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Augmenting the Funded Ratio: New Metrics for
Liability Based Plans

25 February 2025

Abstract

The primary metric for the health of a liability based plan (LBP) is the ratio
of the LBP’s current assets to its present-valued liabilities. This “funded ratio”
cannot address some important financial factors, so we suggest three additional
metrics of financial health, connected to the probability of fulfilling the plan’s
liabilities. The first two metrics compare the current assets and projected fu-
ture contributions to those needed to attain either (1) a specified probability
for meeting all the liabilities (SAM, the solvency assets multiple) or (2) speci-
fied probabilities for meeting each liability (FAM, the funded assets multiple).
The third metric, the risk-free funded ratio (RFFR), uses the STRIPS curve to
determine the fraction of the liabilities that can be covered without risk. We
implement these metrics, first using Monte Carlo simulation given a fixed in-
vestment portfolio strategy, and then using dynamic programming to optimize
investment portfolio strategies that maximize SAM and FAM.

Highlights and Key Takeaways

• We detail a number of deficiencies that arise if the funded ratio is used as
the sole metric of a liability-based plan’s health.

• We develop three new metrics (denoted SAM, FAM, and RFFR) that
address these deficiencies, augmenting the funded ratio and allowing for
a more comprehensive assessment of the health of a liability-based plan.

• These new metrics can be based on static investment strategies or even
optimized dynamic investment strategies. We present examples that show
how these metrics, in contrast to the funded ratio, explicitly account for a
variety of sources of stochasticity, such as in equity returns, interest rates,
and inflation, allowing the sensitivity of a plan’s health to these and other
factors to be determined.

Keywords: funded ratio, liability-based plans, risk metrics
JEL Codes: G11, G40, G41, G51
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1 Introduction

We define Liability Based Plans (LBPs) to encompass any plan whose primary in-
vestment goal is to fulfill a set of liabilities to be paid over the course of years, like
a pension. LBPs include Liability Driven Investing (LDI), Liability Aware Investing
(LAI), and Asset-Liability Management (ALM). The distinction between these three
categories is not a sharp one but is generally connected to how stochastic the liabilities
are assumed to be and how stochastic the assets are allowed to be. LDI is generally
viewed as the most conservative of the three. Its liabilities are often assumed to
be fixed, and the assets comprise large proportions of bonds for cash-flow matching.
ALM is generally the least conservative. ALM often allows for a wide range of asset
classes to match liabilities, which are assumed to have varying levels of stochasticity.
In typical ALM, the use of equities in the asset portfolio is allowed to be widespread.
LAI lies in between LDI and ALM.

While these distinctions between LDI, LAI, and ALM are not completely concrete
nor agreed upon, what matters more in the context of this paper is that, regardless of
these distinctions, all LBPs employ asset management approaches that are liability-
focused, with the primary concern of maintaining a high probability of meeting each
liability.1 This institutional investing priority has interesting parallels to goals-based
wealth management (GBWM) for single or multiple goals, in which an optimal invest-
ment plan and, in addition for multiple goals, an optimal goals fulfillment strategy
is determined for individual investors (as in Das et al. (2020) and Das et al. (2022)).
For example, a common previous application of GBWM has been to enable indi-
viduals to optimize their defined contribution (DC) plans, but, as we will show in
this article, it can also be applied to help pension firms support defined benefit (DB)
plans. This comes from the simple recognition that addressing all the LBP’s liabilities
can be thought of as a goal to be attained from a GBWM context, or, alternatively,
addressing each year’s liability can be thought of as separate goals to be attained.

While LBPs take varied investment approaches, there is a standard metric com-
monly used for the health of these plans. This metric is the funded ratio of the plan,
which is defined by

Funded Ratio =
Current Assets

Current Liabilities
,

or some variation of this equation. The “Current Assets” in the numerator is straight-
forward to calculate. It is the current market worth of the plan’s assets. But the
“Current Liabilities” in the denominator, also referred to as the projected benefit
obligation (PBO), is not as clearly determined, because liabilities are to be paid in
the future, and therefore, after the amounts of the future liabilities are estimated,
they must be present-valued using a discount rate. The discount rate is a point of
much contention. Currently, a fixed discount rate (usually between 6–8%) is chosen
to present-value all liabilities, irrespective of their maturities.

1https://www.investopedia.com/terms/a/asset-liabilitymanagement.asp
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Using the funded ratio as the sole metric of a plan’s health potentially fails to
take into account a number of important financial issues that we will detail in Section
3. As the American Academy of Actuaries (AAA) Senior Pension Fellow Don Fuerst
stated, “Any realistic assessment of a pension plan should include several measures,
not just one.”2 The AAA’s 2017 issue brief “Assessing Pension Plan Health: More
Than One Right Number Tells The Whole Story”3 is even more clear, stating that:

“A single number often cannot comprehensively address an issue as com-
plex as the obligation or funded status of a pension plan. The availability
of multiple measurements can lead to a more robust understanding of the
situation and more well-reasoned conclusions. Understanding that there
is more than one right number is an essential step toward engaging in
critical issues of retirement security.”

This AAA brief then recommends two additional types of measurements, without
providing specifics. One type would “represent an estimate of how much money the
plan would need to have in order for a projection to show that the assets are expected
to be sufficient to cover projected benefit payments,” noting that “such an estimate
is inherently uncertain.” The other type would “rel[y] only on financial information
available in today’s financial markets” and would be connected “to show[ing] how
much it would cost a plan sponsor to transfer the responsibility of supporting a plan
to an insurance company or other financial institution.”

In this paper, we develop three new metrics. The first two of our metrics, which
are distinctive in that they are based on the probability of meeting the plan’s lia-
bilities, fit perfectly with the first type of measurement recommended above by the
AAA, while our third metric fits perfectly with the second type of AAA-recommended
measurement.

• The first metric is the solvency asset multiple (SAM). Here we look for α, the
minimum constant multiple of the current assets and future projected contri-
butions (if the plan is open) that is needed to attain a specified probability
of meeting all the plan’s future liabilities. We then define SAM to be 1

α
, the

reciprocal of α. We define SAM by the reciprocal of α, as opposed to α itself,
so that it parallels the funded ratio in that a high number is good, and a low
number is bad. Also, in both SAM and the funded ratio a value of one means
that we are projected to barely meet our goal with the current resources.

• The second metric is the funded asset multiple (FAM). It is defined the same
way as SAM, except that instead of looking to attain a specified probability of
meeting all the plan’s future liabilities, we now look to attain specified probabil-
ities for meeting each year’s future liabilities. This has the advantage of being
able to specify higher required probabilities for meeting liabilities in early years

2https://tinyurl.com/2ypzfprj
3https://tinyurl.com/4ftae3r4
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and lower probabilities in later years, where long-term investments like stock
may be more appropriate.

• The third metric is the risk-free funded ratio (RFFR). We define RFFR the
same way the funded ratio is defined, except that instead of a constant discount
rate being used to present-value all the liabilities, we use the yield curve for
U.S. Treasury STRIPS to present-value each year’s liability separately and we
also use this yield curve to present-value future contributions, which we add to
the current assets. Because we use STRIPS, RFFR is the ratio of the current
plan’s worth to the amount needed by the plan to lock in payments of all
the future liabilities, assuming those are fixed values. This makes RFFR a
highly relevant metric for institutions currently considering buying or selling
an LBP. In practice, because future liabilities are often made uncertain by
inflation, an LBP’s RFFR generally needs to attain a specific value greater than
1, such as 1.3, before the company owning the LBP can immunize themselves
by transferring their plan to another institution willing to take it over. We
look to compute the cumulative probability over time that RFFR reaches this
immunization value, guaranteeing the plan’s remaining liabilities will be met.

Because, as the 2017 AAA brief points out, there is inherent uncertainty involved
with SAM and FAM, we require models for any stochastic features like inflation or
how investments evolve that are used to determine SAM or FAM. These must be
determined by the companies managing the LBPs (or regulatory agencies). RFFR,
on the other hand, only depends on financial information available in the market, as
the AAA recommended, namely the yield curve for STRIPS.

In Section 2, we discuss previous research on metrics for the health of LBPs and
methods to optimize these metrics. In Section 3, we will discuss a number of concerns
about the funded ratio and how our new metrics can help address these concerns. In
Section 4, we show how Monte Carlo simulation can be used to compute our three
metrics in the context of a plan where we know the investment strategy and have a
variety of sources of uncertainty. We will also discuss the insights that these three
metrics provide. In Section 5, we go a step farther, and show how dynamic program-
ming can be used to determine the optimal investment strategy that maximizes SAM
or that maximizes FAM. We make some brief concluding comments in Section 6.

2 Previous Research on Measuring and Optimiz-

ing Plans with Liability Based Goals

Pension plans are required to report their funded ratio, so that it is publicly known
whether the plan is underfunded or overfunded. The present value of liabilities de-
pends on the discount rate applied for discounting. The PPA (Pension Protection Act
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of 2006)4 and FASB (US Financial Accounting Standards Board) Statement 1585 re-
quire plan sponsors to fund any shortfalls over certain time horizons and report their
liabilities and funding status directly on their balance sheets. The term structures
most commonly used for discounting liabilities are the IRS Discount Curve, which is
used for the PPA, and the Citigroup Pension Discount Curve, which is used for FASB
158. Both term structures are based on the yields of high-quality (investment grade)
US dollar corporate bonds; thus they reflect both interest rate risk and credit spread
risk.

The most common metric in addition to the funded ratio that is used in practice is
surplus volatility, meaning the volatility of the assets minus the discounted liabilities.
Some papers, such as Sharpe and Tint (1990), Ezra (1991), and Delong et al. (2008),
have considered methods to maximize the funded ratio minus a constant multiple
of surplus volatility. Butt (2012) presents a multidimensional simulation study to
analyze the volatility of DB pension funds’ funding ratios. Ang et al. (2013) also
incorporates downside risk, but through adding a penalty that is proportional to the
value of an option that is in the money when the funded ratio drops below one.
Cannon and Tonks (2013) undertakes a cross-country comparison of the risks and
funded ratios of pension plans, finding that the risk of wage growth and its effect on
returns is so substantial that only strategies that are heavily equity loaded have a
reasonable chance of remaining funded. Insurance approaches, which are addressed
in Broeders and Chen (2013), are likely to reduce the shortfall probability and the
expected loss given a shortfall, but they also lower the probability of high positive
returns. Boyce and Ippolito (2002) argues that such insurance schemes are too costly.

Previous research on pension fund management strategy suggest that the optimal
investment strategy is sensitive to its constraints, for example, van Binsbergen and
Brandt (2016) and Martellini and Milhau (2012). Stockton et al. (2008) approaches
LDI by looking to meet a plan’s liabilities while constraining the volatility of the
funded ratio over time. This can be done by exact cash-flow matching (best for
frozen funds) or duration matching, or some combination of the two. Exact matching
is difficult because employee turnover, inflation, mortality, and salaries can alter the
liabilities, so that it is a moving target. While the risk of employee turnover cannot
be hedged, at least duration matching can be used to alleviate much of the interest
rate risk that is incurred when creating targeted cash-flows to match uncertain lia-
bilities. Upbin et al. (2012) presents a series of benchmark LDI indexes with target
durations between six and sixteen years, against which pension fund performance
may be benchmarked.

The optimization literature regarding LDI almost exclusively looks to optimize the
expected value of a traditional utility function. While static optimization was origi-
nally used, dynamic optimization is now far more common (Huang, 2010). Cox et al.

(2013) minimizes the expected value of the funding variation, that is, E

[
∞∑
t=1

(
U(t)

(1+ρ)t

)2]
,

4https://www.investopedia.com/articles/retirement/06/ppa2006.asp
5https://www.iasplus.com/en/news/2006/September/news3049
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where ρ is a discount rate and U(t) stands for the unfunded liabilities6 in year t. This
is done by determining the optimal asset weights and the optimal normal contribu-
tion value. Similar objectives are used by Delong et al. (2008). Josa-Fombellida and
Rincón-Zapatero (2008) considers the optimal management of an aggregated dynamic
pension fund, with multiple classes of workers with stochastic salaries (Chang and
Cheng, 2002). Their objective is to minimize the cost of contributions and maximize
the utility of the final surplus, measured as the relative fund level with respect to the
mean salary, which is a proxy for the replacement rate.7

In Josa-Fombellida et al. (2018), when the plan is initially underfunded, the ob-
jective is to minimize E[(X(T ))2], the expected square of the negative surplus, X, at
the fund’s horizon time, T . But when the plan is initially overfunded, the objective is

to maximize E
[
(X(T ))1−ξ

1−ξ

]
, the expected power law utility of the positive surplus, X,

at the fund’s horizon, where ξ > 0 is the risk aversion coefficient. In Mao and Wen
(2021) the expected shortfall per unit cumulative wealth is minimized using CVaR.
The flip side of this objective would be to maximize the replacement rate, which is
a proxy for maximizing the surplus. Devolder et al. (2003) use a variety of utility
functions to study the optimal investment strategy of a plan using annuities to target
its liabilities in an ALM setting. Battocchio and Menoncin (2004), followed by Ma
(2011), examines optimal investment strategies for maximizing the exponential utility
of a DB plan’s final wealth when interest rates and inflation are stochastic.

Our approach to measuring and optimizing the health of an LBP fund in this
paper is different from previous research in that we do not look to optimize traditional
utility functions, because those functions do not connect to the core goal of LBP funds,
which is to optimize the probability of meeting its liabilities. Our RFFR metric, for
example, directly connects to the ability to completely immunize a plan (Biffis and
Blake, 2013), meaning there is a 100% chance of meeting its liabilities, or at least to
better inform potential buyers of pension plans looking at undergoing a pension risk
transfer for de-risking.8 Our SAM and FAM metrics are directly connected to the
probabilities of meeting either all or each of the fund’s liabilities, respectively.

The fact that these metrics are about probability is of crucial importance because
probability, not traditional utility, is a concept that is intuitive for a general audience.
It is key that these metrics describe the health of LBPs in an intuitive way, not only for
those running and regulating an LBP, but also for politicians, labor leaders, and, most
importantly, the recipients of the liabilities, who all crave a metric for the health of a
plan that is easily understood by everyone, regardless of their technical background.

The funded ratio, on the other hand, is not probability-based. While its basic

6https://www.thebalance.com/unfunded-liabilities-definition-and-examples-4159564
7The replacement rate, also referred to as the income replacement rate, serves as a way to measure

the percentage of a worker’s current income that a particular pension-based retirement plan can be
expected to produce. See: https://www.investopedia.com/terms/r/replacement-rate.asp.

8Pension risk transfer is the matching of pension liabilities with the purchase of an external
annuity. This is easier to do when liabilities are fixed and not stochastic. Firms with greater
pension risk are more likely to de-risk as shown in Li and Kara (2022).
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notion of representing the ratio of a plan’s assets to its liabilities is intuitive, its
ability to truly convey the health of a plan by itself has a number of limitations, as
we discuss in the next section.

3 Limitations of the Funded Ratio; Advantages of

the New Metrics

Concerns about using the funded ratio as the sole metric of an LBP’s health have
arisen from a variety of sources. Sgouros (2017) lists a number of these concerns in
the context of funding public pensions, and he presents recommendations for pension
accounting standards reform in Sgouros (2019). Concerns about solely using the
funded ratio have also been discussed by the AAA, leading to their publishing two
issue briefs9 regarding what they refer to as the “80% funding myth,” by which they
mean that “[f]requent unchallenged references to [an] 80% fund[ed ratio] as a healthy
level threaten to create a mythic standard.”

Determining the appropriate discount rate for the funded ratio is a particularly
difficult task. Indeed, in some sense it is impossible, not only because it is one
constant required to accurately reflect a large variety of financial factors, but also
because even the best efforts to approximate the discount rate cannot address other
fundamental limitations that the funded ratio has by its nature. We consider nine
limitations below, comparing them with SAM, FAM, and RFFR.

1. Inaccurate discount rates only affect liabilities, with no balancing
effect on the assets in the funded ratio calculation.

Sgouros (2019) states that metrics like the funded ratio should “not combine
low-accuracy numbers (liability) with high-accuracy numbers (assets) and expect to
get anything but a very rough estimate, unsuitable as a basis for making important
decisions.” This imbalance creates an incentive to project high return rates since these
decrease the funded ratio’s denominator due to the higher discount rate, but have no
effect on the numerator. That is, projecting higher returns increases the funded ratio,
thereby giving the impression of a healthier plan.

SAM and FAM are not ratios, so they are not vulnerable in the same way. High
return rates will also increase SAM and FAM, but a company managing a liability
based plan (or a regulatory agency) need only specify clear market parameters such
as stock returns, interest rates, inflation, etc. to prevent this. In contrast, the ap-
propriate discount rate is different for each LBP and more complicated to determine,
based on each plan’s unique financial circumstances. RFFR, on the other hand, is
completely free from such problems, since it strictly uses the current yield curve for
STRIPS. That is, because it only uses market data, RFFR does not require projecting
parameters regarding future stochastic behavior like SAM and FAM do, nor a com-

9https://tinyurl.com/yry2562n and, more recently, https://tinyurl.com/4b4z6tzt
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plicated, individualized procedure to determine the most appropriate discount rate
like the funded ratio does.

2. Using a discount rate only reflects the expected return, not the
volatility, of an LDI fund.

The discount rate is, by definition, a projected expected return on the plan’s overall
assets over the horizons of the liabilities. Even if it is completely accurate for some
reason, it cannot take into account the volatility of the returns. When used as the
sole metric, this has important, negative ramifications for LDI plans. Since riskier
investment portfolios have a higher expected return, they create a higher funded
ratio, because the liabilities are discounted at the higher expected rate of return.
That is, the more risky the investment portfolio, the healthier the plan will seem to
be according to the funded ratio metric, even though LDI plans are supposed to be
particularly careful to assess the dangers that such additional volatility creates. Of
course, this is exactly why plans look instead to optimize the funded ratio minus a
constant multiple of an additional metric like surplus volatility, although this creates
the new question of what the value of this constant multiple should be.

SAM and FAM are far superior in this regard since they require no additional
metrics, and they can work with the full probability distribution created by as many
stochastic factors as are appropriate, not just expected returns and volatilities. RFFR
is also superior since it is a metric for what can be guaranteed, meaning there is no
volatility to take into account.

3. Liabilities, but not assets, have additional sources of uncertainty
that are approximated by constant values.

Aside from the problem of approximating returns for the discount rate, liabilities
suffer from other sources of uncertainly, such as inflation rates and mortality rates,
which change the size of the liabilities. However, because the denominator in the
funded ratio needs be a specific number, estimated liability amounts are used for
each year, which are then present-valued. This again means that the liability compu-
tation fails to account for stochastic behavior, while the assets computation remains
deterministic.

In contrast, SAM and FAM are allowed to work with as many stochastic factors
as desired, including those for the sizes of the liabilities. RFFR, like the funded ratio,
must use each year’s projected, estimated liability.

4. The funded ratio doesn’t reflect the importance of the liabilities’ due
dates.

The funded ratio does not reveal anything about the timing of the liabilities,
except through the discount rate. But a funded ratio of 80% is not remotely as
serious a concern if the liabilities are due 30 years from now, as opposed to if the
liabilities are due 1 year from now.

SAM and FAM both take into account the time when each liability occurs. Both
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metrics would be strongly affected by liabilities being due 30 years from now versus
1 year from now. Because RFFR pertains solely to risk-free investing, it makes little
difference if liabilities are due 30 years from now or 1 year from now.

5. Using one discount rate for all time horizons is problematic.

Because there is only one discount rate being considered, it is not possible to
consider applying a different rate to short-term liabilities versus long-term liabilities.
The rate applied to each year’s liabilities must be the same. This ignores the shape
of the yield curve, and it ignores the differences in short-term versus long-term asset
holdings (that is, the glide path of the portfolio).

SAM and FAM do not need or use discount rates, and further, the market pa-
rameters used in SAM or FAM do not need to be constants. The parameters can be
deterministic or stochastic functions of time. RFFR, of course, applies different rates
to short-term liabilities versus long-term liabilities, depending on the yield curve for
STRIPS.

6. Future contributions and new liabilities are not addressed in the
funded ratio.

This means that a plan that is about to become closed (meaning closed to future
contributions and the corresponding new liabilities) is viewed as being as healthy
as an identical plan that stays open (meaning open to future contributions and the
corresponding new liabilities), even though the open plan is far more likely to remain
solvent in the short term.

In contrast, SAM, FAM, and RFFR take into account all projected future contri-
butions and can also take into account all projected future liabilities. With that said,
RFFR is a metric that is mostly relevant to closed plans. That is, RFFR is concerned
with valuing the current worth of transferring a plan, but transferring an open plan
makes less sense since the new owner would be agreeing to pay new liabilities that
would continue to be created by the old owner.

7. Augmenting the funded ratio to address future contributions and
new liabilities leads to new problems.

A seemingly straightforward solution to the problem discussed in the previous
point is to alter the funded ratio to take projections for future contributions and
new liabilities into account, using the discount factor to present-value estimates of
both future contributions and new liabilities. We will refer to this as the “augmented
funded ratio” in the next section. The augmented funded ratio, however, has its
own problems: (1) First, the augmented funded ratio does not account for the need
to have sufficient contributions arrive before liabilities are due. For example, let’s
say a contribution will occur 20 years from now, and it is large enough to offset
a liability due 21 years from now. But if the contribution were to occur 22 years
from now, instead of 20, it could not offset the liability due in year 21 and a default
would occur. From the perspective of the augmented funded ratio, however, both of
these contributions would simply just be present-valued, leading to nearly the same
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measure of portfolio health. (2) Second, the projected contributions and liabilities
that are equal in size and occur on the same day in the future should just cancel each
other and have no influence on the measurement of the plan’s health. Instead, their
present values will be added to the numerator and the denominator in the augmented
funded ratio, meaning that the larger they are, the more they artificially move the
augmented funded ratio towards one, distorting the measure of the actual health of
the plan. A potential cure for this issue is to simply cancel projected contributions
and equally large liabilities that are projected to occur at the same time. However,
defining what “the same time” means creates new issues. It could be defined to mean
“within the same month” or “within the same year,” etc. No matter the definition,
being just outside this time frame would then trigger present-valuing the projected
contributions and liabilities, instead of canceling them, leading to a suddenly different
augmented funded ratio than if they were just inside the time frame.

SAM and FAM have none of these problems. They account for the need to have
contributions arrive before liabilities are due. Projected future contributions and
liabilities that are equal in size, no matter how big that size is, will simply cancel if
they occur at the same time. Better, as the time difference between a big liability and
an equally big future contribution gets larger, SAM and FAM adjust to the larger
difference in a continuous way. While RFFR can suffer from the same problems just
described for the augmented funded ratio, it is unlikely to since RFFR is primarily
relevant to closed plans where there is no need to accommodate future contributions
and corresponding new liabilities.

8. The funded ratio does not directly take into account an employers’
financial health.

While a liability based fund running out of money is never desirable, it is less
serious if it is backed by a large governmental body that is able to supplement the plan
with additional money, and more serious if it is backed by a small private employer
with less access to additional resources. Current methods to address this important
difference are somewhat artificial. For example, for a large governmental body, the
discount rate may be allowed to represent the expected return of a 60% stock/40%
bond fund, whereas, for a small, private body, it becomes based on, say, the BBB
corporate bond return rates.

For SAM and FAM, this can be accommodated in a direct manner. Specifically,
the more additional resources the employer has access to, the lower the required prob-
ability of remaining solvent (for SAM) can be and the lower the required probabilities
for paying each year’s liability (for FAM) can be. While this is akin to allowing a
lower or higher funded ratio, it has the distinct advantage of having a directly un-
derstandable probabilistic meaning, in contrast to the funded ratio, which has a less
direct interpretation. Since RFFR only pertains to the risk-free case, concerns about
the financial health of the employer are not relevant.

9. The funded ratio provides no useful information about how a liability
based plan should be invested.

11



The funded ratio is a measurement that is unaffected by how an LBP is invested,
except through the discount rate. As noted before, this means the only investment
advice the funded ratio suggests is to adopt the most aggressive investment portfolio
available since that maximizes the discount rate. Of course, this is poor advice for
most liability based plans.

SAM and FAM, in contrast, are very useful metrics for optimizing an investment
plan. In Section 4, just below, we will see how to calculate these metrics for a
fixed investment strategy. This enables comparing any number of fixed investment
strategies and then selecting the strategy with the highest SAM (or highest FAM)
value. In Section 5, we will go much farther, showing how to determine the dynamic
investment strategy over time that maximizes the value of SAM (or FAM), meaning
we calculate how to best meet the obligations of the liability based plan. RFFR
assumes risk-free investing in STRIPS, so the investment portfolio is assumed not to
vary from STRIPS.

4 Computing and Working the New Metrics Using

Monte Carlo Simulation for a Fixed Investment

Strategy

In this section, we consider funds with a fixed portfolio strategy. For example, an
LDI fund might have a fixed strategy of 90% bonds and 10% stock. Target date funds
are another example of a fixed strategy, because even though the fractions of their
underlying components change over time, they do so in a specified (fixed) way.

Because the portfolio strategy is fixed, Monte Carlo simulation is an effective
tool to gauge the effect of a variety of sources of randomness that can affect the
performance of the fund and its ability to address liabilities. In our examples in
this section, we will consider three sources of randomness: movement in the stock
market, changes to the inflation rate, and changes to the yield curve for interest
rates. We note that we could also easily include the effects of varying mortality rates
or uncertainty in contribution rates, bond defaults, etc. Our model will only consider
investing in a total stock market index fund and AA rated corporate bonds. Again, we
note that we could easily expand our model to include the effect of additional assets
like commodities, derivative securities, international stocks, high-yield bonds, TIPS,
Treasury bonds, etc. To calculate RFFR, our model will also need to use STRIPS.

For our fixed portfolio strategy, we look to use Monte Carlo simulation to calculate
SAM or FAM or to determine the likelihood of being able to immunize a plan if it
attains a sufficiently high RFFR and can therefore be sold. To do this, we must
describe the nature of the plan and our assumptions for modeling both our sources of
uncertainty and for the fixed portfolio strategy. We do this first for SAM and FAM.
We will later discuss the additional modeling necessary for the STRIPS needed to
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determine RFFR.

4.1 The nature of the plan and calculating the funded ratio

We consider a plan that currently has $80MM in assets. Over the next five years, there
will be contributions of $5MM, $4MM, $3MM, $2MM, and $1MM nominal dollars
and then the plan will close, so we have no further contributions after five years. This
corresponds to α, the asset and contribution multiplier, equaling one. If, say, we had
α = 1.1, we would start with $88MM in assets and then have contributions over the
first five years of $5.5MM, $4.4MM, $3.3MM, $2.2MM, and $1.1MM nominal dollars.

We assume the plan’s liabilities require it to pay $5MM present-valued dollars in
each of the next 15 years, adjusted by inflation. In each of the 15 years after that, we
assume the plan’s liabilities require it to pay $4MM present-valued dollars, adjusted
by inflation. We assume no taxes on the portfolio’s bonds or stocks.

The information above (for α = 1), along with a discount rate, D, and an esti-
mate for the inflation rate, i

infl,estim
, which must both be selected, gives us sufficient

information to calculate the funded ratio:

Funded ratio =
Current Assets

Current Liabilities
=

80
15∑
t=1

5e(iinfl,estim−D)t +
30∑

t=16

4e(iinfl,estim−D)t

. (1)

We can also, if desired, use the augmented funded ratio defined in the previous section,
which allows the contributions arriving in the first five years to be included as part
of the assets:

Augmented funded ratio =

80 +
5∑

t=1

(6− t)e−Dt

15∑
t=1

5e(iinfl,estim−D)t +
30∑

t=16

4e(iinfl,estim−D)t

. (2)

Note that because the contributions arrive well in advance of most of the liabilities,
the concerns outlined in the previous section for the augmented funded ratio do not
materialize in the case we are considering here. Unless otherwise specified, we will use
i
infl,estim

= 3%. In general, D should take a value between 3.5% and 7% to reflect the
fact that we will later assume that θ

AA
, the average instantaneous rate of return of

the AA corporate bond position, is 3.5%, and that µ, the average return on the stock
position, is 7%. Table 1 presents both the funded ratio and the augmented funded
ratio for values of D in a wider range since we will eventually look at cases where we
alter θ

AA
and µ in this wider range.

Using the augmented funded ratio makes more sense than the normal funded ratio,
especially given how early the contributions occur. We note from Table 1 that the
augmented funded ratio is greater than 0.8 — the ratio commonly associated with a
healthy fund — for all but one of the D values in the 3.5% to 7% range. We will look
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to more carefully explore how healthy this fund actually is in an LDI context once
we have specified our full model and can run our Monte Carlo simulations.

Discount rate (D) Funded ratio Augmented funded ratio

1.0% 0.435 0.515

1.5% 0.472 0.557

2.0% 0.510 0.601

2.5% 0.550 0.648

3.0% 0.593 0.696

3.5% 0.637 0.747

4.0% 0.684 0.801

4.5% 0.732 0.856

5.0% 0.783 0.914

5.5% 0.836 0.974

6.0% 0.890 1.036

6.5% 0.947 1.100

7.0% 1.006 1.166

7.5% 1.066 1.235

8.0% 1.128 1.305

8.5% 1.192 1.377

9.0% 1.258 1.450

9.5% 1.325 1.526

10.0% 1.394 1.603

Table 1: The computed funded ratio given in equation (1) and the computed augmented
funded ratio given in equation (2) for a variety of discount rates when i

infl,estim
, the inflation

estimate, is 3%. The funded ratio does not include projected future contributions, whereas
the augmented funded ratio does include them.

4.2 Sources of randomness in the model

We consider three sources of randomness:

• Stock: For simplicity, we assume the stock component’s price evolves by geo-
metric Brownian motion, which means that S(t), the stock component’s price
at time t, is governed by the stochastic differential equation

S(t+ 1) = S(t)eµ−
σ2

2
+σZ1 ,

where Z1 is a standard normal random variable. We have chosen µ = 7% and
σ = 20% as an example of a forecast for these parameters if the stock represents
a total stock index.

• Inflation: We assume that inflation evolves by the Vasicek (1977) model, which
means that i

infl
(t), the rate of inflation at time t, is governed by the stochastic
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differential equation

di
infl

= κ
infl

(θ
infl

− i
infl

)dt+ σ
infl

dW, (3)

where W is a Wiener process. The Vasicek model is an Ornstein–Uhlenbeck
process (Uhlenbeck and Ornstein, 1930) for mean reversion, where θ is the
mean value (of i

infl
in this case), κ is the strength of the reversion to this mean

value, and σ is a constant representing the strength of the randomness. The
solution to equation (3) is

i
infl

(t+ 1) = i
infl

(t)e−κinfl + θ
infl

(1− e−κinfl) + σ
infl

√
1− e−2κinfl

2κ
infl

Z2, (4)

where Z2 is a standard normal random variable that is independent of Z1.
Zhang and Ewald (2010) derive an optimal investment strategy for a pension
fund facing inflation. As an example of a forecast for the parameters in our
model, we have chosen κ

infl
= 0.6, θ

infl
= 0.025, and σ

infl
= 0.03, loosely based

on United States inflation rate data between 1955 and 2023. We have also
chosen an initial inflation rate of 2%.

• The yield curve for zero-coupon AA corporate bonds: We assume that r
AA

(t),
the instantaneous interest rate of AA corporate bonds at time t, is also governed
by the Vasicek model, but with the restriction that it cannot become negative,
therefore, from equation (4), we have that

r
AA

(t+ 1) = max

{
0, r

AA
(t)e−κAA + θ

AA
(1− e−κAA) + σ

AA

√
1− e−2κAA

2κ
AA

Z3

}
,

(5)
where Z3 is a standard normal random variable that is independent of Z1 and Z2.
Further, as shown in Mamon (2004) for example, this implies that ZCB

AA
(t, T ),

the cost of a zero-coupon AA corporate bond at time t that will be worth $1 at
time T , is given by

ZCB
AA

(t, T ) = eB(t,T )−rAA(t)A(t,T ), (6)

where

A(t, T ) =
1

κ
AA

(
1− e−κAA(T−t)

)
and

B(t, T ) =

(
θ
AA

−
σ2

AA

2κ2
AA

)(
A(t, T )− T + t

)
−

σ2

AA

4κ
AA

A2(t, T ).

As an example of a forecast for these Vasicek model parameters for AA corporate
bonds, we have chosen κ

AA
= 0.5, θ

AA
= 0.035, and σ

AA
= 0.02, loosely based

on AA corporate yield data between 1996 and 2023. We have also chosen an
initial instantaneous interest rate for our AA corporate bonds of 4%.

While we have chosen to use the geometric Brownian motion and Vasicek models
above, different models can be substituted to describe these sources of randomness if
desired.
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4.3 The fixed investment strategy for our model

With our stochastic model in place, we describe a specific fixed investment strategy
that we will use throughout this section, noting that, of course, this is just one example
of the multitude of possible fixed investment strategies that can be applied.

We assume i
infl,estim

is the inflation rate for any years not yet simulated using
the Vasicek model. Given this assumption, we take our initial investment and first
prioritize purchasing bonds that cover the next five years of liabilities (meaning first
covering the liabilities in year 1, then year 2, etc., up to year 5). If there is more
money after that, we devote a fraction, f , of that leftover money to purchasing stocks.
The remainder of the money is then used to purchase bonds to cover the liabilities
in chronological order (i.e., year 6, then year 7, etc.), until we run out of money or
we purchase bonds that cover every one of the 30 years, in which case we put the
remaining initial investment into stocks.

In each year after that, we apply the following approach:

1. As specified above, we generate the effect of our sources of randomness over the
year, which, of course, will be different for each simulated Monte Carlo path.
More specifically, 1) we use geometric Brownian motion to determine the change
in the worth of the stock position over the course of the year; 2) we use the
inflation rate generated by the Vasicek model for the year to adjust both the
present and future liability amounts; and 3) we use the generated change to the
yield curve for the Vasicek model to update the prices of all old bonds owned
and all new bonds of any desired maturity that might be purchased, along with
the coupon structure of these new bonds.

2. At the end of the year, we collect any money generated from contributions, bond
coupons, and principal from matured bonds to address that year’s liabilities.
This money may or may not be enough for this purpose.

(a) If there is enough collected money to pay the year’s liability, we apply
the same process to the money that remains after paying the liability
that we did with the initial money, namely: We first use this money to
make sure that bonds have been purchased to cover the next five years
of liabilities, again assuming the inflation rate i

infl,estim
in future years. If

there is more money after that, we devote a fraction, f , of that leftover
money to purchasing stocks. The remainder is used to purchase bonds
covering the liabilities six years later, then seven years later, etc., until we
either run out of money or we purchase bonds to cover the liabilities in year
30, the final year. If we manage to cover year 30, we use the remainder to
purchase stock since we have bonds covering our estimates of every year’s
liability.

(b) If the collected money is not enough to cover the year’s liability, we must
sell bonds and stock to pay for the remaining liability. We first sell the
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bonds with the longest time until maturity, followed by selling a fraction of
the stock that is equal to the reciprocal of this longest time until maturity.
We repeat this process as necessary, noting that with each repetition, the
longest time until maturity is reduced by a year, until we have addressed
the remaining liability or we reach maturities that are five years out. In
this later case, we sell all the remaining stock needed to address the full
liability. Should there not be enough stock to address the liability after
we sell all the stock, we sell the bonds with the longest maturities until we
have addressed the full liability. Should we not be able to address the full
liability after selling all the stock and all the bonds, we are bankrupt.

3. Finally, if the next five years of liabilities are not covered by bonds at this point,
we sell as much stock as is necessary to purchase bonds to attain this priority,
if possible.

4.4 Base case results when α = 1

We are able to run the above investment strategy over 10,000 simulations in about
15 seconds on a home computer with an Apple M1 Max chip. During the run, we
determine the fraction of the simulations that go bankrupt each year, which enables
us to record the increase in the cumulative fraction of simulations that go bankrupt
over time. We use the following values for the parameters discussed above in our base
case:

1. f , the fraction of money devoted to stocks after ensuring the next five years of
liabilities are covered by bonds, is set to 10% to model LDI plans, which rarely
exceed a 10% stock fraction,

2. α = 1 for the initial assets and later contributions,

3. the “years of bonds,” meaning the number of years we prioritize having bonds
cover the projected liabilities, is 5 years,

4. i
infl,estim

, the estimate of future inflation rate needed to project future liabilities,

is 3%,

5. µ and σ, the mean and volatility of the stock governed by geometric Brownian
motion, are 7% and 20% respectively,

6. The Vasicek model parameters governing the evolution of inflation are κ
infl

=
0.6, θ

infl
= 0.025, and σ

infl
= 0.03, and

7. The Vasicek model parameters governing the evolution of the yield curve for
AA corporate bonds are κ

AA
= 0.5, θ

AA
= 0.035, and σ

AA
= 0.02.
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For this base case, we find that there is an 81.9% chance of becoming bankrupt by
the end of 30 years. This is detailed in Figure 1. We recall from Table 1 that the
(augmented) funded ratio is generally above 0.80 for this collection of parameters, a
region generally considered to be safe, but Figure 1 shows that the chance that this
LDI fund becomes bankrupt by the end of its 30 years horizon is 81.9%, which is far
from what is generally considered to be safe.

This strongly supports the AAA’s contention at the beginning of the previous
section that using an 80% or higher funded ratio as an indicator of a healthy LBP
is a “myth.” It also gives further evidence to the AAA’s view that the funded ratio
should be augmented by additional metrics to give a full view of the health of an LBP.
We explore using the SAM and FAM metrics for our base case in the next subsection.

Figure 1: Our base case: The graph shows the cumulative probability over time that the
plan will become bankrupt during the 30 years it is tasked with addressing liabilities. The
chance of bankruptcy is 81.9% at the end of the 30 years, even though the plan’s funded ratio
is near or above 0.80, which would generally be deemed safe. (The chance of bankruptcy is
0.70% after 15 years, 16.2% after 20 years, and 57.4% after 25 years.)

4.5 SAM and FAM for the base case

To determine SAM in this section’s Monte Carlo context, we determine the minimum
multiple, α, of the initial investment and contributions needed to keep the fraction of
bankruptcies for our base case below a specified value. SAM is the reciprocal of this
minimum α value.

For instance, let’s say that we require that we remain under a 20% chance of
bankruptcy at the end of the 30 year horizon for SAM. For our base case, we find
that SAM = 0.743, which corresponds to an α of 1.346 = 1

SAM
. That is, we need

to multiply our initial assets and our contributions by 1.346 to bring the chance of
bankruptcy down to 20%. When this occurs, we have a 0.03% chance of bankruptcy
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after 15 years, a 0.28% chance after 20 years, and a 3.64% chance after 25 years.

The definition of FAM given in the introduction looks to keep the probability of
failing to meet each annual liability below given values for each year. This definition
makes sense in a general LBP context. In this general context, a large fraction
of the plan can be in volatile assets, and we do not necessarily want to bias the
plan’s investment decisions towards meeting early liabilities at the expense of later
liabilities. In our LDI context here, however, that bias is often desirable, and further
in our Monte Carlo context here, investment decisions are already determined and are
heavily weighted towards AA corporate bonds. We therefore utilize a version of FAM
in this section that is slightly different, and more helpful in answering questions that
arise in an LDI context. Specifically, we determine the minimum multiple, α, of the
initial investment and contributions that is needed to keep the cumulative fraction
of bankruptcies for our base case below specified values for each year. FAM is then
defined in this section as the reciprocal of this minimum α value.

In Section 5, we will revert back to the normal definition of FAM. Should the
normal definition of FAM be more desirable in the Monte Carlo context here, it can
be accomplished by using the best off funds in the Monte Carlo simulation in any given
year to address that year’s liability. For example, if there is a 1% allowed probability
of failing to meet the liability in a given year, the top 99% well-off simulated paths
would be used to address the liability. If this is not possible, then a higher α value
must be selected.

For this section’s version of FAM, let’s say that we require that we remain under a
0.5% chance of bankruptcy at the end of 20 years, under a 1.5% chance of bankruptcy
at the end of 25 years, and under a 20% chance of bankruptcy at the end of the 30 year
horizon. (We note that we can compute FAM just as easily if we decided to specify
different chances for bankruptcy in each of the 30 years. Because we are working with
cumulative bankruptcies, these specified chances never decrease over time, of course.)
From our SAM results, we can see that the key obstacle for FAM will be attaining
the 1.5% chance of bankruptcy at the end of year 25, which will require a higher α
than 1.346. And indeed, for our base case, FAM = 0.704, which corresponds to an
α of 1.421 = 1

FAM
. When this occurs, we have a 0.01% chance of bankruptcy after

15 years, a 0.17% chance after 20 years, a 1.50% chance after 25 years (as expected),
and a 12.1% chance after 30 years.

4.6 Comparative statics analysis of the base case

In this section we note the effects of changing each of the base case parameters, one at
a time. Only changes to the parameter i

infl,estim
directly affect the funded ratio (or the

augmented funded ratio), although changing the other parameters can indirectly alter
the discount rate D used to determine the funded (and augmented) funded ratios.
With SAM and FAM, however, the effect of changing any of these parameters can
directly be quantified, as we show in this subsection. This is important because it
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enables managers of liability based portfolios to directly determine how important it
is to hedge for the effects of uncertainty or changes in each of these parameters.

In Table 2, we see the effect of changing f . Recall that f is the fraction of the
plan devoted to stock after we have covered the projected liabilities for the next 5
years (or however many years are assigned to what we will call the “years of bonds”
parameter). Looking at the cases where α = 1 in Table 2 suggests, at first, that
plans would be far better off choosing a value of f near 70% instead of the base
case value of 10% since f = 0.7 minimizes the probability of being bankrupt after 30
years. But it is important to recall that when α = 1, there is a high chance of going
bankrupt, so it is no surprise that putting such a large fraction of the plan in stocks
reduces the probability of bankruptcy: it is essentially a financial “Hail Mary” pass
for a plan that requires early intervention despite the high value of its augmented
funded ratio. Adjusting α to 1.346, where we know from our SAM calculation that
the probability of bankruptcy is a more reasonable value of 20% shows that for this
reasonably well-funded plan, keeping f somewhere in the range of 7.5-10% is optimal.
That is, increasing the stock fraction above 10% is neither necessary nor wise if the
LDI plan is reasonably well funded. Recalling that we want SAM and FAM to be as
large as possible, the bottom panel in Table 2 for SAM and FAM confirms that the
optimal value of f is in the 7.5-10% range.

Probability of bankruptcy after...
α f 15 years 20 years 25 years 30 years

1 0.05 1.67% 16.8% 61.9% 87.0%

1 0.1 0.70% 16.2% 57.5% 81.9%

1 0.2 0.31% 17.0% 53.5% 74.6%

1 0.3 0.77% 19.7% 51.2% 70.5%

1 0.5 2.59% 23.8% 49.7% 66.1%

1 0.7 5.31% 26.9% 49.7% 64.6%

1 0.9 6.07% 28.2% 51.3% 65.7%

1.346 0.05 0.15% 0.67% 3.38% 20.9%

1.346 0.075 0.09% 0.42% 3.39% 20.0%

1.346 0.1 0.03% 0.28% 3.63% 20.0%

1.346 0.2 0% 0.13% 5.27% 21.5%

1.346 0.3 0% 0.47% 7.84% 23.9%

f 0.05 0.075 0.1 0.2 0.3

SAM 0.738 0.743 0.743 0.735 0.723

FAM 0.702 0.706 0.704 0.682 0.641

Table 2: The effect of changing f , the maximum fraction of the portfolio that can be in
stock, unless every projected liability is covered by bonds. Top panel: The effect of changing
f on the probability of bankruptcy when we set the asset and contribution multiplier, α,
equal to 1 and then when we set α equal to 1.346. Bottom panel: The effect of changing f
on SAM and FAM.
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The remaining tables in this subsection take the form of the bottom panel in
Table 2. That is, we increase a single parameter of interest over the five columns
in the table, letting the parameter take its base case value in the middle column.
Because both SAM and FAM require the cumulative probability of bankruptcy to be
no more than 20% after 30 years, but FAM also requires no more than a 0.5% chance
of bankruptcy after 20 years and no more than a 1.5% chance of bankruptcy after 25
years, FAM will never be greater than SAM. Generally, the 20 year requirement for
FAM has a larger effect on reducing FAM than the 25 year requirement, except in
the base case, where the 25 year requirement has the larger effect.

For example, in the left panel of Table 3, we see the effect of changing the “years
of bonds”, that is, the number of future years for which bonds must cover projected
liabilities before we devote any money to stock. The SAM row in this left panel shows
that moving the “years of bonds” within the range of one to five years makes little to
no difference to the probability of eventual bankruptcy, but having 10 or more “years
of bonds” begins to under-weight stock in favor of potentially very volatile long-term
bonds, which does begin to slightly diminish the probability of remaining solvent.
The FAM row, on the other hand, shows that while having a single “year of bonds”
is a little less cautious than it should be, having 10 or more “years of bonds” is much
more problematic, leading to potentially having to sell long-term bonds prematurely,
which makes it more difficult to keep the rate of solvency higher than 99.5% after 20
years.

Similarly, in the right panel of Table 3, we see the effect of changing i
infl,estim

, the
inflation estimate used to project future liabilities that are to be covered by bonds.
Since the average inflation rate is given by θ

infl
, which is 2.5%, we see in the panel that

when i
infl,estim

is higher than 2.5%, there is little effect on SAM or FAM, although both
begin to suffer when i

infl,estim
is too high, due to losing the benefits of having more

stock in the portfolio. When i
infl,estim

is too low, especially when it is unrealistically

set equal to 0%, we see SAM, and especially FAM, suffer. This is no surprise with
FAM since such low values of i

infl,estim
lead to far more stock in the portfolio, which

creates enough volatility in the plan that maintaining a chance of bankruptcy of no
more than 0.5% after 20 years becomes quite difficult.

Years of bonds 1 3 5 10 30

SAM 0.744 0.744 0.743 0.737 0.720
FAM 0.699 0.702 0.704 0.687 0.569

i
infl,estim

0% 2% 3% 5% 10%

SAM 0.705 0.743 0.743 0.742 0.741
FAM 0.500 0.612 0.704 0.708 0.703

Table 3: Left panel: the effect of changing the “Years of Bonds,” which is the number of
future years of projected liabilities that must be covered by bonds before devoting any plan
money to stock. Right panel: the effect of changing the inflation estimate, i

infl,estim
, used

to project future liabilities.

In Table 4, we see the beneficial effect of increasing the expected return, µ, of the
stock and the detrimental effect of increasing the volatility, σ, of the stock. We note
their real, but muted, effects on SAM and FAM due to the limitations on the amount
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of stock in the plan.

µ 4% 6% 7% 8% 10%

SAM 0.705 0.729 0.743 0.759 0.798
FAM 0.680 0.693 0.704 0.713 0.738

σ 5% 15% 20% 25% 35%

SAM 0.786 0.760 0.743 0.727 0.701
FAM 0.756 0.719 0.704 0.687 0.651

Table 4: The effect of changing the stock’s expected value, µ, (left panel) and volatility, σ,
(right panel).

In Table 5, we see the effect on SAM and FAM of the three Vasicek model pa-
rameters for the rate of inflation. The higher κ

infl
is, the more push there is to-

wards the mean of θ
infl

= 2.5%. When κ
infl

is quite small, using the inflation estimate
i
infl,estim

= 3% becomes progressively questionable, and so we see SAM decrease signif-

icantly, and FAM decrease even more since maintaining a 99.5% solvency probability
after 20 years becomes nearly impossible. Even worse, when θ

infl
increases, we are

nearly guaranteeing that the inflation estimate i
infl,estim

= 3% will be wrong, and the
liabilities will be far higher than projected when we purchased the bonds. It’s no
surprise in this case that both SAM and FAM become very low. Increasing the effect
of the randomness in the inflation rate by increasing σ

infl
is similar to the effect of

decreasing κ
infl

, which is borne out by comparing the left and bottom panels in Table
5.

κ
infl

0.1 0.4 0.6 0.8 1.0

SAM 0.523 0.715 0.743 0.756 0.764
FAM 0.254 0.568 0.704 0.745 0.763

θ
infl

0% 1.5% 2.5% 5% 10%

SAM 0.999 0.840 0.743 0.505 0.208
FAM 0.919 0.785 0.704 0.413 0.137

σ
infl

0.01 0.02 0.03 0.04 0.05

SAM 0.780 0.763 0.743 0.721 0.696
FAM 0.780 0.764 0.704 0.602 0.497

Table 5: The effect of changing the three Vasicek model parameters (the mean-reversion
rate κ

infl
, the long-run mean rate of inflation θ

infl
, and the volatility of inflation σ

infl
) that

govern the evolution of inflation, as shown in equations (3) and (4).

Finally, we consider the effect of changing the values of the Vasicek parameters
that govern the evolution of the AA corporate bonds’ yield curve. As with the Vasicek
model parameters for inflation, both SAM and FAM increase when κ

AA
increases or

σ
AA

decreases since, as before, this means less uncertainty. The effects here, however,
are less extreme since the rate of inflation, especially over the long term, has a big
effect on the amount owed, while many of the AA corporate bonds are bought at the
beginning of the 30 year horizon before the effect of the random process is heavily felt.
The higher the average instantaneous rate of return for the AA bonds, the better, so
it is unsurprising to see both SAM and FAM increase as θ

AA
increases.
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κ
AA

0.1 0.3 0.5 0.7 0.9

SAM 0.713 0.740 0.743 0.744 0.744
FAM 0.666 0.701 0.704 0.704 0.704

θ
AA

1.5% 2.5% 3.5% 4.5% 5.5%

SAM 0.603 0.670 0.743 0.820 0.901
FAM 0.535 0.636 0.704 0.771 0.843

σ
AA

0.005 0.01 0.02 0.03 0.04

SAM 0.747 0.746 0.743 0.737 0.730
FAM 0.707 0.706 0.704 0.697 0.692

Table 6: The effect of changing the three Vasicek model parameters (the mean-reversion
rate κ

AA
, the long-run mean rate θ

AA
, and the volatility σ

AA
)that govern the evolution of

the instantaneous interest rate of AA corporate bonds, as shown in equation (5). We note
that via equation (6) these parameters and the Vasicek model also yield the evolving value
of AA corporate bonds with any coupon rate and maturity.

4.7 Monte Carlo for RFFR

To calculate RFFR, we need to model the cost of STRIPS, but this must be done in
light of the fact that we have already modeled AA corporate bonds. To do this we
define r

Tr
, the instantaneous interest rate for treasury bonds, by

r
Tr

=
r
AA

1 + e−x
,

noting that this maintains the desired restriction 0 ≤ r
Tr

≤ r
AA

, regardless of the
value of x. We model the value of x by a correlated Vasicek model process; specifically,

x(t+ 1) = x(t)e−κx + θx(1− e−κx) + σx

√
1− e−2κx

2κx

(
ρxZ3 +

√
1− ρ2xZ4

)
,

where Z3 is the same standard normal random variable used to compute r
AA

in
equation (5) and Z4 is a standard normal random variable that is independent of
Z1, Z2, and Z3.

We are then able to use the Vasicek model parameters for treasuries to, as before,
determine ZCB

Tr
(t, T ), the cost of Treasury STRIPS (that is, zero-coupon bonds) at

time t that will generate $1 at time T , by using the formula

ZCB
Tr
(t, T ) = eBTr(t,T )−rTr(t)ATr(t,T ),

where

A
Tr
(t, T ) =

1

κ
Tr

(
1− e−κTr(T−t)

)
and

B
Tr
(t, T ) =

(
θ
Tr

−
σ2

Tr

2κ2
Tr

)(
A

Tr
(t, T )− T + t

)
−

σ2

Tr

4κ
Tr

A2

Tr
(t, T ).

The seven parameters in this model have been determined from short term AA cor-
porate bond returns and short term treasury returns between 1996 and 2023, which
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give κx = 0.0158, θx = 1.011, σx = 0.1328, ρx = 0.57, κ
Tr

= 0.0698, θ
Tr

= 0.0173, and
σ
Tr

= 0.00673. We have also chosen an initial x value of 1 and an initial instantaneous
interest rate for treasuries of 2%.

With our model for STRIPS in place, we can compute RFFR at any time by
altering the formula for the augmented funded ratio (or the funded ratio if preferred)
to account for our using STRIPS. For example, the initial value for RFFR can be
computed by altering our formula given in equation (2) for the initial augmented
funded ratio to obtain:

RFFR =

80 +
5∑

t=1

(6− t) ∗ ZCB
Tr
(0, t)

15∑
t=1

5eiinfl,estim∗t ∗ ZCB
Tr
(0, t) +

30∑
t=16

4eiinfl,estim∗t ∗ ZCB
Tr
(0, t)

.

This calculation, which uses different rates for each liability’s time to reflect the
interest rate changes for STRIPS over time, yields an initial RFFR value of 0.601.
In contrast, the augmented funded ratio in equation (2) uses a fixed discount rate.
In fact, Table 1 shows that a constant discount rate of 2.0% also corresponds to the
augmented funded ratio of 0.601, so in this sense the changing STRIPS interest rate
in this case “averages” to a constant discount rate of 2.0%.

As a rule of thumb, if RFFR reaches 1.3 at any time, an insurer will be willing take
over the plan, meaning the owner has protected themselves from the risk of potential
future defaults. To reflect this, in our RFFR Monte Carlo model, any time RFFR
reaches 1.3, we assume the fund is sold to an insurer and therefore bankruptcy is no
longer possible.

How important is this insurance option? From a bankruptcy point of view, it is
actually of very little worth, because a plan whose RFFR is 1.3 is extremely unlikely
to go bankrupt if we continue using the same fixed investment strategy that we used
for SAM and FAM in the previous section. Consider the base case from before where
α = 1, but we can insure the plan if RFFR reaches 1.3. The chance of going bankrupt
is shown by the orange curve in Figure 2. We note that at the end of the 30 years
there is an 81.8% chance of going bankrupt with our insurance option, whereas the
base case in Figure 1 without the insurance option has an 81.9% chance of going
bankrupt after 30 years. In fact, comparing the orange curve in Figure 2 with Figure
1 shows less than a one percentage point difference at any time between the two
figures. What if we allow the plan to be insured if RFFR reaches 1.1 instead of 1.3?
Again, it makes no real difference. The chance of going bankrupt if the plan can be
insured should RFFR reach 1.1 is shown by the blue curve in Figure 2, but it is nearly
indistinguishable from the orange curve for the case where RFFR needs to reach 1.3.
The differences only occur near the end of the 30-year horizon, and even then they
are slight: the probability of going bankrupt is 81.4% instead of 81.8% at the end of
the 30 years.
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Figure 2: The cumulative probability over time of going bankrupt if the plan is inoculated
from future bankruptcy any time RFFR reaches 1.3, versus any time RFFR reaches 1.1.
The two curves are nearly indistinguishable, except at the end of the 30-year time period.
Note that the asset and contribution multiplier, α, is 1 in these graphs.

There is another aspect to insuring a plan, however, and that is for financial
planning from an accounting viewpoint. That is, once a plan is transferred to an
insurer, the original owner need not worry about the plan any longer. Therefore,
the earlier the plan is sold, the better. From this perspective, the insurance option
is desirable, and we note from Figure 3 that being able to inoculate the plan when
RFFR reaches 1.3 takes longer than if it can be inoculated when RFFR reaches 1.1.
For example, there is an 8% chance of being inoculated after 20 years if we require
RFFR to reach 1.3, but this increases to 12% if we only require RFFR to reach 1.1.

Figure 3: The cumulative probability over time of being able to inoculate the plan from
future bankruptcy any time RFFR reaches 1.3, versus any time RFFR reaches 1.1. Again,
note that α = 1 in these graphs.
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The timing of obtaining insurance is everything here. As we reach the end of our
liabilities horizon, the amount of future liabilities diminishes significantly, causing the
denominator in the formula for RFFR to decrease, and therefore RFFR increases.
It is therefore rare that a plan neither goes bankrupt nor reaches an RFFR of 1.3
eventually. In fact, there’s only a 1.23% chance of this happening, which goes down
to a 0.60% chance if RFFR only needs to reach 1.1 instead of 1.3. That is, having a
plan be insurable just a few years before its end is not particularly useful, even from
an accounting point of view.

We therefore must present the full graph of the cumulative probability of being
inoculated over time as the result of any RFFR analysis. In Figure 4, we see these
full graphs as we increase the value of α from 1, where bankruptcy is likely, to higher
values of α, where the likelihood is diminished and inoculation becomes more likely.
As before, the likelihood of remaining neither bankrupt nor eventually able to reach
an RFFR of 1.3 remains small, never exceeding 2.5% in any of the five cases presented.

Figure 4: The cumulative probability over time of being able to inoculate the plan from
future bankruptcy, given various values of the asset and contribution multiplier (α), assum-
ing inoculation occurs any time RFFR reaches 1.3.

Because the liabilities are affected by inflation, RFFR must use i
infl,estim

to esti-
mate the future liabilities before using STRIPS to find their present value. Therefore,
i
infl,estim

can have a significant effect on the value of RFFR and whether of not early
inoculation is possible. In Figure 5, we can see the importance of i

infl,estim
. In partic-

ular, we have set α = 1.8 and shown the effect of changing i
infl,estim

from its base case

value of 3% to 2% or to 4%. Comparing these three results shows, for example, that
there is a 60% chance of inoculating the plan by year 3 if i

infl,estim
= 2%, but this is

delayed to year 10 if i
infl,estim

= 3%, and then to year 14 if i
infl,estim

= 4%.
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Figure 5: Seting α = 1.80 and then changing the estimated inflation, i
infl,estim

, from its

value in the base case (used in Figure 4), which is 3%, to 2% and then to 4%. The middle
curve in this figure (for the base case, i

infl,estim
= 3%) is identical to the top curve in Figure

4 for α = 1.80.

Because the timing of the plan inoculation is the key result of an RFFR analysis,
it is far from clear what it would mean to determine an optimal strategy in an RFFR
context. That is, in our example, we have the probability of being insured at each of
29 times. Any optimization would have to weight all 29 probabilities to create one
quantity to optimize, and it is far from clear what weighting would be meaningful in
this context. Further, if we only want to optimize the eventual probability of being
inoculated, we have already seen that this is essentially equivalent to maximizing the
probability of remaining solvent, and that is equivalent to maximizing SAM. Since
both SAM and FAM are single numbers that can be maximized, the notion of finding
investments to maximize SAM or FAM makes intuitive sense, and we show how to
accomplish this in the next section.

5 Determining the Optimal Investment Strategy

to Maximize SAM or FAM using Dynamic Pro-

gramming

The Monte Carlo analysis of the previous section works quite well for any fixed in-
vestment portfolio strategy, but Monte Carlo methods are completely impractical
for determining an optimal dynamic investment portfolio strategy. To determine this
strategy, which chooses an optimal investment portfolio in light of the fact that a new
investment portfolio can be chosen in each future year, we use dynamic programming.
We will see that dynamic programming can compute the optimal dynamic investment
portfolio strategy for SAM or FAM within a few minutes.
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As before, SAM is the reciprocal of the minimum α value needed to keep the chance
of bankruptcy below a specified probability. However, in our context of portfolio
optimization in this section, it is the reciprocal of the minimum α value given that
the liability based plan can alter its investment portfolio each year. That is, for each
α value considered, we determine the optimal dynamic investment portfolio strategy
that minimizes the probability of failing to pay even one of the plan’s liabilities. In
particular, this optimal strategy specifies the investment portfolio that the liability
based plan must optimally select, which is a function of time and of the portfolio’s
remaining wealth at that time. This optimal investment portfolio strategy can be
computed for any α in a few seconds via single goal dynamic programming, as shown
in Das et al. (2020).

Dynamic programming can also be used to determine the optimal investment
portfolio strategy for FAM. However, this is done via the Efficient Goal Probability
Frontier method (shown in Das et al. (2023)), which uses dynamic programming for
multiple goals (shown in Das et al. (2022)), instead of a single goal. The Efficient Goal
Probability Frontier method requires a longer computational time. For instance, in
our examples below, SAM and FAM each required computations at about 8 different
values of α. Running on a home computer with an Apple M1 Max chip, the SAM
calculation took a total time of just over half a minute, while the FAM calculation
took two minutes and 15 seconds.

For our examples, we will use much of the basic set-up that was used in the
previous section. As in that section, we start with 80MM. Over the first five years,
there will be contributions of $5MM, $4MM, $3MM, $2MM, and $1MM nominal
dollars, but nothing after that. The plan’s liabilities require it to pay $5MM present-
valued dollars (adjusted for inflation) in each of the first 15 years, followed by $4MM
present-valued dollars in each of the 15 years after that.

Because dynamic programming determines the optimal strategy by working back-
wards in time, it must rely on state variables to describe the forward evolution of a
portfolio up to any given time. However, we must limit the number of state variables
in our model to avoid the so-called “curse of dimensionality,” which would quickly
slow the computation down considerably. We therefore use just the time and the
current portfolio’s worth as our state variables. Instead of adding an additional state
variable for inflation, we simply assume an inflation rate of 3%. It is impossible to
keep track of all previous bond purchases as we did in the previous section using
Monte Carlo simulation, so we will instead use a simple bond fund. Further, we will
assume the bond component’s price evolves by geometric Brownian motion instead of
evolving by the Vasicek model since the Vasicek model would require an additional
state variable for the bond fund’s instantaneous interest rate. Should our assumption
regarding the interest rate being constant or our assumptions regarding the bond
model be considered problematic, we suggest first applying the method presented
in this section with these approximations so as to determine an optimal strategy,
followed by applying the method presented in the previous section, using this (now
fixed) optimal strategy.
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For many LDI funds or other liability based plans that are restricted to being
invested very conservatively, there may be little variation allowed in the plan’s in-
vestments, in which case portfolio investment optimization may of little to no use.
In these cases, the Monte Carlo approach of the previous section may be sufficient.
However in other liability based plans, including some LAI plans and many ALM
plans, there is a wider range of permissible investments. Because we assume a geo-
metric Brownian motion model for both the stocks and the bonds here, any optimal
investment portfolio must lie on the efficient frontier. In Table 7, we give an example
with 21 expected return (µ) and volatility (σ) pairs that lie on a predicted efficient
frontier governing stock and bond portfolios. Our dynamic programming algorithms
show how to optimally move among these 21 investment portfolios, which are num-
bered from 0 (very conservative, all bonds) to 21 (very aggressive, all stock), changing
in 5% increments, so portfolio 1 is 95% bonds and 5% stock, portfolio 2 is 90% bonds
and 10% stock, etc.

Portfolio number 0 1 2 3 4 5 6 7 8 9
Percent bonds 100% 95% 90% 85% 80% 75% 70% 65% 60% 55%
Percent stocks 0% 5% 10% 15% 20% 25% 30% 35% 40% 45%
Expected return (µ) 0.046 0.048 0.05 0.052 0.054 0.056 0.058 0.06 0.062 0.064
Volatility (σ) 0.0439 0.0444 0.0462 0.0491 0.053 0.057 0.063 0.068 0.074 0.081

Portfolio number 10 11 12 13 14 15 16 17 18 19 20
Percent bonds 50% 45% 40% 35% 30% 25% 20% 15% 10% 5% 0%
Percent stocks 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%
Expected return (µ) 0.066 0.068 0.07 0.072 0.074 0.076 0.078 0.08 0.082 0.084 0.086
Volatility (σ) 0.087 0.094 0.101 0.107 0.114 0.121 0.128 0.136 0.143 0.150 0.157

Table 7: The top table describes the 21 investment portfolios that are available to the
investor, where the portfolio’s expected return and volatility increases with the portfolio
number. These investment portfolios lie along the efficient frontier shown in the bottom
panel.

We first calculate SAM for our example under the requirement that the chance
of bankruptcy does not exceed 10%. The optimized investment portfolio strategy
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determined by our dynamic programming approach is given in the left panel of Figure
6, which corresponds to a SAM value of 0.868. In contrast, for FAM, we require the
probability of not paying each of the liabilities in the first ten years to be no higher
than 0.5%, then, for each of the next ten years, no higher than 5%, and finally, for
each of the last 10 years, no higher than 10%. The optimized investment portfolio
strategy determined by our multiple goals dynamic programming approach is given
in the right panel of Figure 6, which corresponds to a FAM value of 0.973.

Figure 6: The optimal investment portfolio strategy for our SAM example (left panel) and
our FAM example (right panel). The optimal investment portfolio is a function of time, in
years, (on the horizontal axis) and the portfolio’s worth, in dollars, (on the vertical axis).
The darker the color, the more aggressive the optimal investment portfolio.

The restrictions in SAM are generally harder to satisfy than the restrictions in
FAM, because SAM requires every liability is met while FAM only requires that
the probability of satisfying each liability be above specified (usually high) levels.
Therefore, it is not surprising that the value for SAM in our case is smaller than the
value for FAM. This also explains why we can see from Figure 6 that the optimized
dynamic investment portfolio strategy is more aggressive for SAM than for FAM.
Because the uncertainty for how conservative or aggressive we will later need to be
decreases over time, in both of the panels in Figure 6 we see the spread in the optimal
investment portfolios diminish as time progresses. In the FAM panel on the right,
the conservative portfolio “notches” in later years correspond to cases where being
more conservative safeguards the ability to pay liabilities for one more year (the large,
bottom notch) or two more years (the small, top notch). More specifically, within
these notches, more aggressive portfolios’ ability to potentially pay for additional
years of liabilities do not outweigh the potential risk of losing the ability to pay the
liabilities in years that a conservative portfolio can guarantee.

We note that our values for SAM and FAM are higher in this section than in the
Monte Carlo case presented in Section 4. There are a number of reasons for this.
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One reason is obvious: we are using dynamic investment portfolio optimization in
this section, and we had a fixed investment portfolio in Section 4. Another reason is
that in our Monte Carlo case, the expected returns of the bonds and of the stocks
were lower than in this section and the volatilities were higher. Further, inflation
was stochastic in the previous section, even though the average inflation rate in that
section was lower than the assumed inflation rate in this section. Finally, the different
notion for FAM used in Section 4 involved more difficult restrictions to satisfy than
the normal notion for FAM used in this section. We note that all of these effects were
strong enough to overcome the fact that SAM had a 20% bankruptcy limit in the
previous section, and only a 10% bankruptcy limit here.

How much does investment portfolio optimization by itself improve SAM and
FAM? If some of the investment portfolio options are considered too aggressive to
be considered, we can simply remove them and rerun our dynamic programming
algorithms. In Table 8, we show the effect on SAM and FAM of keeping progressively
fewer aggressive investment portfolios available. The effect of progressively removing
aggressive investment portfolio options on the optimal investment portfolio strategies
that were shown in Figure 6 is straightforward: the parts of the figure that correspond
to aggressive investment portfolio options that have been removed simply now take
the most aggressive investment portfolio option still available.

Portfolios numbers 0–20 0–18 0–16 0–14 0–12 0–10 0–8 0–6 0–4 0–2 0 20 0 or 20

SAM 0.868 0.862 0.859 0.848 0.834 0.823 0.821 0.798 0.785 0.760 0.731 0.692 0.823
FAM 0.973 0.964 0.950 0.924 0.919 0.912 0.901 0.895 0.862 0849 0.792 0.779 0.898

Table 8: All but the last two columns show the effect on SAM and FAM when we pro-
gressively restrict the potential investment portfolios to more and more conservative (lower
numbered) options. The second to last column corresponds to being restricted to all stock
(portfolio 20). The last column corresponds to being restricted to a portfolio strategy of
jumping between either all bonds (portfolio 0) or all stock (portfolio 20).

In the third to last column of Table 8, we look at the effect of having all bonds, so
there is no investment portfolio optimization. We note that it is considerably lower
than the case where we have optimized the use of all 21 investment portfolios. In the
second to last column, we consider the opposite case where we have all stock, which
leads to even worse results. This is due to having to overcome the significant negative
effect of the stock position’s volatility on being able to maintain high probabilities
of meeting liabilities. Finally, while Figure 6 shows that at many times and wealth
values it is optimal to have either all bonds or all stock, the figure does not take
into account the likelihood of being at the time and wealth values that correspond to
intermediate investment portfolios. We therefore computed the final column, which
optimizes the investment portfolio strategy if we can only be all in bonds or all in
stock. We note that there is still a significant reduction in SAM and FAM versus
the case with access to all 21 investment portfolios. That is, Table 8 gives a strong
sense for the considerable amount of improvement to SAM and FAM that dynamic
investment portfolio optimization can provide.
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6 Conclusions

The funded ratio of a liability based plan (LBP) has the advantage of having a simple
definition, but that simplicity comes with considerable weaknesses if it is not aug-
mented by additional measures for the LBP’s health. In particular, the funded ratio
lacks an ability to directly take a number of important factors into account, including
future contributions, employers’ financial health, the yield curve not being constant,
and the effect of the timing for when contributions occur versus when liabilities are
due. Chief among the funded ratio’s weaknesses, however, is its inability to take into
account stochastic factors that are key to understanding the true health of an LBP.

In this paper we introduce three additional measures that help reach a more
complete understanding of the health of an LBP. One measure, the risk-free funded
ratio (RFFR), is a market based measure that is particularly helpful in determining
if an LBP should be bought or sold. The other two measures, the solvency asset
multiple (SAM) and the funded asset multiple (FAM), are heavily probability based
measures that correspond to the reciprocal of the multiple of the current funds and
future contributions needed to attain specified probabilities of remaining solvent at
the end of the LBP’s horizon (SAM) or attaining specified probabilities of satisfying
each years’ liabilities (FAM).

SAM and FAM are able to take into account many factors that the funded ratio
cannot address by its nature, including stochastic factors. Because SAM and FAM
are probability based, while the funded ratio is not, SAM and FAM often can provide
crucial information that is key to guiding a company’s internal policy discussions
regarding their LBPs. For example, consider the common, but also questioned, rule
of thumb that LBPs with funded ratios above 0.8 are generally healthy. In this paper,
we presented a simple case where the funded ratio would generally be considered to
be within this “healthy” range, but from the probabilistic perspective, we showed
there is an 81.9% chance that this LBP will go bankrupt without additional funding.
Using SAM or FAM gives a true sense of how much additional funding is necessary to
attain a specific probability of maintaining solvency in all years (SAM) or to attain
sufficiently high probabilities of meeting liabilities in each year (FAM).

The funded ratio gives no sense of how investments should be optimally selected
to maximize the probability of meeting an LBP’s liabilities. In Chapter 5, however,
we showed how SAM and FAM can be used to accomplish this. This ability is
particularly important if we are allowing for a selection of investments over a wide
array of expected returns and volatilities.

Because our method in Chapter 5 uses dynamic programming, the “curse of di-
mensionality” restricts the number of stochastic factors it can accommodate. Methods
like reinforcement learning (RL), however, offer hope in the future for enabling opti-
mization with models containing multiple stochastic factors. Examples of using RL to
help optimize financial models include Hambly et al. (2021); Duarte et al. (2021); and
Chen et al. (2021). In addition to RL approaches, there are other simulation-based
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approaches like Blay et al. (2020). However, the financial context of each of these
four cited papers differs from the LBP goal questions examined in this paper.
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