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Pricing Credit Derivatives with Rating Transitions
Viral V. Acharya, Sanjiv Ranjan Das, and Rangarajan K. Sundaram

We present a model for pricing risky debt and valuing credit derivatives
that is easily calibrated to existing variables. Our approach expands a
classical term-structure model to allow for multiple rating classes of debt.
The framework has two salient features: (1) it uses a rating-transition
matrix as the driver for the default process, and (2) the entire set of rating
categories is calibrated jointly, which allows arbitrage-free restrictions
across rating classes as a bond migrates among them. We illustrate the
approach by applying it to price credit-sensitive notes that have coupon
payments linked to the rating of the underlying credit.

he pricing of credit derivatives is
approaching modeling maturity. In par-
ticular, “reduced form” models—models
that attempt to directly describe the

arbitrage-free evolution of risky debt values with-
out reference to an underlying firm-value
process—have resulted in successful conjoint
implementations of term-structure models with
default models.1

Although all reduced-form models share a
common financial-engineering approach, the mod-
eling procedures actually followed contain sub-
stantial differences. At least three branches of the
literature may be identified.

First, a class of models follows Duffie and Sin-
gleton (1999) and Madan and Unal (1998a, 1998b)
by taking as the starting point the stochastic process
for the occurrence of default and recovery. Imple-
mentation of these models is achieved by calibrat-
ing or estimating the parameters so that spreads
implied by the model match those observed in the
data.

Second, a direct approach follows Das and
Sundaram (2000) and Schönbucher (1998). In this
approach, an arbitrage-free model is described
directly for the joint evolution of riskless interest
rates and spreads. The only inputs to the model are
the current term structure of riskless interest rates
and the spreads and the volatilities of these quan-
tities. This direct approach has the advantage of

simplicity in input requirements and flexibility in
implementation. In particular, the model may be
“closed” in a variety of ways by imposing on it any
desired specifications for the default process or the
recovery-rate process.2 

Both of these classes are models of risky-debt
pricing that are independent of references to bond
ratings (i.e., it is as if there were a single rating
class). 

The third class of reduced-form models explic-
itly uses rating-transition matrixes as the drivers of
the stochastic process for default (see, for example,
Arvantis, Gregory, and Laurent 1999, Bielecki and
Rutkowski 2000, Das and Tufano 1996, Jarrow,
Lando, and Turnbull 1997, Kijima 1998, Kijima and
Komoribayashi 1998, and Lando 1998).3

We present a discrete-time valuation model
that merges the Das–Sundaram approach with a
model that incorporates multiple rating classes. As
in Das–Sundaram, our model is based on the term-
structure model of Heath, Jarrow, and Morton
(1990) and extends the HJM model to include risky
debt by adding a “forward spread” process to the
forward-rate process for default-risk-free bonds.
This model requires no restrictions on the correla-
tion between the processes, and the probability of
default at any time may depend on the entire his-
tory of the process to that point. Our objective is to
describe an arbitrage-free lattice for the joint evolu-
tion of riskless interest rates and spreads on the
risky debt.

Das and Sundaram described the construction
of the required pricing lattice when there is only
one class of risky debt. This lattice is sufficient for
many applications, but it is inappropriate for pric-
ing credit derivatives and other instruments that
are based explicitly on an issuer's rating class, such
as credit-sensitive notes, in which the coupon
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amount is tied to the issuer's credit rating. In the
current paper, we extend the Das–Sundaram
framework to modeling the joint evolution of mul-
tiple rating classes on the same pricing lattice. The
tricky part of this extension comes from a consis-
tency requirement that arises when we attempt to
embed all rating categories in a single pricing lat-
tice.

What is this consistency requirement? Because
the credit quality or rating of a debt issuer can
improve or deteriorate during the life of its debt,
the current credit spread on its debt depends not
only on the current rating of the issuer but also on
all possible rating classes to which the issuer could
migrate over the life of the debt. Thus, the current
spread summarizes information about future
credit spreads on all possible rating classes to
which the borrower could migrate. This interde-
pendence of spreads across rating classes implies
that calibration of the spread process for a given
rating class must be undertaken simultaneously
with the calibration of the forward-spread pro-
cesses for all other rating classes. Formalizing this
interdependence and characterizing the joint cali-
bration process (Proposition 2) is a primary contri-
bution of this article.

One aspect of our modeling process bears par-
ticular mention. We do not directly model the
movement of spreads of each rating class. Rather,
we focus on the process for inter-rating spreads
(i.e., the spread for that class over the spread for the
immediately superior rating class). Of course, the
spread over the default-free rate of any given rating
class is simply the sum of the inter-rating spreads
for that and all higher classes. The advantage of
working with inter-rating spreads, rather than
directly with spreads over default-free rates, is that,
provided only that the inter-rating spreads stay
nonnegative, spreads on lower-rated debt will
always be higher than those on higher-rated debt.
This restriction on the inter-rating spread processes
is easier to model than a restriction that credit
spreads for a given maturity be monotonically
decreasing in credit quality.4

Finally, we note that our model requires only
easily available information as inputs: 
• the default-risk-free yield curve,
• the term structures of credit spreads for each

rating class,
• the term structures of volatilities of these quan-

tities, and
• the (statistical) rating-transition probability

matrix.
The first three pieces of information are readily
available from such providers as Bloomberg, and
the last—a standard input in all rating-based

models—may be computed from historical data
and is available from Moody's Investors Service
and Standard & Poor's.

The Model
We developed the model in discrete time because
we envisioned a computer implementation for
options with American features (i.e., exercisable on
any business day during the life of the option) and
path dependence. Consider an economy with a
finite time interval (0,T∗). Periods are taken to be
of length h > 0; thus, a typical time point, t, has the
form kh for some integer k. First, we assume that at
all times t, a full range of default-free zero-coupon
bonds trades, as does a full range of risky zero-
coupon bonds for each rating category. We also
assume that markets are free of arbitrage, so an
equivalent martingale measure, Q, exists for this
economy;5 all references to randomness that follow
and all expectations are with respect to this mea-
sure.

For any given pair of time points (t,T) with
0 ≤ t ≤ T ≤ (T∗ − h), let f(t,T) denote the forward rate
on the default-free bonds applicable to the period
(T,T + h); in words, f(t,T) is the rate as viewed from
time t for a default-free lending/investment trans-
action over the interval (T,T + h). All interest rates
in the model are expressed in continuously com-
pounded terms. When t = T, the rate f(t,t) is called
the “short rate” and is denoted by r(t). The forward-
rate curve is assumed to evolve according to the
process 

(1)

where 
α = drift of the process
σ = volatility
X0 = a random variable

Both α and σ may depend on other information
available at t, such as the time-t forward rates. To
keep notation simple, we have suppressed this pos-
sible dependence.

We assume there are K + 1 rating classes,
indexed by k = 1, . . ., K + 1. Credit quality deterio-
rates from Class 1 down to Class K + 1. Class K + 1
is the “default state”; the assumption is that once a
bond is in the default state, it does not trade and its
price, net of any recovery upon default, is zero. For
0 ≤ t ≤ T ≤ (T∗ − h), let ϕ(t,T) = [ϕ1(t,T), . . .,
ϕk(t,T), . . ., ϕK(t,T)]′ denote the forward rate on the
risky bonds implied from the spot yield curve. The
forward inter-rating spreads are defined as the

f t h T,+( ) f t T,( ) α t T,( )h+=

+ σ t T,( )X0 h,
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spreads, sk(t,T), between successive rating catego-
ries. These compose a vector, 

s(t,T ) = [s1(t,T ), . . ., sk(t,T), . . ., sK(t,T)]′, (2)

where s1 = ϕ1 − f, s2 = ϕ2 − ϕ1, and so on. Of course,
the forward spreads on risky debt are related to the
inter-rating spreads as 

ϕk(t,T) = f(t,T) + s1(t,T) + . . . + sk(t,T), ∀k. (3)

As long as sk(t,T) is greater than zero for all k, credit
spreads assuredly increase as quality level
decreases.

Next, we make assumptions about the evolu-
tion of the forward inter-rating spreads (and thus
of the forward rates on the risky bonds). We take
these spreads to follow the process 

(4)

where βk ∈ R and ηk ∈ RL are, respectively, the drift
and volatility coefficients of the process and the
variables X ∈ RL are (possibly correlated) random
variables. We define

β(t,T) = [β1(t,T), . . ., βk(t,T), . . ., βK(t,T)]′ ∈ RK (5a)

and

η(t,T) = [η1(t,T), . . ., ηk(t,T), . . ., ηK(t,T)] ∈ RL(K). (5b)

Note that L, the dimension of the space of diffusion
factors that affect the spread processes, can gener-
ally be smaller than, greater than, or equal to K.
Both β and η may depend on other information
available at t. (At this point, we place no restrictions
on the joint distribution of X0 and X. When illus-
trating implementation of the model in a later sec-
tion, we assume that the random variables X0 and
X take values in a discrete state-space.)

We denote by P(t,T) the time-t price of a
default-free zero-coupon bond of maturity T ≥ t
and by Πk(t,T) its risky counterpart in the kth rating
class. Then, by definition, we have

(6a)

and

. (6b)

Default is modeled through the use of a
Markov chain that governs the transitions of each
bond from one rating level to another in a period of
length h. We denote this Markov chain 

(7)

Because we have taken default to be an absorbing
state, we can write 

(8)

The elements of D depend, of course, on the
size of time step h. Moreover, they could be func-
tions of the information set as well as time. To
reduce the notational burden, we suppress this
dependence. As in Jarrow, Lando, and Turnbull,
who first explored this idea of using rating-transi-
tion matrixes as a modeling input, we assume that
the rating-transition process is independent of the
stochastic processes driving the evolution of the
model's forward rates.

The spreads on the risky bonds represent the
cost of default, and as such, they depend on the
probability of default (which depends, in turn, on
the sequence of rating transitions until maturity of
the bond) and on the amount that bondholders
expect to recover in the event of default. Given that
default has not occurred up to t, we use
λk(t) ≡ qk,K+1(t) to denote the probability of default
by time t + h from state k. As for recovery in the
event of default, we use the “recovery of market
value” (RMV) convention of Duffie and Singleton,
which expresses the recovery rate as a fraction of
the market value that would have prevailed in the
absence of default. Specifically, Φt denotes the
actual recovery amount in the event of default at t.
The RMV convention then states that, conditional
on default occurring at time t + h, the time-t expec-
tation, Et(Φt+h), of the amount bondholders will
receive is

Et(Φt+h) = φk(t)E
t[Π(t + h,T)|No default], (9)

where recovery rate φk(t) depends on the state k
from which default occurred. Recovery rates may
be chosen to be different, depending on the rating
class from which the bond has moved to the default
state. As with λ, φk(t) may also depend on all infor-
mation in the model up to and including period t.
It may also depend on the subordination level of
the bond. The recovery rate may not be specific to

sk t h T,+( ) sk t T,( ) βk t T,( )h+=

+ ηk t T,( )′X h k,∀,

P t T,( ) exp f t ih,( )h
i = t h⁄

T h⁄( ) –1
∑–=

Πk t T,( ) exp ϕk t ih,( )h
i = t h⁄

T h⁄( ) –1
∑– k∀,=

D

q1 1, … … q1 K 1+,

: :
qK 1, qK K 1+,

qK 1 1,+ … … qK 1 K 1+,+

.=

D

q1 1, … … q1 K 1+,

: :
qK 1, qK K 1+,

0 0 … 1

.=
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the initial rating class because eventually all
defaulting bonds are in the default category.

The following preliminary result relating short
spreads to the default probabilities and recovery
rates under Q will come in handy in the rest of the
article:

(10)

To understand Equation 10, consider a risky
bond at t that matures at t + h. By definition, its
time-t price is given by

(11)

Now, a one-period investment in this bond fetches
a cash flow of $1 at time t + h and a cash flow of φk(t)
if it defaults. When discounted at the short rate, the
expected cash flow (in the risk-neutral world) must
equal the initial price of the bond, so we obtain

(12)

Equation 10 is an immediate consequence of Equa-
tions 11 and 12.

The model's objective is to develop a risk-neu-
tral lattice for pricing risky debt. We pursue this
purpose in several steps. First, we generate the
lattice of default-free interest rates by solving for
the risk-neutral drifts so that all discounted default-
free securities are martingales. Then, we superim-
pose a lattice for credit spreads on the first lattice
and compute the risk-neutral drifts for the forward-
spread process so that the discounted prices of
risky debt are martingales. Finally, we use the
recursive structure of the model, together with a
specific assumption concerning the default pro-
cess, to illustrate implementation of the model. We
begin with identification of the risk-neutral drifts.

Identifying the Risk-Neutral Drifts
In this section, we derive recursive expressions for
drifts α and β of, respectively, the forward-rate and
spread processes in terms of volatilities σ and η. To
this end, we define B(t) as the time-t value of a
“money market account” that uses an initial invest-
ment of $1 and rolls the proceeds over at the
default-free short rate:

(13)

We assume, without loss of generality, that equiva-
lent martingale measure Q was defined with
respect to B(t) as numeraire; thus, under Q, all asset
prices in the economy discounted by B(t) will be
martingales.

We first identify the risk-neutral drifts, α, of the
default-free forward rates under Q. A well-known
property of the HJM framework is that these risk-
neutral drifts can be expressed entirely in terms of
the forward-rate volatilities, σ. Thus, to be precise,
we have the first proposition:

Proposition 1 (drift of the default-free
forward-rate process). For any t, the following
recursive relationship holds between drifts α
and volatilities σ:

(14)

The proof is in Appendix A.
The next step is to obtain an analog of Propo-

sition 1 for drifts β(t,T) of the forward inter-rating
spread processes in terms of their volatilities. This
representation is a bit trickier, however, than the
representation for the default-free rates. A risky
bond with a current rating of k may move to a
different rating class tomorrow. Thus, the current
price of the bond (equivalently, the spread for its
rating class) implicitly also carries information
about future spreads associated with other rating
classes. This implies, in turn, the presence of simul-
taneous no-arbitrage restrictions on how the drifts
of various classes evolve with respect to each other.
The following result unravels this dependence and
shows how the relevant drifts may be calculated in
a bootstrapping manner.

Proposition 2 (drifts of the forward inter-
rating spread processes). For j = 1, . . ., K, let θj
be defined as

(15)

Then, at each t, the vector [θ1(t, ih), . . ., θK(t, ih)]
must solve the following system of K
unknowns (xj, j = 1, . . ., K):

 for k = 1, . . ., K, (16)

where

sj t t,( )
j 1=

k
∑ 1

h
---ln 1 λk t( ) λk t( )φk t( )+–[ ] k.∀,–=

Πk t t h+,( ) exp f t t,( ) sj t t,( )
j = 1

k

∑+ h–
 
 
 

k.∀,=

Πk t t h+,( ) exp f t t,( )h–[ ] 1 λk t( )– λk t( )φk t( )+[ ] k.∀,=

B t( ) exp r ih( )h
i = 0

t h⁄( ) – 1
∑ .=

α t ih,( )
i = t h⁄( )+1

T h⁄( ) –1

∑

1

h2
-----

 
 
 

ln Et exp σ t ih,( )X0h3 2⁄

i = t h⁄( ) +1

T h⁄( ) –1
∑–

 
 
 

 
 
 

=

θj t ih,( ) βl t ih,( ).
l =1

j

∑=

ak j, bk j, xj
j =1

K
∑ 1,=
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(17a)

(17b)

and

(17c)

For the proof, see Appendix A.
These expressions are much less forbidding

than they may first appear. The system is linear in
the xj variables. At each state at time t in rating class
k, one can compute the ak,j terms if one knows the
transition probabilities, the α drift terms, and the
spread levels at that state. Similarly, the bk,j terms
can be computed by taking the expectation over
diffusion processes (X0, X) if one knows the volatil-
ities of the term structure of the forward interest
rate and of the forward inter-rating spread. Thus,
when we solve this system of linear equations
(Equation 16), we obtain xj terms, which in turn,
yield θj terms.6 Because the system is solved in a
bootstrap manner starting with T − 1, the drift
terms, βj(t,•) can then be backed out from the
knowledge of θj(•,•).

The presence of multiple rating classes pre-
vents this representation from providing an
analytical expression for drift terms β(t,T), as is
obtained in the single-rating model of Das and
Sundaram. However, the expectation in Equation
17b over all possible sample paths of the state space
for X0 and X can be computed numerically by using
a lattice, as we illustrate in this article. The result is
the derivation of the risk-neutral drifts in terms of
the volatilities.

Recursive Representation of 
Risky-Bond Prices
In our model, as in Das and Sundaram, risky-bond
prices have a recursive representation that leads, in
turn, to a representation in terms of bond prices of

short maturities [i.e., of the form Πk(τ,τ + h)]. We
describe this representation in this section.
Whereas in Das and Sundaram, the recursive rep-
resentation entails one level of recursion at each
time step, with possible rating transitions, our rep-
resentation forks into K levels of recursion at each
time step.

It is straightforward to show (see Equation A12
in Appendix A) that

(18)

Rearranging terms and using the fact that
= Πk(t,t+h), we now obtain 

(19)

We can now iterate on the expression for Πj(t + h,T)
in terms of the transition probabilities qj,l(t + h) and
Et+h[Πl(t + h,T)|No default], with l = 1, . . ., K.

The recursive structure of the prices of risky
bonds, as described in Equation 19, facilitates com-
putation of these prices. Note that, because all
terms on the right-hand side have the form F(τ,τ +
h), we can use the relationship in Equation 12 to
employ the forward-spread components (i.e., the
default and recovery rates) in this process.

Implementation of the Model
To implement the model, we must be more precise
about quantities that have so far been left unspeci-
fied, namely, the random variables X0 and X. In this
section, we describe the assumptions that we use in
the rest of this article. We chose the assumptions
with an eye toward simplicity, both in exposition
and in implementation, but they are primarily
meant to be illustrative; alternative assumptions
could be similarly handled.

We first assume that K = 2, so the three possible
states of the corporate bond are investment grade
(k = 1), speculative grade (k = 2), and default state
(k = 3). We make the discrete time assumption that
X0 and X (i.e., X0, X1, and X2) are binomial random
variables—specifically, that each takes on the value
±1 with probability 1/2. We assume that the pair-
wise correlation between X0 and X1 is ρ1, between
X0 and X2 is ρ2, and between X1 and X2 is ρ3. So,
the assumed joint distribution of X0, X1, X2 is7

ak j,
qk j, t( )

1 λk t( )–
---------------------=

exp α t ih,( )h2

i = t h⁄( ) + 1

T h⁄( ) –1

∑–×

exp ϕj t ih,( ) ϕk t ih,( )–[ ]h
i = t h⁄( ) + 1

T h⁄( ) –1

∑–
 
 
 

× ,

bk j, =

Et
exp σ t ih,( )X0 ηl t ih,( )′X

l =1

j

∑+ h3 2⁄

i = t h⁄( ) + 1

T h⁄( ) –1

∑–
 
 
 

 
 
 

,

xj exp θj t ih,( )h2

i = t h⁄( ) + 1

T h⁄( ) –1

∑– .=

exp ϕk t t,( )h–[ ]

E× k
t Π t h T,+( ) No default[ ] Πk t T,( ).=

exp ϕ– k t t,( )h[ ]

Πk t T,( ) Πk t t h+,( )Ek
t Π t h T,+( ) No default[ ]=

Πk t t h+,( )
qk j, t( )

1 λk t( )–
---------------------Et Πj t h T,+( )[ ].

j =1

K
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(20)

In general, the correlation coefficients may not
equal zero or even be constant over the tree.8 

Next, we look at the components of the for-
ward rates, namely, default rate λk(t) and recovery
rate φk(t). Using Equation 10 shows clearly that
knowing the forward spreads, sk(t, t), and either
λk(t) or φk(t,t) for all k will allow us to infer the
other. Unlike Das and Sundaram, where an addi-
tional specification is required to link default rate
λ(t) to the interest rate and the spread variables, in
our model, the λk(t)'s to be used are based on the
rating-transition matrix. In particular, λk(t) ≡
qk,K+1(t).

One last and nontrivial issue remains before
we can discuss the engineering details of model
implementation. Estimates of the probabilities pro-
vided in standard rating-transition matrixes based
on historical data (such as the estimates of Moody's
and Standard and Poor's) cannot be used directly
in our model because our model [including the
probability of default, λk(t)] is set in the risk-neutral
world. Thus, a translation from the actual to the
risk-neutral measure is required. To this end, we
suppose that  denotes the actual probability
of default. Then, we make the natural assumption
that the recovery rates are the same in the risk-
neutral and actual worlds. So, realized cash flows
coincide in the two cases. Letting ξk(t) be the time-t
premium for bearing default risk corresponding to
rating state k, the analog of Equation 10 under the
actual probabilities is easily derived to be 

(21)

The difference between Equations 10 and 21 is sim-
ply that the relationship described in Equation 10
was developed in the risk-neutral world, where (by
definition) there is no premium for bearing risk.
Expression 21 follows the same derivation but is set
in the actual world, where we would expect the
risk-premium term, ξk(t), to be positive.

Comparing Equations 10 and 21, we note that
we may express λk(t) in terms of  and risk
premium ξk(t) as follows:

(22)

Expression 22 implies the intuitive condition that
λk is greater than  whenever risk-premium ξk is
positive.

Equations 21 and 22 may be used in conjunc-
tion with Equation 10 to estimate risk-premium
term ξk(t). Specifically, the result is

(23)

In estimation, we can use φk(t) to be the aver-
age recovery rate observed historically for the rat-
ing class . Thus, knowing actual recovery
rate , actual default rate  , and actual
spot spread sk(t,t), we can use Equation 23 to back
out risk-premium term ξk(t). Or, as in Das and
Sundaram, we can assume that the risk-premium
term is given by ξk(t,t) = νksk(t,t) for scalar νk and
use Equation 23 to back out implied recovery rate
function φk(t).

An additional complication remains—that is,
to adjust the remaining elements of the historical
transition matrix to obtain the risk-neutral transi-
tion matrix. For this task, we make an assumption,
similar to that in Jarrow, Lando, and Turnbull, that

(24a)

and

(24b)

where

(24c)

Note that qk,l(t ) refers to transition probabilities in
the risk-neutral matrix whereas  refers to
transition probabilities in the historical matrix.
Also, , so qk,K+1(t) = λk(t). Wil-
son (1997) also used such a “spread” transforma-
tion, where the mass spread from the diagonal
terms of the transition matrix to the off-diagonal
terms. More sophisticated techniques for estimat-
ing δk(t ) would try to minimize error over all the
transition matrix data rather than only the default
transition probability, λk(t), as we did in the possi-
ble estimation techniques described in the previ-
ous paragraph.

X0 X1 X2, ,( )

+1 +1 +1, ,( ) w.p. quuu 1 ρ1 ρ2 ρ3+ + +( ) 8⁄=

+1 +1 –1, ,( ) w.p. quud 1 ρ1 ρ2– ρ3–+( ) 8⁄=
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–1 –1 –1, ,( ) w.p. qddd 1 ρ1 ρ2 ρ3+ + +( ) 8⁄=









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

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exp sk t t,( )h–[ ] exp ξk t( )h–[ ]=

1 λk
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λk
P t( )

λk t( ) λk
P t( )

1 exp sk t t,( )h–[ ]–
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 
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.=

λk
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φk t( ) 1

λk
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k φk t( ),
φk t( ) λk
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qk l, t( ) δk t( )qk l,
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qk k, t( ) 1 δ+ k t( ) qk k,
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δk t( )
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λk
P t( )
------------- .=

qk l,
P t( )
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P t( ) λk
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Lattice Implementation
We describe in this section the use of a lattice to
implement our model. The lattice has a multi-
dimensional structure because it combines the evo-
lution of interest rates and inter-rating spreads for
different rating classes. At the same time, the
rating-transition process is superimposed on this
lattice. This superimposition is straightforward
because we have assumed that the rating-transition
process is independent of the diffusion processes.

First, we will look only at the multidimen-
sional structure for the interest rate and the spread
processes. We assume, as before, three possible
rating classes: investment grade (denoted I), spec-
ulative or junk grade (denoted J), and the default
state (denoted D). Therefore, K = 2 and we have two
inter-rating spread processes, sI and sJ. Together
with the interest rate process, we thus obtain a
triple-binomial structure with eight branches ema-
nating from each node of the lattice. This part of the
lattice looks similar to the lattice in Das and
Sundaram. Specifically, once the risk-neutral drifts,
α(•), β(•), have been computed at any t, the possible
values of the forward rates and forward spreads
one period ahead are readily obtained by using
Equations 1 and 4. At each state, the current rating
class is also known. Thus, if we are given the for-
ward and spread curves, F(τ) = [f(τ,•)], SI(τ) =
[sI(τ,•], and SJ(τ) = [sJ(τ,•)] at any τ, and because we
know one-period default probability λ(τ) to be the
default probability in one period for the current
rating class, we can compute recovery rate φ(τ) as
described in the previous section. 

So far, at each node on the lattice, we have
information related to all three risks involved in the
valuation of risky debt (interest rates, default prob-
abilities, and recovery rates). To obtain the possible
one-period-ahead values of risky debt, we need to
superimpose the rating-transition process on the
lattice as follows: From each of the eight nodes of
the triple-binomial spread lattice, three rating tran-
sitions emanate. Thus, if the current rating class at
the source node is k, three transitions, k → I, k → J,
and k → D, are possible and they have probabilities
qk,I, qk,J, and qk,D, respectively. From each of the 16
nondefault states so obtained (note that the default
state D is an absorbing state), another triple-
binomial lattice superimposed on a rating-
transition matrix evolves.

Thus, each node carries the information set (F,
SI, SJ, λk, φk), where k is the current rating. As in Das
and Sundaram, each node also carries the state
price of the node and cumulative default probabil-
ity up to that node. Thus, we have all the informa-
tion necessary to price a wide range of standard
credit instruments and derivatives. 

Figure 1 illustrates the rating-migration pro-
cess superimposed on the triple-binomial lattice at
one of the nodes. The up and down states for the
interest rate process, Fu and Fd, correspond to,
respectively, X0 = +1 and X0 = –1, with similar
notation also used for SI and SJ. The left part of the
branching shows the eight notes that emanate from
a starting rating class k, depending on the realiza-
tions of the binomial variates, X0, X1, X2. The right
part of the branching shows for the up-down-down

Figure 1. Information Generated at Each Node in the Combination Lattice

Note: The probabilities quuu, . . ., qddd for the lattice are given by Equation 20; the probabilities for the
rating transitions, qk,I, qk,J, and qk,D, are given by the rating-transition matrix at the corresponding node.
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node the rating transitions to the three possible
states I, J, and D. 

For simplicity, we assume in the calibration
that σ(t,T), ηI(t,T), and ηJ(t,T) depend only on T.9

Also, as assumed throughout the text, the correla-
tions between X0, X1, and X2 and rating-transition
matrix D are assumed constant. For the numerical
example, we consider the calibration exercise for a
tree of three periods with the following parameter
specifications:
• X1 and X2 are assumed to be perfectly corre-

lated (ρ3 = 1). 
• The correlations between X0 and X1 and

between X0 and X2 are assumed to be identical,
ρ1 = ρ2 = 0.25. 

• The time-step in the tree is h = 0.5 (half a year). 
• The initial values for the forward risk-free rate

and inter-rating spreads and the volatility
terms of the forward risk-free rate and inter-
rating spread processes are as described in
Table 1. 

• The rating-transition process under the risk-
neutral measure is 

In this parameter specification, the tree for the
evolution of the risk-free forward rate and the inter-
rating forward spreads is shown in Figure 2. Note
that, unlike Figure 1, the rating transitions are not
shown as superimposed in this tree, even though
the probabilities of these transitions are required
for accurate no-arbitrage calibration of the risk-
neutral drifts (Proposition 2). In addition, the num-
ber of branches has been reduced because the two
inter-rating spread processes are assumed to be
perfectly correlated. Thus, at the first period, four
nodes are possible—uu, ud, du, and dd—with
probabilities 1/4(1 + ρ), 1/4(1 – ρ), 1/4(1 – ρ), and
1/4(1 + ρ)—that is, respectively, 0.3125, 0.1875,
0.1875, and 0.3125. From each of these nodes,
another four nodes emanate. 

At each node in the tree at time ih (the initial
node being i = 0), the three columns indicate,
respectively, the forward risk-free rate, the forward
inter-rating spread between the risk-free and

investment-grade ratings, and the forward inter-
rating spread between the investment-grade and
speculative-grade ratings for maturities (i + 1)h, . . .,
T = 1.5 years. With these forward rates and using
Equations 6a and 6b, we can readily construct the
tree for zero-coupon bond prices for a risk-free
bond, an investment-grade bond, and a
speculative-grade bond. This tree is shown in Fig-
ure 3. The zero-coupon bond prices constitute the
fundamental prices from which other instruments
can be priced. 

We next illustrate our framework by pricing a
credit-related instrument. 

Example: Credit-Sensitive Note
We use as our example a credit-sensitive note
whose valuation requires modeling both default
risk and rating migrations. Other instruments can
be priced analogously.

The credit-sensitive note (CSN) is a corporate
coupon bond whose coupon is linked to the rating
of the corporation. For example, in June 1989,
Enron Corporation issued $100 million in noncall-
able 9.5 percent credit-sensitive notes to mature on
June 15, 2001. The coupon on these notes was linked
to Enron's credit rating as measured by either Stan-
dard & Poor's or Moody's. (At the time of issuance,
its outstanding senior debt had ratings of BBB–
from Standard & Poor's and Baa3 from Moody's).
The coupon on the notes was structured in such a
way that if Enron's credit rating changed, the cou-
pon rate would change also. Specifically, the cou-
pon rate was set to drop incrementally for
improvements in Enron's ratings and to climb
steeply if the rating deteriorated. The exact sched-
ule is in Table 2.10 

We assume that the coupon amount on a cou-
pon payment date is linked to the corporate rating
prevailing at the previous coupon payment date. In
our model of three rating classes, the CSN has a
coupon of cI for investment-grade rating and cJ for
speculative-grade rating. Such a note cannot be
priced using a pure spread-based model of credit
or a pure intensity-based model of credit. The
model described in this paper, however, lends itself
appropriately to the valuation of such a CSN.  

D
0.70 0.20 0.10
0.10 0.75 0.15

0 0 1 
 
 
 
 

.=

Table 1. Initial Values

i f(t,t+ih) sI(t,t+ih) sJ(t,t+ih) σ(t,t+ih) ηI(t,t+ih) ηJ(t,t+ih)

1 0.06 0.02 0.04 0.010  0.005 0.005

2 0.07 0.02 0.04 0.011  0.006 0.006

3 0.08 0.03 0.05 0.012  0.006 0.007
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Figure 2. Example Tree for Forward Risk-Free Rate and Inter-Rating Spreads
t = 0 t = 0.5 t = 1.5

uu  0.092017  0.039013  0.056522

uu  0.075504  0.023003  0.043004 ud  0.092017  0.027013  0.050522

 0.086013  0.033007  0.053515 du  0.080017  0.039013  0.056522

dd  0.080017  0.027013  0.050522

uu  0.092017  0.033013  0.049522

ud  0.075504  0.017002  0.037004 ud  0.092017  0.021013  0.043522

F SI SJ  0.086013  0.027007  0.046515 du  0.080017  0.033013  0.049522

 0.06  0.02  0.04 dd  0.080017  0.021013  0.043522

 0.07  0.02  0.04

 0.08  0.03  0.05

uu  0.080017  0.039013  0.056522

du  0.064504  0.023002  0.043004 ud  0.080017  0.027013  0.050522

 0.074013  0.033007  0.053515 du  0.068017  0.039013  0.056522

dd  0.068017  0.027013  0.050522

uu  0.080017  0.033013  0.049522

dd  0.064504  0.017002  0.037004 ud  0.080017  0.021013  0.043522

 0.074013  0.027007  0.046515 du  0.068017  0.033013  0.049522

dd  0.068017  0.021013  0.043522

Notes: The three columns at each time point indicate, respectively, the forward risk-free rate, the forward inter-rating spread between
the risk-free and investment-grade ratings, and the forward inter-rating spread between the investment-grade and speculative-grade
ratings for maturities (i + 1)h, . . ., T = 1.5 years. The results in Proposition 1 and Proposition 2 were used to calibrate the risk-neutral drifts.

Figure 3. Example Tree for Risk-Free, Investment-Grade, and Speculative-Grade Zero-Coupon Bond 
Prices

t = 0 t = 0.5 t = 1.5

uu 0.955034 0.936585 0.910487

uu 0.962952 0.951940 0.931690 ud 0.955034 0.942221 0.918718

0.922416 0.896943 0.854684 du 0.960781 0.942221 0.915966

dd 0.960781 0.947892 0.924247

uu 0.955034 0.939399 0.916424

ud 0.962952 0.954800 0.937297 ud 0.955034 0.945052 0.924709

P ΠI ΠJ 0.922416 0.902341 0.865435 du 0.960781 0.945052 0.921939

0.970446 0.960789 0.941765 dd 0.960781 0.950740 0.930274

0.937067 0.918512 0.882497

0.900325 0.869358 0.818731

uu 0.960781 0.942221 0.915966

du 0.968263 0.957190 0.936829 ud 0.960781 0.947892 0.924247

0.933085 0.907317 0.864570 du 0.966563 0.947892 0.921478

dd 0.966563 0.953596 0.929809

uu 0.960781 0.945052 0.921939

dd 0.968263 0.960066 0.942466 ud 0.960781 0.950740 0.930274

0.933085 0.912778 0.875445 du 0.966563 0.950740 0.927487

dd 0.966563 0.956461 0.935873

Note: The underlying forward rate tree is as in Figure 2. The three columns at each time point represent, respectively, prices for a risk-
free bond, for an investment-grade bond, and for a speculative-grade bond.
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The lattice is straightforward. At each node of
the lattice, the current rating class is available in the
information set at the node. This information deter-
mines the coupon payment scheduled for the next
coupon payment date. The “upgrading” and
“downgrading” along the lattice produce the
resetting of the coupon during the life of the sched-
ule as established in the rating schedule. Thus,
discounting the cash flows in default and nonde-
fault states and moving backward along the tree
yields the appropriate price of the CSN.

To be more precise, by using the recursive
implementation discussed in “Recursive Represen-
tation of Risky-Bond Prices,” we find the price of
the credit-sensitive note, CSNk(t, T), by solving

(25)

Note that Πk(t, t+h) is already available from
the zero-coupon bond price tree, ck represents the
coupon for the next period, which is “set” today on
the basis of current rating k, and the second term
inside {•} in Equation 25 represents the value of the
credit-sensitive note at the nodes tomorrow after
possible rating migrations (See Note 9). 

As an illustration, we consider a variant of the
Enron CSN that has 1.5 years to maturity (a three-
period note with h = 0.5 year). The coupons for
different ratings are cI = 0.04675 and cJ = 0.06375,
which correspond to semi-annual coupons of 9.35
percent and 12.75 percent, respectively. Using the
recursive scheme described previously (or simply
reducing the scheme to a backward induction pro-
cedure), we find that the CSN can be priced off the
zero-coupon bond price tree. The tree for CSN
prices is described in Figure 4. At each node, the
two columns represent the CSN price for, left to
right, investment-grade and speculative-grade rat-
ings. For example, at t = 0, the CSN price is 0.994146
if the underlying credit has an investment-grade
rating, but the price falls to 0.984822 if the underly-
ing credit rating has slipped to speculative. 

At t = 1.0 year, the price of the CSN is easy to
determine because its coupon payment is “set” for
maturity at T = 1.5 years. The price is thus simply
equal to

(1.0 + ck)Πk(t, t+h),

where k is the current rating of the underlying
credit. 

Consider now the state of the world uu at
t = 0.5 year when the underlying credit has a spec-
ulative-grade rating. Its price can be computed by
using Equation 25 to be

To show how the credit sensitivity of the cou-
pon payment plays a role in the pricing of the CSN,
Figure 5 shows the tree for prices for a credit-
insensitive note (CIN) that has a fixed coupon of
0.04675 irrespective of the rating of the underlying
credit. The price of this note at t = 0 with invest-
ment-grade rating is 0.985483, whereas that of the
otherwise identical CSN is 0.994146. The difference
in value comes from two sources: (1) At all nodes
at t = 0.5 year, if the rating “falls” to speculative
grade, the CSN experiences an upward jump in
coupon payment from 0.04675 to 0.06375. (2) At all
nodes at t = 0.5 year, even if the rating “stays” as
investment grade, the price of the CSN will be
higher because of the increase in future coupon
payments whenever a downgrade occurs. These
effects can be observed by comparing the t = 0.5
year prices down the trees in Figure 4 and Figure 5. 

Instruments other than credit-sensitive notes
that have embedded optionality tied to the credit
quality of the underlying security can be priced
analogously in a relatively simple manner by using
our approach.

Concluding Comments
We developed a model for the pricing of credit
derivatives by using observable data. The model is
arbitrage free, accommodates path dependence,
allows for all rating classes in one consistent lattice

Table 2. Schedule of Coupon Changes
Moody’s Rating S&P Rating Coupon Rate

Aaa AAA 9.20%

Aa1 to Aa3 AA+ to AA– 9.30

A1 to A3 A+ to A– 9.40

Baa1 to Baa3 BBB+ to BBB– 9.50

Ba1 BB+ 12.00

Ba2 BB 12.50

Ba3 BB– 13.00

B1 or lower B+ or lower 14.00

CSNk t T,( ) Πk t t h+,( )=

× ck
qk j, t( )

1 λk t( )–
---------------------Et CSNj t h T,+( )[ ]

j =1

K

∑+
 
 
 

.

CSN
J

t =0.5 T =1.5,( ) 0.93169=

×

0.06375 0.10
0.85
----------

0.3125( ) 0.980370( )
+ 0.1875( ) 0.986270( )
+ 0.1875( ) 0.986270( )
+ 0.3125( ) 0.992206( )

+

+ 0.70
0.85
----------

0.3125( ) 0.968530( )
+ 0.1875( ) 0.977286( )
+ 0.1875( ) 0.974359( )
+ 0.3125( ) 0.983168( ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.969719.=
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framework, and can handle a range of securities
that have a credit-related component. Although the
model is rich and flexible enough to price any

credit-related instrument, it is particularly appro-
priate for pricing credit-sensitive notes that have
payments linked to rating transitions.

Figure 4. Tree for Credit-Sensitive Note’s Prices
t = 0 t = 0.5 t = 1.5

uu 0.980370  0.968530

uu  0.981175  0.969719 ud 0.986270 0.977286

du 0.986270 0.974359

dd 0.992206 0.983168

uu 0.983316  0.974846

ud  0.987674  0.981145 ud  0.989234 0.983659

CSNI CSNJ du 0.989234 0.980713

 0.994146 0.984822 dd 0.995187 0.989579

uu  0.986270  0.974359

du  0.992254  0.980576 ud 0.992206 0.983168

du 0.992206 0.980223

dd 0.998177 0.989084

uu  0.989234  0.980713

dd  0.998828  0.992132 ud 0.995187 0.989579

du 0.995187 0.986615

dd 1.001176 0.995534

Note: The two columns at each time point represent, respectively, the CSN price for investment-grade and speculative-grade ratings.

Figure 5. Tree for Credit-Insensitive Note’s Prices
t = 0 t = 0.5 t = 1.5

uu 0.980370 0.953052

uu 0.977876 0.941060 ud 0.986270 0.961668

du 0.986270 0.958787

dd 0.992206 0.967455

uu 0.983316 0.959267

ud 0.984343 0.952229 ud 0.989234 0.967939

CINI CINJ du 0.989234 0.965040

0.985483 0.960433 dd 0.995187 0.973764

uu 0.986270 0.958787

du 0.988917 0.951681 ud 0.992206 0.967455

du 0.992206 0.964557

dd 0.998177 0.973278

uu 0.989234 0.965040

dd 0.995459 0.962978 ud 0.995187 0.973764

du 0.995187 0.970848

dd 1.001176 0.979625

Note: The two columns at each time point represent, respectively, the price for investment-grade and speculative-grade ratings.
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Appendix A. Proofs

Proof of Proposition 1.  Let Z(t,T) denote the price of the default-free bond discounted using B(t):

(A1)

Because Z is a martingale under Q for any t < T, we must have Z(t,T) = Et[Z(t+h,T)] or, equivalently,

(A2)

Now, 

(A3)

With the use of Equation 6a and some algebra, we find the first term in Equation A3 to be

(A4)

The second term in Equation A3, B(t)/B(t+h), is evidently simply exp[–f(t,t)h]. Combining these terms, we
obtain

(A5)

With Equation A5 used in Equation A2, the martingale condition becomes

(A6)

After a substitution for [f(t+h,ih) – f(t, ih)] from Equation 1, Equation A6 is the same as 

(A7)

Because α(t,•) is known at t, it may be pulled out of the expectation. The result, after some rearranging, is
the promised recursive expression relating risk-neutral drift α to volatility σ at each t:

(A8)

Proof of Proposition 2.  Pick any t < T and suppose that the time-t rating class of the bond is k. Consider
a one-period investment in this bond at t. Then, at time t+h, there is a set of possible values Πj(t+h,T), ∀j = 1,
. . ., K+1 because the bond may remain in its time-t rating class k or move to any other rating class j. Thus, 

(A9)

The expectation in the right-hand side of Equation A9 is over the state space (X0, X). Note that λk(t)≡qk,K+1(t)
and the sum inside the expectation is over all possible rating classes at t+h, conditional on no default at t+h.

If the bond has defaulted in the period (t,t+h], a cash flow occurs at t+h because of the recovery upon
default. By the RMV (recovery of market value) assumption given in Equation 9, the expected cash flow is
φk(t) [Π(t+h,T)]. Because the probability of default by t+h, given that the rating class at time t is k, is λk(t),
the undiscounted expected value of the bond is

, ∀k, 

which is the same as

Z t T,( ) P t T,( )
B t( )
------------------ .=

E t Z t h T,+( )
Z t T,( )

---------------------------- 1.=

Z t h T,+( )
Z t T,( )

---------------------------- P t h T,+( )
P t T,( )

--------------------------- 
  B t( )

B t h+( )
-------------------- 

  .=

P t h T,+( )
P t T,( )

--------------------------- exp f t h ih,+( ) f t ih,( )–[ ]h
i = t h⁄( ) +1

T h⁄( ) –1

∑
 
 
 

– f t t,( )h+
 
 
 

.=

Z t h T,+( )
Z t T,( )

---------------------------- exp f t h ih,+( ) f t ih,( )–[ ]h
i = t h⁄( ) +1

T h⁄( ) –1

∑–
 
 
 

.=

E t exp f t h ih,+( ) f t ih,( )–[ ]h
i = t h⁄( ) +1

T h⁄( ) –1

∑–
 
 
 

 
 
 

1.=

E t exp α t ih,( )h2 σ t ih,( )X0h3 2⁄
+[ ]

i = t h⁄ +1

T h⁄ –1

∑–
 
 
 

 
 
 

1.=

α t ih,( )
i = t h⁄( ) +1

T h⁄( ) –1

∑ 1

h2
-----

 
 
 

ln E t exp σ t ih,( )X0h3 2⁄

i = t h⁄( ) +1

T h⁄( ) –1

∑–
 
 
 

 
 
 

.=

Ek
t Π t h T,+( ) No default[ ] E t qk j, t( )

1 λk t( )–
---------------------Πj t h T,+( )

j =1

K

∑ .=

Ek
t

1 λk t( )–[ ]Ek
t Π t h T,+( ) No default[ ] λk t( )φk t( )Ek

t Π t h T,+( ) No default[ ]+



Rising Conservatism

May/June 2002 13

, ∀k.

By definition of Q, when discounted at the short rate, r(t), this expected cash flow must equal Πk(t,T), so 

 ∀k. (A10)

Now, using Equations 10 and 6b and the definitional relationship s(t,t) = ϕ(t,t) – f(t,t), we get

(A11)

and

(A12)

Using Equations A11 and A12, we get the implicit equation for the drift term, β(t,T):

(A13)

Now, writing ϕj(t+h, ih) – ϕk(t, ih) as ϕj(t+h, ih) – ϕj(t, ih) + ϕj(t, ih) – ϕk(t, ih) and using Equations 1, 3, and 4,
we can rewrite Equation A13 as

(A14)

Using the notation  and assuming independence of the rating-transition process
from the diffusion processes (X0, X), we get ∀t, ∀k at each state, a system of K linear equations in K unknowns
(xj, j = 1, . . ., K):

(A15)

where

(A16)

(A17)

and

(A18)
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Notes
1. Reduced-form models are so called to contrast them to

“structural models,” which build on the work of Merton
(1974). Structural models start with a model of the firm-
value process and value risky debt by either endogenizing
default as a failure of the equityholders to meet the liabili-
ties of the firm or assuming that default is triggered by firm
value falling below a threshold barrier.

2. The relationship between the Duffie–Singleton approach
and the Das–Sundaram approach is, in a sense, analogous
to that between factor models of the term structure (e.g.,
Vasicek 1977) and the Heath–Jarrow–Morton (1990)
approach. In particular, implementation of a factor model
requires assumptions about the model's risk premium or,
equivalently, about drifts in the risk-neutral world. In con-
trast, the Heath–Jarrow–Morton model takes the current
term structure of the riskless rates and its volatilities as the
sole inputs and describes an arbitrage-free evolution of the
term structure from this information alone.

3. Other reduced-form models are presented in Duffee (1999),
Duffie and Huang (1996), Duffie, Schroder, and Skiadas
(1996), Jarrow and Turnbull (1995), and Ramaswamy and
Sundaresan (1986).

4. A model that is very close in spirit to ours in continuous
time was developed by Bielecki and Rutkowski. This
model, also based on HJM, uses information about credit
spreads together with information about transition proba-
bilities and recovery rates to develop a conditionally Mark-
ovian model of credit risk. Bielecki and Rutkowski modeled
the evolution of spreads of each rating class directly, how-
ever, not via inter-rating spreads as we do.

5. Specifically, we assume that Q is an equivalent martingale
measure with respect to the money market account B(t)
defined in Equation 13. See Harrison and Kreps (1979) or
Harrison and Pliska (1980) for the role of equivalent mar-
tingale measures in securities modeling.

6. The linear equations are solved by using standard algo-
rithms, such as Gauss–Seidel (see Press, Teukofsky, Vetter-
ling, and Flannery 1992).

7. Where w.p. = with probability.
8. For some numerical estimates of the correlation coefficient

between corporate spreads and interest rates in general, see
Das and Sundaram or Das and Tufano.

9. The code for calibrating the tree is available at http://
www.stern.nyu.edu/~rsundara/publns.htm in the paper
“Arbitrage-Free Pricing of Credit Derivatives with Ratings
Transitions.” This computer implementation uses a recur-
sive scheme that is convenient and seamlessly processes the
forward induction and backward recursion needed to com-
pute more complicated derivative securities.

10. Another, more recent, example of a CSN is an issue by
Olivetti, which announced on June 7, 2000, that it planned
to link the coupon on €18 billion ($17 billion) of bonds sold
by itself and its Tecnost SpA unit to the bonds' credit rating.
Investors are to be paid more if the rating worsens and paid
less if the grade recovers. As stated by Olivetti Chief Finan-
cial Officer Luciano La Noce, “The coupon adjustment will
be applicable to all of the outstanding issues. Going for-
ward, we think having these sort of volatility protection
measures associated with our bonds should result in a
lower capital cost” (Bloomberg Equity News, June 16, 2000). 
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