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Abstract

We develop a dynamic programming methodology that seeks to maximize investor
outcomes over multiple, potentially competing goals (such as upgrading a home,
paying college tuition, or maintaining an income stream in retirement), even when
financial resources are limited. Unlike Monte Carlo approaches currently in wide
use in the wealth management industry, our approach uses investor preferences
to dynamically make the optimal determination for fulfilling or not fulfilling each
goal and for selecting the investor’s investment portfolio. This can be computed
quickly, even for numerous investor goals spread over different or concurrent time
periods, where each goal may be all-or-nothing or may allow for partial fulfillment.
The probabilities of attaining each (full or partial) goal under the optimal scenario
are also computed, so the investor can ensure the algorithm accurately reflects
their preference for the relative importance of each of their goals. This approach
vastly outperforms buy and hold strategies and target-date funds, widely used in
the wealth management industry.
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1 Introduction

Goals-based wealth management (GBWM) is an investment philosophy focused on at-
taining the desired goal or goals specified by an investor (Chhabra (2005); Nevins (2004);
Browne (1997); Browne (1999); Brunel (2015); Pakizer (2017); Parker (2020); Parker
(2021)). This paper’s contributions to GBWM include presenting a dynamic program-
ming algorithm that enables an investor with multiple purchasing goals to quickly de-
termine how to optimally invest their money and optimally prioritize which goals they
should or should not purchase — even if there are hundreds of goals over a long time hori-
zon. Further, we show that this algorithm’s solution substantially outperforms current
Monte Carlo financial planning approaches.

This investor based viewpoint of GBWM corresponds to a new notion of risk. Tradi-
tionally, risk is defined as the volatility of the investments in an investor’s portfolio. In
contrast, for GBWM with a single goal, risk is defined as the probability that an investor
does not meet that financial goal. So, for example, if a young person moves all their
money from stock into cash for the goal of retirement, they are decreasing their risk from
a traditional point of view, but increasing their risk from the GBWM point of view.

For multiple goals in well-funded portfolios, the GBWM notion of risk for a single
goal translates easily to multiple goals. It becomes the probability that the investor
will not be able to attain all their goals (relevant to lifestyle risk as in Bergerson et al.
(2016)). But of considerably more importance is the complex question of what, optimally,
should be done when limited investor resources necessitate prioritizing and then choosing
among the investor’s multiple competing goals (Consiglio et al., 2004), as we investigate
in this paper, especially over long horizons, through retirement (Simsek et al., 2018), or
Kim et al. (2020) for a solution using stochastic programming. Our approach enables a
flexible goal prioritization, while not mandating a strict sequence in which goals should
be realized.

Consider, for example, the simple case where an investor has just two goals: Let’s say
that in 5 years, the investor wants to take a nice vacation and in 10 years the investor
wants to pay for their child’s first car. If they don’t have the money in their portfolio for
the vacation at the end of five years, they must forgo the vacation goal of course. If they
have a lot of money, they fulfill the vacation goal knowing that they will almost certainly
be able to afford the car goal as well. But what if the investor has a moderate amount
of money in their portfolio? Do they take the vacation? It depends not only on the cost
of the vacation and the car, but also on the relative importance of the two goals to the
investor. If they have just enough money to afford the vacation, but attaining the car goal,
while more important, is likely out of reach due to being significantly more expensive,
they should fulfill the vacation goal. If they have more money, they should switch to
forgoing the vacation so as to optimize the chance of attaining the more important car
goal, but if they have even more money they should again switch to taking the vacation
because they can likely attain both goals. This leads to an obvious, key question: what
values of portfolio wealth in 5 years optimally correspond to these switches regarding the
decision to fulfill or not fulfill the vacation goal?

This simple two goal example quickly gets far more complicated when made more
realistic. What if we consider partial goals like less expensive vacation choices instead
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of the full goal of the nice vacation, or we consider the possibility of less expensive cars?
What if we add additional goals like paying off a mortgage in 15 years or remodeling a
kitchen in 5 years, concurrent with considering the vacation? Or, after 17 years, annually
removing money from the portfolio for the 30 years after that to fund retirement? Opti-
mally determining which goals to fulfill is not obvious, nor is it obvious what the optimal
portfolio is at each time period to attain these goals. And if you add a projected income
stream for the investment portfolio, how would that change these optimal decisions?

There is an extensive literature on dynamic programming approaches, using stochastic
programming for asset management, such as the elegant works by Mulvey and Vladimirou
(1992); Dantzig and Infanger (1993); Consigli and Dempster (1998); Dempster, Germano,
Medova, and Villaverde (2003); Topaloglou, Vladimirou, and Zenios (2008). Specific to
long-horizon portfolio planning for financial planning problems of individual investors,
see Mulvey and Shetty (2004); Consiglio, Cocco, and Zenios (2004); Consiglio, Cocco,
and Zenios (2007), and Infanger (2008). For managing individuals’ portfolios in defined
contribution plans, see Konicz and Mulvey (2015). See Dempster and Medova (2011)
for individual planning problems as asset-liability problems, and Konicz, Pisinger, Ras-
mussen, and Steffensen (2015) for personal finance and pensions; Konicz et al. (2016)
for the specific planning problem of a couple over time with uncertain mortality and
including the complexity of inflation-linked annuities (Konicz and Mulvey, 2013; Konicz,
Pisinger, and Weissensteiner, 2015). We complement these large state-space problems to
handle a large number of optional multiple goals in an efficient manner. The remainder
of this introduction highlights the features of our approach that extend this literature in
the framework of goals-based wealth management.

For multiple non-stochastic goals, we employ dynamic programming, which evolves
backwards in time, to determine the optimal investment portfolio for an investor and,
simultaneously, optimally determine for each goal if the investor is best off fulfilling the
full goal, fulfilling a partial goal, or forgoing the goal completely. This optimization
computation is usually completed in under 2 seconds. Even in the most complicated
case we consider — which is in Section 4.5, where we look to optimize a case that has
a 60 year portfolio horizon, over 1000 potential wealth values, 15 investment portfolio
choices at each time and wealth value, and 301 competing full goals with 138 partial
alternative goals — the optimal solution is computed in only 17 seconds on a basic desktop
computer by exploiting the ability to optimize the investment selection separately from
the optimization of any goal fulfillment decisions. That is, the algorithm enables quickly
computing which of the investor’s goals should and should not be fulfilled optimally, as
well as the optimal investment portfolio for the investor, at every time period given their
portfolio’s worth at that time.

The GBWM model works in harmony with both modern/rational portfolio theory
and behavioral finance. Modern portfolio theory (Markowitz (1952); Szegö (2014)) pre-
scribes the static portfolio that optimizes expected return for a fixed level of volatility.
The set of these optimal portfolios forms the efficient frontier. Staying on the efficient
frontier minimizes traditional risk, since it minimizes volatility for a given expected re-
turn. Staying on the efficient frontier also minimizes GBWM risk since, for a fixed level
of volatility, we want the optimum expected return to attain goals. We therefore, ideally,
only consider portfolios on the efficient frontier, although the algorithm will also work
just as effectively if we are restricted to a set of portfolios that are not on the frontier.
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This combination of mean-variance optimality and goals-based optimization addresses
the criticisms of modern portfolio theory detailed in Muralidhar (2018).

Markowitz’s result for making optimal portfolio allocations was extended to dynamic
models via maximizing the utility of the investor’s final wealth (Merton (1969); Merton
(1971)). The utility of a wealth value corresponds to its importance or use to the investor.
The primary roadblock in implementing this approach in practice is determining an ap-
propriate utility function, which is investor specific. One problem in trying to determine
an appropriate utility function is the fact that investors’ behavioral preferences can be
in conflict with traditional utility function theory, as shown, for example, in Prospect
Theory (Kahneman and Tversky (1979)). Behavioral finance work on the portfolio op-
timization problem has looked at how to appropriately embed behavioral considerations
into the optimization. (See, for example, the papers by Shefrin and Statman (2000),
Das et al. (2010), Wang et al. (2011), Deguest et al. (2015), Alexander et al. (2017), or
the book by Shefrin (2008).) A second problem with determining an appropriate utility
function is that there is no obvious feedback loop that enables the investor to gage if a
given utility function poorly fits their preferences and then enables the investor to correct
the utility function. A third issue is that traditional utility functions equate utility with
the cost of fulfilling the goal, whereas investors may have different priorities for goals
that have the same cost, even at the same point in time.

The notion of utility is key in this paper because prioritizing goals requires that the
investor specify the importance to them of each full or partial goal (i.e., each goal’s
utility), in addition to determining each goal’s cost. Fortunately, in the context of this
paper, assigning an appropriate utility value to each goal is relatively easy. In part, this
is because we only need to assign utility values to a finite number of goals, as opposed to
trying to specify a utility function over a continuum of wealth values. But also, we can
take advantage of the nature and structure of the multiple goals scenario to address the
two problems discussed above, namely, behavioral concerns and the need for a correcting
feedback loop.

To do this, we initially create a potentially very coarse approximation for the utility
values assigned to each goal and partial goal. The algorithm optimizes the expected
value of the sum of the utilities from fulfilled goals and then uses the optimizing strategy
to compute the corresponding probabilities of attaining each full or partial goal. The
output of the algorithm is a table of goals with the optimized probabilities of achieving
each goal. The fact the output is in terms of probabilities, as opposed to expected utility,
is key to effectively communicating with investors.

Behavioral research shows that investors understand the notion of the probability of
attaining a goal far better than most financial terms commonly used by wealth man-
agers. See, for example, Das et al. (2018). This means that while investors are unlikely
to understand the direct meaning of a utility assignment — for example, the difference
between a utility of 200 versus 250 for a car goal is far from clear — they can understand
the ramifications of their utility assignments to various goals by looking at the corre-
sponding optimal goal probabilities. They can then alter their assigned utility values as
finely as they wish to make these probabilities for attaining their goals conform to their
preferences.

More specifically, if the investor finds the probability of attaining a specific goal too
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low, they can just increase the utility assigned to that goal, with the understanding that
it will lower the probability of attaining most of the other goals. Should they wish to
increase the probability of attaining all of their goals, they can decide to add cash infusions
into the portfolio at any specific time period or collection of time periods, or they can
expand the range of investment portfolio strategies available to them. The investor can
then use the algorithm to quickly recompute the new optimized probabilities for attaining
each goal. This procedure may be iterated as many times as desired. This human-in-
the-loop process enables us to directly determine the investor’s true preferences among
their goals, instead of guessing or assuming them. In particular, it has the considerable
advantage of not requiring the use of traditional utility functions over continuous domains
that, by their nature, must be chosen in an ad-hoc manner that looks to approximate an
investor’s preferences.

This approach yields the correct extension to understanding GBWM risk in the con-
text of multiple competing goals. It is no longer a single probability. It is now a collection
of probabilities that compete with each other, and this overall risk is minimized by ful-
filling as many of the investor’s goals as possible, weighted by their importance to the
investor.

We note that because we use dynamic programming, which evolves backwards in time,
the nature of each goal cannot depend on whether other previous goals were realized or
not, because that is a forwards in time phenomenon. We see this as the most important
limitation of the method in this paper. For example, if an investor has a goal of purchasing
a car at a given time, they can either buy the nicest car they considered (full goal) or
less nice cars (partial goals) or not buy the car. But should they decide not to buy the
car, they cannot then move this car goal to a later year with the method in this paper.

The GBWM algorithm has useful ramifications. First, it optimally prioritizes when
to fulfill or forgo any goal, including when it is best to fulfill a partial version of a goal.
Instead, forwards-in-time Monte Carlo methods that are widely used in the wealth man-
agement industry are restricted to 1) use fixed investment portfolio strategies, such as
target date funds or 60/40 strategies, and 2) fulfill as many full, not partial, goals as
possible in chronological order. We show that the GBWM algorithm beats traditional
methods by achieveing goals with higher probabilities, while enabling more flexible finan-
cial planning. Second, it better handles mental accounting (Thaler (1985); Shefrin and
Statman (2000); Das et al. (2010)), in which investors have different goals in separate
mental buckets and express different risk preferences for each mental account. Rather
than optimize each mental account separately, the algorithm optimizes all goals in a sin-
gle dynamic portfolio, enabling offsets between underfunded and overfunded goals. This
simplifies and addresses the problem of allocating money across mental accounts (en-
dogenously solved by Parker (2021)) by handling all allocations within a single account.
In our framework, wealth does not need to be divided across goals, as is considered in
Parker (2020).

Our approach in this paper proceeds as follows: Section 2 explains how the problem
is formulated for multiple full and partial goals over a grid of feasible wealth values used
at each time period in the algorithm. Section 3 presents the dynamic programming
formulation and solution, which determines the optimal investment strategy and optimal
goals taking strategy at each wealth grid point and time period. It also shows how to
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compute the probability of attaining each goal, including the probability of being at
each wealth grid point in each time period, so the investor can fully understand the
effect of the optimal strategy on attaining their goals and minimizing their GBWM
risk. Section 4 demonstrates a variety of numerical examples from the algorithm. We
present both simple examples to give insight into the nature of the solution, as well
as complicated examples that are more realistic. We build up to a realistic example
(referred to above) in which we use the algorithm to optimize the investing and goals
taking strategy for a couple in their mid-thirties over the course of the next 60 years.
This couple considers a number of competing annual goals of varying importance that
include paying for mortgages, property tax, long-term care insurance, medical expenses,
other everyday expenses, cars, house remodeling, trips, philanthropy, and, for their child,
orthodontia, private high school tuition, college tuition, and wedding expenses. Finally,
in Section 5, we conclude with some final comments and future directions for this work.

2 The Utility (Importance) and Cost of an Investor’s

Goals

2.1 Basic Variables and Notation

The basic quantities and variables in the setup are

• Time: We consider time periods t = 0, 1, . . . , T with an interval of h years between
time periods. So if h = 0.25, then t = 4 corresponds to one year from the present,
t0 = 0. The final time period, t = T , for the portfolio may or may not correspond
to the projected date of death for the investor.

• Infusions: The investor can specify pre-determined wealth infusions, I(t) > 0, that
they will contribute to their portfolio at any time period or collection of time periods
t = 1, 2, ..., T − 1. The values taken by I(t) over these time periods may be chosen
to be identical or different. For example, automatic infusions from paychecks may
be chosen to remain constant or they may be chosen to be indexed by inflation.

• Portfolio Evolution and Portfolio Investment Strategies: The dynamic program-
ming approach works with any Markovian stochastic evolution model for portfolios
with deterministic parameters, but for simplicity we will generally use geometric
Brownian motion for the evolution model in this paper. (We provide brief results
for fat-tailed distributions as well later in the paper.) We assume that the in-
vestor has access to lmax different possible portfolio investment strategies, indexed
by l = 1, 2, . . . , lmax. For the examples in Section 4, we will choose these different
portfolios to be along the efficient frontier (see Markowitz (1952)) with the ordering
µ1 < µ2 < · · · < µlmax for the portfolios’ expected returns and σ1 < σ2 < · · · < σlmax

for the corresponding portfolios’ volatilities. Should the selected portfolios not be
on the efficient frontier, they will still conform to the same ordering. A portfolio
that cannot fit this ordering should not be used, since it is guaranteed to have
both a lower expected return and a higher volatility than at least one of the other
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portfolios, and therefore cannot minimize risk from a GBWM (or a traditional)
viewpoint. At times we will use the notation µmin for µ1, µmax for µlmax , σmin for
σ1, and σmax for σlmax .

• Cost and Utility Vectors: Implementing full or partial goals at a given time period
t results in a reduction in portfolio worth to pay for the goal, with an accretion
in utility for the investor. As will be explained in the next two subsections, the
potential costs and utilities from implementing combinations of various full and
partial goals at a given time period t will be contained in the cost vector c(t)
and the utility vector u(t), with corresponding components ck(t) and uk(t), where
k = 1, 2, . . . , kmax(t).

• Initial Wealth: We will denote the initial wealth, W , that an investor puts into
their portfolio at t = 0 by W (0).

• Wealth Grid: In Subsection 2.4, we detail the grid of possible wealth values that
forms the state space used by the dynamic programming model in Section 3. This
wealth grid, which is the same at each time period, contains imax wealth values,
where these wealth values, Wmin = W1 < W2 < . . . < Wimax = Wmax, have equal
logarithmic spacing. Since bankruptcy is a possibility in the examples in this paper,
Wmin has been chosen to be a small positive number like a dollar or five dollars,
which essentially corresponds to being bankrupt.

2.2 Assigning a cost and a utility to each full or partial goal

A classic dynamic programming problem (Merton (1969); Merton (1971)) is to determine
how to optimally evolve an investor’s portfolio over time so as to maximize E[U(W (T ))],
the expected utility of the investor’s wealth, W , at the terminal time t = T . A utility
function, U , over the continuous domain of wealth values must be selected that corre-
sponds to the investor’s preferences. There are many models for these utility functions
as discussed in the introduction. Once a model is assumed, its parameters must also be
fit to the individual investor’s preferences. Determining both a model and its parameters
is a hard, almost inherently inaccurate process, but it is an unavoidable part of working
with utilities when we have a continuum of input values to consider. Our model works
with any desired utility function and parameters specified at time T , so we can explore
the effect of example models where U(W (T )) 6= 0, as we do in Subsection 6.5 of the
appendix, but otherwise we set U(W (T )) = 0 in this paper, so that we may focus on
the effects of the multiple goals that occur at earlier times, t = 0, 1, . . . , T − 1. Setting
U(W (T )) = 0, of course, corresponds to a case where the wealth at the terminal time
does not matter, such as when time T corresponds to a projected date of death for an
investor who does not care what happens to their money after they die.

At the earlier times, t = 0, 1, . . . , T−1, there is a considerable difference between a goal
based perspective, where the investor wishes to purchase specific items, and more stan-
dard approaches where the investor looks to maximize a function of annual consumption.
For example, a typical standard approach is to optimize E

[∑∞
t=1 e

−βt · U(Ct)
]
, where Ct

is the yearly consumption, U(·) is a concave, increasing function over the continuum of
possible consumption values, and β is the investor’s subjective discount rate. Because
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this standard approach involves a continuum of consumption values, we again require a
model for the utility function, along with an estimation of both its parameters and the
discount parameter β, and again we must accept the fact that it is inherently difficult to
match the model and the parameters to any specific investor’s preferences.

With multi-goals wealth management, we have a different inherent difficulty, which
is that the utility model must accurately reflect the investor’s preferences between each
of their goals. A single utility function over the continuum of potential goal costs is not
appropriate here because two goals can be of different importance to an investor, even
if the two goals have the same cost, or, for that matter, a goal that costs less may have
more importance to an investor than another goal that is more expensive. Having a
different utility function over the continuum of costs for each goal can address this, but
it is almost certain not to reflect the investor’s actual preferences, given the difficulty of
having even one utility function reflect an investor’s preferences over a continuum.

Fortunately, none of this is necessary nor desirable. Unlike consumption optimization,
multi-goal optimization works with a finite number of goals, as opposed to a continuum
of wealth values or consumption values. This means we do not need or want to specify
any utility function over a continuous domain, meaning we can avoid the considerable
assumptions needed to determine the model and parameters for such a function. We
instead require appropriately assigning a single utility value to each full or partial goal.

There is no valid way to do this without the investor’s feedback. It is inherently
central to the process. But can we get useful feedback from the investor? Part of the
difficulty of determining utility functions over continuous domains is that it is unclear
how to map feedback from an investor into a correct utility function. At first that type
of a problem appears inherent in our multi-goals formulation as well, since an investor
would know that assigning a higher utility to a goal relative to the others will make
it more important, but it is unclear how much higher they should choose the assigned
utility value to be.

The key to making this work is to note that once we have assigned utility values
to each goal, we will be able to use dynamic programming, as described in Section 3,
to determine the optimal set of probabilities for attaining each goal given these utility
values, and these optimized probabilities are intuitive to investors, meaning they enable
the investor to directly give useful feedback. If the resulting optimized probabilities do
not fit the investor’s preferences, they can boost (or lower) the assigned utilities for their
goals, knowing that boosting one goal’s utility will increase the probability that it is
attained but, in general, decrease the probability that the other goals are attained. This
iterative process is necessary to determine the investor’s preferences. Any other way
would attempt to determine an investor’s preferences between goals for them, which is
both undesirable and unnecessary. A thorough example of this iterative process will be
shown later in Section 4.2.1, but in this subsection we merely need to show what to do
with a given set of utilities that are assigned to each goal.

Consider, for example, an investor who has a goal to upgrade to a top-notch electric
car four years from now that will cost $50,000. If h, the time step, is 0.5, then this goal
is at t = 8 (i.e., in four years) with a cost of c = $50, 000. Let’s say we assign a utility
of u = 300 to this goal. This first assigned utility can be any real number. Its value is
irrelevant, since it is only the relative value of the goals’ utilities to each other that will
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matter. As currently stated, this car goal is an example of an all-or-nothing goal, since
they either buy or don’t by the car. Should the investor be open to alternatives, however,
they can consider partial goals. Maybe they are open to a hybrid car with lots of features
for $32,000 or a version with fewer features for $28,000. Let’s say we assign u = 125 for
the hybrid with lots of features and u = 80 for the hybrid with fewer features. Again,
there is no need to worry in this subsection if these assigned utility values correctly reflect
investor preferences, because they will be changed by the investor later. So, for Goal 1,
upgrading the car, we have that

Goal 1 (t = 8): Cost 0 28 32 50
Utility 0 80 125 300

,

where the cost is in thousand of dollars. Note that there are four possibilities here:
forgoing the goal completely (with a cost and utility of zero), the two partial goals, and
the full goal.

The investor may also have a level one goal of paying each semester’s tuition for their
child at a specific four year college. If tuition currently costs $30,000 per year, which is
projected to increase at a rate of 8% per year, and if the child is intending to start college
at t = 6, we would have a semi-annual cost of $30,000×1.083 ÷ 2 =$18,895 at t = 6 and
t = 7, a cost of $30,000×1.084 ÷ 2 =$20,407 at t = 8 and t = 9, and we then continue
in this manner for the college goals at t = 10, 11, 12, and 13. Assume that a utility of
1000 is assigned to each of these eight college goals. We note that this constant utility
assignment does not need to be adjusted over time by a discount factor like e−βt, since its
being applied to the inherently subjective worth of tuition to the investor, as opposed to
consumption, which is affected by, for example, inflation. At times other than t = 8, this
tuition goal is called Goal 1, but since we already have the concurrent goal of upgrading
the car at t = 8, the tuition goal at t = 8 is labelled to be Goal 2:

Goal 2 (t = 8): Cost 0 20.407
Utility 0 1000

.

When we have concurrent goals, there is some additional processing necessary to remove
any illogical goal combinations, as we explain in the next subsection.

2.3 The Cost and Utility Vectors for a Year’s Concurrent Goals

Consider an investor who hopes to fulfill three different concurrent goals at a specific
time period. Goal 1 is an all-or-nothing goal. Goals 2 and 3 allow for being partially
fulfilled. Specifically:

Goal 1: Cost 0 7
Utility 0 100

Goal 2: Cost 0 9 20
Utility 0 90 300

Goal 3: Cost 0 10 20 30 40
Utility 0 40 250 400 500

.

Since there are two possibilities for Goal 1 (fulfill the goal or forgo it), three possibilities
for Goal 2, and five possibilities for Goal 3, we have a total of 2× 3× 5 = 30 possibilities
for combined goal fulfillment at this time period.
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From these 30 possibilities, we first create a table with 30 columns containing the
total cost and the total utility for each possibility. These are shown in two rows below,
the second row continuing on from the first:

Cost 0 10 20 30 40 9 19 29 39 49 20 30 40 50 60
Utility 0 40 250 400 500 90 130 340 490 590 300 340 550 700 800

7 17 27 37 47 16 26 36 46 56 27 37 47 57 67
100 140 350 500 600 190 230 440 590 690 400 440 650 800 900

.

We then re-order the table’s columns so that the total cost is monotonically increasing.
If there are multiple columns corresponding to the same cost amount, we only retain the
column that corresponds to the highest utility for that cost amount. This reduces the 30
cases to 24:

Cost 0 7 9 10 16 17 19 20 26 27 29 30 36 37 39
Utility 0 100 90 40 190 140 130 300 230 400 340 400 440 500 490

40 46 47 49 50 56 57 60 67
550 590 650 590 700 690 800 800 900

.

Finally, starting with the second column, we remove any column where the preceding
column has a higher (or equal) utility. We remove these columns because it never makes
sense to obtain them, given that the previous column attains a higher (or equal) total
utility at a lower cost. This reduces the 24 cases to 13. These 13 cases comprise the final
cost and utility vectors:

Cost 0 7 16 20 27 36 37 40 46 47 50 57 67
Utility 0 100 190 300 400 440 500 550 590 650 700 800 900

.

We note that both the cost vector, c(t), and the utility vector, u(t), now contain
strictly increasing sequences. As stated in Subsection 2.1, we will use the subscript
k to denote the components of these vectors, where k = 1, 2, . . . , kmax(t). So, in the
above example, if k = 3, then ck(t) = 16 and uk(t) = 190. Also, ckmax(t)(t) = 67 and
ukmax(t)(t) = 900, where kmax(t) = 13.

We note that the computer program must retain information for how each of these
kmax(t) entries corresponds to the original goals. For example, the computer must retain
that the k = 8 entry, which has a cost of $40 and a utility of 550, corresponds to not
taking Goal 1, total fulfillment of the Goal 2, and partial fulfillment of the Goal 3 at a
cost of $20.

2.4 The Wealth Grid

Our solution to the multiple goals GBWM problem is implemented at every time period,
t, on a grid of wealth values. This grid contains imax wealth values, where imax can be any
desired number, although suggestions for choosing values of imax that are not too small
to lead to inaccuracies nor too large to unnecessarily slow computations can be found in
Das et al. (2019), and we have suitably modified the grid construction approach taken in
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that paper for the different types of cashflows here. These imax wealth values are spread
between the wealth limits Wmin and Wmax.

We begin by approximating Wmin and Wmax, noting that, ideally, they should rep-
resent the lowest and highest possible wealth values reasonably attainable for a solvent
investor. Since we have chosen to use geometric Brownian motion for the portfolio evo-
lution model in this paper, we have that an initial wealth, W (0), when affected by no
additional external monetary events, will evolve by

W (t) = W (0)e

(
µ−σ

2

2

)
t+σ
√
tZ
,

where Z is a standard normal random variable. The effect of any additional external
monetary event, be it an infusion, I(t), or the cost of attaining a goal, ck(t), will also
evolve by geometric Brownian motion. We look at the combined effect at each time
period of these three types of external monetary events under the best and worst possible
scenarios, subject to the assumption that −3 ≤ Z ≤ 3. We then locate the lowest and
highest computed wealth values from all time periods, which gives us the approximated
lower and upper wealth limits:

W̃min = min
t∈{0,1,2,...,T}

[
W (0)e

(
µmin−

σ2max
2

)
t−3σmax

√
t

+
t∑

τ=0

(
I(τ)− ckmax(τ)(τ)

)
e

(
µmin−

σ2max
2

)
(t−τ)−3σmax

√
t−τ
]

(1)

W̃max = max
t∈{0,1,2,...,T}

[
W (0)e

(
µmax−

σ2min
2

)
t+3σmax

√
t

+
t∑

τ=0

I(τ)e

(
µmax−

σ2min
2

)
(t−τ)+3σmax

√
t−τ
]
. (2)

Given that most investors will have a number of goals, it will be common for W̃min to
be negative at this stage. We do not want this, so if W̃min < Wbankrupt, where Wbankrupt

is a chosen positive wealth, we set W̃min = Wbankrupt. Initially, it might seem reasonable
to think that Wbankrupt should be selected to be one cent, but that can have significant
negative implications from a computational point of view. Because we want the points
in the wealth grid to have approximately equal logarithmic spacing, there will be a con-
centration of lower wealth values in the grid. This can mean, for example, that choosing
Wbankrupt to be $100 instead of one cent can cut the computational time in half, even
though having $100 is essentially the same as being bankrupt from the point of view of
an investor whose goals are in terms of thousands, not hundreds, of dollars.

To obtain the logarithmic spacing on the wealth grid, we define W̃i by

ln(W̃i) = ln(W̃min) +
i− 1

imax − 1

(
ln(W̃max)− ln(W̃min)

)
, where i = 1, 2, . . . , imax.

We need one of the grid points to equal the initial wealth, W (0), so we shift the entire
grid downwards as little as possible to accomplish this. That is, we first define ε to
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be the smallest non-negative value with the property that ln(W̃i) − ε = ln(W (0)) for
some value of i, then we define the wealth grid values, Wi, where i = 1, 2, . . . , imax by
ln(Wi) = ln(W̃i)− ε, or, after exponentiating,

Wi = W̃ie
−ε.

This also generates the wealth limits: Wmin = W1 and Wmax = Wimax .

3 Dynamic Programming for Optimizing in the Case

of Multiple Investor Goals

With the setup in place from Section 2 for notation and the cost and utility vectors, we
are now prepared to optimize the solution to the GBWM problem with multiple goals by
using dynamic programming. Dynamic programming evolves the solution backwards in
time, starting from the portfolio’s time horizon, t = T . For each successive time period
at every point on the wealth grid, we determine the strategy for attaining and forgoing
goals and for selecting investment portfolios that optimize the total expected utility
ultimately collected by the investor. The value function, V (Wi(t)), equals this optimized
total expected utility, and it is determined by the Bellman (1952) equation, which will
be equation (4) in Section 3.2. Once we have used the Bellman equation to determine
the optimal strategy at every time and wealth grid point, we then work forwards in time,
starting at the initial wealth, W (0), to generate the probability of being at any wealth
grid point at any time period. This also generates the probability of fulfilling every full
or partial goal.

3.1 Transition Probabilities

We now look to generate the value function at earlier time periods. More specifically, we
will use the fact that we know V (Wi(t + 1)), that is, the value function at all points on
the wealth grid at time t+ 1, to determine V (Wi(t)), the value function at all points on
the wealth grid at time t. This will allow us to iterate backward from time period T to
T − 1, then to T − 2, etc., until we end at time 0.

To accomplish this, we need to know the transition probabilities between grid points
at time period t to grid points at time period t + 1. That is, we want to know the
probability of transitioning to each value on the wealth grid, Wj(t + 1), at time t + 1 if
we are currently at a specific wealth value, Wi(t), at time t and we select a specific ck(t)
from the cost utility vector and a specific investment portfolio corresponding to µl and
σl.

Recall that although we can accommodate any Markovian evolution model with de-
terministic parameters, for simplicity we have assumed geometric Brownian motion for
most of the examples in this paper:

W (t) = W (0)e

(
µ−σ

2

2

)
t+σ
√
tZ
. (3)
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Define φ(z) to be the value of the probability density function of the standard normal
random variable at Z = z. We adapt equation (3) to these circumstances by noting that
we start at time period t with Wi(t)+I(t)−ck(t) dollars and progress h years to the time
period t+ 1. If we then isolate Z in equation (3), we obtain the approximate transition
probabilities, q̃:

q̃(Wj(t+ 1)|Wi(t), ck(t), µl) = φ

(
1

σl
√
h

(
ln

(
Wj(t+ 1)

Wi(t) + I(t)− ck(t)

)
−
(
µl −

σ2
l

2

)
h

))
.

These are approximate because their sum over all the j nodes at time t + 1 is not
necessarily equal to one. To obtain the transition probabilities, q, which do sum to one,
we just normalize the approximate transition probabilities, q̃:

q(Wj(t+ 1)|Wi(t), ck(t), µl) =
q̃(Wj(t+ 1)|Wi(t), ck(t), µl)

imax∑
J=1

q̃(WJ(t+ 1)|Wi(t), ck(t), µl)

.

Again, alternative stochastic processes to geometric Brownian motion can be easily
accommodated. For example, should fatter tails, which are more realistic, be desired,
the specification of Z in equation (3) may be replaced by a random draw from a t-
distribution. This is just as easy to calculate. The effect of using a t-distribution will be
presented later in Section 4.5. Another possible alternative is to use scenarios generated
by matching the moments of the empirical profile of the wealth process. Note that
moment matching methods also determine the probability of each scenario, thus making
possible the computation of the probability of success. See, for example, Geyer et al.
(2014) and Consiglio et al. (2016).

3.2 Bellman Equation

The value function, V , at time t+ 1 is the highest possible expected sum of the utilities
from fulfilled goals in time periods t+1, t+2, . . . , T −1 plus the utility of the final excess
wealth at t = T . The term “highest possible” means that at each time and point on the
wealth grid, the optimal choices for the component k from the cost/utility vectors and
for the investment portfolio l are used.

At time T , we know from our discussion in Subsection 2.2 that V (Wi(T )) = U(Wi(T )).
Since we know the transition probabilities from Subsection 3.1, we can compute V (Wi(T−
1)) by substituting t = T − 1 into the following Bellman equation and solving it for each
i = 1, 2, . . . , imax:

V (Wi(t)) = max
k,l

[
uk(t) +

imax∑
J=1

V
(
WJ(t+ 1)

)
· q
(
WJ(t+ 1)|Wi(t), ck(t), µl

)]
. (4)

The values of k and l that correspond to the maximum in the Bellman equation are the
optimal choices, which lead to the highest possible expected utility sum. We can then
repeat this process for the time period t = T − 2, then t = T − 3, etc., stopping after the
results at t = 0 are computed. This gives the value function, and more importantly the
optimal strategy, at all times and all gridpoints. As we progress through this Bellman

13



procedure, at each gridpoint, i, and time, t, we store these optimal strategy choices for
k and l, labeling them ki,t and li,t.

The overall runtime increases as kmax(t), lmax, the number of grid points imax, and
the number of periods T increase. We note that in the context of this paper, when
kmax(t) and lmax are both large, optimizing the Bellman equation over kmax(t) × lmax

possibilities slows down the algorithm, in which case it is computationally wiser to split
each time period optimization into two parts: first over the lmax portfolios, then over the
kmax(t) goal choices. This essentially leads to optimizing over kmax(t) + lmax possibilities,
instead of kmax(t) × lmax possibilities. For each portfolio we have to compute transition
probabilities for all wealth values on the grid, which are imax in number. Since we do
this in a vectorized fashion, it is optimized — we use NumPy vectors in the Python
programming language, further optimized using just-in-time (jit) compilation — so we
may assume no additional complexity from this step. Therefore, the complexity at each
time t is of order O(imax(kmax(t) + lmax)). Given there are T periods in the model, we

end up with an overall complexity of O

(
imax

(
T lmax +

T∑
t=0

kmax(t)

))
.

For all but the experiment in Subsection 4.5, the computational time was under 2
seconds, so the split optimization approach was unnecessary. However, the example in
Subsection 4.5 has lmax = 15 possible portfolios, imax = 1221 wealth grid points, and
301 goals and an additional 138 partial goals spread out over T = 60 years. Without
the split optimization approach, the computational time for this example was about 13
minutes; with the split optimization approach, the computational time was reduced to
just 17 seconds on a regular desktop computer.

3.3 Probability Distribution for Wealth and Optimally Attain-
ing Goals

To determine the probability distribution for the investor’s wealth at future times, we use
the transition probabilities and the optimal strategy information, ki,t and li,t, determined
from the Bellman equation to evolve the probability distribution forward in time, starting
with t = 0, then t = 1, and ending with t = T − 1.

More specifically, at t = 0, define i0 so that Wi0 is the wealth node that equals W (0),
therefore p(Wi0(0)) = 1 and p(Wi(0)) = 0 for all i 6= i0. To obtain the wealth probability
distribution at t = 1, we set t = 0 in the following “forwards equation” and run it for
each j = 1, 2, . . . , imax:

p(Wj(t+ 1)) =
imax∑
i=1

q
(
Wj(t+ 1)|Wi(t), cki,t(t), µli,t

)
· p
(
Wi(t)

)
. (5)

We then set t = 1 in equation (5) and again run it for each j = 1, 2, . . . , imax, continuing in
this manner until we finish with the t = T−1 case. This gives the probability distribution
for every point in the wealth grid at every time period of the portfolio.

Once this wealth probability distribution is calculated, we can determine the proba-
bility of attaining any specific full or partial goal at any given time t: At each time t for

14



each k = 1, 2, . . . , kmax(t), we sum p(Wi(t)) over every i where ki,t = k. This gives the
probability that each component k in the cost/utility vectors will be chosen. Once this
is known, the cost/utility vectors are reconnected to their original goals, and the prob-
ability that each full or partial goal will be fulfilled is determined by summing over the
components connected to that full or partial goal. For example, if the cost/utility vector
components k = 2, 5, and 9 are the only entries corresponding to, say, total fulfillment of
goal two, and their probabilities are 0.05, 0.07, and 0.04, then the probability of totally
fulfilling goal two is 0.05 + 0.07 + 0.04 = 0.16.

This goal probability information can then be given to the investor. If the investor
finds these goal probabilities do not fit well with their preferences, they may change the
utility values assigned to their goals or increase their infusions and then run the dynamic
programming algorithm again to see if the new results sufficiently meet their desires. (See
subsection 4.2.1 for an example of this.) This iterative process enables the investor to
gain a thorough understanding of what the trade-offs are among their goals when using
optimal goal fulfillment and optimal portfolio investment strategies.

4 Numerical Examples

In this section, we present examples that demonstrate the features of the approach,
including how changing inputs affects the optimal strategy and other results determined
by the algorithm. We start with simple cases where the features are clearer and then
proceed to more complex, realistic situations.

In the examples, the portfolios that are available to the investor will be on the efficient
frontier shown in Figure 1. This frontier was generated from historical returns in the
20 year period between January 1998 to December 2017 for index funds representing
U.S. Bonds, International Stocks, and U.S. Stocks1.

Further, unless stated otherwise, for the examples in this section we will assume that

• We restrict the portfolios used on the frontier to be between µmin = 0.0526 (which
corresponds to σmin = 0.0374) and µmax = 0.0886 (which corresponds to σmax =
0.1954). The point (σmin, µmin) corresponds to the vertex on the frontier. The
value of µmax corresponds to the highest of the three component index fund returns,
specifically, the return on U.S. Stocks. These three asset classes were chosen because
they are widely used by wealth management firms in constructing target date funds.

• We set the number of available investment portfolios, lmax = 15, and these 15
portfolios on the frontier have µ values that are equally spaced between µmin and
µmax.

1The three index funds used are (i) Vanguard Total Bond Market II Index Fund Investor Shares
(VTBIX), representative of U.S. Fixed Income (Intermediate-Term Bond), (ii) Vanguard Total Interna-
tional Stock Index Fund Investor Shares (VGTSX), representative of Foreign Equity (Large Cap Blend),
(iii) Vanguard Total Stock Market Index Fund Investor Shares (VTSMX), representative of U.S. Equity
(Large Cap Blend). These three funds have been chosen as representatives of their respective asset
categories for illustrative purposes only.
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• The time step h = 1, so the value of t corresponds to the number of years after the
initial investment at t = 0 is deposited.

• We assume no bequest motive, so V (Wi(T )) = U(Wi) = 0 for all wealth grid
points Wi. However, this is without loss of generality and we provide examples
with bequest utility in Section 6.5.

• There are no infusions, which means I(t) = 0 at all times t.

These assumptions may be easily changed if desired, as we will do in some examples later
in this section.

Portfolio Weights
Portfolio U.S. International U.S.
number Bonds Stocks Stocks

1 0.9098 0.0225 0.0677
2 0.8500 0.0033 0.1467
3 0.7903 -0.0160 0.2257
4 0.7305 -0.0352 0.3047
5 0.6707 -0.0545 0.3837
6 0.6110 -0.0737 0.4628
7 0.5512 -0.0930 0.5418
8 0.4915 -0.1122 0.6208
9 0.4317 -0.1315 0.6998
10 0.3719 -0.1507 0.7788
11 0.3122 -0.1700 0.8578
12 0.2524 -0.1892 0.9368
13 0.1927 -0.2085 1.0158
14 0.1329 -0.2277 1.0948
15 0.0731 -0.2470 1.1738

Figure 1: Top: The efficient frontier generated from the returns of the three index funds.
Bottom: The portfolio weights in the three index funds for each of the lmax = 15 portfolios
with equal spacing in µ between µmin = 0.0526 and µmax = 0.0886. As seen from the table,
both long-only and long-short portfolios occur.

Our dynamic programming algorithm is easily implemented on a single computer
(desktop or laptop) and is coded up in the Python programming language. With the
machine we used, which has 16 GB of RAM and an i5 Intel CPU, we will see that the
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runtime stays under 2 seconds, except for the complicated final example in Subsection
4.5, where the runtime is 17 seconds.

This section contains several subsections with many examples in a variety of settings
and scenarios. We therefore provide a roadmap for these examples in Table 1.

4.1 Two All-or-Nothing Goals

For the examples in this section, we have just two goals: one at t = 5 years, the other
at t = 10. (We therefore use T = 11, with no bequest at T .) We use an initial wealth
of W (0) = $100, which leads to Wmax = $1834. We have selected imax = 475 for the
number of nodes in the wealth grid between Wmin ≈ 1 and Wmax. The runtime for this
model is 0.5 seconds.

4.1.1 A Single Case with Two All-Or-Nothing Goals

We first consider a case where the goal at t = 5, if fulfilled, has a cost c(5) = $100 and
an assigned utility u(5) = 1000, while the goal at t = 10 has a cost c(10) = $150 and
utility u(10) = 1000. Because the utilities of the two goals are equal, it is clear what the
investor should do regarding fulfilling the goal at t = 5: If the investor has the $100 at
t = 5, they should spend it to attain the t = 5 goal, because this guarantees a utility of
1000 with the possibility for an additional 1000 should they be able to obtain $150 when
t = 10. In contrast, had they chosen to forgo the goal at t = 5, they would, at most,
have a total utility of 1000 from the t = 10 goal, which corresponds to a smaller total
expected utility.

It is far less clear for this case which investment portfolio choices optimize the in-
vestor’s total expected utility, but the algorithm generates these optimal choices, which
are given in Figure 2, for all levels of wealth (y-axis) and values of time (x-axis). In this
figure, the darker the portfolio color at a given wealth and time, the higher the optimal
portfolio is located on the efficient frontier, meaning the portfolio is more aggressive.

We see interesting strategy shifts in Figure 2 when t < 5. If the portfolio is doing
poorly, the most aggressive portfolio is chosen, since that optimizes the chance of the
investor getting back to $100 and attaining the t = 5 goal. If the investor has a little
more money, they optimally choose relatively safer portfolios to make sure they remain
on-track to have at least $100 at t = 5. But if they have even more than that, they
optimally shift to more aggressive portfolios again since they are likely to attain the
t = 5 goal and now hope to also attain the t = 10 goal. Finally, should they have even
more money, they again move to safer portfolios, since they now want to preserve the
wealth that will allow them to attain both goals.

At t = 5, the most aggressive portfolio is chosen for wealth levels below approximately
$201 because $100 will be deducted if the investor has that much money, leaving the need
for a more aggressive portfolio to optimize the chance of growing the remaining $101 or
less into $150 by t = 10.2 For t > 5, unsurprisingly, we see aggressive portfolios if

2At the wealth level barely above $100, we see a light colored pixel. In this case, the $100 goal is met,
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Table 1: Roadmap of examples using the multiple goals algorithm.

Experiment Section Table/Figure Implementation Plan Intent & Outcome

Two all or nothing goals
(10 years, 2 goals)

Sec 4.1.1 Table 2, Fig-
ures 2, 3

Explain optimal investment
portfolio choices for various
(t,W ) combinations; look at
wealth distributions at both
goals’ times

Portfolio choice is sensitive to
wealth level around the goal
amount; wealth distribution
clusters probability mass just
above needed goal costs

Varying utilities for two
all or nothing goals (10
years, 2 goals)

Sec 4.1.2 Table 2 See how goals are traded off
based on costs and utilities

Goal probabilities are sensi-
tive to utilities in intuitive
ways

Multiple all or nothing
goals (24 years, 7 goals)

Sec 4.2,
4.2.1; Ap-
pendix:
6.1, 6.2,
6.3, 6.4,
6.5

Tables 3, 4;
Appendix:
Tables 10, 11,
12, 13, Figures
5, 6

Examine how multiple goals
tradeoff; how changing utili-
ties affects probabilities; iter-
atively assign utilities. Ap-
pendix: comparative statics
from changing one goal’s util-
ity; effect of utility from ter-
minal wealth

Increasing utilities for one
goal increases its probabil-
ity but it does not mean
all other goal probabilities
fall; an iterative example of
how the investor can arrive
at final goal utilities. Ap-
pendix: Intuition regarding
changing assigned utilities to
goals, initial wealth, infu-
sions, available investment
portfolios, and weight given
to terminal wealth utility

Concurrent goals and
partial goals (10 years, 3
goals)

Sec 4.3.1 Table 5 Implement the concurrent
and partial goal example in
Sec 2.3

We see how the tradeoff be-
tween partial and full realiza-
tion of a goal occurs; show
how probabilities for both are
easily reported

Concurrent goals and
partial goals (7 years,
semi-annual, 2 goals)

Sec 4.3.2 Table 6 Implement the concurrent
and partial goal examples in
Sec 2.2; run an example with
half-year subperiods

We see how the tradeoff be-
tween partial and full realiza-
tion of a goal occurs; show
how probabilities for both are
easily reported

Comparison of this
paper’s algorithm with
Target Date Funds
(TDF) (60 years, 3
goals)

Sec 4.4 Tables 7, 8 Compare the performance of
this paper’s algorithm with
TDF

This paper’s algorithm signif-
icantly outperforms TDF be-
cause it is time, wealth, and
goal optimized, whereas TDF
is only time optimized

Long-range financial
planning (60 years,
hundreds of goals)

Sec 4.5 Table 9 Does this paper’s algorithm
scale to large, realistic finan-
cial planning problems? How
do goal probabilities change
with goal tier?

Good scaling outcomes with
low latency; Goal probabil-
ities are highest for Tier 1,
then Tier 2, etc., as desired

Comparison of good and
bad realizations

Sec 4.5.1 Figure 4 Examine how different the
utilities and goal realizations
are for a good portfolio path
versus a poor portfolio path

Difference in utilities is small
because the algorithm forgoes
minor goals when the path is
poor
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Figure 2: The grid of optimal portfolios at all levels of wealth (y-axis) and time (x-axis).
The darker the portfolio color, the higher up on the efficient frontier the portfolio is, meaning
both a higher expected return and a higher volatility. As shown in the color bar on the right
of the plot, we consider a total of 15 possible portfolios along the efficient frontier, numbered
from 0, the lightest color and therefore most conservative portfolio, to 14, the darkest color and
therefore the most aggressive portfolio. The cost of the goals are $100 at 5 years and $150 at
10 years. Both goals have an assigned utility of 1000.

but there is so little wealth remaining that it is below the lowest value in our logarithmically spaced
wealth grid. This state of essential bankruptcy means that the t = 10 goal will not be met no matter
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reaching $150 by t = 10 looks difficult and less aggressive portfolios when the investor
has more money and is better off safeguarding their funds from losses that could reduce
their wealth below $150 by t = 10.

This optimal strategy leads to a probability of 0.893 for fulfilling the t = 5 goal and
a 0.275 probability for fulfilling the t = 10 goal. The probability distributions for the
wealth at each time are given in Figure 3. Note the figure’s leftward shifts after t = 5
and t = 10 due to the payments made when fulfilling goals. Also, as expected, we see
the optimized strategy create a clump in the distribution that just exceeds $100 at t = 5
so as to attain the t = 5 goal and another clump exceed $150 at t = 10. Because the
probability of exercising the goal at 5 years is much higher than the one at 10 years, we
see a bigger probability mass clump at 5 years. Further, note the probability mass clump
located a little below $250 at year t = 5, which occurs because the algorithm may be on
track to attain both goals.

Figure 3: Probability distribution for wealth at different times, t, in the model. The plot
is divided into two time intervals: the first 5 years are contained in the top panel and the
remaining years in the bottom panel. Attaining the goals at either t = 5 or t = 10 causes the
distribution to shift to the left. Note how the optimized investing strategy makes the t = 5
distribution clump just above W = 100 to attain the t = 5 goal and then makes the t = 10
distribution clump just above W = 150 to attain the t = 10 goal.

4.1.2 Altering the Two Goals’ Assigned Utilities and Costs

The utility values assigned by the investor to the two goals have a significant effect on
the optimal portfolio strategy. They also have a significant effect on deciding whether
or not to exercise the option to fulfill or forgo the t = 5 goal. This decision is optimally
determined by the dynamic programming algorithm by calculating which is larger: 1)

which investment portfolio is chosen. In these essentially bankrupt cases, the program defaults to the
lightest color.
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the utility for the t = 5 goal plus the expected utility of the t = 10 goal starting from a
wealth level that has been reduced due to paying for the t = 5 goal or 2) the utility of
the t = 10 goal with no reduction in wealth because the t = 5 goal is not exercised.

In Panel A of Table 2, we see some of the changes and tradeoffs that occur as we vary
the utilities of the two goals while keeping the costs fixed at c(5) = $100 and c(10) = $150.
In Panel B of Table 2, we look at the same utility combinations, but we switch the costs
so that c(5) = $150 and c(10) = $100. An analysis of the table reveals a number of
properties concerning the optimal strategy:

Table 2: The tradeoffs between a goal at t = 5 and a goal at t = 10, each of which is fulfilled
or forgone. In Panel A, fulfilling the t = 5 goal costs $100 and fulfilling the t = 10 goal costs
$150. In Panel B, these goal costs are switched. For various values of the utility, u, assigned to
the two goals, we present the optimal expected total utility, E∗[u], which is the value function
at the initial wealth and time, Wi0(0) = $100. Under this optimal strategy, we present the
probability of having sufficient wealth to attain the goal at t = 5, that is, P (W (5) ≥ $100) for
Panel A and P (W (5) ≥ $150) for Panel B, and for both panels we present the probabilities that
the optimal strategy will fulfill the goal at t = 5 and t = 10, denoted P ({fulfill t = 5 goal}) and
P ({fulfill t = 10 goal}).

Panel A: c(5)=$100, c(10)=$150

u(5) u(10) E∗[u] = V (Wi0(0)) P (W (5) ≥ $100) P ({fulfill t = 5 goal}) P ({fulfill t = 10 goal})

1000 1000 1168 0.893 0.893 0.275
1000 2000 1855 0.917 0.123 0.866
1000 3000 2757 0.969 0.009 0.916
2000 1000 2110 0.969 0.969 0.171
2000 2000 2336 0.893 0.893 0.275
2000 3000 2886 0.849 0.298 0.764
3000 1000 3087 0.984 0.984 0.134
3000 2000 3259 0.950 0.950 0.205
3000 3000 3504 0.893 0.893 0.275

Panel B: c(5)=$150, c(10)=$100

u(5) u(10) E∗[u] = V (Wi0(0)) P (W (5) ≥ $150) P ({fulfill t = 5 goal}) P ({fulfill t = 10 goal})

1000 1000 1185 0.398 0.398 0.787
1000 2000 2137 0.358 0.186 0.976
1000 3000 3120 0.340 0.163 0.986
2000 1000 1631 0.493 0.493 0.644
2000 2000 2370 0.398 0.398 0.787
2000 3000 3306 0.373 0.210 0.962
3000 1000 2155 0.544 0.544 0.524
3000 2000 2792 0.449 0.449 0.723
3000 3000 3555 0.398 0.398 0.787

• As we would expect, the relative utilities for the two goals determines their priority.
Holding u(5) constant and then increasing u(10) from 1000 to 2000 to 3000, we see
from the last two columns in the table that the probability of attaining the t = 5 goal
decreases, while the probability for the t = 10 goal increases. This can be drastic.
For example, in the case where u(5) = 1000 in Panel A, we see the probability of
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attaining the t = 5 goal decrease from 89.3% to 0.9% while the percentage for the
t = 10 goal increases from 27.5% to 91.6%.

• Changing the cost has a similar effect. Comparing Panel A to Panel B, we see a
considerable decrease in the probability of attaining the t = 5 goal and a corre-
sponding increase in the probability of attaining the t = 10 goal caused by c(5)
increasing from $100 to $150 and c(10) decreasing from $150 to $100.

• The third column gives the value function, V , at the initial condition, Wi0(0), which
is equal to the optimal total expected utility. This value can be computed from the
first two and last two columns; for example, for the second row in panel A, we can
calculate 1855 = 1000× 0.123 + 2000× 0.866. That is, the total expected utility is
the sum of each goal’s utility weighted by the probability of attaining that goal.

• For any set of goals, multiplying all the goals’ utilities by the same constant has no
effect on the optimal strategy. So, for the cases with two goals here, only the ratio
of u(5) to u(10) matters, not the individual values of u(5) and u(10). For example,
within each panel, when u(5) = u(10) we see that the probabilities in the last three
columns are identical.

• If u(5) ≥ u(10), then the investor should always take the t = 5 goal if they have
the money. This is due to the fact that taking the t = 5 goal guarantees an
amount greater than or equal to the utility that may or may not happen from the
t = 10 goal. This means the values in the fourth and fifth columns of the table are
identical. When u(5) < u(10), however, it may be best to forgo the t = 5 goal to
optimize the chance of fulfilling the t = 10 goal. For example, in Panel A when
u(5) = 1000 and u(10) = 3000, there is a 96.9% chance that the investor will have
retained at least their original investment of $100 by t = 5, but they optimally opt
to spend this $100 to fulfill the t = 5 goal only 0.9% of the time, because it is far
more important to build up at least $150 by t = 10 where they attain three times
more utility. They only opt to fulfill the t = 5 goal if they have amassed so much
money that they are confident they can obtain the t = 10 goal even after spending
$100 to obtain the t = 5 goal.

4.1.3 Determining the Wealth Intervals where the Investor Optimally Chooses
to Fulfill the t = 5 Goal

Recall from the introduction the case of an investor that wanted to take a nice vacation
in 5 years and also wanted to buy their child a car in 10 years, where this second goal was
more important and more expensive than the first goal. This corresponds to a situation
like c(5) = 100, c(10) = 150, u(5) = 2000, and u(10) = 3000, given in Panel A of Table
2. In the introduction we pointed out that at t = 5, the investor should repeatedly shift
their decision about whether or not to take the goal at t = 5 depending on their wealth,
but it was not clear at which wealth values these decision switches should occur.

Our algorithm can determine these wealth values for switching the decision optimally.
For example, take the case above where c(5) = 100, c(10) = 150, u(5) = 2000, and
u(10) = 3000. At t = 5, if the investor has less than $100, obviously they cannot take the
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t = 5 goal. If they have between $100 and $108 at t = 5, however, the investor should
take the t = 5 goal, because their wealth is so low that the chance of being able to attain
$150 by t = 10 is too small to justify the additional utility they would obtain should they
reach the t = 10 goal. Between $108 and $182, the situation flips: the investor should
forgo the t = 5 goal, because it sufficiently increases the likelihood of attaining the t = 10
goal to justify the risk. Finally, if the investor has over $182 at t = 5, they should again
take the t = 5 goal, because they are sufficiently likely to be able to attain both goals.

4.2 Multiple All-or-Nothing Goals

In this section, we expand from two all-or-nothing goals to seven all-or-nothing goals
whose details are listed in Table 3 below, where T = 25. We start with an initial wealth
of W (0) = $30 (thousand), which corresponds to Wmax = $5026, just over five million
dollars. We have selected imax = 556 for the number of nodes in the wealth grid between
Wmin ≈ 1 and Wmax. The runtime is approximately 1.5 seconds.

Table 3: Base Case: Seven All-Or-Nothing Goals Under the Optimal Strategy where W (0) =
30.

Goal 1 Goal 2 Goal 3 Goal 4 Goal 5 Goal 6 Goal 7

Goal time, t (in years) 5 8 10 11 17 22 24

Goal cost, c (in 1000s of $) 25 17 15 80 50 60 130

Goal utility, u 1000 2500 500 1500 300 3000 2000

Probability of fulfilling goal 0.0446 0.9871 0.2077 0.0316 0.0192 0.7569 0.2373

Table 3 also provides the results from the algorithm, which optimizes the total ex-
pected utility. The value of this optimal total expected utility E[u] = V (Wi0(0)) is 5415.
As indicated in the previous section, this equals the dot product of the vectors comprising
the bottom two rows of Table 3. Since the total utility from summing the elements in the
third row is 10800, we see that the investor can adopt a strategy to attain goals that, at
best, on average, achieves the fraction 5415/10800 = 0.5014 of the utility corresponding
to attaining all the investor’s goals. In the remainder of this paper, we will generally
refer to this optimally achievable total expected utility fraction as the “expected utility
fraction.”

In the appendix (Section 6), we explore comparative statics for this example, namely,
the effect when the investor considers changing utility assignments, changing the initial
wealth, making periodic cash infusions, increasing the range along the efficient frontier
for the available portfolio choices, and adopting a non-zero bequest utility. In the next
subsection, we explore how an investor might combine the first three of these ideas —
making successive changes to their utility values, as well as to their initial contribution
and to their later infusions — so as to achieve their desired probabilities of attaining the
goals for this example.
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4.2.1 The Process of Assigning Utilities to Goals

The GBWM algorithm rigorously enables a “human-in-the-loop” mechanism by which
investors can intuitively tweak their utilities and contributions to determine the smallest
amount of resources needed to achieve minimum desired probabilities for attaining each
of their goals. Determining these minimum probabilities, or potentially altering them,
is, by necessity, something the investor must determine. Similarly, changing available
resources, like increasing the initial investment or committing to later cash infusions, is
also a necessarily human decision. However, because the dynamic programming algorithm
in Sections 2 and 3 rigorously translates a given set of goal utilities and financial resources
into an optimal set of probabilities for attaining each goal, and these probabilities, unlike
the underlying utility values, are intuitive to the investor, they can knowledgeably make
alterations to conform to their desires, as we exemplify in this subsection. The iterative,
experimental aspect of this process is essential to making certain the investor controls
the algorithm to best meet their desires.

We consider a situation where Goals 2 and 6 of the seven goals are the most important
to the investor, so they wish to maintain at least a 99% chance of attaining them; Goals
1, 4, and 7 are next most important, where they want to maintain at least a 60% chance;
and finally, Goals 3 and 5 are least important, where they want to maintain at least
a 30% chance. The optimal probabilities in Table 3, which are restated in Run #1 of
Table 4, show that none of these desired probabilities have been achieved. That is, we
know that even with the optimal strategy, the investor is unable to attain their desired
probabilities, so they must make one of the three changes mentioned above: increase
the initial contribution, increase infusions, or expand the possible portfolios available.
Assume the investor determines that they can initially invest another $20 (thousand), so
W (0) now becomes $50 (thousand). The effect of this larger initial investment on the
increased probabilities for achieving the seven goals is shown in Run #2 in Table 4.

However, even in Run #2, only two of the seven goals have sufficient probabilities,
indicating the investor will likely need to make further changes, such as committing to
infusions over time. In preparation for this, the investor alters their assigned utility
values by decreasing the utility values for the two goals with sufficient probability and
increasing the utility for the goals whose probability is significantly below the desired
values, generating Run #3 in Table 4. Since the optimal probabilities for all the goals
are again below the desired values, we consider the effect of infusions.

The investor begins by considering an annual infusion of I(t) = $2 (thousand) dollars,
which leads to the values seen in Run #4. These are close to the desired probability
values. By tweaking the utility values, the investor obtains Run #5, but, once again,
sees that the optimal probabilities are all below the desired values, so a small amount of
additional funds are still required. The investor therefore decides to increase their annual
infusion to $3 (thousand) dollars in each of the first six years, while keeping the annual
infusion at $2 (thousand) dollars after that. This gives the results in Run #6, and a
small tweak of the utility values after that achieves all the desired probabilities, as shown
in Run #7.

This example is typical of how an investor, or a robo-advisor program, can use the
algorithm to determine the final assigned utility values for each goal. That is, the investor
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or program increases the utility of a goal whose probability is too low and decreases the
utility of a goal whose probability is too high, until all the probabilities are too low or all
the probabilities are high enough. If all the probabilities are too low, the investor must
either decrease their expectations by allowing lower probabilities for at least some of
their goals, or they must increase the initial investment, infusions, or available portfolios.
If all the probabilities are high enough, the investor knows they have devoted sufficient
resources to attain their goals, as long as they follow the optimal strategy determined in
Sections 2 and 3. This process prevents investors from having unrealistic expectations for
what their money can accomplish, and it also prevents the opposite mistake of devoting
too many resources to attain their goals.

Table 4: Determining appropriate utility values for the seven goals in Table 3, along with
appropriate values for the initial investment and infusions in each future year. Probability
values that are sufficiently high for the investor are in boldface.

Goal 1 Goal 2 Goal 3 Goal 4 Goal 5 Goal 6 Goal 7
Minimum goal probability 0.60 0.99 0.30 0.60 0.30 0.99 0.60

Run #1: Goal utility, u 1000 2500 500 1500 300 3000 2000
Probability of fulfilling goal 0.0446 0.9871 0.2077 0.0316 0.0192 0.7569 0.2373

Run #2: Goal utility, u 1000 2500 500 1500 300 3000 2000
Probability of fulfilling goal 0.3380 0.9994 0.5299 0.1586 0.0761 0.9352 0.4772

Run #3: Goal utility, u 1200 1700 400 2500 700 3000 2000
Probability of fulfilling goal 0.2980 0.9729 0.1321 0.3073 0.2070 0.9338 0.4255

Run #4: Goal utility, u 1200 1700 400 2500 700 3000 2000
Probability of fulfilling goal 0.6832 1.0000 0.2344 0.4982 0.2886 0.9901 0.5803

Run #5: Goal utility, u 1200 800 425 2650 705 2900 2100
Probability of fulfilling goal 0.5645 0.9896 0.2618 0.5478 0.2871 0.9895 0.5881

Run #6: Goal utility, u 1200 800 425 2650 705 2900 2100
Probability of fulfilling goal 0.6476 0.9942 0.3027 0.5862 0.3126 0.9912 0.6106

Run #7: Goal utility, u 1200 760 425 2700 700 2900 2070
Probability of fulfilling goal 0.6237 0.9914 0.3150 0.6046 0.3072 0.9902 0.6027

4.3 Concurrent Goals and Partial Goals

Sections 4.1 and 4.2 were concerned with all-or-nothing goals from different years. We
now consider what happens when we allow for multiple goals to happen concurrently and
when we allow for partial fulfillment of goals.

4.3.1 Results for the Concurrent and Partial Goals Example in Subsection
2.3

We revisit the example with three concurrent goals described in Subsection 2.3. We will
assume these three goals occur at year 5. To this, we add another goal in year 10 that
may be taken partially at a cost of $50 with a utility of 500 or taken fully at a cost of
$90 with a utility of 1000. We assume the initial wealth, W (0), is $50, so T = 11 and
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Wmax = $909. We have selected imax = 419 for the number of nodes in the wealth grid
between Wmin ≈ 1 and Wmax. The runtime is approximately 0.5 seconds.

The optimal total utility is 1013 out of a maximum possible of 1900, so the expected
utility fraction is 1013/1900 = 0.5330. Table 5 shows the probability of reaching various
partial and full goals. The final three columns in Panel A show, respectively, the cost
vector, c(5); the utility vector, u(5); and the probability of fulfilling the partial or full
goals associated with the components of these vectors. The first six columns break down
the cost and utility vectors’ values by goal. This is key to creating Panel B, which gives
the probabilities of attaining each full or partial goal as an investor would want to see.
For example, the first row in Panel B gives the probability of not attaining Goal 1 in
year 5. This is calculated by summing all the probabilities in Panel A that correspond
to Goal 1 not being attained: 0.0198 + 0.1547 + 0.0672 + 0.1162 = 0.3579.

The optimal decisions shown in Panel B make intuitive sense. At year t = 5, the
investor is first attracted to fully realizing Goal 2, because its utility per cost ratio is
very high. The investor may defer this goal so as to optimize the chance of attaining
the very high utility values assigned to Goal 1 at t = 10, even though these high utility
values also correspond to higher costs. If the cost of $20 for fully attaining Goal 2 is too
much, the investor may decide to partially fulfill Goal 2 and totally fill Goal 1 at t = 5
for a total cost of $16. Should the investor have even less portfolio wealth and needs
to choose between partially filling Goal 2 or totally filling Goal 1, it is better to choose
the latter because it gives a higher utility (100 versus 90) at a lower cost ($7 versus $9).
Should the investor have enough money at t = 5 to fully attain Goal 2 and spending
more money at t = 5 will not sufficiently hurt the chances of attaining Goal 1 at t = 10,
the algorithm will look to also fulfill Goal 1 at t = 5 and then progressively fulfill more
and more of Goal 3 at t = 5.

4.3.2 Results for the Example in Subsection 2.2 with a New Car Goal and
a College Tuition Goal

We revisit the example from Subsection 2.2 where an investor is considering buying a
new car in four years, but also places a much higher utility on paying their child’s tuition
every semester for four years, starting in year three. Because the tuition is paid semi-
annually, we use h = 0.5 instead of h = 1, so, for example, year 4 corresponds to t = 8.
Using the method detailed in Subsection 2.3, we can determine the cost vectors, c(t),
and the utility vectors, u(t), from the numbers given in Subsection 2.2. For year 4 (i.e.,
t = 8), these vectors, c(8) and u(8), are given, respectively, in the fifth and sixth columns
of Table 6.

We assume the initial wealth, W (0), is $100, so T = 14 (for a horizon of 7 years)
and Wmax = $868. We have selected imax = 594 for the number of nodes in the wealth
grid between Wmin ≈ 1 and Wmax. The runtime is under 1 second. The optimal total
utility is 6356 out of a maximum possible of 8300, so the expected utility fraction is
6356/8300 = 0.7658. Table 6 shows the probability of reaching the various partial and
full goals. From Panel B, we see that the tuition goal in every semester is fulfilled with
a reasonable probability (> 75%, except in the last year). However, it is almost certain
that we will forgo the car goal in year 4, because it is costly and does not offer a utility
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Table 5: Partial and concurrent goals. We implement the three goals described in Subsection
2.3 as goals at year 5 and add to that a single goal in year 10 that may be taken partially at
a cost of $50 with a utility of 500 or fully at a cost of $90 with a utility of 1000. The initial
wealth, W (0), is $50. The detailed breakout of goals and probabilities at year 5 is shown in
Panel A. Note that the seventh and eighth columns are, respectively, the cost vector, c(5), and
the utility vector, u(5). In Panel B we show the costs and utilities for each partial or full goal
at each time, along with the probability that the goal is fulfilled. The information in Panel A
is summed to obtain the year 5 information shown in Panel B.

Panel A: Year 5
Cost Utility Total

Goal 1 Goal 2 Goal 3 Goal 1 Goal 2 Goal 3 Cost Utility Probability

0 0 0 0 0 0 0 0 0.0198
7 0 0 100 0 0 7 100 0.0554
7 9 0 100 90 0 16 190 0.0012
0 20 0 0 300 0 20 300 0.1547
7 20 0 100 300 0 27 400 0.2240
7 9 20 100 90 250 36 440 0.0109
7 0 30 100 0 400 37 500 0.0267
0 20 20 0 300 250 40 550 0.0672
7 9 30 100 90 400 46 590 0.0073
7 20 20 100 300 250 47 650 0.0394
0 20 30 0 300 400 50 700 0.1162
7 20 30 100 300 400 57 800 0.1938
7 20 40 100 300 500 67 900 0.0834

Panel B
Year Goal# Cost Utility Probability

5 1 0 0 0.3579
1 7 100 0.6421
2 0 0 0.1019
2 9 90 0.0194
2 20 300 0.8787
3 0 0 0.4551
3 20 250 0.1175
3 30 400 0.3440
3 40 500 0.0834

10 1 0 0 0.4187
1 50 500 0.2137
1 90 1000 0.3676

that is mildly close to that of the tuition goal.

From Panel B of Table 6, we also see that the probability of attaining the tuition
goal decreases each time we jump forward a year, due to the tuition cost going up while
the utility remains constant. However, as we change semesters within years 3, 4, and
5, the probability of attaining the tuition goal increases, since the later semester has an
extra half a year for the investor’s portfolio to grow. In contrast, as we change semesters
within year 6, the probability decreases, instead of increases. This makes sense as well:
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Since the tuition goals at year 6 and at year 6.5 have the same utility, the goal at year 6
should always be taken if the investor has the money, because that guarantees a utility
of at least 1000, whereas forgoing this goal guarantees a future utility of at most 1000
from the tuition goal at year 6.5. Since it is possible that fulfilling the tuition goal at
year 6 means not having enough money to pay the last semester of tuition at year 6.5,
we expect the probability of fulfilling the tuition goal at year 6.5 to be lower than the
probability of fulfilling the tuition goal at year 6, just as we observe.

Table 6: Car and tuition goals example from Subsection 2.2. All cost and wealth numbers
are in thousands of dollars. The initial wealth is W (0) = $100. The format for this table is the
same format used for Table 5. Goal 1 is for tuition, except at year 4, when Goal 1 is for the
car and Goal 2 is for tuition.

Panel A: Year 4 (t=8)
Cost Utility Total

Goal 1 Goal 2 Goal 1 Goal 2 Cost Utility Probability

0 0 0 0 0 0 0.2309
0 20.407 0 1000 20.407 1000 0.7633
28 20.407 80 1000 48.407 1080 0.0014
32 20.407 125 1000 52.407 1125 0.0021
50 20.407 300 1000 70.407 1300 0.0023

Panel B
Year Goal# Cost Utility Probability

3 1 0.000 0 0.1412
1 18.895 1000 0.8588

3.5 1 0.000 0 0.0076
1 18.895 1000 0.9924

4 1 0.000 0 0.9942
1 28.000 80 0.0014
1 32.000 125 0.0021
1 50.000 300 0.0023
2 0.000 0 0.2309
2 20.407 1000 0.7691

4.5 1 0.000 0 0.0765
1 20.407 1000 0.9235

5 1 0.000 0 0.2235
1 22.039 1000 0.7765

5.5 1 0.000 0 0.1314
1 22.039 1000 0.8686

6 1 0.000 0 0.2837
1 23.802 1000 0.7163

6.5 1 0.000 0 0.5500
1 23.802 1000 0.4500
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4.4 Optimal Long Range Financial Planning for Retirement

This section shows that target-date funds materially underperform the GBWM algorithm.

We consider an individual investor who is 35 years old now (at t = 0). The investor is
planning for their retirement at age 70. We will assume the investor currently has $100 in
their retirement account (meaning one hundred thousand dollars, since monetary figures
in this example are in thousands of (after-tax) dollars). Assuming a rate of inflation of
3%, the investor intends to contribute $10 real t = 0 dollars to their retirement plan,
that is, $10×1.03t, every year until they stop working at age 69 (t = 34). Starting at age
70, they are projecting they will annually collect $80×1.03(t−35) dollars, that is $80 real
t = 35 dollars from Social Security.

This investor has three (all-or-nothing) goals:

• Goal 1: Purchase a $2500 (that is 2.5 million dollar) annuity at the age of 70,
which should initially (at age 70) annually generate about $60 (thousand) in t = 0
dollars,3 but then does not grow with inflation in later years.

• Goal 2: Purchase a $3000 annuity at age 85 to cover potential new medical and
long-term care costs. This should initially (at age 85) annually generate about $90
(thousand) in t = 0 dollars, but, as before, does not grow with inflation after that.

• Goal 3: Give $4000 at age 95 to grandchildren to help with the cost of a college
education or with a downpayment on a new house. This amount corresponds to
$680 (thousand) in t = 0 dollars.

We compare two methods of investing for these future goals. The first method de-
termines the investment portfolio by using a typical target date fund approach. The ap-
proach uses the same three index funds (U.S. Bond, International Stocks, and U.S. Stocks)
that we have used in the other examples. The proportions for the three funds are given
by the glide path shown in Table 7.4 As discussed earlier, this approach, which has
become progressively popular with advisors and clients, cannot prioritize goals, so it will
take each goal if there are sufficient funds. Further, the glide path approach chooses an
asset mix strictly as a function of time, and therefore the assets chosen have no relation
to how well the investor’s portfolio is performing or the goals the investor looks to attain.
It is a one-size-fits-all approach.

The second method uses the dynamic programming approach. We will assign a utility
of u = 4 to Goal 1, u = 2 to Goal 2, and u = 1 to Goal 3. These utility values were

3This Goal 1 annuity approximation and the annuity approximation in Goal 2 were gener-
ated using https://www.schwab.com/public/schwab/investing/accounts_products/investment/

annuities/income_annuity/fixed_income_annuity_calculator. Optimization with annuities has
been explored in a series of excellent papers: Konicz and Mulvey (2013); Konicz and Mulvey (2015);
Konicz et al. (2016).

4The term “glide path” is used in the standard sense for target-date funds, see: https://www.

investopedia.com/terms/g/glide-path.asp. The definition is stated as follows: “Glide path refers
to a formula that defines the asset allocation mix of a target-date fund, based on the number of years
to the target date. The glide path creates an asset allocation that typically becomes more conservative
(i.e., includes more fixed-income assets and fewer equities) as a fund gets closer to the target date.”
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Table 7: The target date fund glide path used in Subsection 4.4

Age range 35–39 40–44 45–49 50–54 55–59 60–64 65–69 70–74 75–95

1. U.S. Stock 63% 63% 60% 55% 50% 45% 38% 29% 21%
2. International Stock 27% 27% 25% 23% 20% 18% 16% 12% 9%

3. U.S. Bond 10% 10% 15% 22% 30% 37% 46% 59% 70%

chosen because they correspond to an optimal strategy that fulfills each goal if there are
sufficient funds. In other words, the optimal goal taking strategy is chosen to match what
the target date fund’s goal taking strategy must be. So with the goal taking strategy
being the same, the dynamic programming approach is only able to take advantage of
the optimal investment portfolio strategy it provides, as opposed to the optimal goals
taking strategy.

How much of a difference does this optimal investment portfolio strategy make? Ta-
ble 8 shows that the difference is considerable. At age 70, the dynamic programming
approach will have the $2500 needed to attain the first goal 78.2% of the time, while
the target date fund approach will have sufficient funds only 63.9% of the time. This
difference widens when the investor reaches the two remaining goals. By the end of the
third goal at age 95, the investor who opts for the target date fund approach has a 55.1%
chance of going bankrupt, while the investor who opts for the dynamic programming
approach reduces that chance by 26.4 percentage points to 28.7%.

Table 8: Chance of remaining solvent after paying each goal

Goal 1 Goal 2 Goal 3

Target Date Fund approach 63.9% 55.9% 44.9%
Dynamic Programming approach 78.2% 74.6% 71.3%

This example shows that the beneficial effects of using the dynamic programming
approach are far from trivial for investors. In fact, to attain the 71.3% chance of remaining
solvent at age 95 that dynamic programming has, the investor using the target date fund
approach would have needed to start at age 35 with $280 (thousand) instead of $100
(thousand).

4.5 Optimal Long Range Financial Planning with Numerous
Lifetime Goals

Next we consider a couple, both 35 years old, with one 5 year old child. The couple is
looking to create a long term goals-based investment plan over the next 60 years, until
they are 95. (So T = 61.) Their intent is to retire and start taking Social Security at
age 70. As in the previous examples, all of the goals and costs here are in thousands of
(after-tax) dollars.

The income sources (infusions) for the couple are:

1. Salary income: A combined annual salary of $75, projected to increase annually
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at 4% until retirement at age 69 (t = 34). This includes money being saved for
retirement.

2. Retirement income: Social Security is assumed to pay $120 at age 705 (t = 35),
which corresponds to around $43 present day dollars, assuming a rate of inflation
of 3%. We will also assume the rate of inflation continues at 3% for Social Security
payouts between t = 35 and t = 60.

The couple’s goals are:

1. Tier 1 (highest priority) goals

(a) Mortgage: Assume the couple needs to pay a fixed annual rate of $10 for the
next 25 years (t = 1 through t = 25) to pay off what remains from a 30 year
fixed mortgage.

(b) Property tax: Assume the annual cost is $6, which goes up every year by 2%.

(c) Long term care insurance: Starting at age 50 (t = 15), at a cost of $7, which
then goes up by 4% every year.

(d) Medical expenses: Assume these are insignificant until the age of 75, after
which they are approximated to be $8 initially with an inflation rate of 10%.
The high inflation rate reflects both progressively higher costs of medical care,
as well as progressively higher needs for care as the couple ages.

(e) Everyday expenses: Assume these start at $60 per year and go up at a 3%
rate of inflation. Further, if necessary, these can be trimmed to $50 per year
by cutting costs that are not as crucial.

2. Tier 2 goals

(a) Orthodontia for the couple’s child: Assume this costs $3 each year when their
child is 11, 12, and 13; that is, t = 6, 7, and 8.

(b) College tuition for the couple’s child: Assume the annual cost is $40 at t = 13,
when the child is 18, and then goes up by 8% in each of the next three years.
A partial goal that starts at $25 and then goes up by 8% is also available.

(c) Cars: Assume the couple would like to purchase a new car every five years at
a cost of $32. They may also opt for the partial goal of a used car for $22.

3. Tier 3 goals

(a) Remodeling the house at t = 16: A nice remodel will cost $50. Less nice
remodels at costs of $40 and $25 are also available.

(b) Wedding expenses for the couple’s child: Assume this costs $70, with the
couple approximating that their child will marry at age 28; that is, t = 23. A
less expensive wedding costs $55.

5Approximated using Social Security’s quick benefit estimate calculator at https://www.ssa.gov/

cgi-bin/benefit6.cgi.
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4. Tier 4 (lowest priority) goals

(a) Private high school for the couple’s child: Assume the annual cost is $25 at
t = 9, when the child is 14, and then goes up by 5% in each of the next three
years.

(b) A fancy trip: Assume the couple wishes to take a nice trip every 10 years at
a cost of $15 at t = 10, which increases at the annual inflation rate of 3%
thereafter.

(c) Philanthropic gifts: Initially, $5 every year or a partial goal of $2.5. This cost
goes up at a 3% annual rate of inflation.

That is, in total over the 60 year timeframe, the couple is considering 301 full goals and
138 partial goals.

We assume the initial wealth, W (0), is $100, therefore Wmax = $18,000 (that is, $18
million). We have selected imax = 1221 for the number of nodes in the wealth grid
between Wmin ≈ 1 and Wmax. Because of the significant increase in the number of
goals, the horizon time T , and the number of wealth grid points, the runtime increases
from under 2 seconds needed in previous examples to 17 seconds. The utility values were
adjusted so that the optimized probabilities correspond to the priority of the tier assigned
to each goal by the couple. It should be noted that, unsurprisingly, this requires assigning
larger utility values to the more costly goals within a given tier. On occasion, assigning
lower utility values to later goals within a tier was also useful. Table 9 gives the final
utility values assigned to the goals and shows the corresponding optimal probabilities of
reaching the partial and full goals.

The optimal expected total utility is 574,239 out of a maximum possible of 577,055,
so the expected utility fraction is 574,239/577,055 = 0.9951. It is reasonable to think
at first that such a high fraction means a high likelihood of attaining all the couple’s
goals, but a quick overview of Table 9 shows that this is not the case. The high fraction
simply means the probability of attaining the goals with high utility values is quite high.
For example, if the utility assigned to a single goal were made extremely high and the
probability of attaining that goal were high, the expected utility fraction would be close
to one, even if the chances were quite low of attaining any of the other 300 goals.

In order to assess how much of a difference fat-tailed distributions make to the fi-
nal results, we replaced the normal distribution with a t-distribution with 5 degrees of
freedom. The total expected utility becomes 573,844, which corresponds to an expected
utility fraction of 0.9944, as compared to the total expected utility of 574,239, which
corresponds to the fraction 0.9951 just shown above for the normal distribution. So the
impact on the outcomes is small, however, it does mean that some goals will not be met
in comparison to the normal distribution case. We further reduced the degrees of freedom
to 2, and obtained an expected utility of 572,944 (0.9929). The fat-tails make a difference
and in order to assess the effect of these small differences in utility, see the next Section
4.5.1, which compares a good path versus a poor one, where differences in expected utility
can be seen as differences in goals met. We note, as mentioned in Subsection 2.1, that
working with any desired Markovian evolution model with deterministic parameters is
straight-forward, so replacing our geometric Brownian motion model with any theoretical
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Table 9: Optimal probability ranges for the couple’s goals

Goal Initial Inflation Range for optimal
Goal Years (t) Cost Rate Utility probability of fulfillment

1a: Mortgage 1–25 $10 0% 500 > 0.99
1b: Prop. tax 1–60 $6 2% 1000 > 0.99
1c: LTC Insur. 15–60 $7 4% 1035 > 0.99
1d: Med exp. 40–60 $8 10% 1060 > 0.99
1e: Everyday 1–60 3% > 0.99

(full) 1–60 $60 7000 (> 0.97)
(partial) 1–60 $50 5950 (< 0.03)

2a: Orthodon. 6–8 $3 0% 100 > 0.99
2b: College 13–16 8% > 0.99

(full) 13–16 $40 900 (0.56–0.60)
(partial) 13–16 $25 750 (0.40–0.43)

2c: Cars 5,10,...,55 0% > 0.97
(full) 5,10,...,55 $32 600–710 (0.57–0.98)
(partial) 5,10,...,55 $22 400–550 (0–0.41)

3a: Remodel 16 0.58
(full) 16 $50 300 (0.23)
(partial 1) 16 $40 250 (0)
(partial 2) 16 $25 200 (0.35)

3b: Wedding 23 0.67
(full) 23 $70 400 (0.38)
(partial) 23 $55 350 (0.29)

4a: High Sch. 9–12 $25 5% 100 0.04–0.07
4b: Trips 10, 20,...,50 $15 3% 50–100 0.20–0.78
4c: Philanth. 1–60 3% 0–0.97

(full) 1–60 $5 40 (0–0.92)
(partial) 1–60 $2.5 30 (0–0.45)

fat-tailed distribution, for example, requires minimal changes to the algorithm. Another
approach is to use fat-tails from the historical record using the simulation approaches
suggested in Geyer et al. (2014) and Consiglio et al. (2016).

Finally, we note that any evolution model may have problems being accurate with
long-term predictions. We therefore expect that investors will periodically rerun the
algorithm presented here with updates to the evolutionary model, as well as any changes
in their goal preferences. It is also possible to make the parameters in the Markovian
evolution process stochastic to address potential changes over time, but this comes at the
potentially significant cost of adding an additional state space variable for each parameter,
which can slow the algorithm considerably, and creates the new problem of trying to
accurately model the stochastic process governing each parameter’s evolution.

Table 9 clearly shows how the algorithm uses the utility weights to prioritize the
tiered goals. Each Tier 1 goal has a greater than 99% chance of being fulfilled and a
greater than 97% chance of being fully fulfilled. Each Tier 2 goal has a greater than 97%
chance of being fulfilled and a greater than 50% chance of being fully fulfilled. Each Tier
3 goal has a greater than 50% chance of begin fulfilled, and the probability of attaining
the Tier 4 goals varies from 0 to 98%, largely depending on the investors’ age. That
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is, our optimized dynamic programming results for this couple show that by following
the algorithm’s advice for making optimal, prudent decisions in both goals taking and
investing, they look to have a rosy financial future.

4.5.1 Examining a few sample paths with multiple goals

Whereas the discussion above encompasses the entire distribution of outcomes, it is
instructive to focus on a couple of sample paths to see how the algorithm decides which
goals to take and which to forgo. This path dependence is illustrated by considering two
paths, one where the portfolio has good returns, and another one where the portfolio’s
returns are comparatively poor. These are generated by simulating the wealth evolution
of the portfolio while applying the optimal controls for portfolio allocation and goal
choices along each path. The results are shown in Figure 4.

In the top panel of Figure 4, we see that the total utility achieved along the good
path is 576,485 out of a possible total of 577,055, whereas total utility along the poor
path is 574,540. From the middle panel of Figure 4, we note the following differences
between the two cases: (1) The portfolio in the poor case underperforms the good case
in the early years, leading to either partially or completely reduced philanthropy (a Tier
4 goal) in years 7–37. (2) Another Tier 4 goal (High School) is not met in year 9 in
both good and poor cases, but had to be forgone in the poor case also in years 10-12,
but not in the good case. (3) Trips (Tier 4) are also passed up in year 10 and in year
20 in the poor case. (4) In the poor case, the college goal could only be partially met in
years 14-16 when the portfolio performed poorly. (5) The remodel goal in year 16 is also
passed up completely in the poor case. (6) In years 20, 25, 30 the car goal can only be
partially taken in the poor case. (7) In year 23, the wedding could not be funded in the
poor case. (8) All this early belt-tightening pays off for the investor with the poor case,
since it allows all goals to be met after year 37.

Overall, from the bottom panel of Figure 4, we see that in the early years, the poor
portfolio does not perform that well, leading to passing on goals, especially in the second
decade. After that, the poor portfolio catches up and all later goals are taken. It is
precisely because the algorithm is taking the future into account, that it passes on some
goals in the early years in order to enable taking later goals.

4.5.2 Comparison to Monte Carlo Methods

Recall from the introduction that Monte Carlo methods require a fixed strategy, like
staying with one of the 15 portfolios that are available to the dynamic programming
strategy or, as we saw in Subsection 4.4, applying a target date fund strategy. Further,
Monte Carlo methods only look to fully attain each goal, as decisions like fulfilling or
not fulfilling goals or partially fulfilling goals will quickly lead to a crippling exponential
blow up in Monte Carlo computational time.

Separately applying each of the 15 portfolios available to the Monte Carlo method
to the example above, we find that the most aggressive, portfolio 15, has the highest
probability of fulfilling all of the couple’s goals. However, this optimal probability is only
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Top panel: Two possible paths for portfolio wealth under good and poor scenarios.

Middle panel: Total utility achieved for each goal under good and poor scenarios.

Goal Good Scenario Poor Scenario

Mortgage payments 12500 12500
Property taxes 60000 60000
Long-term care insurance 47610 47610
Medical expenses 22260 22260
Everyday expenses 420000 420000
Orthodontia 300 300
College 3600 3150
Cars 6960 6760
Remodel 300 0
Wedding 400 0
High school 300 0
Trips 275 100
Philanthropy 1980 920

Total 576485 574540

Bottom panel: Additional goals taken in the good scenario versus the poor one.

Figure 4: We examine two scenarios, one for a path with good returns, the other for a path
with poor returns. These are shown in the top panel. The table in the middle panel shows
the total utility achieved for each goal, where we see that Tier 1 and Tier 2 goals are achieved,
because the algorithm optimally forgoes Tier 3 and Tier 4 goals as needed. The bottom panel
displays the additional goals taken on the good path versus the poor one.
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7%, and, indeed, its probability of even fulfilling all the goals through year t = 16, when
the couple’s child leaves college, is only 11%. The standard financial advice in a situation
like this is to remove lower tier goals. If we remove the Tier 4 goals, portfolio 8 becomes
optimal, which corresponds to a 48% chance of attaining the remaining goals. If we
remove the Tier 3 and 4 goals, portfolio 4 becomes optimal, which corresponds to a 68%
chance of attaining the remaining goals. If we drop all Tier 2, 3, and 4 goals, portfolio 1
becomes optimal, which is essentially all bonds, and yields a greater than 99% chance of
attaining the remaining goals.

The practical impact on the couple if they are presented these Monte Carlo based
results is clear: Believing that their financial future is quite perilous, they would give up
on attaining their Tier 3 and 4 goals and either live with the belief that there was an over
30% chance they would eventually go broke attempting to attain their Tier 1 and Tier
2 goals, or they might jettison some or all of the full goals in Tier 1 and Tier 2 in favor
of what were previously partial goals. In contrast, by using our dynamic programming
approach, we see that the probability of the couple being able to fulfill their Tier 1 and
Tier 2 goals is actually excellent, and there is also a good chance of fulfilling some of
their Tier 3 and Tier 4 goals as well.

5 Concluding Discussion

There is a great deal of interest in how to best apply a goals-based wealth management
approach to investors hoping to attain as many of their goals as possible, weighted by
their importance. We have shown that dynamic programming methods can answer three
key questions for investors pursuing multiple goals that Monte Carlo methods cannot
answer:

1. When an investor has limited means, they must choose whether or not to fulfill
or forgo each of their goals as they progress through time. Given the importance
of each of the goals to the investor, we have shown how to optimally determine
whether or not to fulfill or forgo each goal. Implicit in this analysis is the idea
that portfolios may be chosen with any risk-return tradeoff the investor prefers, so
is agnostic to risk measures (see Szegö (2002)), but also introduces is cognizant of
behavioral risk, i.e., the probability of not achieving a goal.

2. We have shown how to optimally, dynamically determine which investment portfolio
the investor should use at any time based on their portfolio worth at that time.

3. Under the optimized goals taking and investment portfolio selection strategy in the
preceding two points, we have shown how to determine the corresponding proba-
bilities for attaining each of the investor’s goals. Should the investor feel that these
probabilities do not reflect their preferences, they may change the weights of the
goals and rerun the algorithm until the generated probabilities match the investor’s
priorities.

We have also shown how the multiple goals method can easily accommodate concur-
rent goals (that is, multiple goals that occur at the same time) and partial goals (when
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the investor is open to options that cost less than the full goal, understanding that these
partial goals will make the investor less happy than the full option). On a simple desktop
or laptop computer, we are able to compute the optimal solution for a small number of
multiple goals in under 2 seconds. For a much more involved multiple goals scenario over
a decades-long horizon, the computation still runs in 17 seconds.

Our focus in this paper has been to explain the large picture of how an investor can
achieve a small or large number of purchasing goals with a significantly greater probability
than methods typically used in the wealth management industry. Of course, there are
limitations and a number of potential additional features that we have not pursued in
this paper, which we leave to future work. These include:

1. Allowing mandatory goals, which must to be taken even if it means bankrupting
the portfolio. This however, may not apply to most investors.

2. Allowing for stochastic (unexpected) expenses along the path. This is best handled
using stochastic programming approaches mentioned in the introduction.

3. While we have not handled infusions or withdrawals that are correlated with wealth
levels, we can easily extend the model to these. For example, at low wealth levels
we may infuse money by belt-tightening elsewhere, whereas at high levels we may
choose to make optional gifts.

4. We may extend the algorithm to also optimize taxes using forward simulations.
Since the tax code is complicated, this can only be handled through forward sim-
ulations, suggesting backward recursion for portfolio optimization combined with
a forward traversal of the portfolio that accounts for taxes. These backward and
forward steps may be iterated a few times until a stable solution is achieved. We
leave this for a large-scale follow-up paper.

5. The model does not account for investor mortality but can be easily extended to
handle this in the backward recursion. One may imagine that the objective function
can be adapted to maximize the number of goals reached while remaining solvent
through the lifetime of the investor. If we wish to handle mortality risk for a couple,
then we need to account for death of each of the investors, which doubles the size
of the state space.

6. As discussed in the introduction, our approach does not allow for optimally deciding
to postpone a goal. The approach in the paper requires a take it or leave it approach.
Stochastic programming or reinforcement learning methods are better equipped to
handle such phenomena.

The algorithm presented in this paper is adept at handling a very large action space,
which allows it to address large numbers of goals and investment portfolio options quickly
and efficiently, but not a very large state space, since, like all dynamic programming
methods, the state space is subject to the so-called “curse of dimensionality.” Alter-
native approaches include the backward-forward method mentioned earlier, stochastic
programming, and reinforcement learning, however, these methods impose constraints
on the action space. Understanding the trade-off between the restrictions on the action
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space versus the restrictions on the dimensionality of the state space is key to determining
which method is best to apply in specific applications.

In summary, we have prescribed a goals-based wealth management plan for multi-
ple goals that may be implemented in a computationally efficient manner over a very
long horizon. The goals may occur at different times or concurrently. The goals may
be fulfilled partially, if the investor wishes this possibility, or fully. The algorithm max-
imizes an investor’s expected utility, via the optimal exercise of goals and the optimal
selection of investment portfolios. These optimal decisions are determined using dynamic
programming, which optimally balances the trade-off between cost and utility for each
goal in the plan. The algorithm provides the investor with the probabilities of achieving
each goal so that the investor may adjust the plan in an iterative manner. Changes in
these probabilities may be tracked over time as an additional performance metric to com-
plement traditional metrics that compare risk-adjusted returns to a benchmark. Thus,
this work offers a comprehensive approach to achieving multiple goals in wealth manage-
ment, thereby improving on (i) approaches that handle multiple goals in separate mental
account portfolios and (ii) approaches that use Monte Carlo simulation.
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6 Appendix: The Effect of Changing Conditions on

the Multiple All-or-Nothing Example from Section

4.2

6.1 The Effect of Changing the Utility Assigned to a Goal

The investor may look at the probabilities generated in Table 3 and decide that some are
lower than they want. For example, let’s say the investor feels that a 3.08% chance of
attaining Goal 4 is too low. They may therefore decide to increase the utility assigned to
Goal 4. Results generated from increasing the utility for Goal 4 are shown in Table 10.
The table shows that increasing the utility assigned to Goal 4 increases the probability
that Goal 4 is attained, but, in general, it also decreases the probability that the other
goals are attained.

Note that this is not always the case, however. For example, in Table 10, we see that
the probability of attaining Goal 3 increases when the utility for Goal 4 increases from
1500 to 2000. This is because the utility increase encourages more aggressive portfolios
early on, which increases the chance that attaining Goal 3 at t = 10 is both possible and
worthwhile, especially if Goal 4, which is at t = 11, remains unattainable, since the $80
(thousand) Goal 4 cost is much higher than the $15 (thousand) Goal 3 cost.

Because Goal 2 generates a high utility, 2500, at the low cost of $17 (thousand), it
remains heavily desirable until the utility assigned to Goal 4 increases past 5000. At that
point, it becomes progressively more important to consider abandoning Goal 2, so as to
maximize the chance of attaining Goal 4.
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Table 10: The effect of the investor increasing the utility value assigned to Goal 4 upon the
base case specified in Table 3, reprised at the top of the table. This increases the chances of
attaining Goal 4, but generally decreases the chance of attaining the other goals.

Goal 1 Goal 2 Goal 3 Goal 4 Goal 5 Goal 6 Goal 7
Goal time, t (in years) 5 8 10 11 17 22 24

Goal cost, c (in 1000s of $) 25 17 15 80 50 60 130
Goal utility, u 1000 2500 500 1500 300 3000 2000

Utility, u, Probability of fulfilling goal
for Goal 4 Goal 1 Goal 2 Goal 3 Goal 4 Goal 5 Goal 6 Goal 7

1500 0.0446 0.9871 0.2077 0.0316 0.0192 0.7569 0.2373
2000 0.0309 0.9860 0.2244 0.0596 0.0158 0.7526 0.2261
3000 0.0073 0.9854 0.1327 0.1314 0.0106 0.7329 0.2022
5000 0.0021 0.9853 0.0342 0.2341 0.0049 0.6561 0.1438
10000 0.0002 0.6972 0.0098 0.3857 0.0021 0.5234 0.0839
100000 0.0000 0.1258 0.0002 0.4776 0.0025 0.4997 0.1082

Note also that when the utility for Goal 4 increases from 10,000 to 100,000, the algo-
rithm adopts maximally aggressive portfolios early on. This increased volatility increases
the chance of extremely high or low wealth values later on when the investor is looking
to attain Goals 6 and 7. Attaining Goal 6 has priority over Goal 7 because it is much
less expensive and has a significantly higher utility. Therefore, we see the approximate
likelihood of attaining neither of these final goals due to low wealth increasing from
1− 0.5234 = 0.4766 to 1− 0.4997 = 0.5003 and the approximate likelihood of attaining
both goals due to high wealth increasing from 0.0839 to 0.1082. This last increase corre-
sponds to the numbers in Table 10 for the probability of attaining Goal 7, since Goal 6,
with its higher priority, is generally attained whenever Goal 7 is attained. This increase
in the probability of attaining Goal 7 is another example of where increasing the utility
assigned to Goal 4 can increase, instead of decrease, the probability of attaining a goal
other than Goal 4.

The investor, as much as they desire, can proceed to increase (or decrease) the assigned
utilities for each goal and see the effect this has on the optimal probabilities of attaining
their goals. At the end of the day, they will have an accurate understanding of the trade-
offs between all of their goals and the limitations of their current portfolio under the set
of available investment portfolios, when optimally run.

6.2 The Effect of Changing the Initial Wealth, W (0)

Should the investor wish to increase their chances of obtaining all of their goals, they
may decide to increase their initial investment, W (0). Figure 5 shows how the optimally
achievable total expected utility fraction depends upon W (0). The red dot in the figure
represents the base case from Table 3, where W (0) = $30 and the expected utility fraction
is 0.5018. Should the investor increase their original investment so that W (0) = $50
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instead of $30, then, from the figure, we can see that the expected utility fraction will
increase from approximately 1/2 to approximately 2/3. As W (0) gets larger, the expected
utility fraction approaches 1, of course, and, similarly, as W (0) gets small, the expected
utility fraction goes to 0. We note that because Wmax in the algorithm is determined
from the value of W (0), to generate Figure 5 we had to make certain that Wmax was
sufficiently large to accommodate all the values of W (0) used in the figure.

Figure 5: The effect of varying the initial wealth, W (0), on attaining the investor’s goals.
Information for the seven goals used here is presented in Table 3. The initial wealth base
case of $30 corresponds to an optimally achievable total expected utility fraction of 0.5018, as
represented by the red dot.

6.3 The Effect of Infusions

Should the investor not have the funds or the desire to increase the initial investment,
they may decide instead to commit to future cash infusions, I(t). The infusions can be
for any desired amount. Typical infusion examples include being constant (I(t) = k),
adjusted for inflation (I(t) = k(1 + r)t), or a one-time infusion (I(t0) = k while I(t) = 0
if t 6= t0).

Panel A of Table 11 shows the beneficial effect on the base case in Table 3 of having
constant annual infusions, starting at the beginning of year 1 and ending at the beginning
of year 24. The first row in the panel has no infusions and is therefore the same as the
base case in Table 3. As we increase the constant infusion amount, we see an increase
not only in the expected utility fraction, as must be the case, but also in the probabilities
of attaining each individual goal. We note that even small infusions have a substantial
impact on achieving goals, making a strong mathematical argument in support of saving
and investment. Further, the algorithm allows an investor to understand in clear, concrete
terms how setting aside money on a regular basis directly impacts their (now quantifiable)
chances of attaining their goals.
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Panel B of Table 11 shows the effect on the base case in Table 3 of having one-time
infusions. We note that the first and fourth rows correspond to infusions at t = 0, which
is the equivalent of boosting W (0) from its base case value of $30. Therefore, from these
rows we see that W (0) = $30 + $30 = $60 induces an expected utility fraction of 0.7111
while W (0) = $30 + $60 = $90 induces the fraction 0.8358. Both of these correspond to
points on the graph in Figure 5.

Note that having an infusion helps attain goals, even if those goals are at times before
the infusion. For example, having no infusion leads to a 4.35% chance of attaining Goal
1 at t = 5, and an infusion of an additional $30 at t = 0 boosts this to a 50.51% chance,
but if the $30 infusion happens instead at t = 10, the chance of attaining Goal 1 at t = 5
is still boosted to 19.06%. This is because the investor is freed up from having to preserve
some money from the initial investment to attain later goals.

The later the infusion occurs, the smaller its effect due to the investment having less
time to grow. Note, for example, from inspecting the expected utility fractions that an
infusion of 60 at t = 10 is approximately equal to an infusion of 30 at t = 0, and an
infusion of 60 at t = 20 is approximately equal to an infusion of 30 at t = 10. Therefore,
the probability of each individual goal generally goes down as the infusion time increases,
but the timing of the infusion creates other effects that can counter this. For example,
the probability of attaining Goal 6 generally increases as the infusion time increases. This
makes some intuitive sense since Goal 6, which is at t = 22, has a cost of 60, so having
an infusion of 60 at the later time of t = 20 helps attain this goal more than having the
infusion earlier would, when it is more likely to be subject to losses.

6.4 The Effect of Changing the Available Portfolios

Finally, if the investor wishes to increase their ability to fulfill their goals without adding
additional money to their portfolio, this can be accomplished by expanding the range
of portfolios that are accessible on the efficient frontier by either decreasing µmin or
increasing µmax. This expanded set of investment possibilities can only increase the
expected total utility of the investor. We have chosen the default value of µmin to be
0.0526, which corresponds to the vertex of the efficient frontier shown in Figure 1. Because
it is the vertex, selecting lower values of µmin make no financial sense, since lower values
of µmin correspond to higher values of σmin. On the other hand, in Table 12 we can see
the effect of increasing the value of µmax from its default value of 0.0886.

Table 12 shows how having access to more aggressive portfolios increases the expected
utility fraction, as it must. It also increases the probability of fulfilling most of the indi-
vidual goals. The clear exception is Goal 2, whose probability decreases. This decrease
happens because the early use of high volatility stocks means the investor is more likely
to lose the money they need to safeguard in order to fulfill Goal 2. However, the bigger
problem for an investor considering increasing µmax is the corresponding significant in-
crease in σmax shown in Table 12, as well as the required significant shorting and going
very long for the component positions within such aggressive portfolios.
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Table 11: The effect of infusions on the base case shown in Table 3, reprised at the top of
the table, for which W (0) = $30. Panel A shows the effect of annual infusions. Panel B shows
the effect of a single infusion at the given time t = t0. The infusions’ effects on increasing the
probabilities of exercising the various goals are shown.

Goal 1 Goal 2 Goal 3 Goal 4 Goal 5 Goal 6 Goal 7
Goal time, t (in years) 5 8 10 11 17 22 24

Goal cost, c (in 1000s of $) 25 17 15 80 50 60 130
Goal utility, u 1000 2500 500 1500 300 3000 2000

Panel A: Annual infusions

Annual Expected Probability of fulfilling goal
Infusion, Utility
I(t) Fraction Goal 1 Goal 2 Goal 3 Goal 4 Goal 5 Goal 6 Goal 7

0 0.5018 0.0435 0.9875 0.2085 0.0308 0.0190 0.7629 0.2311
1 0.6059 0.1468 0.9979 0.4056 0.0709 0.0390 0.9344 0.3895
2 0.6824 0.3419 1.0000 0.6205 0.1080 0.0621 0.9852 0.5409
3 0.7416 0.6278 1.0000 0.7624 0.1494 0.0823 0.9963 0.6312
5 0.8418 0.9811 1.0000 0.9309 0.3386 0.1667 0.9994 0.7946
10 0.9915 1.0000 1.0000 0.9993 0.9996 0.7945 1.0000 0.9854

Panel B: Single Infusion at time t = t0

Infusion Infusion Expected Probability of fulfilling goal
time, Amount, Utility
t0 I(t0) Fraction Goal 1 Goal 2 Goal 3 Goal 4 Goal 5 Goal 6 Goal 7
0 30 0.7111 0.5051 0.9998 0.6385 0.2354 0.1028 0.9603 0.5458
10 30 0.6351 0.1906 0.9975 0.4950 0.0636 0.0405 0.9724 0.4509
20 30 0.5849 0.1098 0.9902 0.3486 0.0456 0.0258 0.9579 0.3035
0 60 0.8358 0.8646 1.000 0.855 0.5050 0.2233 0.9883 0.7224
10 60 0.7164 0.4459 0.9974 0.9391 0.0930 0.0635 0.9896 0.6006
20 60 0.6388 0.1758 0.9966 0.5229 0.0540 0.0369 0.9986 0.4410

6.5 The Effect of Assigning Utility to Excess Money at T = 25

Up until this point, we have assumed that the investor has no use for any excess money
left over when the fund is closed at T = 25. (That is, V (W (T )) = U(W ) = 0.) We now
consider the effect of valuing this excess money as discussed in Subsection 2.2. In this
subsection, we will use the following terminal utility function:

V (W (T )) = U(W ) = k

(
1

1 + be−aW
− 1

1 + b

)
, (6)

where a, b, k > 0. Note that 0 ≤ U(W ) < k b
1+b

, no matter what the value of a is. As
a increases, the investor becomes more risk averse. Generally, we have a < 0.5, since
behavior where a > 0.5 becomes hyper-averse. See Figure 6 for examples of the utility
function in equation 6, where b = 1 and k = 2. Note, as expected, that U(W ) is both
increasing and concave in W . For the cases in the figure, when a = 0.01, U(W ) essentially
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Table 12: The effect of increasing µmax — and therefore the available investment portfolios
— on the base case shown in Table 3, reprised at the top of the table. The effect of expanding
the range of investment portfolios on the probabilities of fulfilling the various goals are shown.

Goal 1 Goal 2 Goal 3 Goal 4 Goal 5 Goal 6 Goal 7
Goal time, t (in years) 5 8 10 11 17 22 24

Goal cost, c (in 1000s of $) 25 17 15 80 50 60 130
Goal utility, u 1000 2500 500 1500 300 3000 2000

Value Value Expected Probability of fulfilling goal
for for Utility
µmax σmax Fraction Goal 1 Goal 2 Goal 3 Goal 4 Goal 5 Goal 6 Goal 7

0.0886 0.1954 0.5018 0.0435 0.9875 0.2085 0.0308 0.0190 0.7629 0.2311
0.10 0.2551 0.5117 0.0613 0.9756 0.2269 0.0477 0.0238 0.7662 0.2679
0.15 0.5201 0.5462 0.1727 0.9498 0.3394 0.1057 0.0433 0.7665 0.3555
0.20 0.7861 0.6053 0.3747 0.8879 0.4281 0.2231 0.1054 0.8093 0.4670

reaches its maximum value of 1 by W = 500, whereas when a = 0.05, it is essentially
reached by W = 100.

We implemented the algorithm with U(W ) being given by equation (6) with a = 0.01
and b = 1, so the maximum utility is k/2. Table 13 shows the effect of various values of
the magnitude k on E[W (T )], which is the expected final wealth, E[U(W (T ))], which is
the expected utility from the final wealth that is guaranteed to be less than k/2, and the
probabilities of attaining the seven goals in the base case from Table 3.

Table 13: The effect of the investor valuing their excess wealth at T = 25 on the base case
specified in Table 3, reprised at the top of the table. The utility of the excess wealth is based
on equation (6), where we fix b = 1, a = 0.01, and vary the magnitude, k. As k increases, the
investor progressively values having excess wealth. The expected excess wealth is E[W (T )].
The expected utility of this excess wealth is E[U(W (T ))]. The utility corresponding to an
infinite excess wealth is k/2.

Goal 1 Goal 2 Goal 3 Goal 4 Goal 5 Goal 6 Goal 7
Goal time, t (in years) 5 8 10 11 17 22 24

Goal cost, c (in 1000s of $) 25 17 15 80 50 60 130
Goal utility, u 1000 2500 500 1500 300 3000 2000

Probability of fulfilling goal
k E[W (T )] E[U(W (T ))] Goal 1 Goal 2 Goal 3 Goal 4 Goal 5 Goal 6 Goal 7
0 32.31 0 0.0435 0.9875 0.2085 0.0308 0.0190 0.7629 0.2311

500 36.01 42.70 0.0412 0.9874 0.2058 0.0304 0.0189 0.7608 0.2363
1000 37.70 88.68 0.0390 0.9872 0.2029 0.0300 0.0185 0.7582 0.2413
2000 42.14 193.7 0.0397 0.9861 0.1993 0.0299 0.0152 0.7510 0.2483
5000 61.98 655.9 0.0249 0.9833 0.1614 0.0231 0.0108 0.7248 0.2529
10000 90.35 1779 0.0087 0.9804 0.0918 0.0137 0.0065 0.6785 0.1879
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Figure 6: The utility function U(W ) = k
(

1
1+be−aW

− 1
1+b

)
, which we can use to value residual

wealth, W , at the terminal horizon, T . In the figure, b = 1 and k = 2, so the maximum value
of U is 1. As a increases, the investor becomes more risk averse.

When k = 500, the maximum value of U(W (T )) is 500/2 = 250, which is much
smaller than the utilities associated to the seven goals, so there is little effect on the
probabilities that the goals are attained. Indeed, the probability of attaining Goal 7 is
actually increased. This is because the excess money at T = 25 is now valued, which
pushes the investment portfolios at later times to be more aggressive. These aggressive
portfolios lead to more available money, on average, near the end, which is better used
for Goal 7, whose utility is 2000, than as excess money, which has a utility of 250 at the
most.

As k increases, the expected worth of the excess money increases and the probabil-
ity of attaining the first six goals decreases since it becomes more worthwhile to have
excess funds. The probability for attaining Goal 7, however, continues to increase until
the maximum utility from the excess money, k/2, exceeds 2000. Once this occurs, the
probability of attaining Goal 7 decreases along with the other six goals.
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