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The relationship between affine stochastic processes and bond pricing equations in expo-
nential term structure models has been well established. We connect this result to the
pricing of interest rate derivatives. If the term structure model is exponential affine, then
there is a linkage between the bond pricing solution and the prices of many widely
traded interest rate derivative securities. Our results apply to m-factor processes with n
diffusions and l jump processes. The pricing solutions require at most a single numeri-
cal integral, making the model easy to implement. We discuss many options that yield
solutions using the methods of the article.

The literature on term structure modeling has evolved from one-factor diffu-
sion models such as Vasicek (1977) and Cox, Ingersoll, and Ross (1985) to
multifactor models such as Brennan and Schwartz (1977), Duffie and Single-
ton (1997), Longstaff and Schwartz (1992), and Balduzzi, Das, and Foresi
(1998), as well as jump-diffusion models such as Ahn and Thompson (1988),
Bakshi and Madan (2000), Das and Foresi (1996), Das (1998), and Duffie,
Pan, and Singleton (2000). The motivation for this evolution in term struc-
ture models has come from empirical articles such as Chan et al., Sanders
(1992) and Ait-Sahalia (1996).1 However, as work proceeds on better match-
ing the dynamics of the short rate to the observed term structure, the area
of fixed income derivative pricing, the main application for modeling the
short rate process, has lagged behind. In this article we attempt to bridge
the gap between the multifactor, jump-diffusion models of the short rate that
are commonly used and the pricing of fixed income derivatives. Specifically
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Stambaugh (1988) have similar conclusions.
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we show that any interest rate process (with any number of factors including
stochastic volatility, stochastic central tendency, etc., or utilizing diffusion or
jump-diffusion processes) that leads to an exponential term structure model
also lends itself to analytic solutions for three large classes of fixed income
securities. These methods support numerical techniques which allow for easy
implementation in the context of a no-arbitrage approach. It is our hope that
the results of this article will allow both researchers and practitioners to
focus on the appropriate stochastic process for the short rate and its factors,
and obviate concerns as to whether specific forms of the short rate lead to
tractable solutions for popular fixed income securities.

The benchmark article of Duffie and Kan (1996) established the link
between affine stochastic processes and exponential affine term structure
models.2 They showed that the factor coefficients of these term structure
models are solutions to a system of simultaneous Riccati equations and that
these coefficients are functions of the time to maturity. The kernel of our
technique resides in the fact that the solution for different types of inter-
est rate options solves an almost identical system of equations. The only
difference between the two sets of equations is in the constant terms under-
lying the equations. By manipulating the Riccati equations and varying the
constant terms, we develop a procedure to price options using the known
solution components of the original term structure model. Thus we essen-
tially show that once the exponential affine term structure model is derived,
the pricing formulas for a wide range of popular fixed-income derivatives can
be written by inspection from the components of the term structure model.3

Specifically, we show that this approach is feasible for three large classes of
fixed income derivatives: those with (1) payoffs that are linear in the short
rate and factors; (2) payoffs that are exponential affine in the short rate and
factors; and (3) payoffs that are an integral over time of a linear combination
of the short rate and factors. These three payoff structures encompass many
popular fixed-income derivatives.

Our technique is general in that it applies to any multifactor, exponential
affine term structure model with multiple Wiener and jump processes. No
matter how many jump-diffusion stochastic processes are used, for standard
derivatives, our approach involves evaluation of at most two one-dimensional
integrals, resulting in easy computation. Furthermore, in the final section
of this article we show that the techniques can be easily extended beyond
the exponential affine class to the class of term structure models we call
“exponential separable” models, such as those of Constantinides (1992) and
Longstaff (1989). In addition, we also show how to utilize the results of the

2 Dai and Singleton (1997) provide a characterization of the exponential affine class of term structure models
as they unify and generalize this class.

3 See also Duffie, Pan, and Singleton (2000) and Bakshi and Madan (2000), who developed results that parallel
some of those derived in this article.

196



Pricing Interest Rate Derivatives

article in the context of no-arbitrage models, such as those of Hull and White
(1990) and Black, Derman, and Toy (1991), which allow for exact calibration
with observed data.

To demonstrate the technique we provide closed-form solutions for options
under a jump-diffusion model. We price options on bonds, futures, and inter-
est rate caps and floors, since these are the most common forms of term
structure derivatives. We also price options on average interest rates, in order
to demonstrate a parsimonious approach based on expansion of the state
space.4 An important tool in our approach is the use of Fourier inversion
methods as in Heston (1993).5. Though the results of this article pertain to
term structure models, the techniques provided extend to several other market
settings.

The plan of the article is as follows. In Section 1 we specify the interest
rate process and the term structure model. We then introduce the pricing tech-
nology for fixed income securities that have general payoff functions of the
interest rate process. We proceed in Sections 2–4 to develop analytic solu-
tions, in terms of the components of the term structure model in Section 1,
for the three categories of derivative payoff functions considered in the arti-
cle: linear payoffs in the state variables are handled in Section 2, exponential
affine payoffs in Section 3, and integro-linear (or a payoff function that is
an integral over time of a linear combination of the factors) payoffs are
dealt with in Section 4. The details of these derivations are described in the
appendix, which contains many analytical features of interest. Section 5 dis-
cusses model implementation. Section 6 provides examples of the procedures
laid out in the article. Section 7 presents extensions and Section 8 concludes.

1. Generalized Option Valuation

In this section we present the setup for the general valuation principles in
the article. We specify the general interest rate process and the term structure
model for which we will be able to derive general option valuation formu-
las. The restrictions on the interest rate dynamics imposed here are the same
as those specified in Duffie and Kan (1996) for jump-diffusion processes.
These restrictions lead to an exponential affine term structure model. With
the aid of the Feynman–Kac theorem, which is stated below, we derive a

4 The idea very simply is to expand the state space from that of a traditional Black and Scholes (1973) and
Merton (1973) setup with m-state variables to m+1-state variables where the additional variable is the average
(i.e., arithmetic integral) of the underlying. Bakshi and Madan (2000) provide a spanning analysis of this idea.

5 Fourier methods have been used subsequently in many articles in finance including Eydeland and Geman
(1994), Scott (1995), Bates (1996), Chacko (1996, 1998), Das and Foresi (1996), Bakshi, Cao, and Chen
(1997), Bakshi and Madan (1997, 2000), Singleton (1997), and Duffie, Pan, and Singleton (2000), Davydov
and Linetsky (1999), Heston and Nandi (1999), Jagannathan and Sun (1999), Leblanc and Scaillet (1998),
Levin (1998), Van Steenkiste and Foresi (1999). Bakshi and Madan (1997, 2000) link Fourier transform
methods to a state-price framework, while Duffie, Pan, and Singleton (1998) describe the application of these
techniques to problems in the area of equity, interest rate and default risk options. Van Steenkiste and Foresi
(1999) show how to derive state prices in the same general framework and apply Fast–Fourier methods to
price American options.
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general valuation equation for fixed-income securities. Our task in subse-
quent sections will be to solve this equation for large classes of fixed-income
securities using only the components of the term structure model presented
in this section.

1.1 Interest rate dynamics
The economy is a continuous-trading economy with a trading interval �0� T �
for a fixed T > 0. The uncertainty in the economy is characterized by a prob-
ability space 	
�� �Q� which represents the risk-neutral probability measure
in the economy.6 Dynamic evolution of the system over time takes place with
respect to a filtration � 	t� � t ≥ 0� satisfying the conditions in Protter (1990,
chap. V).

Let Nt represent a vector l of orthogonal Poisson processes, and let Wt

represent a vector of n Wiener processes. Each Poisson, or jump process, can
be thought of as a counter. When a jump occurs, the jump process increments
upward by 1 unit. The jump intensities of the Poisson processes are given by
�i ≥ 0, i = 1� � � l, and are constant over �0� T �.

The term structure of zero-coupon bond prices is formed from the instan-
taneous interest rate and a set of m factors in the economy. The risk-neutral
processes governing the interest rate and the factors are given by a vector of
strong Markov processes:

drt = �	rv�xv� dt+� ′	rv�xv� dW+J′
r dN (1)

dxt = �	xt� dt+�	xt� dW+Jx dN (2)

The m×1 vector, xt , represents a set of Markov factors which influence the
marginal productivity of capital, and thus the interest rate, in the economy.
We assume that the parameters of the drift, diffusion, and jump coefficients in
the SDE are bounded [in the sense of Gihman and Skorohod (1979, pp. 128–
130)], and are such that a unique, strong solution to Equation (1) exists [the
conditions in Pardoux (1997) are met] [see also Kurtz and Protter (1996a,
b)]. The magnitudes of the Poisson processes are defined by the l×1 vector
Jr and the m× l matrix Jx of correlated random variables. It is assumed
that the conditional distribution of the jump size is independent of the state
variables.

We assume that the instantaneous diffusion covariance matrix of the state
variables is given by �	xt�, while the vector of instantaneous diffusion
covariances between the state variables xi� t� i = 1� � � m, and rt is given by
�	xt�.

1.2 Fundamental principles
Our derivations of solutions for the models explored in this article use the
Feynman–Kac theorem7 and the Fourier inversion theorem extensively. In

6 Unless indicated otherwise, all computations reported in the article are with respect to the risk-neutral proba-
bility measure and not the objective probability measure.

7 See Duffie (1996) for more details regarding the Feynman–Kac relation.
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this section we state these for reference and establish the conditions for their
applicability.

Definition 1. (Feynman–Kac). For any variable X (satisfying the regularity
conditions stated below) determined by a stochastic differential equation of
the form

dXt = �x	Xt�dt+�x	Xt�dW + J 	Xt�dN	���
the solution, F 	Xt�, to the expression

Et
[
e−

∫ T
t g	Xv�dvf 	XT �

]
�

where f � g ∈�2�1, is determined by the equation

�F 	Xt�= g	Xt�F �

where � is the differential operator defined by

�F 	Xt�=
1
2
�2
x

&2F

&X2
t

+�x
&F

&Xt
− &F

&'
+�Et−�F 	Xt+ J �−F 	Xt��(

The boundary condition for this partial differential difference equation is
given by F 	XT �= f 	XT �.

This is simply the univariate version of the differential operator (see note 8
for the multivariate version). We will utilize multivariate versions of this
theorem throughout the article. To apply Feynman–Kac, certain regularity
conditions must be satisfied by the underlying processes. We require in this
article that the processes given in Equations (1) and (2) satisfy these condi-
tions, which is stated in univariate form in the following definition.

Definition 2. (Conditions for Feynman–Kac). The process Xt in Remark
(1) must satisfy the necessary growth and Lipshitz conditions. [See Duffie
(1996, pp. 292–295) or Karatzas and Shreve (1988, p. 366) for explicit
details. Additional details are available from the exposition in Duffie, Pan,
and Singleton (1998).] The conditions required are

1. The functions in question, that is, f � g�����F are continuous.
2. The polynomial growth condition is satisfied: �F 	Xt� t�� ≤ A	1 +


X
q�, for some constants A�q > 0.
3. f 	Xt� ≥ 0, or it satisfies a polynomial growth condition in Xt . [Con-

ditions 2 and 3 are either/or type, see Karatzas and Shreve (1988,
condition (7.10), p. 366).]

4. For the jump, we will require that the jump transform
∫
� exp	cv�dJ 	v��

c ∈� be well defined.

We also utilize a version of the Fourier inversion formula that relates the
cumulative distribution of a density function to its Fourier transform. In the
article, we regularly solve for the Fourier transform of a density and invert
this transform to get at the cumulative distribution function, which is needed
for security pricing.
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Theorem 3. (Fourier Inversion). If the density function f satisfies the fol-
lowing conditions [see Shephard (1991)],

1. f is integrable in the Lebesgue sense, that is, f ∈ L.
2. Its characteristic function is well defined as -	.�= ∫�

−� e
i.xf 	x�dx,

and is integrable [and the characteristic is “well behaved” in the
sense defined by Duffie, Pan, and Singleton (1998)].

3. /�-	.� exp	−i.x�/i.� is uniformly bounded, where /1	.� ≡
1	.�+ 1	−.�, then the probability function can be obtained by
Fourier inversion,

F 	x�= 1
2
− 1

22

∫ �

0
/.

[
-	.�e−i.x

i.

]
(

1.3 Bond prices
With the risk-neutral interest rate process known, we can write an expression
for the price of any traded security in the economy. Specifically, let Pt	r�x4 '�
represent the price at time t of a security that matures after a period of time ' .
Then, we have the following partial differential difference equation (PDDE)
for the price of a bond [Black and Scholes (1973), Merton (1973), Courtadon
(1982), Cox, Ingersoll, and Ross (1985), see Ahn and Gao (1999)]:

0 =�Pt+d s′Pt (3)

where d is a row vector of constants and � represents the usual differential
operator.8 s = �rt�xt�1� is a row vector comprising the current levels of the
short rate and the factors, and an additional parameter required for special
forms of payoff functions.

In the case of traded securities, d = d∗ ≡ �−1�0�0�, but we will assume
for now that d is an arbitrary vector of constants. We do this because in
subsequent sections we will utilize transformations to Equation (3) where
partial differential equations with d �= d∗ will result. For a zero-coupon
bond that pays off $1 at maturity, the boundary condition that is satisfied
by Equation (3) is P	' = 0�= 1.

8 The differential operator applied to a function Pt is defined as

�Pt =
1
2

n∑
i=1

�2
i 	rt �xt �

&2Pt
&r2

+ 1
2

m∑
i=1

m∑
j=1

6ij 	xt �
&2Pt
&xi&xj

+
m∑
i=1

�i	xt �
&2Pt
&r&xi

+�	r�xt �
&Pt
&r

+
m∑
i=1

�i	xt �
&Pt
&xi

+ &Pt
&t

+
l∑
i=1

�iE�P	r+ Jr�i�xt +J	i�x 4'�−P	r�x4'���

where the expression J	i�x represents a modified version of the matrix Jx of jump magnitudes. Jx is modified
so that all but the ith column of Jx is zero. This is a direct consequence of Ito’s lemma.
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As is well known, we can use the Feynman–Kac theorem to write the
solution to Equation (3) as

P	'�= Et
[
e−

∫ T
t rv dv1

]
�

which is the standard discounted form for a discount bond price.
We need to impose restrictions on the drift and diffusion terms in Equa-

tions (1) and (2) in order to ensure that the solution to Equation (3) is expo-
nential affine. From Duffie and Kan (1996), we know that the term structures
of zero-coupon bond prices are of the exponential affine class, that is, those
of the form

Pt	'�= exp
[
A	'�rt+

m∑
i=1

Bi	'�xi+C	'�
]
� (4)

where A	'��Bi	'�� i= 1� � � � �m, and C	'� are functions of time to maturity
only if the drift terms and the square of each diffusion term of Equations (1)
and (2) are linear in the interest rate and the factors, and if the jump magni-
tudes of Equations (1) and (2) have linear (in the interest rate and the factors)
moment-generating functions.

The solutions to these functions are each determined by a separate sys-
tem of ordinary differential equations (ODEs). Associated with each ODE
is a unique boundary condition. For the remainder of the article we will
need to be concerned only with the cases where the boundary conditions
for Equation (3) are such that resulting boundary conditions on A	'�, Bi	'��
i = 1� � � � �m� and C	'� are given by

A	0�= a

B1	0�= b1

((( (5)

Bm	0�= bm

C	0�= c�

where a�b1� � � � � bm� c are constants. In the case of zero-coupon bond prices,
the exponential affine form of these prices allows us to break up Equation (3)
using the well-used technique of separation of variables into a set of Ric-
cati equations for A	'�, Bi	'�� i = 1� � � � �m, and C	'�. If the boundary
conditions for the system of Riccati equations are given by Equation (5),
then the solutions to A	'�, B1	'�� � � � ,Bm	'�, C	'� depend on the specific
structure of the drifts, variances, and covariances of the interest rate and the
factors. We denote the solutions to the differential equations governing these
functions specifically as A∗	;4 '�b�d�, B∗

1	;4 '�b�d�� � � � �B∗
m	;4 '�b�d�,
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C∗	;4 '�b�d�, respectively, where ; denotes the vector of parameters gov-
erning the stochastic processes, and b =�a� b1� � � � � bm� c� denotes the vector
of constants that make up the boundary conditions in Equation (5).

Remark 1. The main result of this article is that the prices of a wide
range of common fixed-income derivatives can be characterized solely in
terms of the functions A∗	;4 '�b�d�, B∗

1	;4 '�b�d�, � � � , B∗
m	;4 '�b�d�,

C∗	;4 '�b�d�. Therefore we will show that if the interest rate model,
regardless of how complicated it is, leads to exponential bond prices, then
the prices of many interest rate-dependent claims can be easily calculated in
terms of these functions.

In the case of a discount bond, the holder receives a dollar at maturity,
and the boundary condition for the bond can be stated as

PT 	0�= 1 = exp
[

0rt+
m∑
i=1

0xi� t+0
]
( (6)

Therefore the specific boundary conditions for each Riccati equation are all
zero, that is, b = 0. Hence the price of the bond is given by

Pt	'�=exp
[
A∗	;4'�0�d∗�rt+

m∑
i=1

B∗
i 	;4'�0�d

∗�xi�t+C∗	;4'�0�d∗�
]
( (7)

Virtually all of the term structure models developed in the literature to date
begin with interest rate/factor processes that lead to bond prices of the expo-
nential affine form given by Equation (7). Therefore our goal in this article
is to derive pricing implications for derivatives written on this specific class
of interest rate processes.

1.4 Example
We now present an example of the term structure model discussed in the
previous sections. The example is based on a jump-diffusion model. This
example will be continued and extended in subsequent sections of the article
in order to illustrate the use of the theoretical results of the article and,
hopefully, to make them more concrete.

Consider the risk-neutral interest process given by the dynamics

dr = <	;− r�dt+� dW + Ju dNu	�u�− Jd dNd	�d�� (8)

where <, ;, � , �u, and �d are constants, while Ju and Jd are exponentially
distributed random variables with positive means 1u and 1d, respectively. The
interest rate in this specification displays persistence as well as skewness and
excess kurtosis. The one-jump version of this process was considered in Das
and Foresi (1996). A two-jump model was considered in Duffie, Pan, and
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Singleton (2000). The version of Equation (3) that holds for this process is
given by

1
2
�2Prr +<	;− r�Pr −P' +�uE�P	r+ Ju�−P	r��

+�dE�P	r− Jd�−P	r��=−drP�
where the subscripts on P	r� denote partial derivatives. The general boundary
condition on P	r� that leads to Equation (5) is given by

P	r� ' = 0�= exp�ar+ c�(
Under this boundary condition, the solution to the PDDE is of the form given
by Equation (4):

P	r�= exp�A	'�r+C	'��� (9)

where A	'� and C	'� satisfy ordinary differential equations

dA

d'
= −<A+d

dC

d'
= 1

2
�2A2 +<;A+�uE�eAJu −1�+�dE�e−AJd −1�

= 1
2
�2A2 +<;A+�u

(
1uA

1−1uA
)
−�d

(
1dA

1+1dA
)

with boundary conditions A	' = 0� = a and C	' = 0� = c. Following the
convention of the previous section, we label the vector �a� c�= b. The solu-
tions, labeled A∗	'�b�d� and C∗	'�b�d�, are given by

A∗	'�b�d� = u1e
−<' +u2

C∗	'�b�d� = u2
1�

2

4<
	1− e−2<'�+

[
u1u2�

2 +<;u1

<

]
	1− e−<'�

+
[
u2

2�
2

2
+<;u2 −�u−�d

]
'

+ �u
<−d1u

log

∣∣∣∣ 	1−1uu2�e
<' −1uu1

1−1uu1 −1uu2

∣∣∣∣
+ �d
<+d1d

log

∣∣∣∣ 	1+1du2�e
<' +1du1

1+1du1 +1du2

∣∣∣∣+ c
u1 = a−u2

u2 = d

<
(
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As mentioned in the previous section, in the special case that b= �0�0� and
d =−1, the solution to Equation (9) is the price of a zero-coupon bond with
maturity ' . Henceforth throughout the article, we will utilize this example to
illustrate the theoretical pricing relationships and numerical methods derived
in the article in the hope of making these results concrete and accessible.
To begin, we specify a base set of parameters and price the bond using the
equation above. The results are presented in Table 1.

Increasing the upward jump frequency of the short rate causes the bond
price to fall, while the opposite happens as we increase the downward jump
frequency. Intuitively, as the upward jump frequency increases, the likelihood
of higher future rates increases, and since the bond price is a discounted
value of these rates, bond prices drop. As both upward and downward jump
frequency increase, the bond price increases slightly. For example, as both
jump frequencies rise from 3 to 6 jumps per annum, the bond price rises
from 0.951419 to 0.951424. This is due to the convexity of bond prices with
respect to the short rate. Therefore an equal magnitude upward jump in the
short rate has less effect on bond prices than an equal magnitude downward
jump.

In the following sections we illustrate how to utilize the term structure
solutions to price different options.

1.5 Option prices
In this section we write a general equation for the pricing of European options
where the option payoff may be a general function of the interest rate r . We
denote the “payoff function” at time T as fT 	r�x� '̂�, where r represents the
sample path of interest rates and state variables, x, up to time T . In addition,
'̂ is a “terminal time period” parameter, which allows the payoff function to
depend on a period of time of length '̂ beyond time T . Therefore the payoff
of the option on its expiration date can be expressed as

FT 	04 '̂�= max�fT 	r�x� '̂�−K�0��

Table 1
Bond prices in the two-jump model

k ; � �u �d 1u 1d ' r

0.2 0.1 0.1 5 5 0.005 0.005 0.5 0.1

�d

3 6 9 12

3 0.9514 0.9531 0.9549 0.9566
�u 6 0.9497 0.9514 0.9532 0.9549

9 0.9480 0.9497 0.9514 0.9532
12 0.9463 0.9480 0.9497 0.9514

This table presents bond prices when there are two jumps. The parameters are presented, followed by the prices for varying
jump intensities, �u and �d . The jump intensities for both jumps are set at 5 jumps a year. The jumps are symmetric, in that
the mean jump size for the positive and negative jumps is 50 basis points. The discount bond price is computed to be 0(9514.
We then show bond prices as we vary the jump intensities from 3 to 12 jumps per annum.

204



Pricing Interest Rate Derivatives

where we use the notation Ft	'4 '̂� to represent the price of an option at time
t with a period of time ' to expiration written on an underlying security with
remaining maturity '̂ . As a result T = t+ ' . We can use the Feynman–Kac
relation9 to write the price of the option as the discounted expected value of
the terminal payoff,

Ft	'4 '̂�= Et
[
e−

∫ T
t rv dv max�fT 	r�x� '̂�−K�0�

]
� (10)

where the expectation is taken under the risk-neutral measure.10 To simplify
notation, we introduce the variable Zt , defined as

Zt	'�=
∫ T

t
rv dv(

We now decompose the price of the option into two expressions as follows:

Ft	'4 '̂� = Et
[
e−Zt fT 	r�x� '̂�1fT 	r�x�'̂�≥K�

]−Et[e−ZtK1fT 	r�x�'̂�≥K�
]

= Et
[
e−Zt fT 	r�x� '̂�

]
Et

[
e−Zt fT 	r�x� '̂�1fT 	r�x�'̂�≥K�

Et
[
e−Zt fT 	r�x� '̂�

] ]
(11)

−KEt�e−Zt �Et
[
e−Zt1fT 	r�x�'̂�≥K�

Et�e
−Zt �

]
� (12)

where 1fT 	r�x�'̂�≥K� is an indicator function for when the option finishes up in
the money. However, Et�e

−Zt � is the price of a discount bond that matures at
time T ≡ t+ ' . So, Et�e

−Zt �= Pt	'� . We define A0�t = Et�e
−Zt fT 	r�x� '̂��,

which is the present value of the underlying function that determines the
payoff. Now we can rewrite the expression above as

Ft	'4 '̂� = A0� tEt

[
e−Zt fT 	r�x� '̂�1fT 	r�x�'̂�≥K�

Et�e
−Zt fT 	r�x� '̂��

]
−KPt	T �Et

[
e−Zt1fT 	r�x�'̂�≥K�

Et�e
−Zt �

]
(

It is clear that Et�
e−Zt fT 	r�x�'̂�1fT 	r�x�'̂�≥K�

Et �e
−Zt fT 	r�x�'̂��

� and Et�
e−Zt 1fT 	r�x�'̂�≥K�

Et �e
−Zt � � are probabili-

ties. For convenience, we denote these two probabilities as A1� t and A2� t ,
respectively. The price of the option is restated as

Ft	'4 '̂�=A0�tA1�t−KPt	'�A2�t ( (13)

The task at hand is to evaluate A0� t and the two probabilities A1� t and
A2� t . The specific equations for A1� t and A2� t may be calculated solely

9 See Duffie (1996) for a exposition of the use of these methods.
10 All expectations from this point onward are under the risk-neutral measure unless indicated otherwise.
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in terms of the functions A∗	;4 '�b�d�, B∗
1	;4 '�b�d�, � � � , B∗

m	;4 '�b�d�,
C∗	;4 '�b�d� through the application of the Feynman–Kac theorem, which
essentially allows us to solve for any expression of the form in Equation (10)
by restating the expression as a solution to a PDDE.

In the next several sections we utilize the Feynman–Kac theorem to tackle
three different types of terminal payoff functions for the pricing of interest
rate derivatives:

1. Payoffs that are linear functions of the state variables. These may be
used to price caps, floors, yield options, and slope options.

2. Payoffs that are exponential in the state variables, used to price bond
options, forwards, and futures options.

3. Payoffs that are integrals of the state variables, as in the case of aver-
age rate options on the short rate and Asian options on yields.

We now examine each one in turn.

2. Option Pricing for Linear Payoffs

In this section we consider the case when the payoff function is given by a
linear function of the interest rate and state variables:

fT 	r�x� '̂�= k0rT +k1x1� T +· · ·+kmxm�T +km+1� (14)

where k0� � � � � km+1 are constants. As indicated by Equation (13), the price
of a European call option for this payoff function is given by

Ft	'4 '̂�=A0�tA1�t−KPt	'�A2�t ( (15)

We now derive the function A0� t and the two probabilities A1� t and A2� t

for the linear payoff function. Substituting these solutions into Equation (15)
will then yield the general option pricing formula for a linear terminal payoff
function.

Proposition 4. (A) The solution for A0� t is given by

A0� t =
{
B0� t

[
&A∗	;4 '�b0�d∗�

&C
rt+

m∑
i=1

&B∗
i 	;4 '�b0�d∗�

&C
xi�t

+ &C∗	;4 '�b0�d∗�
&C

]}
C=0
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where

B0�t = exp
[
A∗	;4 '�b0�d∗�rt+

m∑
i=1

B∗
i 	;4 '�b0�d∗�xi�t+C∗	;4 '�b0�d∗�

]

b0 =


Ck0

Ck1
(((

Ckm
Ckm+1

 (

(B) The characteristic function for A1� t is given by

Ã1� t =
1
A0� t

{
1
i
B1� t

[
&A∗	;4 '�b1�d∗�

&.
rt+

m∑
i=1

&B∗
i 	;4 '�b1�d∗�

&.
xi�t

+ &C∗	;4 '�b1�d∗�
&.

]}
where

B1�t = exp
[
A∗	;4 '�b1�d∗�rt+

m∑
i=1

B∗
i 	;4 '�b1�d∗�xi�t+C∗	;4 '�b1�d∗�

]

b1 =


i.k0

i.k1
(((

i.km
i.km+1

 (

(C) The characteristic function for A2� t is given by

Ã2� t =
1

Pt	'�
B1� t (

(D) The characteristic functions in (B) and (C), Ãk� t , k = 1�2 , may be
inverted to obtain the probabilities Ak�t using a version of Fourier’s theorem
(stated earlier):11

Ak�t =
1
2
+ 1
2

∫ �

0
Re

(
1
i.
e−i.KÃk�t

)
d.� k = 1�2

Proof. See the appendix.

We now price specific options that fall into this category of payoffs.

11 Fourier’s inversion theorem for distribution functions can be found in Kendall, Ord, and Stuart (1987) and
Shephard (1991)
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2.1 Interest rate caps and floors, and exotics
An interest rate cap is an option that pays off when the terminal interest
rate exceeds the strike K.12 These options are one of the most widely traded
instruments in the fixed-income derivatives markets. Many uses are envis-
aged. (i) They are routinely used by corporations to cap their funding costs.
(ii) Money management companies use floors to ensure a base level of return
in their portfolios. (iii) Caps and floors bear an equivalence to swaps, which
also makes them useful in managing swaps portfolios. (iv) A collar is a posi-
tion containing a long cap and short floor, and one popular version of these
contracts is a zero-cost collar. For example, investors with a view that interest
rates will rise will buy a cap and subsidize themselves by selling a floor.

While the plain vanilla form of the interest-rate cap is now widepsread in
usage, more exotic options are being traded, to which the technology of this
section may be put to full use. Examples are as follows: (i) Options on credit
spreads are now popular, and the modeling of the term structure of spreads
lends itself easily to the pricing of derivatives. (ii) With the introduction of
inflation-indexed bonds, options on inflation may be valued easily, since the
term structure of inflation rates is now becoming available. These options
may trade off the TIPS (Treasury inflation-protection securities) market or
REALs (an older OTC version of the same security). (iii) An even more
exotic application is one where options on volatility levels may be priced,
provided a means of ascertaining volatility is available. Implied volatilities
are now readily available, and term structures of volatility are also routinely
developed, making this an envisageable product. (iv) Finally, these techniques
are also useful for the commodities markets in the pricing of options on con-
venience yields. Convenience yields are actively traded, and hedges against
backwardation and contango risk may be easily set up using options on the
term structure of convenience yields.

A short rate cap may also be viewed as an average rate option where the
averaging period is the last instant before the contract expires. If the cap
contract matures at time T , its payoff is given by

CT = 	rT −K�1rT≥K( (16)

From Equation (16) we have the following pricing result for an interest rate
cap:

C0 = EQt �e
−ZT 	rT −K�1rT≥K�( (17)

This option is easily priced using the formula in Proposition 4 by setting the
constants k0 > 0 and k1 = k2 = · · · = km+1 = 0.

12 This is but one possible specification of the cap, making it different from a standard option on a zero coupon
bond. In another popular market convention, a cap is an option on which the payoff is based on the interest rate
at option maturity, but the payment takes place at the end of the period for which the underlying interest rate
applies. We take this up later in this section of Interest, the mathematical treatment for these two conventions
for caps is quite different.

208



Pricing Interest Rate Derivatives

2.2 Yield caps and floors
We also consider the case when the cap payoff is made based on yields for an
underlying period. We denote this period �. We price a cap maturing at time
T where the applicable interest rate (denoted R) is based on compounding
over period length �. The payoff at time T +� is given by

�max�0�R−K��
which translates into an equivalent payoff at time T of

P	rT � T � T +���max�0�R−K�� (18)

where P	rT � T � T +�� is the price of the bond with remaining maturity �,
denoted as P	�� to simplify the notation. Noting that 1+R� = P	��−1, we
have

R=
(

1
P	��

−1
)

1
�
(

Using Equation (18) we may write the value of the cap at time 0 as follows:

capt=0 = �E0�e
−ZT max0� P	��R−P	��K��

= �E0

[
e−ZT max

{
0� P	��

(
1

P	��
−1

)
1
�
−P	��K

}]
= E0

[
e−ZT max0�1−P	��−�P	��K�]

= E0�e
−ZT max0�1−P	��	1+�K���

= 	1+�K�E0

[
e−ZT max

{
0�

1
1+�K −P	��

}]
�

which is straightforward to value since the expression above embeds the
formula for a put option of maturity T , on a zero-coupon bond of maturity
	T +��, with a strike price of 1/	1+�K�. The formula for these options is
developed in the following sections.

Yield options may be priced more generally by choosing the weights
appropriately in the linear payoff function to match the coefficients
of the yield equation. In order to price a cap on �-maturity yield,
Proposition 4 applies with k0 = A∗	;4��0�d∗�, k1 = B∗

1	;4��0�d∗�, � � � ,
km = B∗

m	;4��0�d∗�, km+1 = C∗	;4��0�d∗�, and recall that d∗ = �−1�0�0�.
This version of the model may be used for caps and floors on Libor yields.

2.3 Yield combo options
A “combo” option is one where the payoff depends on a basket of yields,
weighted in any chosen proportions. If the payoff is determined based on n
yields with weights xi� i = 1((n and maturities �i� i = 1((n, then the option
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is priced using the result in Proposition 4 with the constants set as fol-
lows: k0 = ∑n

i=1 xiA
∗	;4�i�0�d∗�, k1 = ∑n

i=1 xiB
∗
1	;4�i�0�d∗�, � � � , km =∑n

i=1 xiB
∗
m	;4�i�0�d∗�, km+1 =

∑n
i=1 xiC

∗	;4�i�0�d∗�.
There are many types of combo options in the market. (i) A special case

of combo options are yield curve “slope” options, based on the difference
of two yields [see Duffie, Pan, and Singleton (2000)]. (ii) Differences in
the levels of term structures in different markets may be exploited in these
models. For example, “diff swaps” have been in place for quite a while—
yield combo options are another way to achieve the benefits of diff swaps
using packages of options. These “basis rate” transactions are gaining in
popularity as markets across the world develop much tighter interactions and
linkages. (iii) In the foreign currency markets, we have “currency coupon
swaps” which are options on two different LIBOR rates. These transactions
have become popular with the onset of the European Monetary System. (iv)
“Basket” yield options allow trading on a basket of different interest rates,
usually reducing corporation hedging costs.13

2.4 Example
Under the parameters of the two-jump example of the previous section, we
price a cap on the short rate, at an exercise level of 10%. Using the equations
from Proposition 4, we present the formula as:
(A) The solution for A0� t is given by (b0 = �C�0��d∗ = �−1�0�)

A0� t =
{
B0� t

[
&A∗	;4 '�b0�d∗�

&C
rt+

&C∗	;4 '�b0�d∗�
&C

]}
C=0

B0� t = exp�A∗	;4 '�b0�d∗�rt+C∗	;4 '�b0�d∗��(

(B) The characteristic function for A1� t is given by (b1 = �i.�0�)

Ã1� t =
1
A0� t

{
1
i
B1� t

[
&A∗	;4 '�b1�d∗�

&.
rt+

&C∗	;4 '�b1�d∗�
&.

]}
B1� t = exp�A∗	;4 '�b1�d∗�rt+C∗	;4 '�b1�d∗��(

(C) The characteristic function for A2� t is given by

Ã2� t =
1

Pt	'�
B1� t (

For illustration, we compute prices for caps given a range of jump inten-
sities, and the results are summarized in Table 2. The value of the option for
the base case (�u = �d = 5) is 0(0810. As one would expect, an increase in

13 It is fortuitous that so many options may be priced as linear combinations of yields. The simplicity of these
techniques is obviated, however, when nonlinear combinations of yields need to be considered or for nonlinear
combinations of bond prices.
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Table 2
Cap prices in the two-jump model

�d

3 6 9 12

�u 3 0.0799 0.0774 0.0749 0.0724
6 0.0837 0.0812 0.0787 0.0761
9 0.0874 0.0849 0.0824 0.0799

12 0.0911 0.0886 0.0861 0.0836

This table presents cap prices when there are two jumps. Prices are given for a range of jump intensities, and the value of the
option for the base case (�u = �d = 5) is 0(0810. The parameters are the same as those in Table 1.

the downward jump frequency causes the option price to drop because the
probability of the option ending in the money decreases. The opposite occurs
as the upward jump frequency increases. When both upward and downward
jump frequencies increase, option prices increase due to the increase in over-
all volatility.

3. Option Pricing for Exponential Linear Payoffs

In this section we consider the case when the payoff function is given by an
exponential linear function of the interest rate and state variables:

fT 	r�x� '̂�= exp	k0rT +k1x1� T +· · ·+kmxm�T +km+1�� (19)

where k0� � � � � km+1 are constants. As indicated by Equation (13), the price
of a European call option for this payoff function is given by

Ft	'4 '̂�=A0� tA1� t−KPt	'�A2� t ( (20)

The following proposition develops the required option pricing formula:

Proposition 5. (A) The solution for A0� t is given by

A0� t = exp
[
A∗	;4 '�b0�d∗�rt+

m∑
i=1

B∗
i 	;4 '�b0�d∗�xi� t+C∗	;4 '�b0�d∗�

]
�

where

b0 =



k0

k1

(((

km

km+1


(
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(B) The characteristic function for A1� t is given by

Ã1� t =
1
A0� t

exp
[
A∗	;4 '�b1�d∗�rt+

m∑
i=1

B∗
i 	;4 '�b1�d∗�xi�t

+C∗	;4 '�b1�d∗�
]
� (21)

where

b1 =



	1+ i.�k0

	1+ i.�k1

(((

	1+ i.�km

 (

(C) The characteristic function for A2� t is given by

Ã2� t =
1

Pt	'�
exp

[
A∗	;4 '�b2�d∗�rt+

m∑
i=1

B∗
i 	;4 '�b2�d∗�xi�t

+C∗	;4 '�b2�d∗�
]
� (22)

where

b2 =



i.k0

i.k1

(((

i.km

 (

(D) We invert Ãk� t to obtain the probability Ak�t using a version of Fourier’s
theorem:

Ak�t =
1
2
+ 1
2

∫ �

0
Re

(
1
i.
e−i.KÃk� t

)
d.� k = 1�2(

Proof. See the appendix.

The following three sections consider specific cases of this class of payoff
function.

212



Pricing Interest Rate Derivatives

3.1 Discount bond options
Bond options have been traded since the late 1970s and are the oldest form
of interest rate option contract.14 A European call option on a discount bond
at strike K is the right but not the obligation to purchase a discount bond
with remaining maturity '̂ on the expiration date of the option. The option
payoff is

FT 	04 '̂�= max�PT 	'̂�−K�0�(

The price of the bond option is the discounted expected value of the terminal
payoff:

Ft	'4 '̂� = Et
[
e−

∫ T
t rvdv max�PT 	'̂�−K�0�

]
= Et

[
e−Zt	'�PT 	'̂�

]
A1� t−KPt	'�A2�t

= Pt	'+ '̂�A1� t−KPt	'�A2� t ( (23)

This is easily priced, an examination of the results of Proposition 5 reveals
that setting the constants to the following values provides the value of
the bond option: k0 = A∗	;4��0�d∗�, k1 = B∗

1	;4��0�d∗�� � � � , km = B∗
m

	;4��0�d∗�, km+1 = C∗	;4��0�d∗�.

3.2 Futures and forwards on discount bonds
We begin with a derivation of forward and futures prices. Let Fd� t	'4 '̂�
denote the '-period-ahead forward price of a '̂-period bond at time t. By
definition, the forward price is simply the ratio of the 	' + '̂�-period bond
price over the '-period bond price:

Fd� t	'4 '̂�=
Pt	'+ '̂�
Pt	'�

( (24)

Let Fu� t	'4 '̂� denote the '-period-ahead futures price of a '̂-period bond at
time t. The futures price is given by a simple application of the exponential
model:

Fu� t	'4 '̂� = exp
[
A∗	;4 t+ '�b�d�rt+

m∑
i=1

B∗
i 	;4 t+ '�b�d�xi� t

+C∗	;4 t+ '�b�d�
]
� (25)

14 Pricing formulas for bond options were available as early as that of the Vasicek (1977) model and the Cox,
Ingersoll, and Ross (1985) model. Since then, many other articles have dealt with bond option models:
Courtadon (1982), Ho and Lee (1986), Jamshidian (1989), Carverhill and Clewlow (1990), Shirakawa (1991),
Heath, Jarrow, and Morton (1992), Longstaff and Schwartz (1992), Geman and Yor (1993), Heston (1993),
Naik and Lee (1993), Yor (1993), Eydeland and Geman (1994), Das and Foresi (1996), Das (1997), Duffie,
Pan, and Singleton (2000), Leblanc and Scaillet (1998), and Heston and Nandi (1999).
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where

b =



A∗	;4 t+ '�0�d∗�

B∗
1	;4 t+ '�0�d∗�

(((

B∗
m	;4 t+ '�0�d∗�

C∗	;4 t+ '�0�d∗�


d = �0�0�0�(

Note here that d �= d∗ as in the previous subsection.

3.3 Discount bond futures options
Futures options are traded on exchanges and are typically liquid contracts. A
European call option on a discount bond future at strike K is the right but
not the obligation to purchase a bond future with remaining maturity '̂ on
the expiration date of the option. Let Ft	'4 '̂� '

′� be the price of an option
with time-to-expiration ' , written on a futures contract with time to maturity
'̂ that calls for the delivery of a discount bond with time to maturity ' ′. The
option payoff is

FT 	04 '̂� '
′�= max�Fu�T 	'̂4 '

′�−K�0�(

The futures option is easily priced using the results of Proposition 5. Setting
the constants to the following values provides the value of the bond option:
k0 = A∗	;4��0�d�, k1 = B∗

1	;4��0�d�� � � � , km = B∗
m	;4��0�d�, km+1 =

C∗	;4��0�d�, where d = �0�0�0�. A common type of contract to which
these techniques apply are Euro-currency futures options.

3.4 Example
As an example of the models in this section, we price bond options on
discount bonds of half-year remaining maturity 	'̂ = 0(5�, where the option
maturity is also a half year 	' = 0(5�. The representative equations from
Proposition 5 are as follows:

(A) The solution forA0� t is given by (b0 = �A∗	;4 '̂�b0�d∗��C∗	;4 '̂�b0�d∗��,
d∗ = �−1�0�)

A0� t = exp�A∗	;4 '�b0�d∗�rt+C∗	;4 '�b0�d∗��(

(B) The characteristic function for A1� t is given by

Ã1� t =
1
A0� t

exp�A∗	;4 '�b1�d∗�rt+C∗	;4 '�b1�d∗��
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Table 3
Bond option pricing in the two-jump model

�d

3 6 9 12

�u 3 0.0362 0.0390 0.0423 0.0462
6 0.0335 0.0357 0.0385 0.0419
9 0.0313 0.0330 0.0353 0.0381

12 0.0297 0.0309 0.0326 0.0348

This table presents prices for bond options on discount bonds of half-year remaining maturity 	'̂ = 0(5�, where the option
maturity is also a half year 	' = 0(5�. Prices are computed for options given a range of jump intensities, and the results are
summarized in Table 3. The value of the option for the base case (�u = �d = 5) is 0(0361.

b1 =
[
	1+ i.�A∗	;4 '�b0�d∗�

	1+ i.�C∗	;4 '̂�b0�d∗�

]
(

(C) The characteristic function for A2� t is given by

Ã2� t =
1

Pt	'�
exp�A∗	;4 '�b2�d∗�rt+C∗	;4 '�b2�d∗��

b2 =
[
i.A∗	;4 '̂�b0�d∗�

i.C∗	;4 '̂�b0�d∗�

]
(

For illustration, we compute prices for options given a range of jump inten-
sities, and the results are summarized in Table 3. The value of the option for
the base case (�u = �d = 5) is 0(0361. As one would expect, an increase
in the downward jump frequency causes option prices to increase. This is
because an increase in the downward jump frequency in the short rate trans-
lates into an increase in the upward jump frequency of bond prices. Therefore
bonds of all maturities have a higher probability of being in the money. The
opposite occurs with an increase in upward jump frequency.

4. Option Pricing for Integro-Linear Payoffs

This section considers the case when the payoff function is given by a path
integral of a linear function of the interest rate and state variables:

fT 	r�x� '̂�=
∫ T

t
	k0rv+k1x1�v+· · ·+kmxm�v+km+1�dv� (26)

where k0� � � � � km+1 are constants. As indicated by Equation (13), the price
of a European call option for this payoff function is given by

Ft	'4 '̂�=A0� tA1� t−KPt	'�A2� t ( (27)
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Proposition 6. (A) The solution for A0� t is given by

A0� t =
{
Et×

[
&A∗	;4 '�0�d0�

&C
rt+

m∑
i=1

&B∗
i 	;4 '�0�d0�

&C
xi�t

+ &C∗	;4 '�0�d0�

&C

]}
C=0

�

where

Et = exp
[
A∗	;4 '�0�d0�rt+

m∑
i=1

B∗
i 	;4 '�0�d0�xi�t+C∗	;4 '�0�d0�

]

d′
0 =



Ck0 −1

Ck1

(((

Ckm

Ckm+1


(

(B) The characteristic function for A1� t is given by

Ã1� t =
1
A0� t

{
Et×

[
&A∗	;4 '�0�d0�

&C
rt+

m∑
i=1

&B∗
i 	;4 '�0�d0�

&C
xi� t

+ &C∗	;4 '�0�d0�

&C

]}
C=i.

(

(C) The characteristic function for A2� t is given by

Ã2� t =
1

Pt	'�
exp

[
A∗	;4 '�0�d0�rt+

m∑
i=1

B∗
i 	;4 '�0�d0�xi� t

+C∗	;4 '�0�d0�

]
C=i.

(

(D) We invert Ãk� t to obtain the probability Ak�t using a version of Fourier’s
theorem:

Ak�t =
1
2
+ 1
2

∫ �

0
Re

(
1
i.
e−i.KÃk� t

)
d.� k = 1�2(

Proof. See the appendix.

This payoff class relates to the pricing of average (Asian) options on short
rates and yields.
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4.1 Asian options
Asian options15 have several uses: (i) Banks and corporations use them to
hedge their financing costs over an extended period of time rather than rely
on more traditional contracts such as caps, floors, and collars. (ii) Corpora-
tions that have cash flows over a period of time may use an Asian option
instead of a series of conventional options to hedge the risks associated with
these cash flows. Asian options are often cheaper than regular options, which
makes hedging cost effective. (iii) The writers of caps and floors may use
Asian options to hedge their risk on these contracts over several maturities.
(iv) Interest differentials are known to follow mean-reverting processes, and
Asian options written on the average interest differential of two currencies
may be used to hedge risk in a portfolio of long-term foreign currency options
over a range of maturities. (v) Binary Asian options may be used to cover
“event risk”, such contracts pay off a fixed amount only if an event occurs.
An example of such contracts is one where two parties contract on whether
market convergence between two interest rates will occur or not. In this set-
ting, the rationale for the binary Asian option lies in the fact that interest rates
will be in one of two regimes (high or low) depending on the outcome of
convergence. Since regimes are often difficult to detect empirically, writing
options on the average of a financial variable over a period of time is more
likely to ensure that a financial variable actually resides within a regime than
when a variable is examined only at one point in time. (vi) Asian options are
less susceptible to market manipulation by the option’s counterparties, since
it is harder to manipulate a market over an extended period of time. (vii)
And finally, Fed funds futures and options are contingent on the average Fed
funds rate during a month.16

Proposition 6 provides the pricing of Asian options on the short rate and
yields. This complements the work of Longstaff (1995), who has developed
a similar single-factor model using different methods. Geman and Yor (1993)
use Bessel process methods to value perpetuities in both the O-U and square-
root process models.17 In this article, alternative methods for finite time
integrals of mean-reverting Brownian motions are developed by means of
state-space expansion.18

15 In the literature on Asian options, various analytical solutions have been obtained. Geman and Yor (1993)
provide a solution for the arithmetic average option when the underlying follows a Bessel process. Most
of the work done on techniques for pricing Asian options focuses on numerical techniques such as Monte
Carlo simulation or lattice-based methods. Examples of interesting numerical techniques for the Asian option
problem with geometric Brownian motions include Yor (1993), De-Schepper, Teunen, and Goovaerts (1994),
and Dewynne and Wilmott (1995) Barraquand and Pudet (1996). In addition, the overwhelming majority of
work has focused on Asian options written on a stock price or a foreign exchange rate, where the use of
geometric Brownian motion may be deemed appropriate.

16 We are grateful to the referee for suggestions of possible contracts that may be priced using these techniques.
17 Perpetuities are also integrals of exponentials of a Brownian motion and hence are logically subsumed within

the framework of Geman and Yor (1993). This issue also connects with the work on perpetuities by Dufresne
(1990). See also Bouaziz, Briys, and Crouhy (1994).

18 In an earlier version of the article, our method for binary Asian options on jump diffusion processes had
not been extended to standard Asian options, developed originally by Bakshi and Madan (1997, 2000),
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Asian options on the short rate are priced using a special case of Proposition 6
where k0 > 0� k1 = k2 = · · · = km+1. However, Asian options on yields are far
more widely used, such as in the case of options on the average of the 3-or
6-month yield. These are also amenable to Proposition 6 with k0 = A∗	;4�,
0�d∗�� k1 =B∗

1	;4��0�d∗�� � � � � km=B∗
m	;4��0�d∗�� km+1 =C∗	;4��0�d∗�,

where the option is written on the average of the �-maturity yield.

4.2 Example
As an example, we extend the two-jump model to the pricing of an Asian option
on the short rate. The option maturity is a half year 	' = 0(5� and the exercise
level of the average rate is 10%. The equations from Proposition 6 are
(A) The solution forA0� t is given by

A0� t =
{
Et×

[
&A∗	;4 '�0�d0�

&C
rt+

&C∗	;4 '�0�d0�

&C

]}
C=0

Et = exp�A∗	;4 '�0�d0�rt+C∗	;4 '�0�d0��

d′
0 =

[
C−1

0

]
(

(B) The characteristic function forA1� t is given by

Ã1� t =
1
A0� t

{
Et×

[
&A∗	;4 '�0�d0�

&C
rt+

&C∗	;4 '�0�d0�

&C

]}
C=i.

(

(C) The characteristic function forA2� t is given by

Ã2� t =
1

Pt	'�
exp�A∗	;4 '�0�d0�rt+C∗	;4 '�0�d0��C=i.(

While the jump example is merely illustrative, numerical examples for the
Asian option model and other models are provided in Section 6.

5. Model Implementation

Thesolutionsprovided in theprevious sectionsprovideaconvenient setof results
that should allow researchers to write down pricing solutions to exponential term
structure models in one quick step. However, the implementation of these models
for actual pricing purposes requires calibration of the base term structure model
against a set of data. In this section we extend the approach in Duffie and Kan
(1996) to show how calibration can readily be accomplished, and subsequently
we show how to implement option pricing using the calibrated model.

for diffusion processes. Here we provide complete solutions to all Asian-type contracts in the particular
framework of this article, which complements the results of Bakshi and Madan, and more recently, for jump
diffusions, by Duffie, Pan, and Singleton (2000).
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Calibration of the model using a cross-section of bond prices provides one way
of obtaining the risk-neutral parameters required for derivative security pricing.
In the class of models investigated in this article, it is possible to obtain parameter
estimates directly off the Riccati equations for the term structure model. We call
this approach “pricing by estimation of primitives.”

5.1 Calibration methodology
We assume the existence of cross-sectional data on bond prices, that is, there are
a set of N bonds at time t� Pt	'k��k=1� � � � �N . Alternatively, estimation may be
undertaken using a full panel dataset of T observations, in which case we have
Pt	'k��k=1� � � � �N �t=1� � � � �T ∈ RT×N . These prices directly map into a set of yields:
Yt	'k��∀k� t. The yields are given by

Y 	'�=−1
'

ln�P	'��=−1
'

[
A	'�rt+

m∑
i=1

Bi	'�xi+C	'�
]
( (28)

The coefficients in the pricing equation, A	'��B1	'�� � � � �Bm	'��C	'�, are
solutions to the Riccati equation system. Cross-sectional calibration is possi-
ble using the closed-form solutions for P	'� as was undertaken in Brown and
Dybvig (1986).19

Given the set of affine processes for the term structure model and data on the
state variables, starting with the initial condition, and a guess of the parameters
of the stochastic processes, we use the Riccati equations to generate values of
A	'k��B1	'k�� � � � �Bm	'k��C	'k� fork= 1� � � � �N via forward propogation in
time. Using vectorization, this is done in one pass and results in fast and accurate
computation for the entire set of bonds. These values and the data on the state
variables 	r� x1� � � � � xm� determine the right-hand side of Equation (28). Least
squares minimization20 of fitted versus actual yields allows rapid convergence
of the algorithm to yield the vector of parameter estimates ;.

The algorithm may be summarized as follows:

min
;

T∑
t=1

N∑
k=1

Gt�;	'k��
2

19 The estimation literature for the term structure has been extended at a galloping rate. A representative sample of
estimation methods is covered by the articles of Ait-Sahalia (1996), Attari (1997), Babbs and Webber (1995),
Balduzzi et al. (1998), Balduzzi, Das, and Foresi (1998), Brandt and Santa-Clara (1998), Brenner, Harjes, and
Kroner (1996), Chacko (1998), Chan et al. (1992), Conley et al. (1997), Dai and Singleton (2000, 2001), Das
(1998), Duffie and Glyn (1996), Gray (1996), Koedijk et al. (1996), Naik and Lee (1993), Pritsker (1998),
Singleton (1997), and Stanton (1997).

20 Any other criterion may be used as well.
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subject to

Gt�;	'k��=Y 	'k�+
1
'

[
A	'k�rt+

m∑
i=1

Bi	'k�xit+C	'k�
]

&A

&'
= 1

2

n∑
i=1

�2
r� iA

2 +�rA+d� ∀'k�d =−1�A	0�= 0

&B1

&'
= 1

2

m∑
i=1

n∑
j=1

62
x1� ij

BiBj +
m∑
i=1

�x1� i
ABi+

n∑
i=1

�2
x1� i
A2

+�x1
A+

m∑
i=1

�x1� i
Bi� ∀'k� �B1	0�� � � � �Bm	0��

′ = 0

(((

&Bm
&'

= 1
2

m∑
i=1

n∑
j=1

6xm� ij
BiBj +

m∑
i=1

�xm� iABi+
n∑
i=1

�2
xm� i
A2

+�xmA+
m∑
i=1

�xm� iBi ∀'k� �B1	0�� � � � �Bm	0��
′ = 0

&C

&'
= 1

2

n∑
j=1

�jA
2 +�A+ 1

2

m∑
i=1

n∑
j=1

6ijBiBj

+
m∑
i=1

�iBi+
m∑
i=1

�iABi+
l∑
i=1

�i

× (
E
[
eAJr� i+B1Jx�1i+···+BmJx�mi]−1

) ∀'k�C	0�= 0(

(29)

This approach has many useful features. First, since the Riccati equation sys-
tem [Equation (29)] consists entirely of first-order ordinary differential equa-
tions, generation of the value set A	'k��B1	'k�� � � � �Bm	'k��C	'k� for a given
; is very accurate.21 Second, since the calibration equation is linear, and the
objective function is quadratic, we obtain a well-behaved optimization problem.
Third, we retain thechoiceofundertakingcalibrationeither for theentirepanelof
data or for a single cross-section only. Fourth, since the information used relates
directly to the prices of derivative securities, all estimated parameters are with
respect to the risk-neutral measure and may be used for pricing immediately.22

21 Indeed, standard mathematical packages yield highly accurate results. We found the ode45 function in Matlab
to be extremely fast and accurate. This is but one example of the power of using the original Riccati equations.
Other facile implementations using characteristic function estimators are considered in Chacko (1998) and
Singleton (1997).

22 Appendix B gives an example of the implementation for the Vasicek (1997) model. Extending the estimation
procedure to calibration off option prices involves only one extra dimension in the ODE generator for the
parameter .. See the following section.
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5.2 The implementation of option pricing
As an example, we consider the pricing of bond options for which the equation
is Ft	'4 '̂�= Pt	'+ '̂�A1� t−KPt	'�A2� t , whereK is the strike price. There are
four components to this model: (i) an underlying bond of maturity 	' + '̂�, (ii)
a bond of the same maturity (') as the option, (iii) the probability of the option
finishing in the money (A2� t), and (iv) the present value of a dollar conditional
on the option finishing in the money (A1� t). Since the first two components are
directly observable from the market, we need only compute the two probability
values.

Since A2� t is not directly computable, we obtain its characteristic func-
tion, Ã2� t , which is the solution to the Riccati differential equation system
[Equation (29)]. We propogate the differential equation system forward to
time T , beginning with the appropriate initial conditions, which are (see
Proposition 5)

b =



i.A∗	;4 '̂�0�d∗�

i.B∗
1	;4 '̂�0�d∗�

(((

i.B∗
m	;4 '̂�0�d∗�

i.C∗	;4 '̂�0�d∗�


( (30)

The valuesA∗	;4'̂�0�d∗��B∗
1	;4'̂�0�d∗�� � � � �B∗

m	;4 '̂�0�d∗��C∗	;4'̂�0�d∗�
are the coefficients from boundary conditions that have been computed from the
calibration step and are therefore already available. Hence the vector b is com-
pletelyknown,and formsanobservable initial condition for forwardpropogation
via the Riccati system. For implementation purposes we discretize the state space
on which the Fourier inversion parameter. resides, that is, generate a finite sup-
port set. ∈ 0�.1�.2� � � � � .̄�with equal intervals/.. This generates via the
Riccati system a set of values of the probability Ã2� t	.� for each value of ..
Fourier inversion yields the probabilitiesA1� t andA2� t .

23

6. Illustrative Examples

In this section we present examples illustrating the techniques of the article. The
purpose of the section is not to develop pricing solutions for new models but

23 Since the Fourier inversion involves a complex integral from zero to infinity, it is often numerically unstable. One
approach is to simply use an integration package such as that available from Mathematica. Otherwise a suitable
discretization also leads to fairly accurate results. Since the upper limit of the integral is infinity, any numerical
scheme that truncates the integral needs to check carefully that the tail of the integral has died out before the
truncation point. For a similar discussion, see also the use of Fourier inversion via integration in estimation
technology developed in Singleton (1997). Singleton provides an extensive discussion of the appropriate choice
of discrete grid for the implementation of the procedure.
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instead is to illustrate how to use the techniques developed in earlier sections of
this article. This is best done in the context of simple models. We analyze exotic
options such as range-Asians and credit spread calls, and we provide results for a
version of the jump diffusion example that has been used throughout this article.

6.1 Range-Asian options
We explore a more exotic option, the range-Asian. The process on which this
option is written is the simple Vasicek model, that is, Equation (8) devoid of the
jump component. The range-Asian is an interesting option to analyze because it
offers a good setting in which the joint effects of the mean rate, ;, and the rate
of mean reversion, k, may be examined. In general, a range option is one that
pays off a certain amount each day if the value of the underlying variable lies
within a pre specified range. The range-Asian pays off each day that the current
average up to that date remains within prespecified limits. These options have
daily payoffs that are based on whether the average interest rate up to time t lies
within a prespecified range �a	t�� b	t��� a	t� < b	t�� ∀t ∈ �0� T �. In the article
we assume that a	t� = a and b	t� = b, without loss of generality. The value of
these options is simply

R�a	t�� b	t�� T � = 1

d

d∑
j=1

�Q	a	t�� t�−Q	b	t�� t��

d = Flr	T ∗365�

t = j

365
�

where Q	(� is the value of a binary Asian option, and Flr	x� is a function that
returns the greatest integer less than or equal toK. Our analyses utilize both the
square-root and the O-U process models.

Pricing examples for range-Asian options are presented in Table 4. These
prices increasewhentherangewidens.Whenthemeanrate; lies inside therange,
increases in mean reversion (k) drive the price upward. This is because, ask rises,
the likelihood of the interest rate remaining within the range increases, thereby
raising value. When the mean lies outside the range, option prices decrease when
k increases because the interest rate is less likely to remain in the desired range.
This is true of both cases, when the mean is above and below the range, that is,
; = 0(15 and ; = 0(05, respectively.

6.2 The jump diffusion model
In this section we analyze the pricing of Asian options in a jump diffusion frame-
work. In particular, we extend the results of Das and Foresi (1996) to the pricing
of Asian options on jump diffusions. The underlying interest rate process is as
follows:

dr = k	;− r�dt+� dz+ J 	J���dQ	��(
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Table 4
Pricing range-Asian options

Range k = 0(5 k = 1(5 k = 2(5

; = 0(05
a= 0(09� b = 0(11 0.3718 0.3539 0.3075
a= 0(08� b = 0(12 0.6631 0.6461 0.5923
a= 0(07� b = 0(13 0.8388 0.8353 0.8066

; = 0(10

a= 0(09� b = 0(11 0.3818 0.4120 0.4424
a= 0(08� b = 0(12 0.6741 0.7132 0.7488
a= 0(07� b = 0(13 0.8435 0.8714 0.8922

; = 0(15

a= 0(09� b = 0(11 0.3823 0.3810 0.3406
a= 0(08� b = 0(12 0.6717 0.6646 0.6150
a= 0(07� b = 0(13 0.8374 0.8265 0.7938

The following table presents the values of the range-Asian option. This option is written over a fixed number of days. Every
day the option pays off if the average interest rate up to that day lies within a range 	a� b�. The payoff is a dollar divided by
the number of days the option is written for. The values in this table are for a range-Asian option with maturity T = 0(2 years,
that is, 73 days. The parameters that are varied are (a) mean reversion ( k), (b) lower range limit (a), and (c) upper range limit
(b). The base parameters used are initial interest rate (r0 = 0(1), time to maturity (T = 0(2), mean rate (; = 0(1), market price
of risk (K = 0), volatility (1 = 0(2).

Here, k is the rate of mean reversion, ; is the long-run mean of the interest rate,
� is the coefficient of diffusion volatility, and dz is the Wiener increment. The
jump portion has a point process Q with jump arrival intensity � and the jump
J has a sign determined by parameter J, which represents the probability of a
positive jump. The parameter� > 0 defines the jump size and is the distribution
parameter for an exponential distribution, such that it has mean 1

�
, that is, the

probability density function is given by f 	J �= �e−�J . As an example, we price
bonds and options with the following base case parameters:

k ; � � � J r '

2 0.1 0.02 5 50 1 0.1 3

Bondmaturity isdenoted' .This results inadiscountbondpriceofP	0(1�3�=
0(6545. As an illustration we choose one interesting case, that is, J = 1, which
indicates that there will only be positive jumps, and this diminishes the proba-
bility of negative interest rates, but also injects a substantial quantity of positive
skewness in interest rates. We shall vary the jump intensity 	�� from 0 to 10 to
see how increasing skewness affects the price of the binary Asian option and the
standard Asian option.

Pricing results are presented in Table 5. The standard Asian option of course
has lower values, and since it is probability weighted, the payoff effect is always
strong enough to outweigh the discounting effect, resulting in a monotonically
increasing option value as skewness increases.

As� increases, thevalueof thebinaryAsianoptionfirst risesand thendeclines.
The intuition for this is straightforward. Increasing positive skewness forces the
binary option further into the money, making it more valuable. At the same time,
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Table 5
Pricing interest rate securities in the jump diffusion model

k ; � � � J r '

2 0.1 0.02 5 50 1 0.1 3

� Bond price Binary Asian Standard Asian

0 0.7409 0.3660 0.0015
1 0.7228 0.6059 0.0063
2 0.7051 0.6737 0.0116
3 0.6878 0.6802 0.0169
4 0.6710 0.6693 0.0219
5 0.6545 0.6541 0.0268
6 0.6385 0.6384 0.0313
7 0.6229 0.6229 0.0357
8 0.6076 0.6076 0.0398
9 0.5927 0.5927 0.0436
10 0.5782 0.5782 0.0473

The following results present prices of bonds, binary Asian options, and standard Asian options in the jump diffusion model.
Results are presented for a range of skewness levels, that is, as � ranges from 0 to 10. Base parameters are presented in the first
tableau and results in the second.

the skewness increases the average discount rate for the payoff, reducing the
valueof theoption.When� reaches thevalueof3, thebinaryoption ismaximized
in value and declines thereafter as the discounting effect swamps the increasing
payoff.

6.3 Pricing credit spread options
In this, our final example, we employ a two-factor model for pricing a call option
on the credit spread. Our model is a special case of the model in Duffie, Pedersen,
and Singleton (2000). We assume that the interest rate follows an affine square-
root diffusion model given by

dr = 	�0 +�1r�dt+1
√
r dW�

and the spread process is described in the following stochastic differential
equation:

ds = 	M0 +M1s�dt+�
√
s dZ(

After applying Ito’s lemma, the canonical PDE (in P ) obtained is as follows:

1
2
12r

&2P

&r2
+ 1

2
�2s

&2P

&s2
+	�0+�1r�

&P

&r
+	M0+M1s�

&P

&s
− &P

&'
+drP=0(

We guess and verify a solution to this PDE: P	r� '� = exp�A	'�r +B	'�s+
C	'��. The specific problem we wish to solve is defined by the choice of values
a� b� c�d�,whereA	0�= a,B	0�= b,C	0�= c.ThereforeP	r�0�= exp�ar+
bs+ c�. In the special case when a = b = c = 0�d = −1, we obtain the bond
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price. Solving the PDE by separation of variables, we obtain three ODEs which
we solve entirely in closed form. The solutions are as follows:

A	'�a�d� = 2
12

(
�2u2 +a12�u1e

u1' − �2u1 +a12�u2e
u2'

�2u1 +a12�eu2' − �2u2 +a12�eu1'

)
B	'� b�d� = 2

�2

(
�2v2 +b�2�v1e

v1' − �2v1 +b�2�v2e
v2'

�2v1 +b�2�ev2' − �2v2 +b�2�ev1'

)
C	'� c�d� = c+ 2�0

12
ln
(

2�u1 −u2�

�2u1 +a12�eu2' − �2u2 +a12�eu1'

)
+ 2M0

�2
ln
(

2�v1 −v2�

�2v1 +b�2�ev2' − �2v2 +b�2�ev1'

)
u1 = �1 +

√
�2

1 −2d12

2

u2 = �1 −
√
�2

1 −2d12

2

v1 = M1 +
√
M2

1 −2dM2

2

v2 = M1 −
√
M2

1 −2dM2

2
(

The spread call is given by a payoff that is based on a face value of $100,000
and is paid off on the difference between the spread at maturity and the strike
spread (K). We apply Proposition 4 to the model here. Simple inspection gives
the vectors b0 = �0�C�0��b1 = �0� i.�0�(

We computed option values for a range of spread levels and spread volatilities,
the results are presented in Table 6.

Thus we have demonstrated with several numerical examples that the solu-
tions derived in this article are easy to implement in practice. Since the solution

Table 6
Pricing credit spread options

�0 �1 M0 M1 1 � rt st K t

0.02 −0(2 0.015 −0(5 0.10 0.20 0.10 0.03 0.03 1.0

st

� 0.01 0.02 0.03 0.04 0.05

0.10 74.21 232.21 492.13 843.62 1266.44
0.20 359.99 631.34 954.42 1317.45 1714.26
0.30 437.81 691.50 1109.77 1540.63 1983.01
0.40 575.55 1002.78 1438.64 1882.52 2333.89

This table presents option values for credit spread options. Option values are computed for a range of spread levels and
spread volatilities. The first tableau presents the parameters and the second presents the option prices.
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equations are merely a few lines and do not contain more than a single integral,
they are easy to write computer code for, and implementation with a mathemat-
ical software package is simple.

7. Extensions

In this section we conclude the paper by showing that the pricing model can be
applied insettingsbeyondthosedescribed thusfar in thearticle.Thefirst setting is
that of a no-arbitrage model, where the short-rate process is allowed to have time-
varying components, allowing for an exact match with the current term structure
of interest rates, volatilities, etc. Thus even in settings where calibration of the
model to currently observed data must be exact, the general pricing formulas
derived above can still be used for pricing popular fixed-income securities. The
second setting is the case where the term structure model is no longer exponential
affine, but is exponential separable, that is, where log bond prices are given by

logPt	'�= A1	'�rt+
q∑
i=2

Ai	'�fi	rt�xt�+B	'�� (31)

wherePt	'� represents the price of a bond maturing in ' periods,Ai	'� andB	'�
represent functions of time to maturity only, and fi	rt�xt� represents (possibly)
nonlinear functions of any factors determining bond prices. The generalization
here from the exponential affine class is to allow for nonlinear functions of fac-
tors, but to restrict the nonlinear structure so that the time-varying component
may still be separated out from the factors. In this setting, the pricing formulas
derived above continue to hold, but with the factors, xt , in each pricing formula
replaced by their respective nonlinear functions, fi	rt�xt�.

7.1 No-arbitrage models
Exact calibration of pricing models to currently observable data is an important
requirement for most practitioners. One class of no-arbitrage models that allows
for this defines the short-rate process with time-varying components in the drift,
volatility, and/or jump terms and uses these time-varying components as free
variables to match up to observed data. Examples of this class of models include
Black, Derman, and Toy (1991), Burnetas and Ritchken (1996), and Heath, Jar-
row, and Morton (1992). We now show via our jump diffusion example how to
use the pricing formulas derived above in the context of such models in which
the bond price is also exponential affine.

We first extend the one-factor, jump diffusion example we have been using
throughout this article to allow for a time-varying central tendency. The interest
rate process is defined by

dr = <�;	t�− r�dt+� dW + JudNu	�u�− JddNd	�d��
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where the central tendency is now a time-varying function, ;	t�, rather than a
constant. In this case the generalized term structure model is given by

exp�A∗	'�b�d�rt+C∗	'�b�d���

where

A∗	'�b�d� =
(
a− d

k

)
e−<' + d

k

C∗	'�b�d� = −u
2
1�

2
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2

<
	e−<' −1�

+
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2

2
−�u+�d
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�u
<+d1u

log �	1+1uu2�e
<' −1uu1�

− �u
<+d1u

log �	1+1du2�e
<' −1du1�

+ c−a+
∫ '

0
<;	v�A∗	v�b�d�dv

u1 = a−u2

u2 = d

<
(

Here the bond price (formed when a = 0� c = 0, d = −1) is a function of the
time-varying function ;	t�, which appears in the expression for C∗	'�b�d�.
Therefore, by choosing the function for ;	t� appropriately, the current term
structure of interest rates, volatilities, etc., can be matched perfectly. Further-
more, because the price of a bond is exponential affine here, all of the pricing
formulas for fixed-income derivatives derived in the article apply with this model
as well. Consequently, once calibration of this model to currently observed data
is accomplished, pricing formulas for popular fixed-income securities can be
written by inspection using the formulas derived earlier.

7.2 Exponential separable models
Considerable research is now being focused on nonaffine term structure models.
While few such models have been found with closed-form solutions, we want to
allow for the use of the formulas derived above for a certain class of models which
seem promising: the exponential separable class. Bond prices for this class of
models have the form given in Equation (31). Examples of this class for which
closed-form solutions exist include Longstaff (1989) and Constantinides (1992).

It is easy to show that the pricing models derived in this article can easily
accomodate term structure models of this class with minor changes. Specifi-
cally, we first introduce the new variables yi, i = 2� � � � � q. These variables are
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defined as

y2 = f2	rt�xt�

y3 = f3	rt�xt�

(((

yq = fq	rt�xt�(

Notice now that the term structure model is now exponential affine in the interest
rate and these new variables. Therefore, from Duffie and Kan (1996), we know
that the stochastic differential equations governing must have linear drifts and
instantaneous variances. Thus the interest rate and the new factors, yi, now have
linear drifts and variances in yi. Thus the transformed term structure model fits
into the exponential affine class of models and all of the pricing results derived
in this article apply. Consequently the results of this article apply to exponen-
tial separable models as well, but with the individual factors, xt� in the pricing
formulas replaced by their nonlinear function counterparts, fi	rt�xt�, from the
generalized exponential separable term structure model.

8. Concluding Comments

Duffie and Kan (1996) established the relationship between affine stochastic
processes and bond pricing equations in exponential term structure models. We
extend the results in their article to the pricing of interest rate derivatives. This
article shows that if an exponential affine structure is assumed for the term struc-
ture, there is a fundamental link between the components of the bond pricing
solution and the prices of many widely traded interest rate derivative securities.

The intuition for our results stems from the fact that derivative prices are
derived fromasetofdifferential equations that are similar to those forbondprices
up to a modification of constant terms. Our results apply to multifactor processes
withmultiplediffusionsandjumpprocesses.Regardlessof thenumberofshocks,
the pricing solutions require at most a single numerical integral, making the
model easy to implement. In addition, we show that the results of the article can
be easily extended to no-arbitrage models of the type developed in Heath, Jarrow,
and Morton (1992), with time-varying components in the short rate or factors,
as well as a class of nonlinear term structure models: exponential separable term
structure models, such as that in Constantinides (1992).

We provide many examples of options that yield solutions using the methods
of the article. While the general approach is the same, the mathematical details
for each option vary, resulting in three separate option models, based on the
structure of the payoff function.
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Appendix A. Solving for the Probability Functions

In this section we solve for various probability functions needed for the different options priced in
this article. Each probability function varies in subtle ways from the other and requires different
techniques for their solution. The following subsections are categorized by the structure of the
payoff function.

1.1 Linear payoff functions

1.1.1 Solution for �0� t with linear payoffs. To solve for the function A0�t = Et�e
−Zt 	T �	k0rT +

k1x1�T +· · ·+kmxm�T +km+1��, we first note that

Et
[
e−Zt 	T �	k0rT +k1x1�T +· · ·+kmxm�T +km+1�T �

]
=

{
&

&C
Et
[
e−Zt 	T �eC	k0rT +k1x1�T +···+kmxm�T +km+1�T �

]}
C=0

(

To justify the interchange of the expectation and differentiation operators, we need to impose
certain restrictions such that the expectation above is well behaved. Define the linear function
fT 	r�x� '̂�≡ k0rT +k1x1�T +· · ·+kmxm�T +km+1�T . We require that the drift, diffusion, and jump
components of the interest and factors be restricted so that E	�fT 	r�x� '̂��k� be bounded for any
constant k. Furthermore, the derivative taken in the second line above must be well behaved, and
so we require the function Eexp�CfT 	r�x� '̂��� to be uniformly bounded at C= 0.

With these restrictions established, the justification of the interchange of the expectation and
differentiation operators now follows. First, notice that we can rewrite the expectation above in the
complex domain: {

&

&C
Et
[
e−Zt 	T �eC	k0rT +k1x1�T +···+kmxm�T +km+1�T �

]}
C=0

= 1
i

{
&

&C
Et
[
e−Zt 	T �eiC	k0rT +k1x1�T +···+kmxm�T +km+1�T �

]}
C=0

(

Since the right-hand side of this equation is the derivation of the first moment from the characteristic
function, intuitively the assumption of boundedness on the payoff function should ensure that this
expectation is bounded as well. We now show this more formally:

&

&C
Et
[
e−Zt 	T �eiCfT 	r�x�'̂�

]−Et[e−Zt 	T �ifT 	r�x� '̂�eiCfT 	r�x�'̂�
]

= Et
[
e−Zt 	T �ei	C+��fT 	r�x�'̂�

]−Et[e−Zt 	T �eiCfT 	r�x�'̂�]
�

−Et
[
e−Zt 	T �ifT 	r�x� '̂�eiCfT 	r�x�'̂�

]
= Et

[
e−Zt 	T �eiCfT 	r�x�'̂�	ei�fT 	r�x�'̂�−1�

]
�

−Et
[
e−Zt 	T �ifT 	r�x� '̂�eiCfT 	r�x�'̂�

]
= Et

[
e−Zt 	T �eiCfT 	r�x�'̂�

	ei�fT 	r�x�'̂�−1− i�fT 	r�x� '̂��
�

]
(

The integrand in the final equation can be shown to be dominated by 2�fT 	r�x� '̂�� and goes to
0 with �; therefore the expected value goes to 0 by the dominated convergence theorem, and we
have the result that

&

&C
Et
[
e−Zt 	T �eiCfT 	r�x�'̂�

]= Et
[
e−Zt 	T �ifT 	r�x� '̂�eiCfT 	r�x�'̂�

]
(
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As a result, to solve forA0�t we need to solve forEt�e
−Zt 	T �eC	k0rT +k1x1�T +···+kmxm�T +km+1�T ��≡ B0�t

and simply evaluate the partial derivative of this expression with respect to C at C = 0. We now
apply the Feynman–Kac relation, from which we know that this equation solves the PDDE

0 =�B0� t− rtB0� t (32)

with boundary condition

B0�T = expCfT 	r�x� '̂�

= exp�Ck0rT +Ck1x1�T +· · ·+Ckmxm�T +Ckm+1�T �( (33)

In comparing Equations (32) and (33) with Equations (3 ) and (6), we see that the PDDEs are
exactly the same, while the boundary conditions differ by only a set of constant coefficients in front
of the interest rate and factors. Therefore, by analogy, we can write the solution to B0�t as

B0�t = exp
[
A∗	;4 '�b0�d∗�rt+

m∑
i=1

B∗
i 	;4 '�b0�d∗�xi�t+C∗	;4 '�b0�d∗�

]
� (34)

where

b0 =


Ck0

Ck1

(
(
(

Ckm
Ckm+1

 (

Thus the solution for A0�t is given by

A0�t =
&

&C
B0�t

∣∣∣∣
C=0

=
{
B0�t

[
&A∗	;4 '�b1�d∗�

&C
rt+

m∑
i=1

&B∗
i 	;4 '�b1�d∗�

&C
xi�t+

&C∗	;4 '�b1�d∗�
&C

]}
C=0

(

1.1.2 Solution for �1� t with linear payoffs. For the linear payoff function in Equation (14), the
probability A1�t is given by the expression

A1�t = Et

[
e−Zt 	T �fT 	r�x� '̂�1fT 	r�x�'̂�≥K�

Et
[
e−Zt fT 	r�x� '̂�

] ]

= 1
A0�t

Et
[
e−Zt 	T �fT 	r�x� '̂�1fT 	r�x�'̂�≥K�

]
(

Using the Feynman–Kac relation, one can show that the probability satisfies a PDDE very similar to
the bond price equation, but with a discontinuous boundary condition. However, the discontinuity
of the boundary condition makes this an extremely difficult equation to solve. Instead, we will first
solve for the characteristic function, denoted Ã1� t , associated with this probability and then invert
this characteristic function to obtain the probability. The characteristic function is defined as

Ã1� t =
1
A0� t

Et
[
e−Zt 	T �fT 	r�x� '̂�ei.fT 	r�x�'̂�

]
� (35)
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where i =√−1 and . is a real-valued dummy variable. We can rewrite the characteristic function
as follows:

Ã1� t =
1
A0�t

1
i

&

&.
Et
[
e−Zt ei.fT 	r�x�'̂�

]
= 1
A0�t

1
i

&

&.
B1�t � (36)

where B1�t ≡ Et�e
−Zt ei.fT 	r�x�'̂��.

We justify the interchange of the differentiation and expectation operators. We require that the
drift, diffusion, and jump components of the interest rate and factors satisfy the restrictions that
E��f 	r�x� '̂��k� be bounded for any k and Eexp�CfT 	r�x� '̂��� be uniformly bounded at C = 0.
The proof now follows:

&

&.
Et
[
e−Zt 	T �ei.fT 	r�x�'̂�

]−Et[e−Zt 	T �ifT 	r�x� '̂�ei.fT 	r�x�'̂�
]

= Et
[
e−Zt 	T �ei	.+��fT 	r�x�'̂�

]−Et[e−Zt 	T �ei.fT 	r�x�'̂�]
�

−Et
[
e−Zt 	T �ifT 	r�x� '̂�ei.fT 	r�x�'̂�

]
= Et

[
e−Zt 	T �ei.fT 	r�x�'̂�	ei�fT 	r�x�'̂�−1�

]
�

−Et
[
e−Zt 	T �ifT 	r�x� '̂�ei.fT 	r�x�'̂�

]
= Et

[
e−Zt 	T �ei.fT 	r�x�'̂�

	ei�fT 	r�x�'̂�−1− i�fT 	r�x� '̂�
�

]
(

The integrand in the final equation can be shown to be dominated by 2�fT 	r�x� '̂�� and goes to 0
with �; therefore the expected value goes to 0 by the dominated convergence theorem, and we have
the result that

&

&.
Et
[
e−Zt 	T �ei.fT 	r�x�'̂�

]= Et
[
e−Zt 	T �ifT 	r�x� '̂�ei.fT 	r�x�'̂�

]
(

Note that B1�t is equivalent to B0�t evaluated at C = i.. Therefore, from the solution for B0�t in
Equation (34), we have the solution for B1�t :

B1�t = exp
[
A∗	;4 '�b1�d∗�rt+

m∑
i=1

B∗
i 	;4 '�b1�d∗�xi�t+C∗	;4 '�b1�d∗�

]
� (37)

where

b1 =


i.k0

i.k1

(
(
(

i.km+1

 (

Then we have the solution for Ã1�t :

Ã1�t =
1
A0�t

{
1
i
B1�t

[
&A∗	;4 '�b1�d∗�

&.
rt+

m∑
i=1

&B∗
i 	;4 '�b1�d∗�

&.
xi�t+

&C∗	;4 '�b1�d∗�
&.

]}
( (38)
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1.1.3 Solution for �2� t with linear payoffs. For the linear payoff function in Equation (14), the
probability A2�t is given by the expression

A2�t = Et

[
e−Zt 	T �1fT 	r�x�'̂�≥K�

Et�e
−Zt �

]
= 1
Pt	'�

Et�e
−Zt 	T �1fT 	r�x�'̂�≥K��(

It is easy to show that A2�t satisfies a PDDE very similar to the bond price equation, but as with
A1�t above, this PDDE has a discontinuity in its boundary condition which makes the equation
extremely difficult to solve. Therefore, just as we solved for A1�t , we will solve for Ã2�t by first
calculating the characteristic function A2�t associated with A2�t and then invert this characteristic
function to obtain A2�t . The characteristic function is defined as

Ã2�t =
1

Pt	'�
Et�e

−Zt 	T �ei.fT 	r�x�'̂��(

However, Et�e
−Zt 	T �ei.fT 	r�x�'̂�� was calculated above in the derivation for A1�t :

Et
[
e−Zt 	T �ei.fT 	r�x�'̂�

]= B1�t (

Thus we have the result

Ã2�t =
1

Pt	'�
B1�t

= 1
Pt	'�

exp
[
A∗	;4 '�b1�d∗�rt+

m∑
i=1

B∗
i 	;4 '�b1�d∗�xi�t+C∗	;4 '�b1�d∗�

]
�

where

b1 =


i.k0

i.k1

(
(
(

i.km
i.km+1

 (

2.2 Exponential linear payoffs

2.2.1 Solution for �0� t with exponential linear payoffs. From Equation (13),

A0�t = Et
[
e−Zt 	T �fT 	r�x� '̂�

]
= Et

[
e−Zt 	T � exp	k0rT +k1x1�T +· · ·+kmxm�T +km+1�T �

]
(

We now apply the Feynman–Kac relation, from which we know that this equation solves the PDDE

0 =�A0�t− rtA0�t (39)

with boundary condition

A0�T = exp fT 	r�x� '̂�= exp�k0rT +k1x1�T +· · ·+kmxm�T +km+1�T �( (40)
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Notice that this is the exact same PDDE and boundary condition as Equations (32) and (33) with
C= 1. Therefore we can write the solution for A0�t as

A0�t = exp
[
A∗	;4 '�b0�d∗�rt+

m∑
i=1

B∗
i 	;4 '�b0�d∗�xi�t+C∗	;4 '�b0�d∗�

]
� (41)

where

b0 =


k0

k1

(
(
(

km
km+1

 (

2.2.2 Solution for �1� t with exponential linear payoffs. For the exponential linear payoff
function in Equation (19), the probability A1�t is given by the expression

A1�t = Et

[
e−Zt 	T �fT 	r�x� '̂�1fT 	r�x�'̂�≥K�

Et
[
e−Zt fT 	r�x� '̂�

] ]

= 1
A0�t

Et
[
e−Zt 	T �fT 	r�x� '̂�1fT 	r�x�'̂�≥K�

]
= 1
A0�t

Et
[
e−Zt 	T �fT 	r�x� '̂�1log fT 	r�x�'̂�≥logK�

]
(

As with the linear payoff function, A1�t satisfies a PDDE similar to the bond price equation, but
with a discontinuous boundary condition. As we did withA1�t in the linear payoff function, we will
first solve for the characteristic function, denoted Ã1�t , associated with this probability and then
invert this characteristic function to obtain the probability. The characteristic function is defined as

Ã1�t =
1
A0�t

Et
[
e−Zt 	T �fT 	r�x� '̂�ei. log fT 	r�x�'̂�

]
= 1
A0�t

Et
[
e−Zt 	T � exp

[
	1+ i.�	k0rT +k1x1�T +· · ·+kmxm�T �

]]
( (42)

From the Feynman–Kac relation, it is easy to see that A0�tÃ1�t satisfies

0 =�A0�tÃ1�t− rtA0�tÃ1�t (43)

with boundary condition

A0�T Ã1�T = exp�	1+ i.�	k0rT +k1x1�T +· · ·+kmxm�T +km+1�T ��( (44)

This is the same PDDE and boundary condition as Equations (32) and (33) with C = 1+ i..
Therefore we can write the solution for Ã1�t as

Ã1�t =
1
A0�t

exp
[
A∗	;4 '�b0�d∗�rt+

m∑
i=1

B∗
i 	;4 '�b0�d∗�xi�t+C∗	;4 '�b0�d∗�

]
� (45)

233



The Review of Financial Studies / v 15 n 1 2002

where

b0 =


	1+ i.�k0

	1+ i.�k1

(
(
(

	1+ i.�km
	1+ i.�km+1

 (

2.2.3 Solution for �2� t with exponential linear payoffs. For the exponential linear payoff
function in Equation (14), the probability A2�t is given by the expression

A2�t = Et

[
e−Zt 	T �1fT 	r�x�'̂�≥K�

Et�e
−Zt 	T ��

]
= 1
Pt	'�

Et
[
e−Zt 	T �1log fT 	r�x�'̂�≥logK�

]
(

It is easy to show thatA2�t satisfies a PDDE very similar to the bond price equation, but as withA1�t

above, this PDDE has a discontinuity in its boundary condition, which makes the equation extremely
difficult to solve. Therefore, just as we solved for A1�t , we will solve for Ã2�t by first calculating
the characteristic function,A2�t , associated withA2�t and then inverting this characteristic function
to obtain A2�t . The characteristic function is defined as

Ã2�t =
1

Pt	'�
Et
[
e−Zt 	T �ei. log fT 	r�x�'̂�

]
= 1
Pt	'�

Et
[
e−Zt 	T � exp�i.	k0rT +k1x1�T +· · ·+kmxm�T +km+1�T ��

]
(

From the Feynman–Kac relation, it is easy to see that Pt	'�Ã1�t satisfies

0 ==Pt	'�Ã2�t− rtPt	'�Ã2�t (46)

with boundary condition

PT 	0�Ã2�T = exp�i.	k0rT +k1x1�T +· · ·+kmxm�T +km+1�T ��( (47)

This is the same PDDE and boundary condition as Equations (32) and (33) with C= i.. Therefore
we can write the solution for Ã2�t as

Ã2�t =
1

Pt	'�
exp

[
A∗	;4 '�b0�d∗�rt+

m∑
i=1

B∗
i 	;4 '�b0�d∗�xi�t+C∗	;4 '�b0�d∗�

]
� (48)

where

b0 =


i.k0

i.k1

(
(
(

i.km
i.km+1

 (
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3.3 Integro-linear payoffs

3.3.1 Solution for �0� t with integro-linear payoffs. For the integro-linear payoff in
Equation (26), A0�t is defined as

A0�t = Et
[
e−Zt 	T �fT 	r�x� '̂�

]
(49)

= Et�e
−Zt 	T �XT �� (50)

where the new variable XT = ∫ T
t
	k0rv+k1x1�v+· · ·+kmxm�v+km+1�dv represents an expansion

of the state space. Using the Feynman–Kac relation, A0�t satisfies the PDDE

0 ==A0�t− rtA0�t+ 	k0rt+k1x1�t+· · ·+kmxm�t+km+1�
&A0�t

&Xt

with the boundary condition A0�T = XT . To solve this PDDE we make the following observation:

Et
[
e−Zt 	T �XT

] = &

&C
Et
[
e−Zt 	T �+CXT

]∣∣∣∣
C=0

= &Et

&C

∣∣∣∣
C=0

(51)

whereEt = Et
[
e−Zt 	T �+CXT

]
and C is an arbitrary constant.24�25 Using the Feynman–Kac formula,

Et satisfies the following PDDE:

0 ==Et+ �	Ck0 −1�rt+Ck1x1�v+· · ·+Ckmxm�v+Ckm+1�Et(

The boundary condition for this equation is ET = 1. Since this is the same PDDE and boundary
condition as Equations (3) and (6), but with d = d0, where

d′
0 =


Ck0 −1
Ck1

(
(
(

Ckm
Ckm+1


�

we can immediately calculate the solution for Et :

Et = exp
[
A∗	;4 '�0�d0�rt+

m∑
i=1

B∗
i 	;4 '�0�d0�xi�t+C∗	;4 '�0�d0�

]
( (52)

From Equation (51) we then have the solution for A0�t :

A0�t =
{
Et×

[
&A∗	;4 '�0�d0�

&C
rt+

m∑
i=1

&B∗
i 	;4 '�0�d0�

&C
xi�t+

&C∗	;4 '�0�d0�

&C

]}
C=0

( (53)

24 Given that e−CYt−Zt is bounded in time and the interest rate process 	r�x� is strong Markov, the dominated
convergence theorem holds. Therefore the application of Fubini’s theorem is permitted here.

25 The justification for interchanging the differentiation and expectation operators follows along the lines of that
set out in the solution for A0�t in Section 1.1.1.
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3.3.2 Solution for �1� t with integro-linear payoffs. For the integro-linear payoff, A1�t in
Equation (27) is defined as

A1�t = Et

[
e−Zt 	T �Yt	T �1Yt 	T �≥K�
Et�e

−Zt 	T �Yt	T ��

]
(54)

= 1
A0�t

Et
[
e−Zt 	T �Yt	T �1Yt 	T �≥K�

]
( (55)

Using the Feynman–Kac relation,A1�t satisfies a PDDE similar to the bond price equation, but with
a discontinuous boundary condition. Therefore we will first solve for the characteristic function,
denoted Ã1�t , associated with this probability and then invert this characteristic function to obtain
the probability. The characteristic function is defined as

Ã1�t =
1
A0�t

Et
[
e−Zt 	T �Yt	T �e

i.Yt 	T �
]
( (56)

Notice, however, that Et
[
e−Zt 	T �+CYt 	T �

]
was calculated already in the derivation for A0�t for

Equation (27). In this derivation Et
[
e−Zt 	T �+CYt 	T �

]
was defined as Et and solved in Equation (52).

Therefore, we can write the solution to Ã1�t as26

Ã1� t =
1
A0�t

&E

&C

∣∣∣∣∣
C=i.

= 1
A0�t

{
Et×

[
&A∗	;4 '�0�d0�

&C
rt+

m∑
i=1

&B∗
i 	;4 '�0�d0�

&C
xi�t+

&C∗	;4 '�0�d0�

&C

]}
C=i.

( (57)

3.3.3 Solution for �2� t with integro-linear payoffs. For the integro-linear payoff function in
Equation (26), the probability A2�t is given by the expression

A2�t = Et

[
e−Zt 	T �1fT 	r�x�'̂�≥K�

Et
[
e−Zt 	T �

] ]

= 1
Pt	'�

Et
[
e−Zt 	T �1Yt 	T �≥K�

]
(

It is easy to show thatA2�t satisfies a PDDE very similar to the bond price equation, but as withA1�t

above, this PDDE has a discontinuity in its boundary condition, which makes the equation extremely
difficult to solve. Therefore, just as we solved for A1�t , we will solve for Ã2�t by first calculating
the characteristic function,A2�t , associated withA2�t and then inverting this characteristic function
to obtain A2�t . The characteristic function is defined as

Ã2� t =
1

Pt	'�
Et
[
e−Zt 	T �ei.Yt 	T �

]
= 1
Pt	'�

Et
[
e−Zt 	T �+i.Yt 	T �

]
(

26 The justification for interchanging the differentiation and expectation operators follows along the lines of that
set out in the solution for Ã1�t in Section 1.1.2.
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However, Et
[
e−Zt 	T �+i.Yt 	T �

]≡Et , which has already been calculated in Equation (52). Therefore,
we have the solution for the characteristic function:

Ã2�t =
Et

Pt	'�

∣∣∣∣∣
C=i.

(58)

= 1
Pt	'�

exp
[
A∗	;4 '�0�d0�rt+

m∑
i=1

B∗
i 	;4 '�0�d0�xi�t+C∗	;4 '�0�d0�

]
C=i.

( (59)

Appendix B. Illustrative Callibration: The Vasicek Model

The interest rate process used is one with constant coefficients,

drt = ��O− rt� dt+1dWt�

where � is the coefficient of mean reversion, O is the long-run mean of the interest rate, and 1 is
the volatility coefficient for the driving Wiener process dWt . The estimation problem is a particular
version of the system in Equation (29):

min
;

T∑
t=1

N∑
k=1

Gt�;	'k��
2

subject to � ; = ��O�1�

Gt�;	'k�� = Y 	'k�+
1
'
�A	'k�rt+C	'k��

&A

&'
= −�A−1� ∀'k�A	0�= 0

&C

&'
= 1

2
12A2 +�OA� ∀'k�C	0�= 0(

We employed a panel of monthly data from the well-known McCulloch–Kwon database. This
data has zero-coupon yields for several maturities from 1 month to 20 years. We used the period
8/1985–2/1991, because the database for this period is constructed from noncallable bonds and is
not confounded with options effects. The estimation exercise took a few seconds and resulted in the
following parameter estimates: [�= 1(6074�O= 0(0874�1 = 0(0408]. The estimated parameters
may be used directly in the pricing of interest rate derivatives.
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