Inside the Matrix: Modeling the Network Effect

Sanjiv R. Das¹ Santa Clara University

> @RFInance Chicago May 2015

¹http://algo.scu.edu/ sanjivdas/risknet.pdf

Sanjiv R. Das

The Network Effect

Graph Theory: Network Types

(a) Random network $f(d) \sim N(\mu, \sigma^2)$

(b) Scale-free network $f(d) = d^{-\alpha}, \quad 2 < \alpha < 3$

Random vs Scale-Free Graphs

Barabasi, Sciam, May 2003

4 / 27

Centrality (Bonacich 1987)

- Also known as PageRank by Google.
- Adjacency matrix: $A_{ij} \in \mathcal{R}^{N \times N}$
- Influence: $x_i = \sum_{j=1}^N A_{ij} x_j$
- $\lambda \mathbf{x} = \mathbf{A} \cdot \mathbf{x}$
- Centrality is the eigenvector **x** corresponding to the largest eigenvalue.

Fragility

- Definition: how quickly will the failure of any one node trigger failures across the network? Is network malaise likely to spread or be locally contained?
- Metric:

$$R=\frac{E(d^2)}{E(d)},$$

where d is node degree.

- Fragile if R > 2.
- Fragility of the sample network = 20

What is Systemic Analysis?

- Definition: the measurement and analysis of relationships across entities with a view to understanding the impact of these relationships on the system as a whole.
- Challenge: requires most or all of the data in the system; therefore, high-quality information extraction and integration is critical.

Midas Project: Overview

Joint work with IBM Almaden²

- Focus on financial companies that are the domain for systemic risk (SIFIs).
- Extract information from unstructured text (filings).
- Information can be analyzed at the institutional level or aggregated system-wide.
- Applications: Systemic risk metrics; governance.
- Technology: information extraction (IE), entity resolution, mapping and fusion, scalable Hadoop architecture.

² "Extracting, Linking and Integrating Data from Public Sources: A Financial Case Study," (2011), (with Douglas Burdick, Mauricio A. Hernandez, Howard Ho, Georgia Koutrika, Rajasekar Krishnamurthy, Lucian Popa, Ioana Stanoi, Shivakumar Vaithyanathan), *IEEE Data Engineering Bulletin*, 34(3), 60-67. [Proceedings WWW2010, April 26-30, 2010, Raleigh, North Carolina.]

Entity View

Midas provides an entity view around new sources of data

Sanjiv R. Das

The Midas Project

Input & Output

Midas Financial Insights

Insider Transaction

Data

Midas provides Analytical Insights into company relationships by exposing information concepts and relationships within extracted concepts

Loan Extraction

Example Analysis : Extraction of Loan Information Data

Extract and cleanse information from headers, tables main content and signatures

Loan Information

Notes: Loan Document filed by Charles Schwab Corporation On Aug 6, 2009

Loan Company Information

Loan Network 2005

Loan Network 2006–2009

Systemically Important Financial Institutions (SIFIs)

Year	#Colend	ing #Coloans	Colending	$R = E(d^2) / E(d)$	Diam.						
	banks		pairs								
2005	241	75	10997	137.91	5						
2006	171	95	4420	172.45	5						
2007	85	49	1793	73.62	4						
2008	69	84	681	68.14	4						
2009	69	42	598	35.35	4						
(Year = 2005)											
	Node #	Financial Institutio	Normalized								
			Centrality								
-	143	J P Morgan Chase	1.000	_							
	29	Bank of America C	0.926								
	47	Citigroup Inc.	0.639								
	85	Deutsche Bank Ag	ranch 0.636								
	225	Wachovia Bank NA	0.617								
	235	The Bank of New Y	0.573								
	134	Hsbc Bank USA	0.530								
	39	Barclays Bank Plc		0.530							
	152	Keycorp	0.524								
	241	The Royal Bank of	Scotland Pl	c 0.523							
	6	Abn Amro Bank N	0.448								
	173	Merrill Lynch Bank	0.374								
	198	PNC Financial Serv	Inc 0.372								
	180	Morgan Stanley	0.362								
	42	Bnp Paribas	0.337								
	205	Royal Bank of Can	0.289								
	236	The Bank of Nova	0.289								
	218	U.S. Bank NA	0.284								
	50	Calvon New York F	0.273								
	158	Lehman Brothers B	ank Esh	0.270							
	213	Sumitomo Mitsui B	anking	0.236							
	214	Suntrust Banks Inc		0.232							
	221	UBS Loan Finance	0.221								
	211	State Street Corp		0.210							
	228	Wells Fargo Bank	0.198								

Overview

Risk Networks: Definitions and Risk Score

- Assume *n* nodes, i.e., firms, or "assets."
- Let E ∈ R^{n×n} be a well-defined adjacency matrix. This quantifies the influence of each node on another.
- *E* may be portrayed as a directed graph, i.e., $E_{ij} \neq E_{ji}$. $E_{jj} = 1$; $E_{ij} \in \{0, 1\}$.
- C is a $(n \times 1)$ risk vector that defines the risk score for each asset.
- We define the "risk score" as

$$S = \sqrt{C^\top E C}$$

• S(C, E) is linear homogenous in C.

Example

Risk vector C: 0 0 1 2 2 2 2 2 1 0 2 2 2 2 1 0 1 1 Risk Score: S = 11.62

Example: Adjacency Matrix

	[,1]	[,2]	[,3]	[,4]	[,5]	[,6]	[,7]	[,8]	[,9]	[,10]	[,11]	[,12]	[,13]	[,14]	[,15]	[,16]	[,17]	[,18]
[1,]	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
[2,]	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
[3,]	1	1	1	1	0	0	0	1	0	0	0	0	0	0	1	1	1	1
[4,]	1	1	1	1	0	0	0	1	0	0	0	0	0	0	0	1	0	0
[5,]	1	0	0	0	1	1	1	1	0	0	0	0	0	0	0	1	0	0
[6,]	1	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
[7,]	1	1	0	0	1	0	1	0	0	0	0	0	0	0	0	1	1	0
[8,]	1	1	1	1	1	0	0	1	0	0	0	0	0	0	0	1	1	0
[9,]	1	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0
[10,]	1	1	0	0	0	0	0	0	1	1	1	1	1	0	0	1	0	0
[11,]	1	1	0	0	0	0	0	0	1	1	1	1	1	0	0	1	0	0
[12,]	1	1	0	0	0	0	0	0	1	1	1	1	1	0	0	1	0	0
[13,]	1	1	0	0	0	0	0	0	1	1	1	1	1	0	0	1	0	0
[14,]	1	1	0	0	0	0	0	0	1	0	0	0	0	1	0	1	0	0
[15,]	1	1	1	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0
[16,]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
[17,]	1	1	1	0	0	0	1	1	0	0	0	0	0	0	0	1	1	0
[18,]	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1

Centrality and Fragility

- Centrality is the principal eigenvector x of dimension (n × 1) such that for scalar λ: λ x = E x
- Plot:

• Fragility: for each node with degree d_i , fragility is the score given by

$$E(d^2)/E(d)$$

Increasing values imply a more fragile network.

Sanjiv R. Das

Risk Decomposition

Exploits the homogeneity of degree one property of S.
Risk decomposition (using Euler's formula):

$$S = \frac{\partial S}{\partial C_1} C_1 + \frac{\partial S}{\partial C_2} C_2 + \ldots + \frac{\partial S}{\partial C_n} C_n$$

Iot:

Risk Increments

• Increments are simply:

$$I_j = \frac{\partial S}{\partial C_j}, \ \forall j$$

• Plot:

Risk Increments

Criticality

Definition: "Criticality" is compromise-weighted centrality. This new measure is defined as $y = C \times x$ where $y, C, x \in \mathbb{R}^n$. Note that this is an element-wise multiplication of vectors C and x.

- Critical nodes need immediate attention, either because they are heavily compromised or they are of high centrality, or both.
- It offers a way for regulators to prioritize their attention to critical financial institutions, and pre-empt systemic risk from blowing up.

Cross Risk

Is the spill over risk from node *i* to node *j* material?

Metrics

Risk Scaling

The increase in normalized risk score \overline{S} as the number of connections per node increases. The plot shows how the risk score increases as the probability of two nodes being bilaterally connected increases from 5% to 50%. For each level of bilateral probability a random network is generated for 50 nodes. A compromise vector is also generated with equally likely values $\{0, 1, 2\}$. This is repeated 100 times and the mean risk score across 100 simulations is plotted on the y-axis against the bilateral probability on the x-axis.

Sanjiv R. Das

The Network Effect

Metrics

Too Big To Fail?

Change in normalized risk score \overline{S} as the number of nodes increases, while keeping the average number of connections between nodes constant. A compromise vector is also generated with equally likely values $\{0, 1, 2\}$. This is repeated 5000 times for each fixed number of nodes and the mean risk score across 5000 simulations is plotted on the y-axis against the number of nodes on the x-axis.

Systemic Risk in Indian Banks

Systemic Risk in India over time

Risk Decomposition in India

18

Risk Decomposition

Risk Increment

			-	-	
5	nı	1117	- R	1):	26
20					