can now be explored and solved with
RL, and, just as importantly, the computational speed enabled by the MetaRL approach
means the solutions to these problems can be made quickly accessible to investors.

The paper proceeds as follows. In Section 2, we explain the GBWM problem under the assumption
that the investor has, at most, one all-or-nothing goal each year. In Section 3, we give a brief overview
of the features of the MetaRL approach we use to solve this problem, relegating most of the technical
details about the MetaRL model to Appendices A and B. Experimental results and examples showing
the runtimes, the produced strategies, the accuracy of the MetaRL approach, and its robustness to
changes to the available investment portfolios are in Section 4. Extensions of the model are taken up
in Section 5, where concurrent and partial goals are introduced in Subsection 5.1, while Subsection
5.2 extends the GBWM problem to include the effect of stochastic inflation, illustrating how the
algorithm is easily extended to handle more state variables. A concluding discussion is provided in
Section 6.

Detailed technical exposition is provided in the Appendices: Appendix A delineates the RL
environment used for the GBWM problem when there is, at most, one all-or-nothing goal each year,
providing specifics about the state space, actions, and rewards, as well as other details used to create
the MetaRL algorithm. Appendix B specifies the neural net architecture and how MetaRL pre-training
and inference are implemented. Appendix C describes the test suite of 66 investor scenarios used to
gauge the quality of the MetaRL model. Mirroring Subsections 5.1, and 5.2, details for extending
the MetaRL method to GBWM problems that allow for concurrent and partial goals are given in
Appendix D and for accommodating stochastic inflation in Appendix E.

2 Defining The GBWM Problem

2.1 Decisions Facing Goals-Based Investors

An investor using goals-based wealth management (GBWM) wishes to attain as many of their
financial goals—weighted by their importance to the investor—as possible over the time horizon of
their portfolio, which may mean throughout their projected lifetime. To weight the importance of
each goal to an investor, a utility (reward) is assigned to each goal. Realistic methods for determining
these utilities come from the investor balancing the probabilities of attaining their goals against each
other, as discussed in Das et al. (2022, a) and Das et al. (2023, a). The investor is then looking to
make decisions that will optimize their “expected attained utility,” meaning the expected value of the
utilities of attained goals in the present and future.

To optimize the expected attained utility, there are two decisions that must be optimized at each
point in time: (1) Goal-taking, whether to pay the cost needed to fulfill a currently available goal
and attain the utility assigned to that goal, and (2) Portfolio choice, to determine which investment
portfolio (level of risk and return) to hold for the next time step. Because we are in a dynamic setting,
where the optimization must be in light of knowing that these decisions can be different in every
future time step, this is a complicated optimization problem. Fulfilling a goal requires there to be
sufficient wealth available, but even when there is, the investor may be better off forgoing the current
goal to increase their probabilities of fulfilling more important future goals.

The investment portfolio decision also depends on how much wealth the investor has. If the
portfolio is not doing well, the investor may need to select more aggressive investment portfolios in a
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measured way to increase the probability that they can achieve more future goals. On the other hand,
if the portfolio is doing very well, the investor may wish to move to more conservative investment
portfolios to avoid large losses that could adversely impact their ability to fulfill future goals.

2.2 Parameters Defining A Single Scenario

Each investor has their own scenario, which must be defined so that the GBWM solution can be
optimized for their individual circumstances. The parameters that must be specified to define a single
investor scenario are the following:

1. Time horizon and time steps: The investor must specify T , the total number of time steps,
and h, the amount of time between time steps. We will use t = 0, 1, 2, ..., T to denote the
index of the time step. Further, because h is fixed to equal one year in all of this paper’s
experiments, we refer to t as the time (in years) and T as the time horizon (in years) of the
portfolio.

2. Initial wealth and future wealth infusions: The investor must specify their initial wealth,
W (0), where W (t) denotes their wealth at time t. Wealth infusions can be specified at any
time steps. The amount of money in an infusion at time step t is denoted as I(t) (where
I(t) = 0 if there is no infusion in year t), or, collectively, as the T -vector I.

3. Goals: For simplicity, we will, for the moment, assume there can be at most one all-or-
nothing goal available at each time step. (We will extend this to allowing concurrent and
partial goals in Subsection 5.1, which will require extending the MetaRL model approach,
as shown in Appendix D.) With this assumption, the investor can specify C(t), the cost
of the goal available in year t (where C(t) = 0 if there is no goal available in year t),
or, collectively, as the T -vector C. The corresponding utilities are then specified by U(t)
(where, again, U(t) = 0 if there is no goal in year t), or, collectively, as the T -vector U.
Note that an investor would be just as happy to attain one goal with a utility of 4 and another
with a utility of 7 as they would be attaining just one goal with a utility of 11.

4. Available investments: The investor (or, more likely, the financial services company working
with the investor) must also specify the expected return and the volatility of each of the P
available investment portfolios to the investor, which we denote respectively by µp and σp,
where p ∈ {0, 1, . . . , P − 1}, or, collectively, by the P -vectors µ and σ. The investment
portfolio choice, p, can be changed in each time step.

These parameters that define a single scenario are summarized in Table 1.

Table 1: Scenario parameter variables: This list of variables constitutes a complete description of the
parameters that define a single scenario.

Symbol Length (And Type) Explanation
T 1 (int) Number of time steps (also called the “time

horizon”)
h 1 (float) Time between time steps (assumed to be a year

throughout this paper)
W (0) 1 (float) Initial wealth at time t = 0
I T (float) Planned infusions of wealth at each time step

where t > 0
U T (float) Utility of each time step’s goal where t > 0
C T (float) Cost of each time step’s goal where t > 0
µ P (float) Expected return of each of the P investment

portfolios
σ P (float) Volatility of each of the P investment portfo-

lios

2.3 Mathematical Formulation Of The Problem

The two decisions the investor must make at each time step are defined mathematically by

1. The goal-taking decision: At each time step, t, the investor first decides whether or not to
take the goal if one is available. We denote this decision by g(t) ∈ {0, 1}, where g = 0
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means the investor decides not to take the goal (or can’t afford it) and g = 1 means the
investor decides to take the goal.

2. The investment portfolio decision: After the goal-taking decision is made, so the investor
knows how much of their wealth remains, they decide which investment portfolio to select
for the next time step. We denote their choice by p(t) ∈ {0, 1, ..., P − 1}, where µp and σp

are the expected return and volatility of investment portfolio p.

With the scenario parameter variables from Subsection 2.2 and the two decision variables defined,
we can mathematically define the goal of the GBWM problem, which is to optimize the expected
attained utility; that is,

max
g(t), p(t), for t={0,...,T−1}

E

[∑
t

g(t) · U(t)

]
, (1)

subject to wealth transitions, which we assume are governed by geometric Brownian motion, meaning

W (t+ 1) = [W (t) + I(t)− g(t) · C(t)] · exp
[(

µp(t) −
1

2
σ2
p(t)

)
h+ σp(t)

√
h · Z

]
, (2)

where Z ∼ N(0, 1) is a standard normal random variable.

3 Overview Of The MetaRL Approach And A Comparison To The DP
Approach

We give a brief overview of the states, actions, and rewards used to train the MetaRL model. Far
more detail about this and other aspects of the training are available in Appendices A and B.

3.1 MetaRL State Space

At first thought, we might consider choosing the state space variables to simply be the scenario
parameter variables given in Subsection 2.2. However, this direct form of the variables is neither
particularly digestible nor helpful for efficiently training the MetaRL model. Instead, we need to use
these scenario parameter variables to create state variables that transmit information to the MetaRL
model in its most useful, essential, and generalizable form. Our state variables will be normalized to
be both dimensionless and generally take values between 0 and 1 to aid the gradient ascent algorithm
that underlies training the model, which works best when all the state space variables have similar
scalings.

We next give a brief overview of the 26 state variables used by our MetaRL model. These are
explained in far more detail in Appendix A.3. The first state variable is the current time, t, normalized
(that is, divided) by T , the time horizon. The second and third state variables are the current (i.e.,
time t) wealth, W (t), normalized by the costs of current and future goals discounted to time t dollars
using a pessimistic investment return projection for one state variable and an optimistic investment
return projection for the other state variable.

The next three sets of variables describe the utilities and costs of current and future goals. The
first set is, essentially a vector of the utilities in each current and future year normalized by the sum
of these utilities. Because the length of this vector would vary with time t and we need a vector of
constant length for training, we instead clump these results into time blocks. In our case, we choose 7
time blocks corresponding to 0, 1, 2, 3, 4–5, 6–9, and 10 or more years into the future. So, the 6–9
time block contains the sum of the utilities for goals that are between 6 and 9 years into the future
from time t divided, as before, by the sum of the utilities of all current and future goals. For the costs,
we do the same thing, but we again use the costs discounted to time t dollars both using a pessimistic
and an optimistic investment return projection. This gives 7 normalized state variables for the utilities
and 2× 7 = 14 normalized state variables for the costs.

The remaining two state variables are closely connected to the two decisions. The first, connected
to goal-taking, gives a very rough estimate for comparing the effect on the overall attained utility if
the investor takes the current (time t) goal versus if they do not take it. This variable is normalized
between 0 and 1, where the closer it is to 0, the more evidence there is to forgo the goal, and the closer
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it is to 1, the more evidence there is to take the goal. The second variable, connected to selecting the
investment portfolio, considers the effect of freezing over time each of the P investment portfolios
on the overall attained utility, and then reports the most effective of these investment portfolios in a
normalized manner. Key within this is ordering the P investment portfolios to change from being
more conservative to being more aggressive as the index p ∈ {0, 1, ..., P − 1} increases.

3.2 MetaRL Actions And Decisions

Appendix A.2 shows how the MetaRL algorithm uses the 26 state variables from the previous
subsection to produce two continuous actions, ag(t) ∈ [0, 1] and ap(t) ∈ [0, 1], that directly
determine the discrete decisions g(t) ∈ {0, 1} and p(t) ∈ {0, 1, ..., P − 1} via simple, monotonic
mappings given in equations (4) and (7). There are three reasons the MetaRL actions are chosen
to be continuous variables instead of discrete: (1) If ap(t) were discrete, we would need to set
ap(t) = p(t), which would mean needing to retrain the MetaRL model each time P changed, which
is undesirable. (2) If ap(t) were a discrete action, there would be no relationship between the
investment portfolios from the MetaRL perspective, which would lose the important connection that
the investment portfolios become more aggressive as p increases, (3) If ag(t) were a discrete action,
we would be unable to infer the confidence with which the action was being chosen, which would
affect the interpretability of the model.

3.3 MetaRL Rewards

At first thought, we might want to select the expected attained utility given in equation (1) to be the
reward for the MetaRL model to optimize. Unfortunately, this is an inadequate reward for training
because it produces a sparse rewards signal, making it insufficient for training. As explained in detail
in Appendix A.4, we define the extrinsic reward to be the expected attained utility, and the reward
used for training is this extrinsic reward plus an intrinsic reward (defined in Appendix A.4), which
produces a dense rewards signal. While we de-emphasize the intrinsic reward as training progresses,
it is never completely removed.

3.4 MetaRL Versus DP

For any given scenario, DP uses a backwards pass, meaning a computation that starts at the final time
t = T and works backwards to the starting time t = 0, to determine the optimal decisions and the
optimal “DP value function,” meaning the optimal expected attained utility from current and future
goals. The backwards pass computes the optimal decisions and the optimal DP value function at any
state, meaning any given time, t, and wealth at that time, W (t). We note that the state space in DP
contains just these two state variables: t and W (t).

MetaRL is different. First, the definition of the “RL value function” is different from the “DP
value function” in two ways: (1) The RL value function uses the MetaRL reward, which adds both
the extrinsic reward and the intrinsic reward, whereas the DP value function is based solely on the
extrinsic reward, meaning the expected attained utility. (2) The RL value function allows the current
action variables to be inputs so their effect on the rewards can be gauged, whereas the DP value
function requires the decisions to be set at their optimal values.

We emphasize a second key difference between MetaRL and DP: MetaRL uses 26 state variables,
whereas DP only uses 2. There is a considerable advantage in using 26 state variables: they encompass
the scenario parameters from Subsection 2.2 as well as t and W (t), and this is why the MetaRL
model does not have to be re-trained when we change scenarios. The fact that RL can work with
26 (or more) state variables in a reasonable amount of time is its key advantage over DP. We use 2
state variables with DP because we have to. We can’t use more due to the curse of dimensionality on
DP’s computational time, discussed earlier. This restriction means that DP must be rerun any time we
change scenarios, as well as the fact that it cannot be applied to more sophisticated GBWM models
that require more than 2 state variables to describe its state, even within a specific scenario (like in
Subsection 5.2, which considers the effect of stochastic inflation).
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Table 2: Descriptive statistics for the test suite of 66 GBWM scenarios. The suite comprises 66 new investor
problems with varying horizons, initial wealth levels, number of goals, goal costs and utilities, and number of
infusions.

mean std. dev. min 25% 50% 75% max

Time steps (in years) 38 26 3 16 30 60 100
Initial wealth 93 23 12 100 100 100 126
Number of goals 16 23 1 1 4 10 60
Cost of all goals 624,535 3,452,455 34 250 750 1830 2,000,000
Number of infusions 9 19 0 0 0 1 99
Total infusion amount 29 80 0 0 1 21 588
First infusion time 5 11 0 0 0 1 49

4 Results

As discussed in Appendix B, and in particular Appendix B.2, the meta-model is trained on a
wide variety of randomly generated GBWM scenarios, numbering in the thousands, also known
as “curriculum learning” (Bengio et al., 2009). This is an approach to learning where the model is
trained using a range of different scenarios. This pre-trained GBWM model, which we will call the
“MetaRL” model, is the RL analogy to pre-trained language models like BERT and other well-known
large language models (LLMs).

In this section, each new investor scenario is solved using the pre-trained policy functions from
the MetaRL model in inference mode, which we will refer to as “RL inference.” We show how RL
inference can quickly and accurately solve GBWM problems for new scenarios. We first describe
(in Subsection 4.1) the test suite of 66 GBWM scenarios that we will use in this section. We then
explore the speed of using RL inference (in Subsection 4.2), the goal-taking and portfolio investment
decisions determined by using RL inference (in Subsection 4.3), the average attained utility these
RL inference determined decisions lead to (in Subsection 4.4), and the effect on the average attained
utility if the efficient frontier changes (in Subsection 4.5). In all cases, we will compare these results
to the optimal decisions that can be generated using dynamic programming (DP), noting that DP
must be rerun for each of the 66 GBWM scenarios (as just discussed in Subsection 3.4) or for any
changes to the efficient frontier.

4.1 Test Suite Used For Evaluating The Performance Of The MetaRL Model

Once the pre-trained MetaRL model is created using the method detailed in Appendices A and B, it is
used for inference on a test suite of previously unseen GBWM scenarios to evaluate its performance.
This test suite comprises 66 new investor scenarios with varying parameters for the time horizon,
the initial wealth, the number of goals along with the timing, cost, and utility of each goal, and
the number of infusions along with the timing and amount (i.e., worth) of each infusion. A list of
these 66 problems is available in Appendix C. Table 2 shows some descriptive statistics for these
66 problems. We note that the parameters in many of these 66 cases are outside the range of the
parameters that were used to train the MetaRL model, which are given in Algorithm 5 in Appendix
B.2. For example, a number of our 66 cases use a time horizon of 100 years, whereas the training
only uses time horizons up to 50 years.

In our 66 scenarios and in training the MetaRL model, we consider P = 15 possible investment
portfolios, where p increases as the investment portfolio becomes more aggressive. (We note that
experiments with P > 15 for the scenarios showed no meaningful change in our results.) In our
figures, the investment portfolios are labelled from 1 (the most conservative) to P = 15 (the most
aggressive), a more natural numbering created by simply adding 1 to p ∈ {0, 1, ..., P − 1}. The
15 investment portfolios used for the scenarios and for training the MetaRL model range along the
baseline efficient frontier given in Subsection 4.5. Subsection 4.5 will also show that the MetaRL
model is robust to changing the efficient frontier for scenarios to be different from the efficient frontier
used for training the MetaRL model.
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4.2 Computational Runtime Analysis: Comparing RL Inference To DP

Solving simple GBWM problems using dynamic programming (DP) can be made quite efficient by
using techniques like vectorization and just-in-time compilation to C executable code (as has been
done for all DP computations in this paper). However, RL inference is quite fast even without these
runtime efficiency techniques. More importantly, as indicated before, as the dimension of the state
space (i.e., the number of state space variables) for DP problems grows, DP will quickly become
infeasible due to exponential computational time growth, whereas RL inference’s computational time
does not grow exponentially. In an application where RL models are intended to solve hundreds of
problems in a few minutes, such as in a robo-advising setting, the algorithmic and corresponding
software improvements in computational speed that RL inference can provide become crucial. In this
section, we analyze the computational time needed to run RL inference on the 66 scenarios in our
test suite from Subsection 4.1 using the already obtained MetaRL model versus the computational
time needed to run DP on the same test suite.

Two types of computational runtime comparisons may be made: (1) comparing the average time
for policy inference at a given time for a given problem, meaning we want to determine the optimal
actions/decisions to make at the current time, and (2) comparing the average time it takes to determine
the optimized expected attained utility at a given time for a given problem, meaning we want to
determine the DP value function at the current time. We will see that using RL inference is over 100
times faster than DP in the first case, while the computational times for RL inference and DP are
comparable in the second case. For the remainder of this subsection, we explore these two cases.

Computational time to determine the optimal actions/decisions at the current time: To determine
the optimal goal-taking decision and the optimal investment portfolio decision at the current time
requires DP to run its entire backwards pass to solve for the individual investor’s specific scenario.
For RL inference, on the other hand, the problem does not need to be solved at all, as the MetaRL
algorithm is already trained over a representative sample of scenarios and can be directly used to
determine the optimal actions for goal-taking and selecting an investment portfolio at a given time
and wealth. We again note (as discussed in Subsection 3.2) that these actions are continuous variables
in RL, which are easily (and essentially instantaneously) converted to the final (discrete) goal-taking
and investment portfolio decisions via equations (4) and (7) in Appendix A.2.

Because RL inference only requires querying the MetaRL model once to obtain these actions,
it is far faster than DP, as we can clearly see by looking at the “mean” column in Table 3 (noting
that results in the table are in milliseconds (msec)). At times when there is no goal available, so
only an investment portfolio choice must be made, RL inference is approximately twice as fast
as when both a goal-taking choice and an investment portfolio choice must be made. This can be
seen by comparing the mean of 9.277 msec to the mean of 20.94 msec in the table. DP takes an
equal amount of computational time either way, but we note that, approximately on average, it is
2198/20.94 = 105.0 times longer than RL inference at times with a goal and 2198/9.277 = 236.9
times longer than RL inference at times without a goal. That is, even for this GBWM problem, where
there are only 2 state variables used in dynamic programming and 26 state variables used by RL
inference with the MetaRL approach, we find that RL inference produces optimized decisions more
than 100 times faster than DP can.

Table 3: Average time (in milliseconds) to determine the current optimal actions/decisions over the 66 test
suite cases, or, for the second row, the 48 of these 66 cases that have more than one goal. Note from the mean
results that DP takes an approximate average of 2198/20.94 = 105.0 times longer than RL inference at times
with a goal and 2198/9.277 = 236.9 times longer than RL inference at times without a goal. See the text for a
more thorough explanation of the calculations presented in this table.

# of cases mean std. dev. min 25% 50% 75% max

Time (in msec) using RL in-
ference to determine optimal
portfolio actions only

66 9.277 2.76 3.80 8.95 9.76 10.49 18.40

Time (in msec) using RL in-
ference to determine optimal
portfolio and goal actions

48 20.94 1.34 16.5 20.2 21.1 21.6 23.9

DP backward pass computa-
tional time (in msec)

66 2198 2255 83 579 1248 3720 8012
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To more precisely explain the calculations presented in Table 3, we describe in more detail how,
as an example, we computed the “50%” column, which gives the median results: (1) The first row’s
result means half of the 66 cases require an average of 0.00976 seconds or less to run RL inference to
estimate the investment portfolio decision, where this average is over all times within the case where
there is no goal. (2) The second row’s result means half of the 48 cases in the 66 test suite examples
that have at least one goal before the final time step require an average of 0.0211 seconds or less
to run RL inference to estimate both the goal-taking and investment portfolio decisions, where the
average is over all times< T within the case where there is a goal. (3) The third row’s result means
that half of the 66 cases require an average of 1.248 seconds or less to run DP’s backwards pass,
which determines the optimal goal-taking and investment portfolio decisions, where the average is
over all times (0, 1, ..., T − 1) within the case.

Computational time to determine the optimal expected attained utility at the current time: DP
uses the same backwards pass to determine the optimal expected attained utility (i.e., DP’s value
function) at the current time that it did to determine the optimal goal-taking and investment portfolio
decisions in the case above, so the time DP takes is what is shown in the last row of Table 3. Using
RL inference, on the other hand, to find the optimal expected utility is more complicated. As we
discuss in more detail in the next subsection, we repeatedly query the MetaRL algorithm to determine
the optimal decisions over a dense grid in the (t,W ) state space plane. As we explain in more detail
in the subsection after that, we use these decision graphs to specify decisions throughout the evolution
of each of 10,000 simulated Monte Carlo trajectories, and then average these 10,000 attained utilities
to estimate the optimized expected attained utility. This is necessary because the MetaRL algorithm
only provides actions, not estimates for the DP value function.2 This leads to DP and RL inference
having comparable runtimes for calculating the optimal expected attained utility starting at the current
time, as can be seen in Figure 1, which we discuss next.

In addition to analyzing algorithms and their software implementation, it is important to assess
the role of hardware on runtimes. The left-side plot in Figure 1 shows how the choice of server
and its configuration matters. This plot clearly shows that DP and RL inference have comparable
runtimes. The main difference between the two comes from the number of CPU cores. At first, as
the number of CPU cores increases, RL inference’s runtime becomes lower than DP’s. However,
simply choosing a large machine does not always mean a better runtime, as can be seen when the
c7i.48xlarge machine is chosen and RL’s runtime rises sharply. This sudden rise is because the
c7i.48xlarge machine has 2 sockets (split chip), and the cross-chip bits traffic slows down RL
inference. We therefore have run all our problems in this paper (both DP and RL inference) on the
c7i.24xlarge machines, since, from the plot, we see that it gives the best combination of DP and
RL inference runtimes.

Overall, we see that RL inference runtimes are quite fast, averaging a little better than the 2.198
seconds DP requires for our test suite of 66 GBWM scenarios. A comparison of the runtimes for
each of these 66 test problems is shown in the right-side plot in Figure 1. Since the points that are
the farthest to the right on the plot correspond to larger problems (longer horizons, more goals) that
require greater runtimes, we see from Figure 1 that RL inference becomes progressively better than
DP in terms of runtime as the problems become larger. This can also be seen in Table 3 by comparing
the max and 75% columns to the median, and noting that the significant increase seen in the DP
computational times is not reflected in the RL inference computational times.

4.3 Decision Analysis: Comparing RL Inference To DP

We next look at how the decisions determined using RL inference compare to DP’s optimal decisions.
DP determines its optimal decisions over a grid in the (t,W ) state space plane. We then use RL
inference to determine both the goal-taking decision and the investment portfolio decision at each
point in the same (t,W ) grid. To speed computational time, the MetaRL algorithm is queried in
parallel using all the grid’s wealth values at once for each given time t. For any specific scenario, the
resulting decisions can be compared by computing heatmaps over the (t,W ) grid using both DP and

2Readers familiar will RL might wonder if the critic network can provide the estimate of DP’s value function,
however, a broad range of empirical studies of actor-critic architectures have found that the values learned
by the critic are indicative rather than exact. For example, see Section III-D of https://hal.science/
hal-00756747/document or page 2 of https://arxiv.org/pdf/1910.08412.
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Figure 1: Left panel: Comparison of average runtimes (in seconds) over the 66 test suite GBWM scenarios for
DP and RL inference on various hardware. Compute-optimized machine instances on AWS were used for these
experiments. (The prefix ‘c’ in the ‘c7i.*’ stands for compute-optimized.) The details of these machines are
as follows: (i) c7i.2xlarge – 8 CPUs (1 socket, 4 cores, 2 threads, 32GB RAM); (ii) c7i.8xlarge – 32 CPUs (1
socket, 16 cores, 2 threads, 64GB RAM); (iii) c7i.16xlarge – 64 CPUs (1 socket, 32 cores, 2 threads, 128GB
RAM); (iv) c7i.24xlarge – 96 CPUs (1 socket, 48 cores, 2 threads, 192GB RAM); (v) c7i.48xlarge – 192 CPUs
(2 sockets, 48 cores, 2 threads, 384GB RAM). Right panel: Plot of each of the 66 test suite GBWM scenarios
comparing their runtimes (in seconds, with the c7i.24xlarge machine) using DP’s backwards pass versus using
RL inference (and 10,000 Monte Carlo simulations).

RL inference for comparing either the goal-taking decisions or the investment portfolio decisions.
We will demonstrate this with two representative examples from our 66 test case scenarios.

The first representative example is case 20 of the 66 cases. From Table 9 in Appendix C, we see
that in this case: (1) There are 20 time steps (i.e., 20 years). (2) The initial wealth is 100 (thousand)
dollars. (3) At each even time step (i.e., 2,4,...,20), there is a goal available that costs 75 (thousand)
dollars, which, if taken, creates a utility of 1 for the investor. (4) There are no infusions. A comparison
of the decisions made by RL inference versus DP can be found in Figure 2. In this case the optimal
expected attained utility (i.e., the DP value function) is 4.10 according to the DP backwards pass
calculation. In the next subsection, we will discuss how we estimate the optimal expected attained
utility using the RL heatmaps given here, which will produce an average attained utility of 4.02.

The second representative example is case 57 of the 66 cases. From Table 10 in Appendix C, we
see that in this case: (1) There are 60 time steps (i.e., 60 years). (2) The initial wealth is 100 (thousand)
dollars. (3) At each time step t = 1, 2, ..., 60, there is a goal available that costs t (thousand) dollars,
which, if taken, creates a utility of 100− t. (4) In each time step t = 1, 2, ..., 59, there is an infusion
worth 10

591.03
t (thousand) dollars. A comparison of the decisions made by RL inference versus DP

can be found in Figure 3. In this case the optimal expected attained utility (i.e., the DP value function)
is 3128 according to the DP backwards pass calculation. Using the next subsection’s method, our
estimate for this value using the RL heatmaps will produce an average attained utility of 3090.

In both examples, we see that the RL inference graphs retain remarkable amounts of details that
are shown in the optimal DP graphs. Because of this, it is no surprise that the estimate of the expected
attained utility using RL inference is so close to its optimal value as determined by DP. We next show
how this estimate is formed.

4.4 Expected Attained Utility Analysis: Comparing RL Inference To DP

How do we use RL inference to estimate the optimal expected attained utility? And how good is this
estimate?

To answer the first question, after the process in the previous subsection is run to use the MetaRL
algorithm to create decision heatmaps, we run 10,000 Monte Carlo trajectories, corresponding to
10,000 different histories for the value of Z at each time step in the geometric Brownian motion
model given in equation (2). At each time step for each trajectory, the goal-taking decision (if there
is one) and the investment portfolio decision are taken from the nearest wealth grid point to the
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DP: Goal-taking Decisions RL Inference: Goal-taking Decisions
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Figure 2: Heatmaps comparing the investment portfolio decisions and goal-taking decisions made by DP
versus RL inference for test suite case 20. In the investment portfolio plots, the darker the color, the more
aggressive the investment portfolio. In the goal-taking plots, the dark colored bars are regions in which the
available goal is taken. The initial wealth, 100 (thousand) dollars, is denoted by the orange bar at the initial time.
The jagged blue line denotes the cost to fulfill all the remaining goals.

trajectory’s wealth at that time in the heatmap. These 10,000 trajectories are run in parallel in each
time step to save computational time. The RL inference estimate for the optimal expected attained
utility is the average of these 10,000 attained utilities.

We look to compare this RL inference estimate to the actual optimal expected attained utility
determined by DP for each of the 66 problems in the test suite given in Subsection 4.1. We wish to
define the “RL-Efficiency” to be the ratio of the RL inference estimate to the DP result. In theory,
this ratio should always be less than or equal to 1, because DP produces the optimal result. However,
because the RL inference estimate is determined by using 10,000 different Z histories, it is possible
that these Z histories will lead to better than average returns, meaning an RL-Efficiency greater than
1 is possible. To minimize this, when we compute the expected attained utility for DP, we look for
an apples-to-apples comparison with RL inference. Therefore, instead of taking the value function
produced by DP, we instead use the optimal heatmaps that DP produces and use these on the same
10,000 trajectories (with the same 10,000 histories for the value of Z at each time step) that we used
with RL inference. We then take the RL inference estimate and divide it by this DP produced number
to define the RL-Efficiency.

We note that this still does not guarantee that the RL-Efficiency will not exceed 1, since the slightly
suboptimal RL inference strategy may happen to work better for the specific 10,000 paths chosen,
but this occurrence will be minimized by using the apples-to-apples strategy above. In Table 4, we
present statistics for the RL-Efficiencies for each of the 66 test suite problems. We note that the
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DP: Goal-taking Decisions RL Inference: Goal-taking Decisions
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Figure 3: The same information shown in Figure 2, but for case 57 instead of case 20. Note that the green line
representing cumulative infusions and the blue line representing the cost to fulfill the remaining goals are both
truncated by the vertical axis’s limited range.

maximum RL-Efficiency is 0.999, below 1, whereas if we had defined the RL-Efficiency using the
DP value function in the denominator, the maximum ratio would have been 1.021, distorting the
results and making RL inference’s estimate of the optimal expected attained utility look better than it
actually is.

Table 4: RL-Efficiencies for the 66 test suite cases in Subsection 4.1. The RL-Efficiency measures how close
to optimal the RL inference solution is by seeing how close it is to 1. More technically, for each test suite case,
the RL-Efficiency is the ratio of the attained utility using decisions from RL inference averaged over 10,000
Monte Carlo simulations over the attained utility using the optimal decisions determined from DP averaged over
the same 10,000 Monte Carlo simulations.

mean std. dev. min 25% 50% 75% max

RL-Efficiency (10,000 MC simulations) 0.978 0.016 0.917 0.975 0.983 0.987 0.999

We note in Table 4 that the mean RL-Efficiency of the 66 test suite examples is 0.978. But how
stable is this result? In particular, is 10,000 a sufficiently high number of Monte Carlo trajectories?
To test this, we computed the mean RL-Efficiency of the 66 test suite examples 30 times using
10,000 simulations each time. The mean of these 30 times was 0.978293 with a standard deviation of
0.000380, meaning 0.978 is a very stable number, and 10,000 Monte Carlo trajectories gives almost
three digits of accuracy for the mean RL-Efficiency.
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The fact that our mean RL-Efficiency is 0.978 answers the second question given at the beginning
of this subsection: The estimate of the optimal expected attained utility starting at the initial time
using our RL inference method is quite close to the optimal answer produced by DP. This is a
particularly strong result given that we are just using RL inference without training on the specific
scenario being considered. There are other advantages of our meta-model approach. The pre-trained
MetaRL model can be pushed to thin clients for inference. It also enables distribution of the trained
policy functions (parameters and weights) without revealing the code for the training procedure and
the data and problems on which the MetaRL model has been trained. This open model distribution
mirrors the release of open models in the realm of LLMs.

4.5 Investment Analysis: Robustness Of MetaRL To Varying The Efficient Frontier

All the results previously presented in this section, along with the MetaRL training, have used
investment portfolios along the blue “baseline” efficient frontier shown in Figure 4. This efficient
frontier was generated from returns for a U.S. stock index, a U.S. bond index, and an international
stock index between January 1998 and December 2017. The most conservative portfolio investment
corresponds to the lowest possible volatility on the frontier. The most aggressive corresponds to the
largest expected return of the three indexes, in this case the U.S. stock index. The P investment
portfolios are equally spread in terms of their expected return values between these most conservative
and most aggressive cases.
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Figure 4: The baseline efficient frontier used for training throughout this paper and, other than in Subsection
4.5, all of the examples in this paper. In Subsection 4.5, the other five efficient frontiers, labelled by the time
ranges of the returns used to generate them, are used for out-of-distribution testing examples.

Over time, the prediction of the governing efficient frontier may change. Further, different
companies will prefer to use different efficient frontiers, depending on their choices for the underlying
investments for the frontier, as well as their predictions for the expected values, volatilities, and
correlations of these underlying investments. It is therefore important to see if the MetaRL model
can accommodate the wide range of efficient frontiers and investment portfolios to which it might be
applied. To test this, we consider the effect on the mean RL-Efficiency when the efficient frontier
is changed for all 66 test suite examples, even though the MetaRL model is trained strictly on the
baseline efficient frontier discussed above.

For this robustness test, we considered five different efficient frontiers labelled in Figure 4 by the
varying ranges of years of returns used to generate them. They also varied in terms of combinations
of the underlying investments, using returns from different combinations of the three indexes above,
along with a large-cap value U.S. stock fund, a large-cap growth U.S. stock fund, a value international
stock fund, and a long-term U.S. bond fund. In all cases, the choices for the five efficient frontiers
were guided by looking for unusual efficient frontiers with interesting behavior in both good and bad
markets to push our stress test as far as realistically possible.
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For our the baseline case, the ratio of the optimal expected attained utility over the total utility if
all the goals are attained, averaged over the 66 test suite examples, is 0.636. If we use a different
efficient frontier with, say, a higher expected return that causes this average ratio to be close to 1, then
we expect to attain most of the utility even if we use a somewhat suboptimal investment portfolio
strategy, meaning the mean RL-Efficiency is artificially pushed closer to 1. To prevent this artificial
boost, for each efficient frontier, we scaled the initial wealth of the 66 examples so that this average
ratio stayed between 0.63 and 0.64.

With the initial wealths correctly scaled, we computed the mean RL-Efficiency for each of the
efficient frontiers. These are given in Table 5. Each of the new efficient frontiers actually shows a
slight improvement from the baseline case mean RL-Efficiency value of 0.978. This may be due
to the baseline efficient frontier showing less of an increase in the expected return as the volatility
increases, but the results certainly indicate that the MetaRL model is quite robust to changes in the
efficient frontier. Thus, the MetaRL solution developed in one economic regime is robust to regime
shifts.

Table 5: RL-Efficiencies for the 66 test suite examples in Subsection 4.1, using the wide range of the six
efficient frontiers shown in Figure 4. Even though the MetaRL model is trained on the baseline case, the
RL-Efficiencies for the other five efficient frontiers are better.

Efficient Frontier Mean RL-Efficiency

Baseline 0.978
2022–2023 0.986
2012–2013 0.995
2020–2023 0.990
1988–2023 0.984
1997–2023 0.987

5 Extensions Of The MetaRL Model

5.1 Incorporating Concurrent And Partial Goals

Up to this point, we have restricted ourselves to at most one all-or-nothing goal each year. In
Appendix D, we show how the MetaRL model can be extended to more than one concurrent goal
and to allowing some or all goals to be partially filled. In this case of “partial goals” the investor
may ideally want the full goal, like a luxury trip to Paris for a month, but may also be open to partial
goals like only having two weeks in Paris or having a month in New Jersey instead. Each partial
goal has a reduced cost from the full goal, but also has a reduced utility if it is chosen. Dynamic
Programming can also be used with concurrent or partial goals (see Das et al. (2022, a) or Capponi
and Zhang (2023), for example), so we can continue to compare the RL inference results to DP, as
we did in Subsections 4.3 and 4.4.

We consider a test suite of 4 examples here, based off the cases given in Das et al. (2022, a). The
first case (CP1) is identical to the case used in Subsection 4.3.1 of Das et al. (2022, a). In this case
there are three concurrent goals at time 5: one all-or-nothing goal (so there are two possibilities since
the investor can either take or not take the goal), one goal with one partial goal (so three possibilities:
take the full goal, take the partial goal, or do not take the goal), and one goal with three partial goals
(so five possibilities), and at time 10 there is one goal that has one partial goal. We note that this
gives 2× 3× 5× 3 = 90 different goal-taking combinations to choose from over time. The second
case (CP2) is identical to the case used in Subsection 4.5 of Das et al. (2022, a). This is a far more
complicated scenario involving over 301 full goals and 138 partial goals to choose from over the
course of T = 60 years. The third case (CP3) only uses the car goals from the previous example.
These occur every five years, and each allows for a fancy car (full goal), a less fancy car (partial goal),
or no car to be considered. The final case (CP4) is a more complicated variation of CP3. It also allows
for a fancy car (at a cost of 32 (thousand) dollars for a utility of 125) or a less fancy car (at a cost of
22 (thousand) dollars for a utility of 110) to be purchased every five years (i.e., at t = 5, 10, ..., 55
years) but it also considers purchasing a trip every ten years (i.e., at t = 10, 20, ..., 50 years) at a cost
of

(
t
2 + 10

)
thousand dollars for a utility of 100. For CP4, we start with 25 (thousand) dollars and

add (infuse) 1 (thousand) dollars every year.

16



Table 6 shows the results for each of these four cases. The first three columns of the table look at
the computational time. While these examples with concurrent and partial goals generally take more
time than the all-or-nothing goals, which is no surprise, the more interesting information is in the
time ratio, where we see that as the test suite example gets more complicated, RL inference takes
progressively less time to produce a solution compared to DP. Further, from the fourth column, which
is for RL-Efficiency, we see that the additional complexity of the example does not necessarily mean
a degradation in the quality of the solution, noting that the worst RL-Efficiency, which is for case
CP4, is the second least complex case.

Table 6: Speed (measured in seconds) and accuracy (measured by the RL-Efficiency) for RL inference versus
DP for each of the four cases with concurrent and/or partial goals in our new test suite

Test suite case DP time (in sec) RL inference time (in sec) DP/RL time ratio RL-Efficiency

CP1 0.276 0.271 1.02 0.990
CP2 14.6 4.50 3.24 0.985
CP3 2.94 1.48 1.98 0.986
CP4 3.36 1.54 2.18 0.972

Given that CP4 has the lowest RL-Efficiency, we choose to look at the heatmaps for CP4’s RL
inference decisions in relation to DP’s, since a lower RL-Efficiency indicates the potential for a larger
difference between the DP and RL inference heatmaps. Figure 5 compares these heatmap results.
Figure 5’s format largely parallels the format in Figures 2 and 3, however since the goal-taking each
year is no longer all-or-nothing, we introduce colors in the second row of graphs to indicate the
fraction of the average utility that is attained over the utility attained if all the full goals were fulfilled
that year. We also have added the bottom row to indicate this same fraction for each goal individually.
For example, in the DP graph in the bottom row, the colors indicate that in year 20, the expected
utility from the car goal is 50-60% of the maximum possible utility attained if the full car goal were
fulfilled, and this number jumps up to 70-80% for the trip goal. Figure 5 largely shows that the
goal-taking decisions between DP and RL inference are quite similar, while the investment portfolio
decisions have the same qualitative behavior but differ in that RL inference tends a bit towards more
aggressive investment portfolios than DP.

5.2 Incorporating Stochastic Inflation

Due to what is the commonly referred to as the “curse of dimensionality,” Dynamic Programming,
from a computational point of view, is generally limited to 2 or 3 state variables. For any GBWM
model that also addresses the effect of stochastic inflation, we have our two previous state variables,
the current wealth and the current time, along with two new state variables, the current inflation and,
to update real infusions and the costs of real goals, the cumulative effect of inflation up to the current
time must also be taken into account. That is, we have 4 state variables, meaning that Dynamic
Programming is not a computationally feasible method if we wish to incorporate stochastic inflation.

MetaRL, on the other hand, easily extends to incorporate stochastic inflation models. As an
example, we consider the Vasicek (1977) model for inflation, which is governed by the stochastic
differential equation

dIinfl = −κinfl(Iinfl − θinfl)dt+ σinfldW, (3)

where W is a Wiener process. This model is a mean reverting process, where θinfl is the mean value
of Iinfl, κinfl is the constant strength of the reversion to this mean value, and σinfl is a volatility
constant representing the strength of the randomness. The method for incorporating the current
inflation and the cumulative effect of the inflation is contained in Appendix E, which we note uses 27
state variables. Experiments show the changes given in Appendix E have no discernible impact on
runtimes, either for training the MetaRL model or for running inferences with it.

Table 7 shows the effect that stochastic inflation has on investors’ utility when averaged across
the 66 test problems used in Section 4.1. More specifically, the table contains the average optimized
utility over all 66 test cases (each using 10,000 Monte Carlo paths) in the presence of stochastic
inflation and divides this by 481.54, which is the average optimized utility with the same cases and
paths if there is no inflation. In all cases, the initial inflation is set equal to the mean inflation, θinfl.
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DP: Investment Portfolio Decisions RL Inference: Investment Portfolio Decisions
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DP: Goal-taking Decisions RL Inference: Goal-taking Decisions
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Figure 5: Heatmaps for investment portfolio decisions and goal-taking decisions with case CP4, which has
both concurrent goals (cars and trips) and partial goals (for both cars and trips). The specifics of case CP4 are in
the text. The colors in the second row (Goal-taking Decisions) indicate the ratio of the expected attained utility
from that year’s goals over the utility attained if all of that year’s full goals were fulfilled. The graphs in the
bottom row correspond to this same ratio, but for each individual goal (i.e., for cars and for trips).

One effect that is clear from the tables is that the higher the inflation, the lower the expected
attained utility. This is simply a ramification of the fact that the higher the inflation, the higher the
costs of the goals become (since they increase with inflation), so fewer goals are financially attainable.
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Table 7: The effect of inflation as we vary the three inflation parameters, θinfl, κinfl, and σinfl, in the Vasicek
model. The table shows the fraction of expected attained utility in the presences of stochastic inflation over the
expected attained utility when there is no inflation. In all cases, the initial inflation rate is set equal to the mean,
θinfl.

Panel A: κinfl = 0.1

σinfl

θinfl 0.00 0.01 0.02 0.03 0.06
0.01 0.943 0.940 0.931 0.907 0.804
0.02 0.883 0.878 0.876 0.869 0.783
0.03 0.821 0.817 0.818 0.823 0.764
0.05 0.701 0.706 0.713 0.727 0.724
0.08 0.601 0.609 0.615 0.623 0.666
0.10 0.601 0.599 0.595 0.598 0.632

Panel B: κinfl = 0.6

σinfl

θinfl 0.00 0.01 0.02 0.03 0.06
0.01 0.943 0.943 0.942 0.942 0.938
0.02 0.883 0.883 0.882 0.881 0.877
0.03 0.821 0.821 0.820 0.819 0.817
0.05 0.701 0.702 0.703 0.704 0.708
0.08 0.601 0.600 0.601 0.606 0.610
0.10 0.601 0.600 0.600 0.600 0.595

The more important question is what is the effect of the inflation being stochastic, as opposed to
constant? If the inflation can be assumed to be constant (i.e., equal to θinfl), then the goals’ costs can
be adjusted for inflation at time = 0, and we can revert back to our previous non-stochastic inflation
analysis if desired. Our MetaRL approach displayed in Table 7 shows that when κinfl, the strength of
the mean reversion, is a weak value like 0.1 in Panel A, the effect of the inflation being stochastic
(seen by looking at the variation over a row in the table) can be significant. However, when the
strength of the mean reversion is a stronger value like 0.6 in Panel B, there is generally little variation
across the rows and it is reasonable to treat the inflation as constant.

Looking at historical inflation in the United States for example, we can approximate θinfl =
0.03, κinfl = 0.6, and σinfl = 0.03. From Panel B where κinfl = 0.6, we see that when θinfl = 0.03,
the difference between using the average inflation (i.e., σinfl = 0) versus σinfl = 0.03 is trivial. In fact,
choosing θinfl = 0.031 makes about three times more of a difference to the expected accumulated
utility than including the effect of inflation being stochastic. Therefore, our MetaRL analysis shows
that using dynamic programming with the average rate of inflation instead of stochastic inflation is
justified for current calculations in America—a conclusion that could not be found through dynamic
programming. In each new (θinfl, κinfl, σinfl) scenario for other countries or different circumstances,
our MetaRL analysis can be used to determine if using the average inflation is justified or, if not, how
to accommodate stochastic inflation.

6 Concluding Comments

This paper develops an innovative approach that combines advanced computational techniques with a
comprehensive financial planning framework to significantly enhance the scope, effectiveness, and
accuracy of wealth management strategies. We developed a meta-model based on reinforcement
learning (RL) called MetaRL, which is pre-trained on thousands of goals-based wealth management
(GBWM) scenarios. This model provides rapid, near-optimal solutions for new investor scenarios
without the need for any re-training, delivering expected utilities that closely approximate those
obtained through dynamic programming solved separately for each problem. More specifically, the
“RL-Efficiency” (i.e., the ratio of the estimated optimal expected attained utility from using inference
with MetaRL to the same result if we use the optimum decisions, which are obtained from dynamic
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programming (DP)) is shown to be, on average, 97.8% across a suite of test scenarios that have a wide
range in initial wealth values, investor horizons (up to 100 years), infusions, number of goals (from
only one goal at the horizon to goals every year) and goal properties (timing, costs, and utilities).

Rather than training a new model for each new investor’s retirement planning scenario, the MetaRL
approach invests in a one-time pre-training effort to create a model that can then be called directly
for a new investor scenario, thereby offering essentially instant inference to determine near-optimal
goal-taking strategies and investment portfolio decisions. Thus, MetaRL leverages ideas from the
pre-training of foundation models such as LLMs. MetaRL can be deployed on thin clients for
inference. Its parameters and weights can be released without revealing the code for the training
procedure and the data and problems on which the MetaRL model has been trained, mirroring the
release of open models in the realm of LLMs.

MetaRL efficiently addresses the complexities inherent in multi-goals wealth management. By
generating policy decisions within hundredths of seconds that are optimized both for dynamic
goal-taking decisions and for dynamic investment portfolio selection, MetaRL offers a substantial
computational advantage over Monte Carlo methodologies, which must be based on static, not
dynamic, decisions, or over traditional DP. Furthermore, the MetaRL model’s capacity to handle
larger state spaces where dynamic programming becomes computationally infeasible underscores
its robustness and scalability. MetaRL’s state space in this paper’s implementation has 26 or 27
dimensions, which would absolutely be impossible to accommodate with DP. This RL approach
provides fast, personalized wealth management strategies that are, on average, over 100 times faster
than DP when implemented in inference mode for financial advising. Further, the MetaRL model is
robust to changes in capital market environments. That is, its accuracy when trained in one economic
regime does not attenuate when applied to other economic regimes.

This paper shows how to extend the MetaRL methodology to GBWM problems that contain
concurrent and partial goals. Also, it shows how to extend the MetaRL methodology to having
stochastic inflation, which creates a 4 dimensional state space for DP that it cannot reasonably address
but a 27 dimensional state space that inference with MetaRL can. Inflation increases can sharply
diminish investor outcomes as goal costs rise with inflation and goals become less affordable. From
our MetaRL analysis, we find that inflation volatility can diminish investor utility, though only when
the mean reversion in inflation is low. Luckily, inflation mean reversion rates in the U.S. are high,
mitigating the deleterious effect of inflation volatility.

Future work will explore other extensions like this to the GBWM model, which were not feasible
with DP, but now become explorable with MetaRL. Some of these are: enhancing GBWM with
tax planning, regime-switching in the environment, optimally spending from multiple (taxable and
tax-free) accounts, goal postponement (Bae et al., 2024), pension planning, etc. We believe it is
also possible to handle GBWM alongside traditional wealth and utility maximization paradigms in a
single unified framework using RL.
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Appendices

A RL Algorithm For At Most One All-Or-Nothing Goal In Each Time Step

The technical details of the RL algorithm are presented here, i.e., the RL environment, training and
inference, and extensions. We restrict ourselves in this appendix to at most one goal in each time
step, which the investor either completely fulfills or completely forgoes. In Appendix D, we will
extend our model to encompass the possibility of two or more goals in a time step (i.e., concurrent
goals) and/or partial goals (for example, where an investor can choose some less nice vacations with
reduced attained utilities but also reduced costs).

A.1 The Meta-model’s Environment

We refer to our model as a “meta-model” (Beck et al., 2023) or, more specifically, our “MetaRL”
model to distinguish it from RL approaches that are trained to solve a single task. To create our
MetaRL model, we use pre-trained RL models to handle scenarios that are arbitrary in terms of (1)
the time horizon, (2) the initial wealth and the times and amounts of any subsequent wealth infusions,
and (3) the number of goals and, for each goal, the time it can be purchased, the cost to purchase it at
that time, and the utility (representing the goal’s importance to the investor) gained by the investor
if the goal is purchased. We may think of this approach as being similar to training for zero-shot
learning and inference (Pourpanah et al., 2022).

A.2 Actions And The Environment Over A Time Step

We describe the environment for a single time step between time t and time t+ 1, using the notation
for scenario parameters introduced in Subsection 2.2. We define time t− to be at time t, just before
the goal-taking choice is made, and time t+ to be at time t, but just after the goal-taking choice is
made. At time t−, the goal-taking agent (GoalAgent) produces an action ag(t) ∈ [0, 1]. If its value
is below a threshold value athresh or if there is not sufficient money (that is, W (t−) < C(t)), the
goal is not taken, in which case the wealth is unchanged (W (t+) = W (t−)) and there is no attained
utility (Uattained(t) = 0). On the other hand if ag(t) ≥ athresh and W (t−) ≥ C(t), then the goal is
taken, in which case, we subtract the cost of the goal from the wealth and set Uattained(t) = U(t),
the utility associated to the goal. That is, in either the case of not taking the goal or taking the goal, if
we define the decision g(t) ∈ {0, 1} by

g(t) = 1ag(t)≥athresh
· 1W (t−)≥C(t), (4)

we have

W (t+) = W (t−)− g(t) · C(t) (5)
Uattained(t) = g(t) · U(t). (6)

We note that we set athresh = 0.5 for the experiments in this paper, since 0.5 is the midpoint of [0, 1],
the range for ag(t).

The resulting wealth, W (t+), is used to compute the state input for the investment portfolio agent
(PortfolioAgent). PortfolioAgent returns the action ap(t) ∈ [0, 1], which defines p(t), the investment
portfolio decision, by setting p(t) equal to the value of the integer p where

p

P
≤ ap(t) <

p+ 1

P
(7)

(and setting p = P − 1 if ap(t) = 1). So, for example, if p increasing corresponds to progressively
aggressive portfolios (potentially along the efficient frontier, although that doesn’t need to be the
case), then the magnitude of ap(t) corresponds to how aggressive the chosen investment portfolio is.
We then assume that the wealth between time t and time t+ 1 will evolve via geometric Brownian
motion (GBM) with the chosen portfolio p. That is,

W ((t+ 1)−) = W (t+) · exp
[
(µp −

1

2
σ2
p) · h+ σp · Z ·

√
h

]
+ I(t+ 1). (8)

Note that our model here assumes that the timing and magnitude of the infusions, I(t), can either be
predicted or known in advance. Of course, unlike the initial wealth, which can be applied to any goal,
an infusion at time t can only be applied to goals available at time t or later.
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The objective of both the agents combined is to maximize E
[∑T

τ=t Uattained(τ)
]
, the expected

value of the utility accrued over the remaining time horizon of the problem. Since the evolution
equations (5), (6), and (8), as well as the optimal objective, are dependent only on the time, t, the
current wealth, W (t), and the action choices, we conclude that the problem is Markovian, and hence
suitable for a RL formulation.

A.3 States

In principle, the scenario parameters introduced in Table 1 of Subsection 2.2 provide sufficient
information to compute ag(t) and ap(t). However, we require some manipulation of these parameters
in order to obtain more effective state variables for the MetaRL agents. The objectives of this
manipulation are, (i) to define a constant-dimension input for the MetaRL agent regardless of the time
t being considered and the time horizon T , and (ii) to provide rich information that helps the MetaRL
agent identify patterns during training. This subsection describes these more effective state variables.

We look to have state variables that are unitless and normalized to either only take values between
0 and 1 or have most of their interesting behavior occur between 0 and 1. This makes the gradient
ascent algorithm in PPO more effective, since gradient ascent is well known to work poorly with
independent variables that have significantly different scales.

The first three state variables are the scalars tnorm, Wmin, and Wmax, which are unitless, normal-
ized versions of the time, t, and wealth, W (t). The definition of tnorm is simply

tnorm =
t

T
. (9)

The important aspect about the wealth at time t is its ability to obtain current (time = t) and future
(time > t) goals, so we look to normalize the wealth in relation to the sum of the costs of all current
and future goals. To do this, we must approximate how to discount the costs of future goals to time t
dollars, which W (t) is obviously expressed in. Equation (8), the GBM equation, gives the expression
for discounting if we set the infusions to zero. This equation depends on the future portfolios, p, that
are chosen, which can shift over time, and the future stochastic behavior, given by Z. The algorithm
DISCOUNTSUM(C[t :], p, z), given in Algorithm 1, uses equation (8) to compute the discounted sum
of current and future goal costs, assuming a given, fixed portfolio, p, for all times ≥ t and a given,
fixed value z in place of Z for all times ≥ t.

For the purposes of normalizing the wealth, we will approximate discounting the future goal costs
in two different ways by using DISCOUNTSUM(C[t :], p, z) with two different (p, z) pairs. For the
first pair, we set p to be 0 (the most conservative investment portfolio) and z = −1 (a pessimistic
scenario). For the second pair, we set p = P − 1 (the most aggressive investment portfolio) and z = 1
(an optimistic scenario). This gives us Wmin and Wmax, our two state variables for the normalized
wealth:

Wmin =
W (t)

DISCOUNTSUM(C[t :], p = 0, z = −1)
(10)

Wmax =
W (t)

DISCOUNTSUM(C[t :], p = P − 1, z = 1)
. (11)

The second set of three state variables are the vectors Uagg, Cmin, and Cmax, which describe the
relative timing of the utilities and costs of goals for times ≥ t. It matters if we are looking to attain
a goal that occurs one year from now versus, say, 23 years from now. These state variable vectors
look to contain the key aspects of this timing information, while retaining a key property for RL
computation of having a fixed length, regardless of the time t at which they are computed or the time
horizon T .

We begin with the utilities. At first, one might simply think to use the vector U[t :], which contains
the utility of each current (time t) and future goal, and then divide this vector by its sum to normalize
its components to be between 0 and 1. However, because the length of U[t :] is T − t+ 1, which
varies depending on t and T , and we need our state variable utility vector to have the same length
regardless of t and T , we instead look to aggregate U[t :] into a fixed number, K, of time blocks. As
an example that we will use in all of our experiments, we consider the following list L that contains
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Algorithm 1 Discounting future goal costs and returning each of them (DISCOUNTVEC) or their
sum (DISCOUNTSUM).

procedure DISCOUNTVEC(C[t :], p, z)
Cdisc ← initialize vector of zeros of same length as C[t :], which is T − t+ 1
for τ in [0 : length(C[t :])] do

Cdisc(τ) = C(τ) exp
[
−(µp − 1

2
σ2
p)hτ − σpz

√
hτ

]
end for
return Cdisc

end procedure

procedure DISCOUNTSUM(C[t :], p, z)
return sum

(
DISCOUNTVEC(C[t :], p, z)

)
end procedure

K = 7 aggregated time blocks: L = [[0], [1], [2], [3], [4, 5], [6, 7, 8, 9], [10 :]]. The penultimate time
block for this L specifies aggregating all the utilities from goals occurring at times t + 6 through
t+ 9, while the final time block specifies aggregating all the utilities from goals occurring at time
t+ 10 or later.

To define Uagg, our state variable utility vector, we apply the aggregation algorithm
AGGREGATE(V,L), defined in Algorithm 2, to the vector V = U[t :] and then divide by the
sum of the components in U[t :]:

Uagg[t :] =
AGGREGATE(U[t :],L)∑T

τ=t U(τ)
. (12)

Note that AGGREGATE(U[t :],L) is a vector of length K = 7 where, for example, the final
component contains the sum of the utilities from the goals that occur at time t+ 10 or later.

Our approach to the state variables for the goals’ costs is parallel to our approach for Uagg, the
goals’ utilities, but since we’re looking to compare relative costs, we need to discount the costs to
time t dollars for a fair comparison. To do this we use the same approach to discounting (along with
the same two (p, z) pairs) that we used to define Wmin and Wmax to obtain

Cmin[t :] =
AGGREGATE

(
DISCOUNTVEC(C[t :], p = P − 1, z = 1),L

)
DISCOUNTSUM(C[t :], p = P − 1, z = 1)

(13)

Cmax[t :] =
AGGREGATE

(
DISCOUNTVEC(C[t :], p = 0, z = −1),L

)
DISCOUNTSUM(C[t :], p = 0, z = −1)

, (14)

where DISCOUNTVEC(C[t :], p, z) is defined in Algorithm 1. We note that because the discounted
sum is in the denominator when defining Wmin and Wmax, while the key discounting is in the
numerator when defining Cmin and Cmax, the case where (p, z) = (0,−1) corresponds to Wmin and
Cmax, while the case where (p, z) = (P − 1, 1) corresponds to Wmax and Cmin.

Algorithm 2 Aggregating V, which can represent a vector of goal utilities or a vector of goal costs,
over the K aggregated current and future time blocks given in L.

procedure AGGREGATE(Vector V, List of lists L)
K ← length of L
A← vector of zeros of length K
for ℓ in [0 : K] do

currentlist← L(ℓ)
for i in [0 : length(currentlist)] do

A(ℓ)← A(ℓ) + V (currentlist(i))
end for

end for
return A

end procedure

The final two state variables are the scalars gsim and psim . These are key state variables with gsim
aimed to be particularly useful for the GoalAgent and psim for the PortfolioAgent. These two state

28



variables provide the MetaRL agents with richer information about the dynamics of the environment
by running a handful of deterministic forward simulations, using some considerable approximations
for the future dynamics. The procedure is inspired by literature on Neural Monte-Carlo Tree Search
(Silver et al., 2016), but in simplified form.

To compute either gsim or psim , we start by selecting a positive integer n and then determining a list
of the n values of the standard normal Z that are the midpoints of a partition of the cumulative standard
normal distribution into n equal parts. That is, the list’s components, zi where i = 0, 1, ..., n− 1, are
defined so that P (Z < zi) =

i+ 1
2

n . Since we find that n = 11 is sufficiently large for our results, we
use this in all our experiments.

We then calculate DISCOUNTVEC(C[t :], p, zi) and DISCOUNTVEC(I[t :], p, zi) for each in-
vestment portfolio p and each zi. This gives the goal costs and infusions in time = t dollars,
given the investment portfolio is fixed to be p and Z = zi in equation (8) for all times ≥ t.
For each (p, zi) pair, we can then take the wealth, W (t−), and the discounted infusions, which
are all in time t dollars, and use them to purchase goals in order of decreasing utility (using
chronological order for goals with the same utility). In purchasing these goals, we pay for the
discounted goal prices DISCOUNTVEC(C[t :], p, zi) by first applying any available discounted in-
fusions DISCOUNTVEC(I[t :], p, zi) (using reverse chronological order, meaning using the most
recently available infusion that can be applied to the goal) and then, if all the available infusions
are drained, applying W (t−). We stop when the discounted infusions and W (t−) remaining are too
small to purchase any more goals or all the goals have been purchased. This gives the accumulated
utility as a function of p and zi. For each fixed p, we then take the average of the accumulated utilities
over the n values of zi to give a loose approximation of the expected accumulated utility sums for
each investment portfolio p.

To determine gsim , we use the method just described to determine the approximated expected
utility sums (for each value of p) for two different sets of goals: one where we first take the current
(time = t) goal, if it is possible, before taking the future goals in descending order of their utilities as
described above, the other where we remove the current goal completely before taking the future
goals, again as described above. Since we are looking to optimize these two approximated expected
utility sums, we only retain the largest approximated expected utility sum over the P values of
p.3 This approximates using the best (fixed) portfolio choice, which may, of course, correspond to
different values of p for the two approximated expected utility sums. We then subtract the second
optimized approximated expected utility sum (which skips the time t goal) from the first sum (which
gives the time t goal first priority), then divide this difference by the first sum to normalize it, and
finally define gsim to be the logistic function of this normalized difference, which keeps gsim ∈ [0, 1].
Note that the larger gsim is, the more evidence there is to take the goal at time t, which is exactly
what GoalAgent is looking to decide. This process that we have just described for computing gsim is
summarized in Algorithm 3. Given the nature of gsim , we may consider it akin to a binary classifier,
choosing between one of two goal choices.

To determine psim , we use a similar process. As before, we compute the approximated expected
utility sums for each p, but we no longer give first preference to the goal at time t, nor do we remove
it. We then find the p that gives the highest approximated expected utility sum, and normalize by
dividing it by P − 1 to determine the value for psim ∈ [0, 1]. If the investment portfolios get more
aggressive as p increases, as we will have in our experiments where the investment portfolios are
chosen over an efficient frontier, the higher psim is, the more evidence to choose a more aggressive
investment portfolio. This process for computing psim is summarized in in Algorithm 4. Unlike the
binary classifier nature of gsim , the value of psim is used as a regressor that chooses one portfolio from
an ordered set of portfolios.

We summarize our list of state variables in Table 8.

3We note that this is a significant approximation because we have fixed p for all current and future times, when
our final results will allow the investment portfolio p to vary with time. Similarly, our expected accumulated
utility sums only used fixed values Z = zi as a significant approximation for potentially complex Brownian
motion. These approximations work well in practice, as we will see, and they can be computed deterministically
and quickly, which is key for our state variable calculations.
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Algorithm 3 Forward simulation to compute gsim

procedure GSIM(W (t−), C[t :], U[t :], µ, σ, n)
listZ← the n midpoint Z values after partitioning Z’s CDF into n equal sections
sortU← components of U[t :] in descending order (with ties in chronological order)
Force the goal at time = t to be the first entry in sortU
Etake ← vector of zeros of length P
for p in [0, . . . , P − 1] do

Cdisc, Idisc, and Utot ← vectors of zeros, each of length n
for z in listZ do

Cdisc ← DISCOUNTVEC(C[t:],p,z)
Idisc ← DISCOUNTVEC(I[t:],p,z)
sortC← Cdisc reordered to be in the same goal order as sortU
Utot[z]← accrued utility by spending Idisc and W (t−) in the order of goals in sortU,

paying amounts specified in sortC, until no more goals can be attained
end for
Etake[p]← average of Utot over its n components

end for
Remove first goal from sortU
Eskip ← vector of zeros of length P
for p in [0, . . . , P − 1] do

Cdisc, Idisc, and Utot ← vectors of zeros, each of length n
for z in listZ do

Cdisc ← DISCOUNTVEC(C[t:],p,z)
Idisc ← DISCOUNTVEC(I[t:],p,z)
sortC← Cdisc reordered to be in the same goal order as sortU
Utot[z]← accrued utility by spending Idisc and W (t−) in the order of goals in sortU,

paying amounts specified in sortC, until no more goals can be attained
end for
Eskip[p]← average of Utot over its n components

end for
maxtake ← max(Etake) and maxskip ← max(Eskip)
return logistic((maxtake−maxskip)/maxtake)

end procedure

Algorithm 4 Forward simulation to compute psim

procedure PSIM(W (t−), C[t :], U[t :], µ, σ, n)
listZ← the n midpoint Z values after partitioning Z’s CDF into n equal sections
sortU← components of U[t :] in descending order (with ties in chronological order)
E← vector of zeros of length P
for p in [0, . . . , P − 1] do

Cdisc, Idisc, and Utot ← vectors of zeros, each of length n
for z in listZ do

Cdisc ← DISCOUNTVEC(C[t:],p,z)
Idisc ← DISCOUNTVEC(I[t:],p,z)
sortC← Cdisc reordered to be in the same goal order as sortU
Utot[z]← accrued utility by spending Idisc and W (t−) in the order of goals in sortU,

paying amounts specified in sortC, until no more goals can be attained
end for
E[p]← average of Utot over its n components

end for
return argmax(E)/(P − 1)

end procedure

A.4 Rewards

We define two types of rewards associated with each time step for training the two MetaRL agents.
The first type of time step reward, the extrinsic reward, re(t), corresponds to the underlying objective
function of the problem. We define this at all time steps, except the final time step at T , by

re(t) =
g(t) · U(t)∑T

τ=0 U(τ)
for t < T. (15)
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Table 8: Summary of state variable inputs for the two action producing agents, GoalAgent and PortfolioAgent.
For all experiments in this paper, we use a value of K = 7 aggregated current and future time blocks, which are
given by the list L = [[0], [1], [2], [3], [4, 5], [6, 7, 8, 9], [10 :]], where numbers represent time steps in the future.

Symbol Length Explanation
tnorm 1 (float) Time step normalized by the final time step

horizon T
Wmin 1 (float) Current wealth normalized by the sum of fu-

ture goal costs discounted using a pessimistic,
conservative scenario

Wmax 1 (float) Current wealth normalized by the sum of fu-
ture goal costs discounted using an optimistic,
aggressive scenario

Uagg K (float) Vector of utilities aggregated into K time
blocks and normalized by their sum

Cmin K (float) Vector of optimistically, aggressively dis-
counted goal costs aggregated into K time
blocks and normalized by their sum

Cmax K (float) Vector of pessimistically, conservatively dis-
counted goal costs aggregated into K time
blocks and normalized by their sum

gsim 1 (float) Forward-simulation-based evidence for taking
the current goal

psim 1 (float) Forward-simulation-based evidence for select-
ing a more aggressive investment portfolio at
the current time

Recall from the definition of g(t) in equation (4), this means the reward is accrued if and only if (i)
sufficient wealth is available to take the goal, and (ii) the GoalAgent action, ag(t), is higher than
athresh, where we set athresh = 0.5 for the experiments in this paper.

At the final time step t = T , we augment the above definition by adding a small reward to the
agent for the amount of money remaining if it is not enough to take the final goal. This signals to
the MetaRL algorithm that finishing with more money is better than less money, which creates an
otherwise missing push towards attaining the final goal as the MetaRL model evolves over epochs.
Specifically, we define the extrinsic reward at the final step T by

re(T ) =
1ag(T )≥athresh

· U(T )∑T
τ=0 U(τ)

[
1W (T−)≥C(T ) + 1W (T−)<C(T ) ·

1

4

(
W (T−)

C(T )

)]
. (16)

Even with this modification at t = T , the extrinsic reward provides a relatively weak signal to the
MetaRL agents because (i) the rewards are driven by a number of factors, such as the initial wealth
and the stochasticity in GBM, that are disconnected from the MetaRL agents’ decisions, (ii) the
rewards are often delayed a number of time steps after MetaRL agent decisions are made, and (iii)
the dual agent architecture makes it difficult to accomplish credit assignment (Zhou et al., 2020). We
therefore provide a second reward, called the intrinsic reward, at each time step for each of the two
MetaRL agents, following literature on intrinsic motivation in reinforcement learning (Barto, 2013).
The intrinsic rewards are penalties (that is, negative rewards) for actions being far away from their
corresponding forward simulated state variables.

More specifically, for GoalAgent and PortfolioAgent, the intrinsic rewards are respectively given
by

ri,g(t) = −1

2
ρ |gsim − ag(t)| and (17)

ri,p(t) = −1

2
ρ |psim − ap(t)|, (18)

where the coefficient ρ is a scalar multiple that we anneal from 1 to 0.25 over the course of the
MetaRL training to emphasize the extrinsic reward more by the end of the training. With re(t), ri,g(t),
and ri,p(t) defined, we define Rg(t) and Rp(t), the total rewards used at time t for respectively
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training GoalAgent and PortfolioAgent, by4

Rg(t) =

T∑
τ=t

(
re(τ) + ri,g(τ)

)
and

Rp(t) =

T∑
τ=t+1

re(τ) +

T∑
τ=t

ri,p(τ),

noting that the value of re(t), the extrinsic reward at time t, is excluded from the definition of Rp(t)
because PortfolioAgent is called after the goal-taking decision has been executed at time t.

This completes the description of the formulation of the MetaRL environment. We next discuss
implementation details of this formulation.

B MetaRL Model Training And Inference

B.1 Network Architecture And Hyperparameters

RL formulates the decision-making at each time step to consist simultaneously of the goal-taking
choice and the investment portfolio selection. We note that the goal-taking choice at the beginning
of any time step directly affects the subsequent investment portfolio selection during that time step,
because taking a goal affects the available remaining wealth, which affects the optimal investment
portfolio choice. Therefore, the RL methodology depicted in Figure 6 splits the decision into two
steps for goal-taking and investment portfolio selection (shown in the “Agents” section of the Figure).

Figure 6: Logical flow of the RL methodology for a single “episode,” during which we have time steps
t = 0, 1, ..., T . Typically, RL runs through a large number of such episodes during training in order to generalize
learning to arbitrary problems. The same logical flow is followed during inference on any new problem.

Because the Proximal Policy Optimization (PPO) algorithm (see Schulman et al. (2015, 2017);
Haarnoja et al. (2018)) is based on the actor-critic architecture, it contains two neural networks (actor
and critic) for GoalAgent and also for PortfolioAgent. The dimension of the input into the actor
and critic networks is the dimension of the state space, which, from Table 8, is 5 + 3K = 26, when
K = 7, as we assume in our experiments. While GoalAgent and PortfolioAgent are trained as if they
are independent PPO agents, the logical flow is similar to Hierarchical RL (Barto and Mahadevan,
2003).

The output for both actors and both critics are scalars, corresponding to ag and ap for the two
actors, and RL value functions for the two critics. The three intermediate layers for the actor networks
have 256, then 64, and finally 16 nodes, while the two for the critic networks have 64 and then 16
nodes. These numbers of nodes and layers, as well as the other hyperparameter values given in the
next paragraph, were determined on the basis of an experimental hyperparameter sweep. We do not
use any special initializers for the parameters of the networks.

4Note that for the sums over time steps in the definitions of both Rg(t) and Rp(t), we have implicitly used a
discount factor of 1 (i.e., no discounting) to reflect the fact that the importance of a goal (i.e., its utility) is not
diminished by when it occurs in the future.
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Both the actor and critic networks use the tanh activation function for their intermediate layers.
The critics have a linear output neuron to ensure the full range of predictions of returns-to-go
(that is, RL value function predictions), while the actors have a sigmoid output neuron to ensure
the output is in the range [0, 1]. For hyperparameter values, we used a learning rate of 10−4, a clip
parameter of 0.2, and a discount rate of 1.0 (meaning no discounting, since future utility values are
not of lesser importance than current utility values).

We trained the MetaRL model using 1000 epochs, where each epoch runs for 500 episodes. All
networks were updated at the end of each epoch. Training the MetaRL model using 1000 epochs
took approximately 4 hours.

B.2 Training Curriculum

In order to maximize the generalizability of the agents, we provided the MetaRL algorithm with
a diverse set of scenarios during training. These scenarios were generated using the procedure
GENERATESCENARIO described in Algorithm 5, which is designed to explore a wide range of
time horizons and numbers of goals, along with varying the goals’ timing, costs, and utilities. A
fresh scenario is generated at the start of every epoch, which is solved by a set of 500 random
episodes. The randomness between these 500 episodes has three sources: (1) The values generated
for Z, the standard normal random variables that determine the portfolio returns in equation (8),
(2) the randomness used to determine exploration for the action variables ag and ap, (3) a small
randomization in the initial wealth, which is selected from a uniform distribution between 80% and
120% of W (0), the initial wealth for the epoch given by the GENERATESCENARIO procedure. The
collected experience is used for training the critic and actor networks at the end of each epoch. Note
that the intrinsic reward from (17) and (18) is being annealed over the course of training.

The above process is done in parallel using five different seeds for the randomness.5 That is, in
some sense we are running the MetaRL model five times, but the scenarios of all five are the same
in each epoch, only the randomness for the 500 episodes within each epoch is different due to the
different seeds. The actions produced during inference are determined by the median action produced
by the five models.

Figure 7 was compiled to test whether 1000 epochs is sufficient. It shows that it is more than
enough, with a large fraction of the algorithm’s learning being completed within the first 100 epochs.
The figure uses the “RL-Efficiency” determined from all five models. The RL-Efficiency is defined
in Subsection 4.4, except that the denominator here is the DP value function (also discussed in
that subsection). The bold black line in the graph represents the average RL-Efficiency from the
five models. The gray area corresponds to adding or subtracting a standard deviation of the five
RL-Efficiencies from the average RL-Efficiency.

B.3 Implementation Details

The RL algorithm (and the baseline dynamic programming logic) are implemented in Python 3.11
and primarily executed on an AWS c7i.24xlarge instance.6 The instance provides 96 virtual
CPUs and 192 GB of memory and is optimized for CPU compute. (No GPUs were required, though
using GPUs may offer further efficiencies.) Computational experiments on other hardware types
are included in Section 4. Given the compute-intensive nature of state computation, the procedures
GSIM and PSIM are compiled using the numba 0.60 library for parallelization and faster execution.
Neural networks for the PPO algorithm are implemented using torch 2.1. The PPO algorithm
itself is custom-implemented, based on Schulman et al. (2017). The environment in which the agents
operate is custom built as an extension of the Env environment in the gym package from OpenAI (see
https://github.com/openai/gym).

B.4 Inference During Testing

With our MetaRL model complete, we use a hand-designed set of 66 scenarios to test it, as described
in Section 4 and Appendix C. These scenarios fall both within and outside the training scenarios’
distribution. During this testing, we only have access to the pre-trained actor models for GoalAgent

5We use seeds 0, 15, 722, 1021, 5069 in this paper for all reported results.
6https://aws.amazon.com/ec2/instance-types/
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Algorithm 5 Generating a training scenario
procedure GENERATESCENARIO(µ, σ)

Generate T (uniformly) randomly from {5, 6, ..., 50}
C,U← arrays of zeros of length T + 1
Generate NG, the number of goals, from the distribution p(1) = 0.22, p(2) = 0.15, p(3) = 0.12, p(4) =
0.10, p(5) = 0.06, p(6) = 0.05, p(7) = 0.04, p(8) = 0.03, p(9) = 0.02, p(10) = 0.01, p(T ) = 0.20

if NG > T then
NG ← T

end if
One of the NG goal times is T . Randomly choose the other NG − 1 goal times from {1, 2, ..., T − 1}
for each non-zero goal time t ∈ [1, T ] do

Draw numbers u1 and u2 from a uniform distribution on [0, 1]
C(t)← 100 · u1 · 1.03t
U(t)← 0.3 · C(t)/1.03t + 25 · u2

end for
Choose the initial wealth W (0) from a uniform distribution between DISCOUNTSUM(C[:], P − 1, 2) and

DISCOUNTSUM(C[:], 0,−2), where DISCOUNTSUM is definied in Algorithm 1
return C[1 :],U[1 :],W (0)

end procedure
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Figure 7: Training efficiency of the RL algorithm over the course of training (using the RL-Efficiency for
each of the 1000 epochs’ scenarios). While the training episodes each have randomised initial wealth, the
quantities plotted here are for the baseline values of initial wealth. The black line represents the average of the
five RL-Efficiencies determined using five different seeds for randomness. The shaded region corresponds to
being one standard deviation away from the average, where the standard deviation is computed from the five
RL-Efficiencies.

and PortfolioAgent from the MetaRL algorithm. The state variable inputs are generated at each time
step as described in Section A.3. The actor networks produce goal-taking and investment portfolio
selection actions, which are implemented by the environment. As described in Appendix B.2, we
mitigate the risk of getting either unusually good or unusually bad results due to random initialization
by training 5 models from scratch using identical scenarios in each epoch but different randomness
for the 500 episodes within each epoch. The actions reported by RL inference using the MetaRL
model are computed by sending the state space values to all 5 models within MetaRL and reporting
the median of the 5 actions generated.
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C Description Of The 66 Test Suite Cases

The first 33 of the 66 test suite cases are given in Table 9. These cases have no infusions. The other 33
cases are given in Table 10. These are the same as the first 33 cases, except that they have infusions.

D Extending The Model To Concurrent Goals And/Or Partial Goals

The MetaRL model described in Appendix A is designed to handle multiple goals, so long as there
is at most one goal per time step. We now describe how to alter this model when we have multiple
competing goals at the same time step and/or allow partial fulfillment of a goal (e.g., buying a less
than ideal car, which generates less utility but also costs less than buying the ideal car).

Many of the updates to the concurrent and/or partial goals case are relatively straightforward. For
example, for the computation of state inputs Wmin(t), Wmax(t), Cmin[t :], and Cmax[t :] from Table
8, we just replace C(t), the cost of the single goal at time t, with the highest possible cost at time t,
meaning the cost of taking all of the concurrent goals at time t at their full (i.e., not partial) levels.
Similarly, to compute Uagg[t :], we replace U(t), the utility of the single goal at time t, with the
highest possible utility at time t from attaining all the concurrent goals at time t at their full levels.

This leaves the computation of gsim and psim , which is a bit more complicated. In the concur-
rent/partial goals case, at each time t, there can be a number of possible costs and corresponding
utilities corresponding to each possible combination of forgoing, partially fulfilling (in each available
way), or fully fulfilling each of the concurrent goals. We form a pareto front of these possibilities
by removing combinations that are dominated by any other combination; for example, we would
remove a combination that generates a utility of 50 at a cost of $40,000 if there is another combination
that generates a utility of 52 at the same cost. In the pareto front of combinations that remain, the
utility must increase as the cost increases. We will call the remaining goal combinations G(t), which
contains the cost and corresponding utilities of these combinations in increasing order. See Das et al.
(2022, a) for more details.

In the single all-or-nothing goal context of Appendix A, ag(t) ∈ [0, 1] is a measure of the
confidence in taking (ag(t) ≈ 1) or not taking (ag(t) ≈ 0) the goal at time t. In the current context,
ag(t) is a measure of the confidence in taking the goal combination at time t that corresponds to
the highest approximated expected accumulated utility from time t onwards versus the combination
at time t that corresponds to the second highest approximated expected accumulated utility from
time t onwards. The determination of the which two combinations at time t have the two highest
approximated expected accumulated utility from time t onwards comes from our computation for
determining gsim .

To compute gsim , we first extend the computation of the P -vectors Etake and Eskip in Algorithm 3
to all the combinations in G(t). This results in a matrix E of dimension P × |G(t)|, where |G(t)| is
the number of goal combinations in G(t). Each column in E is determined by following Algorithm
3 for computing Etake, but forcing taking the goal combination corresponding to the column to be
the first goal taken (i.e., the first entry in sortU). The highest approximated expected utility for
every goal combination is given by taking the maximum of each column of E, and the logistic in
GSIM is computed between the highest and second-highest values of the column-maxima. The goal
combinations that correspond to these two columns are the two goal combinations that ag(t) chooses
between. Note that our approach here conforms to Appendix A, for which |G| = 2, corresponding to
not taking or taking the single all-or-nothing goal.

For computing psim , we start with the same matrix E calculated for gsim . However, instead of
computing column maxima, we determine the index of the row that contains the largest component in
E. This index approximates the best portfolio p. As in Algorithm 4, we define psim to be this index
divided by P − 1 to normalize psim to be between 0 and 1.

E Extending The Model To Stochastic Inflation

In this section we show how our MetaRL model can be extended when inflation is treated as a
stochastic process. We assume that the evolution of Iinfl(t), the instantaneous rate of inflation over
time t, is governed by the Vasicek (1977) model, whose dynamics are governed by the stochastic
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Table 9: Description of test cases without infusions.

Case T W (0) Non-zero goals [t, C(t), U(t)] Non-zero infusions [t, I(t)]
1 10 100 [10, 150, 1] −
2 10 100 [10, 200, 1] −
3 10 100 [10, 400, 1] −
4 40 100 [40, 600, 1] −
5 40 100 [40, 1200, 1] −
6 40 100 [40, 2400, 1] −
7 100 100 [100, 50000, 1] −
8 100 100 [100, 500000, 1] −
9 100 100 [100, 2000000, 1] −
10 3 100 [2, 75, 0.9], [3, 75, 1] −
11 20 100 [10, 200, 1.3], [20, 500, 1] −
12 20 100 [15, 200, 1.3], [20, 300, 1] −
13 35 100 [5, 50, 1], [25, 500, .5], [35, 1000, 1] −
14 60 100 [15, 300, .7], [30, 6000, 1.2],

[45, 5000, .2], [60, 20000, 1]
−

15 25 100 [3, 30, .2], [5, 70, .3], [8, 70, .3],
[25, 1000, 1]

−

16 40 100 [10, 150, 1.5], [30, 400, 1],
[35, 500, 1], [40, 600, 1]

−

17 20 100 [t, 15, 1] for t ∈ {2, 4, 6, . . . , 20} −
18 20 100 [t, 25, 1] for t ∈ {2, 4, 6, . . . , 20} −
19 20 100 [t, 50, 1] for t ∈ {2, 4, 6, . . . , 20} −
20 20 100 [t, 75, 1] for t ∈ {2, 4, 6, . . . , 20} −
21 60 100 [t, 20, 1] for t ∈ {1, 2, 3, . . . , 60} −
22 60 100 [t, t, 1] for t ∈ {1, 2, 3, . . . , 60} −
23 60 100 [t, t, 100 + t] for t ∈ {1, 2, 3, . . . , 60} −
24 60 100 [t, t, 100− t] for t ∈ {1, 2, 3, . . . , 60} −
25 60 100 [t, 60− t

2 , 1] for t ∈ {1, 2, 3, . . . , 60} −
26 60 100 [t, 60− t

2 , 100+t] for t ∈ {1, 2, . . . , 60} −
27 60 100 [t, 60− t

2 , 100−t] for t ∈ {1, 2, . . . , 60} −
28 30 100 [3, 35, 1.5], [6, 35, 1.3], [9, 5, 0.4],

[12, 50, 1], [15, 15, 0.7], [18, 5, 0.3],
[21, 45, 0.6], [24, 120, 0.9], [27, 170, 1.1],
[30, 160, 1]

−

29 16 12 [16, 34.25, 26] −
30 16 21.63 [8, 18.50, 18], [16, 34.25, 26] −
31 16 38.99 [4, 13.60, 14], [8, 18.50, 18],

[12, 25.18, 22], [16, 34.25, 26]
−

32 16 70.27 [2, 11, 66, 12], [4, 13.60, 14],
[6, 15.87, 16], [8, 18.50, 18],
[10, 21.59, 20], [12, 25.18, 22],
[14, 29.37, 24], [16, 34.25, 26]

−

33 16 126.67 [1, 10.8, 11], [2, 11, 66, 12],
[3, 12.60, 13], [4, 13.60, 14],
[5, 14.69, 15], [6, 15.87, 16],
[7, 17.14, 17], [8, 18.50, 18],
[9, 19.99, 19], [10, 21.59, 20],
[11, 23, 32, 21], [12, 25.18, 22],
[13, 27.20, 23], [14, 29.37, 24],
[15, 31.72, 25], [16, 34.25, 26]

−

36



Table 10: Description of test cases with infusions. The base infusion amount for the odd-numbered
test cases is Ĩ = W (0)

10(T−1) , rounded up to the nearest integer. Aside from the infusions, these cases are
identical to the 33 cases in Table 9.

Case T W (0) Non-zero goals [t, C(t), U(t)] Non-zero infusions [t, I(t)]
34 10 100 [10, 150, 1] [1, 10]
35 10 100 [10, 200, 1] [t, 1.03tĨ] for t ∈ {1, .., T − 1}
36 10 100 [10, 400, 1] [1, 10]
37 40 100 [40, 600, 1] [t, 1.03tĨ] for t ∈ {1, .., T − 1}
38 40 100 [40, 1200, 1] [6, 12]
39 40 100 [40, 2400, 1] [t, 1.03tĨ] for t ∈ {1, .., T − 1}
40 100 100 [100, 50000, 1] [21, 19]
41 100 100 [100, 500000, 1] [t, 1.03tĨ] for t ∈ {1, .., T − 1}
42 100 100 [100, 2000000, 1] [27, 22]
43 3 100 [2, 75, 0.9], [3, 75, 1] [t, 1.03tĨ] for t ∈ {1, .., T − 1}
44 20 100 [10, 200, 1.3], [20, 500, 1] [6, 12]
45 20 100 [15, 200, 1.3], [20, 300, 1] [t, 1.03tĨ] for t ∈ {1, .., T − 1}
46 35 100 [5, 50, 1], [25, 500, .5], [35, 1000, 1] [13, 15]
47 60 100 [15, 300, .7], [30, 6000, 1.2],

[45, 5000, .2], [60, 20000, 1]
[t, 1.03tĨ] for t ∈ {1, .., T − 1}

48 25 100 [3, 30, .2], [5, 70, .3], [8, 70, .3],
[25, 1000, 1]

[11, 14]

49 40 100 [10, 150, 1.5], [30, 400, 1],
[35, 500, 1], [40, 600, 1]

[t, 1.03tĨ] for t ∈ {1, .., T − 1}

50 20 100 [t, 15, 1] for t ∈ {2, 4, 6, . . . , 20} [10, 13]
51 20 100 [t, 25, 1] for t ∈ {2, 4, 6, . . . , 20} [t, 1.03tĨ] for t ∈ {1, .., T − 1}
52 20 100 [t, 50, 1] for t ∈ {2, 4, 6, . . . , 20} [11, 14]
53 20 100 [t, 75, 1] for t ∈ {2, 4, 6, . . . , 20} [t, 1.03tĨ] for t ∈ {1, .., T − 1}
54 60 100 [t, 20, 1] for t ∈ {1, 2, 3, . . . , 60} [38, 31]
55 60 100 [t, t, 1] for t ∈ {1, 2, 3, . . . , 60} [t, 1.03tĨ] for t ∈ {1, .., T − 1}
56 60 100 [t, t, 100 + t] for t ∈ {1, 2, 3, . . . , 60} [41, 34]
57 60 100 [t, t, 100− t] for t ∈ {1, 2, 3, . . . , 60} [t, 1.03tĨ] for t ∈ {1, .., T − 1}
58 60 100 [t, 60− t

2 , 1] for t ∈ {1, 2, 3, . . . , 60} [45, 38]

59 60 100 [t, 60− t
2 , 100+t] for t ∈ {1, 2, . . . , 60} [t, 1.03tĨ] for t ∈ {1, .., T − 1}

60 60 100 [t, 60− t
2 , 100−t] for t ∈ {1, 2, . . . , 60} [49, 43]

61 30 100 [3, 35, 1.5], [6, 35, 1.3], [9, 5, 0.4],
[12, 50, 1], [15, 15, 0.7], [18, 5, 0.3],
[21, 45, 0.6], [24, 120, 0.9], [27, 170, 1.1],
[30, 160, 1]

[t, 1.03tĨ] for t ∈ {1, .., T − 1}

62 16 12 [16, 34.25, 26] [14, 3]
63 16 21.63 [8, 18.50, 18], [16, 34.25, 26] [t, 1.03tĨ] for t ∈ {1, .., T − 1}
64 16 38.99 [4, 13.60, 14], [8, 18.50, 18],

[12, 25.18, 22], [16, 34.25, 26]
[15, 6]

65 16 70.27 [2, 11, 66, 12], [4, 13.60, 14],
[6, 15.87, 16], [8, 18.50, 18],
[10, 21.59, 20], [12, 25.18, 22],
[14, 29.37, 24], [16, 34.25, 26]

[t, 1.03tĨ] for t ∈ {1, .., T − 1}

66 16 126.67 [1, 10.8, 11], [2, 11, 66, 12],
[3, 12.60, 13], [4, 13.60, 14],
[5, 14.69, 15], [6, 15.87, 16],
[7, 17.14, 17], [8, 18.50, 18],
[9, 19.99, 19], [10, 21.59, 20],
[11, 23, 32, 21], [12, 25.18, 22],
[13, 27.20, 23], [14, 29.37, 24],
[15, 31.72, 25], [16, 34.25, 26]

[16, 21]
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differential equation

dIinfl = −κinfl(Iinfl − θinfl)dt+ σinfldW, (19)

where W is a Wiener process. The Vasicek model is an Ornstein–Uhlenbeck process, where θinfl
is the mean value of Iinfl, κinfl is the constant strength of the reversion to this mean value, and σinfl

is a volatility constant representing the strength of the randomness. This process admits negative
values for inflation and hence, deflationary environments are possible in this model. The solution to
equation (19) between times t and τ is

Iinfl(τ) = Iinfl(t)e
−κinfl(τ−t) + θinfl(1− e−κinfl(τ−t)) + σinfl

√
1− e−2κinfl(τ−t)

2κinfl
Z, (20)

where Z is a standard normal random variable. During training for the MetaRL model, we use this
equation to update the inflation from the previous year to the current year by replacing t with t− 1
and substituting τ = t in equation (20).

We must multiply each future real infusion and each real goal cost by the cumulative effect of the
inflation. We split this cumulative effect into the effect of the inflation between time 0 and the current
time t, and the effect from time t to the future time τ when the infusion occurs or the goal is available.
To calculate the cumulative effect between time 0 to the current time t, we simply use the inflation
that has been generated using equation (20) up to the current time t:

Icum,past(t) = e
∫ t
0
Iinfl(s)ds = eIinfl(0)+Iinfl(1)+···+Iinfl(t−1).

To account for the future effect of inflation, we compute Īcum(τ), the expected value of the cumulative
effect of inflation between times t and τ , which is

Īcum(τ) = E
[
e
∫ τ
t

Iinfl(s)ds
]
. (21)

We then adjust the real infusion or real goal cost by multiplying the time 0 cost by Icum,past(t) and
then by Īcum(τ). The explicit formula for Īcum(τ) is known (see, for instance, Vasicek (1977)) to be

Īcum(τ) = eIinfl(t)A(τ)−B(τ), (22)

where

A(τ) =
1

κinfl

(
1− e−κinfl(τ−t)

)
and (23)

B(τ) =

(
θinfl − σ2

infl

2κ2
infl

)(
A(τ)− (τ − t)

)
− σ2

infl

4κinfl
A2(τ). (24)

To account for the stochastic inflation in the MetaRL model, we make three straightforward
changes. The first change is to introduce inflation into the model, which is generated via the Vasicek
process in equation (20). This is used to update all real infusions and real costs to the current time t.
The second change is to introduce the new state variable Inorm, which is the current instantaneous
inflation, Iinfl(t), normalized by the mean inflation in the Vasicek process, θinfl:

Inorm =
Iinfl(t)

θinfl
.

We add Inorm to the list of the other 3K + 5 state variables in Table 8. The calculations for the
state variables tnorm and Uagg[t :] remain the same. The third change is to the calculations of the
remaining state variables, Wmin(t), Wmax(t), Cmin[t :], Cmax[t :], gsim , and psim from Table 8. In the
calculations of these 2K + 4 state variables, we simply replace DISCOUNTSUM and DISCOUNTVEC
defined in Algorithm 1 with DISCOUNTSUMINFL and DISCOUNTVECINFL defined in Algorithm
6. The only difference between Algorithm 1 and Algorithm 6 is that Algorithm 6 takes the average
projected cumulative inflation, Īcum, into account, so future infusions and costs are adjusted for
projected average future inflation.

38



Algorithm 6 Discounting future goal costs with stochastic inflation
procedure DISCOUNTVECINFL(C[t :], p, z, Icurr, θinfl, κinfl, σinfl)

Cdisc ← initialize vector of zeros of same length as C[t :], which is T − t+ 1
for τ in [0 : length(C[t :]) do

A← 1
κinfl

(
1− e−κinflτ

)
B ←

(
θinfl − σ2

infl

2κ2
infl

) (
A− τ

)
− σ2

infl
4κinfl

A2

Icum,avg ← exp (IcurrA−B)

Cdisc(τ)← C(τ) · exp
[
−(µp − 1

2
σ2
p)hτ − σpz

√
hτ

]
· Icum,avg

end for
return Cdisc

end procedure

procedure DISCOUNTSUMINFL(C[t :], p, z, Icurr, θinfl, κinfl, σinfl)
return sum

(
DISCOUNTVECINFL(C[t :], p, z, Icurr, θinfl, κinfl, σinfl)

)
end procedure
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