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Dynamic Systemic Risk: 
Networks in Data Science
Sanjiv R. Das, Seoyoung Kim, and Daniel N. Ostrov

Systemic risk arises from the conf lu-
ence of two effects. First, individual 
financial institutions (FIs) experience 
increases in the likelihood of default. 

Second, these degradations in credit quality 
are transmitted through the connectedness of 
these institutions. The framework in this article 
explicitly models the contributions of both of 
these drivers of systemic risk. By embedding 
these constructs in a data science model drawn 
from the field of social networks, we are able 
to construct a novel measure of systemic risk.

The Dodd–Frank Act (2010) defined a 
systemically important FI (SIFI) as any FI that is 
(1) large, (2) complex, (3) connected to other 
FIs, and (4) critical, in that it provides hard-
to-substitute services to the f inancial sys-
tem.1  The Act did not recommend a systemic 
risk-scoring approach. This article provides 
objective models to determine SIFIs and to 
calculate a composite systemic risk score.

The Merton (1974) model provides an 
elegant way to use option pricing theory 
to determine the credit quality of a single 
firm (i.e., its term structure of credit spreads 
and the term structure of the probability 
of default [PD] for different horizons). We 
demonstrate how the model may be extended 
to a network of connected FIs, including a 
metric for the systemic risk of these firms that 

1 See also the literature analysis of Silva, Kimura, 
and Sobreiro (2017) for a conceptual overview and 
definition of systemic financial risk.

evolves over time. Therefore, this article pro-
vides an example of the power of combining 
mathematical finance with network science.

Our systemic risk measure has two pri-
mary attributes: (1) aggregation—that is, our 
metric combines risk across all firms and all 
connections between firms in the system to 
produce a summary systemic risk number 
that may be measured and tracked over time; 
and (2) attribution—how systemic risk can 
be mathematically analyzed to measure the 
sources that contribute to overall system risk. 
The primary way we want to understand 
attribution is through an institution risk mea-
sure, which determines the risk contributions 
from each firm so that the extent to which 
a single firm contributes to systemic risk at 
any point in time is quantifiable. A secondary 
way to look at attribution is to compute a con-
nectedness risk measure, which determines the 
risk contributions from each pairwise link 
between two firms at any point in time.

CONTRAST WITH EXTANT 
APPROACHES

Current approaches to measuring sys-
temic risk include the systemic expected 
shortfall (SES) measure of Acharya et al. 
(2017)2;  the conditional value at risk (CoVaR) 

2 See the extensive research in this class of 
models at Rob Engle’s V-Lab at NYU: https://vlab 
.stern.nyu.edu/.
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measure of Adrian and Brunnermeier (2016); the 
construction of FI networks using bivariate Granger 
causality regressions from Billio et al. (2012) (and a more 
general framework from Merton et al. 2013); the dis-
tressed insurance premium measure of Huang, Zhou, 
and Zhu (2012) and Black et al. (2016); the absorp-
tion ratio of Kritzman et al. (2011); the system value at 
risk of Bluhm and Krahnen (2014); the credit default 
swap (CDS)-based metric of interconnectedness used 
by Abbass et al. (2016); and the calculation of capital 
charges required to insure against unexpected losses as 
from Avramidis and Pasiouras (2015).

These approaches predominantly employ the 
correlation matrix of equity returns to develop their 
measures. A recent comprehensive article by Giglio, 
Kelly, and Pruitt (2016) examines 19 systemic risk met-
rics for the US economy and finds that these measures 
collectively are predictive of heightened left-tail eco-
nomic outcomes. Furthermore, a dimension reduction 
approach creates a composite systemic risk measure that 
performs well in forecasts. Unlike the measure in this 
article, these 19 metrics do not exploit network analysis. 
All measures cited are mostly return based, and these 
have been criticized by Löff ler and Rapauch (2018) as 
being subject to gaming in that a bank may cause the 
systemic risk measure to rise, while, at the same time, 
having its own contribution fall. These spillover issues 
do not appear to be a problem in this article.

In contrast, Burdick et al. (2011) used semistruc-
tured archival data from the Securities and Exchange 
Commission and Federal Deposit Insurance Corpora-
tion to construct a co-lending network and then used 
network analysis to determine which banks pose the 
greatest risk to the system. Finally, Das (2016) combined 
credit and network information to construct aggregate 
systemic risk metrics that are decomposable and may be 
measured over time. The unifying theme across these 
models is to offer static snapshots of the network of FIs 
at various points in time. This article is a stochastic 
dynamic extension of the Das (2016) model.

STOCHASTIC DYNAMICS 
IN A NETWORK MODEL

We extend these static network models by including 
stochastic dynamics for the assets of the financial firms 
in the model. This is where the Merton (1974) model 
becomes useful. We give this model the moniker Merton 

on a network. This model uses geometric Brownian 
motion as the stochastic process for each FI’s underlying 
assets. That is, for the n FIs in the system, we have

	 , 1, 2, ,da a dt v a dB i ni i i i i i= µ + = … 	 (1)

	 , 1, 2, , ; 1, 2, ,da da dt i n j ni j ij= ρ = … = … 	 (2)

Here mi is the ith FI’s expected growth rate, and vi 
is its volatility (both annualized). The asset movement 
of FIs i and j are correlated through the coefficient rij.

Assuming that the ith FI has a face value of debt 
Di with maturity T, Merton’s model established that the 
FI’s equity, Ei, is a call option on the assets:
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Because ai and vi are not directly observable in the 
market, but Ei and si are, the pair of Equations 3 and 6 
may be solved simultaneously to determine the values of 
ai and vi for each i at any time, t. These values, as we will 
see later, allow us to obtain the one-year probability of 
default (PD) for each financial firm, denoted li, at any 
given point in time.3

Our measure for systemic risk captures the size and 
PD of all FIs (from the Merton model) and combines 
this with a network of FI connectedness to construct 

3 In implementing our model as Merton on a network, our 
approach is distinct from those that infer risk-neutral PDs from CDS 
spreads on the referenced banks (e.g., as by Huang, Zhou, and Zhu 
2012). We are also afforded greater f lexibility in inferring what the 
PDs may be under varying market conditions.
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one composite system-wide value. We exploit the 
stochastic structure of the asset movements of all FIs via 
Equations 1 and 2 to create a variety of constructions 
of the connectedness (network) matrix. Because the 
underlying assets are stochastic and correlated, so is the 
network; as a consequence, the systemic risk score is 
dynamic. In sum, we have a systemic risk measure that 
captures, over time, the size, risk, and connectedness of 
firms in the financial system.

The contagion literature has attempted to capture 
stochastic systemic risk by other means. Simulation of 
contagion networks is one approach; see Espinosa-Vega 
and Sole (2010), Upper (2011), and Hüser (2015). Bivalent 
networks of banks and assets have been simulated on data 
from Venezuela in another approach by Levy-Carciente 
et al. (2015). In our complementary approach, network 
and firm risk are endogenously generated through the 
underlying Merton (1974) model, which also offers a 
direct empirical implementation. To illustrate, we will 
later provide an example using a 20-year data sample 
from large, publicly traded FIs.

PRACTICAL VALUE OF THE MODEL

The models developed here have many features 
of interest to risk managers and regulators. First, each 
model produces a single number for the systemic risk 
in the economy. Second, the risk contribution of each 
institution in the system enables a risk ranking of these 
institutions. This ranking and the measures that deter-
mine them can help determine whether an institution is 
systemically important, the extent of additional super-
vision the institution should require, and how much 
the capital charge should be for the risks the institution 
poses to the system. Third, the risk contribution of each 
pairwise connection between two FIs can be measured. 
This allows regulators to determine which relationships 
between FIs are of greatest concern to the overall health 
of the system. Fourth, the models display several useful 
mathematical properties that we develop to indicate a 
good measure of systemic risk, as discussed in the next 
section. Fifth, the model’s rich comparative statics may 
be used to examine various policy prescriptions for miti-
gating systemic risk.

In the next section, we introduce our general 
framework for systemic risk and the institution risk mea-
sure. This section also introduces four desirable prop-
erties for a systemic risk model. The following section 

introduces three models within the general framework 
that have similar structures. We discuss the institution 
risk measure for the three models and then show that 
each model possesses all four desirable properties. In the 
next section, we introduce our fourth model, which 
takes a different, although intuitive, structure from the 
first three models. Here we discuss both the institution 
risk measure and the connectedness risk measure for the 
model, although in this case we show that the model 
possesses only three of the four desirable properties. The 
data section provides a discussion of the data, spanning 
two decades (from 1995 to 2015), to which we apply our 
four models. The empirical section describes applica-
tions of our four models and demonstrates the general 
consistency of their results. We close with a concluding 
discussion and extensions.

A GENERAL FRAMEWORK  
FOR SYSTEMIC RISK

Dependence

For our general framework, the systemic risk, S, 
for a system of n FIs depends on the following three sets 
of variables:

1.	 l, an n-vector whose components, li, represent the 
annual probability that the ith FI will default.

2.	a, an n-vector whose components, ai, represent the 
market value of assets in the ith FI.

3.	 Σ, an n × n matrix whose components, Σij, repre-
sent the financial connection from the ith FI to the 
jth FI. Depending on the model for these connec-
tions, Σ may or may not be symmetric.

In other words, our systemic risk measures take the 
following functional form

	 S ( , , )λλ ΣΣ= f a 	 (7)

where a specific systemic risk model corresponds to a 
specific function f and specific definition for the con-
nection matrix Σ.

Our approach complements the ideas laid out by 
De Nicolo, Favara, and Ratnovski (2012), who offered 
a class of externalities that lead to systemic risk. First, 
externalities from strategic complementarities are 
captured through asset (a) correlations in our model. 
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Second, externalities related to fire sales are embedded 
in the default probabilities (l). Third, externalities from 
interconnectedness are captured through network struc-
tures (Σ) in the model. These features connect the finan-
cial sector to systemic risk and the macroeconomy.

THE INSTITUTION RISK MEASURE, 
CONNECTEDNESS, AND THE 
CONNECTEDNESS RISK MEASURE

It is important that the impact of each institution 
on the overall systemic risk, S, can be measured. For 
example, consider the case in which S is homogeneous 
in its default risks, l, which means, for any scalar α > 0,

	 ( , , ) ( , , )a aλλ λλα Σ = α Σf f 	 (8)

In this case one way to measure the impact of each 
institution on S is to decompose S into the sum of n 
components by differentiating Equation 8 with respect 
to a, yielding the result of Euler’s theorem
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This result clearly suggests using each component, 
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λ , of the sum to define the corresponding institu-

tion risk measure of institution i.
Systemic risk is also impacted by the connected-

ness of the institutions via pairwise links between the 
institutions. These links may be directed or undirected, 
depending on the model. One way to measure the con-
nection from institution i to institution j is to use Σij. In 
this case, if Σ is symmetric, it corresponds to undirected 
links; otherwise, there is at least one Σij ≠ Σji, which 
corresponds to a directed link. Graphically, these links 
can be shown for a directed or undirected network by 
using a binary network adjacency matrix B whose com-
ponents, Bij, are derived from Σij by selecting a threshold 
value K and then defining Bij = 1 if Σij > K and i ≠ j; 
otherwise, Bij = 0. Links are then shown in an edge graph 
only when Bij = 1, noting that the threshold value K can 
be altered as desired.

The strength of the connections described in the 
last paragraph do not necessarily correspond to measure-
ments of the risk that the connection from institution i 
to institution j poses to the overall systemic risk. In the 
cases in which it does, we can refer to the strength of the 

connection as the connectedness risk measure from institu-
tion i to institution j. Connectedness risk measures are 
important to regulators who wish to determine which 
relationships between institutions are of primary con-
cern to the overall health of the system.

FOUR FINANCIAL PROPERTIES

Ideally, from a practical viewpoint, the definition 
of Σ and the definition of the function f that defines 
systemic risk, S, conforms to the following four finan-
cial properties:

•	 Property 1: All other things being equal, S 
should be minimized by dividing risk equally 
among the n FIs and maximized by putting 
all the risk into one institution. That is, the 
more the risk is spread out, the lower S should be. 
The definition of risk will depend on the model. 
This is a standard property emanating from diver-
sification but is also applicable in the case of con-
tagion. If all risk is concentrated in one entity, 
then contagion is instantaneous; therefore, if risk 
is spread out, a useful property is that the systemic 
score should be correspondingly lower.

•	 Property 2: S should increase as the FIs become 
more entwined. That is, if any of the off-diagonal 
elements of Σ increase, then S should increase. The 
more connected the institutions are, the greater the 
likelihood of contagion and systemic risk.

•	 Property 3: If all the assets, ai, are multiplied 
by a common factor, α > 0, they should have 
no effect on S. If a country’s FIs’ assets all grow 
or all shrink in the same way, it should not affect 
the systemic risk of the country’s financial system. 
That is, we want f(l, αa, Σ) = f(l, a, Σ). This 
property is useful because it enables comparison 
of systemic risk scores across countries, and even 
for the same country, across time.

•	 Property 4: Substanceless partitioning of a bank 
into two banks has no effect on S. If institution 
i’s assets are artificially divided into two institutions 
of size γai and (1 − γ)ai for some γ ∈ [0, 1], where both 
of these new institutions are completely connected to 
each other and both have the same connections with 
the other banks that the original institution did, then 
this division is without substantive meaning, so it 
should not affect the value of S. Splitting a large bank 
into two fully connected components with the same 
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connections as before should not change S because 
such a split is mere window dressing. To bring down 
the value of S by breaking up a bank, the metric 
states that it is important to either disconnect the two 
components or reduce the connectivity for each one. 
In fact, the metric S enables a regulator to assess the 
effect of different kinds of bank splits on reducing 
systemic risk.

SYSTEMIC RISK NETWORK MODELS THAT 
ARE HOMOGENOUS IN DEFAULT RISKS

We first examine three models that are homogenous 
in default risks, each using different empirical approaches 
and notions of risk. All three of these models satisfy all 
four of the financial properties listed earlier. The proof 
that they are satisfied is contained in the Appendix.

Models C, D, and G

We define Σ = M, an n × n matrix where Mij ∈ [0, 1]  
for all i and j and Mii = 1 for all i. We consider three 
examples of M matrices with this property:

1.	Model C, a correlation-based model. In this 

case, 
1

2
( 1)Mij ij= ρ + , where rij is the correlation 

between the daily asset returns of institutions i 
and j. Here, M defines an undirected network for 
connectedness.

2.	Model D, a conditional default model. In this case, 
Mij is the annual conditional probability that insti-
tution j defaults if institution i fails. In this case, 
M defines a directed network. We note that even 
though the model is composed of default probabili-
ties, we are using the Merton model only to define 
connectedness over the long term and thereafter 
assume this is independent of day-to-day changes 
in default risk.

3.	Model G, a Granger causality model. This model 
is based on the methodology in Billio et al. (2012). 
For each pair of FIs (i, j), a pair of lagged value 
regressions of daily asset returns, r, is run to deter-
mine whether i Granger causes j and whether j 
Granger causes i.

	 ( ) ( 1) ( 1)1 2 3r t r t r ti i j iε= δ + δ ⋅ − + δ ⋅ − +
	

	 ( ) ( 1) ( 1)4 5 6r t r t r tj j i jε= δ + δ ⋅ − + δ ⋅ − +

		  The connectedness matrix is defined as follows:  
Mij = 1 − p(δ6) and Mji = 1 − p(δ3), where p(x) is the 
p-value for the hypothesis that the coefficient x = δ6 
or δ3 is equal to zero in the regressions. When i = j, we 
set Mii = 1. In this case, M defines a directed network.

Next, define c to be the n-vector whose compo-
nents, ci, represent institution i’s credit risk. Specifically, 
we define

	 c a = λ 	

where ° represents the Hadamard (or Schur) product, 
meaning that we have element-wise multiplication: ci = aili.

4 
With these definitions of M and c, we can define 

the systemic risk, S, by

	
c Mc

1 a

T

TS = 	 (10)

where 1 is an n-vector of ones, and the superscript 
T denotes the transpose of the vector. Note that the 
numerator is the weighted norm of the vector c, and the 
denominator 1 a 1 aT

i
n

i= ∑ =  represents the total assets in 
the n FIs. Also note that M is unitless in models C, D, 
and G; therefore, because of the presence of assets, both 
the numerator and denominator in Equation 10 have 
monetary units that cancel each other, so S is a unitless 
measure of systemic risk.

The Institution Risk Measure  
and Connectedness

Our model is homogeneous in l, so, from 
Equation 9, we have that
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where, from differentiating our system risk definition in 
Equation 10, we obtain the n-dimensional vector
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4 We note that this definition of credit risk is qualitatively 
similar in nature to replacing a with the quantity of debt. That is, 
FIs tend to uniformly maximize along the imposed capital adequacy 
ratio, which results in the low cross-sectional variation in leverage 
across the institutions in question. Exhibit 1 presents various examples 
of the range in leverage across institutions at different points in time.
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This decomposition of S gives the risk measure of each 
institution. The off-diagonal elements of M give the 
connectedness, although this notion of connectedness 
is not a connectedness risk measure.

A SYSTEMIC RISK NETWORK MODEL THAT 
IS NOT HOMOGENOUS IN DEFAULT RISKS

The network model in this section corresponds 
to a different f inancial view of constituting risk. As 
explained in the Appendix, this section’s model satisfies 
our first three financial properties, but not the fourth.

Model R (Internal Risk Plus 
External Risks Model)

For this model we define Σ = M, where Mij is the 
annual probability that FIs i and j both default. Next, 
we consider the following view of defining the risk to 
the system from institution i: Institution i has internal 
risk, which measures the chance that it will collapse 
and via the impact of that collapse, hurts the system 
directly; and it has external risk, the chance that its 
collapse will cause other FIs to collapse, hurting the 
system further. The internal risk for FI i is def ined 
simply as the credit risk, ci = liai, that we had previously. 
Note that we can also write this as ci = Miiai because, 
by definition, Mii = li. The external risk from FI i to 
FI j is defined as the probability that FI i will default 
multiplied by the probability that FI j will default given 
that FI i defaults multiplied by the assets in FI j. Because 
this is equal to the probability that both FI i and FI j 
default multiplied by the assets in FI j, we can write 
this as Mijaj.

We thus can define ri, which is the internal risk 
from FI i plus the sum of the external risks from FI i to 
each of the other FIs, by

	
1

M ai
j

n

ij j∑ρ =
=

	 (12)

Defining r to be the n-vector with components ri, we 
can define the systemic risk to be

	 S
1 a

ρρ ρρ
=

T

T 	 (13)

Note again that S is unitless, as was the case in the 
previous section when we defined S in Equation 10 for 
models C, D, and G.

The Institution Risk Measure and  
the Connectedness Risk Measure

These measures are straightforward. Institution i’s 
risk measure in this case is the value of ri defined earlier. 
Note here that 1i

n
i SΣ ρ ≠= , unlike the case in which S is 

homogeneous in l, for which this equality holds because 
of Equation 9. This model, unlike the three models from 
the previous section, has a connectedness risk measure 
from bank i to bank j, which is the external risk, Mijaj.

DATA SOURCES AND DESCRIPTION  
OF VARIABLES

All four models are easy to implement using publicly 
available data. We describe our data sources and present 
key summary statistics. The data used are extensive and 
publicly available. Hence, the approach is amenable to 
many data science methods applied to big data.

Sources

Our sample period spans January 1992 to 
December 2015 and consists of publicly traded FIs under 
major Standard Industrial Classif ication (SIC) groups 
60 (depository institutions), 61 (nondepository credit 
institutions), and 62 (security and commodity brokers, 
dealers, exchanges, and services). 5 We obtain daily stock 
returns, stock prices, and shares outstanding for each of 
these firms, as well as the daily market returns, from 
the Center for Research in Securities Prices. We obtain 
applicable Treasury rates (i.e., the constant-maturity 
rates) on a monthly basis from the Federal Reserve 
Bank reports, and we obtain quarterly balance-sheet 
and income-statement data from Compustat. Our final 
sample consists of a panel dataset of 2,066,868 firm-
days for 1,171 distinct FIs, from which we select the 20 
largest institutions by total assets at various points across 
time. Working with more institutions does not pose 
computational difficulty; we choose only 20 institutions 

5 For a detailed breakdown of the SIC division structure, see 
https://www.osha.gov/pls/imis/sic_manual.html.
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for clarity. The top 20 institutions consistently represent 
over 70% of the total worth of the assets in the 1,171 FIs.

Key Definitions and Data-Generating 
Computations

We solve for the ith FI’s market value of assets, 
ai(t), and the annualized volatility of asset returns, vi(t) 
on day t, based on the Merton (1974) model for calcu-
lating equity value and equity return volatility. Recall 
Equations 3 and 6. Given market capitalization, Ei(t); 
annualized equity return volatility,6  si(t); total face value 
of debt, Di(t); and the annualized risk-free rate of return, 7 
rf(t), we can use a simultaneous nonlinear equation root 
finder to simultaneously solve Equations 3 and 6 and 
determine the values of ai(t) and vi(t) for any i and t. 8

Once we have our panel of daily asset values, ai(t), 
and volatilities, vi(t), we can calculate the daily asset 
returns, ri(t). The daily asset returns allow us to run the 
Granger regressions that determine Mij in model G and 
to determine rij, the correlation of the daily asset returns 
of institutions i and j, which defines Mij in model C. 
Furthermore, the daily asset returns allow us to compute 
asset betas, bi(t), which we do on a daily, rolling basis, 
based on a three-year (i.e., 750-day) lookback period 
for ri(t). Using this information, we can then calcu-
late expected asset returns, mi(t), using the capital asset 
pricing model as follows

	 ( ) ( ) ( ( ) ( )) ( )t t t r t r ti i MKT f fµ = β ⋅ µ − + 	 (14)

where mMKT(t) represents the annualized expected return 
on the market portfolio on day t. For the illustrative 
purposes of this article, we simply set mMKT(t) equal to a 
constant value of 10%.

The expected asset returns are used to determine 
li(t), the annualized PD, which is the probability that 
the market value of the FI’s assets, ai, governed by the 
geometric Brownian motion in Equation 1, will become 
smaller than the FI’s current debt, Di, in a year. That is

	 ( ) ˆ
2,t di i( )λ = Φ − 	 (15)

6 We calculate equity-return volatility based on a 130-day 

(i.e., six-month) lookback period, which we then multiply by 252 .
7 We use the three-month constant maturity T-bill rate.
8 We use the multiroot function for finding roots, which is 

included in R’s rootSolve package.

where F(⋅) is the cumulative standard normal distribution 
function,
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and T = 1 year. Note that ˆ
2,d i  has the same definition as 

d2,i in Equation 5, but with rf(t) in that equation replaced 
by mi(t). That is, ˆ2,d i corresponds to d2,i in the physical, 
instead of the risk-neutral, measure.

To determine the joint probability that both FIs 
i and j will default, which is the Mij for model R, we 
have that

( ˆ , ˆ , )2 2, 2,M d dij i j ij= Φ − − ρ

where T = 1 year and F2(⋅, ⋅, ⋅) is the bivariate cumula-
tive standard normal distribution function defined by
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where x is a column vector with entries x1 and x2, and 
S is a 2 × 2 matrix with ones on the diagonal and r 
in the two off-diagonal entries.9 Finally, to determine 
the conditional default probability Mij for model D, we 
simply divide the Mij for model R by li.

Exhibit 1 shows the evolution of these basic sum-
mary statistics over time. We note as a reality check 
for our calculations that the total book value of assets 
tracks our calculated implied market value of assets in 
each exhibit. For instance, as of the end of June 1995, 
we see that our 20 FIs held an average of approximately 
$120.1 billion in total assets, which grows considerably 
to $354.3 billion by the end of June 2000 and then 
grows further to $1,313 billion by the end of June 2007. 
However, as a result of the financial crisis of 2008, this 
average is only moderately greater, at $1,546 billion, 
by the end of June 2015. The average leverage stays 
approximately constant at 0.9407, 0.9475, and 0.9521 in 
June of 1995, 2000, and 2007, respectively. Some dele-
veraging to an average ratio of 0.9265 happens by the 
end of June 2015. The dominance of the 20 largest FIs 
over the field of all FIs f luctuates over the years, from 

9 We use the pmvnorm function, which is included in R’s 
mvtnorm package, to calculate Φ2(⋅ , ⋅ , ⋅).
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77.34% of all FIs’ total assets in June 1995, to 73.83% in 
June 2000, and then to 77.51% in June 2007. Interest-
ingly, even with global concern over FIs deemed too big 
to fail during the financial crisis of 2008, this number 
only dips slightly to 76.83% by June 2015.

Summary Statistics

We present basic summary statistics for the 20 
largest FIs at various points in time. These summary 
statistics, given in Exhibit 1, consist of

1.	Book value of assets, the total book value of each of 
the 20 FI’s assets (in millions of dollars).

2.	Leverage, the total face value of debt scaled by the 
total book value of the assets.

3.	Market capitalization, E, the total market value of 
equity (in millions), calculated as the price per 
share times the number of shares outstanding.

4.	Equity volatility, s, the equity-return volatility based 
on a 130-day (i.e., six-month) lookback period.

E x h i b i t  1
20 Largest FIs at Various Times

Note: All dollar amounts are all in millions.

σ

σ

σ

σ



The Journal of Financial Data Science      149Winter 2019

5.	Implied market value of assets, a, the implied market 
value of assets (in millions) based on the Black–
Scholes formula for options valuation.

6.	Implied volatility of assets, ν, the implied assets’ return 
volatility based on the Black–Scholes formula for 
options valuation.

7.	 The total book value of the assets held by the 20 
largest FIs as a percentage of the total book value 
of the assets held by all FIs.

EMPIRICAL ILLUSTRATIONS

We test our network risk framework on the financial 
data mined in the previous section. Recall that we have 
four models for systemic risk (models C, D, G, and R)  
within our overall framework. We compare these models 
in this section.

We determine systemic risk under each of our 
four models every six months (at the end of June and 
December) between 1995 and 2015. At each of these 
six-month intervals, we extract and analyze data for the 
top 20 FIs by total book value of assets, which, as we 
have noted, consistently accounts for approximately 75% 
of the aggregate assets of the more than 1,000 FIs we had 
available. For each of the four models, we plot the value 
of systemic risk over time, with each time series normal-
ized to be in the range [0, 1], in Exhibit 2. First, this plot 
confirms that systemic risk spiked in the financial crisis 
of 2008. We also see smaller conf lagrations of systemic 
risk in 2000 and 2011. Second, we see that all the models 
generate time series that track each other closely, with 
pairwise correlations ranging from 90%–97% (with a 
mean of 95%). Therefore, even though the four models 
are derived in uniquely different ways, time variation 
in the systemic risk score in these models is very much 
the same, implying that our systemic risk framework is 
robust to model choice.

It is also useful to look at the institution risk 
measure to see which FIs contributed the most to sys-
temic risk. This is shown in Exhibit 3 using model G 
in 2007 and 2014. We can see that in 2007 mortgage-
related FIs such as RBS Holdings (discontinued ticker 
ABNYY), Banco Santander (SAN), Federal Home 
Loan Mortgage Corp (FMCC), Fannie Mae (FNMA), 
Mitsubishi Trust (MTU), and Lehman Brothers 
(LEHMQ) were the top systemically risky f irms. In 
2014, the top systemic risk contributors were Mizuho 
Financial Group (ticker MFG), Lloyds Banking Group 

(LYG), Royal Bank of Scotland (RBS), Mitsubishi 
Trust (MTU), Sumitomo Mitsui Financial Group 
(SMFG), and Barclays (BCS). From both plots, we 
see that risk contributions are concentrated in a few 
banks. Furthermore, mortgage-related f irms were 
more systemically risky in 2007, whereas in 2014, the 
traditional large banks were salient contributors of 
systemic risk.

We checked that the institution risk measure 
rankings are similar across the four models. The top 
few names remain very much the same, irrespective of 
which model is used. In particular, the top five systemi-
cally risky FIs are the same in all four models, although 
not in the same order. These are Royal Bank of Scot-
land (RBS), Lloyds (LYG), Mizuho (MFG), Mitsubishi 
(MTU), and Sumitomo Mitsui (SMFG). Thus, there 
are two UK banks and three Japanese banks. Post-crisis 
measures in the United States may have reduced these 
banks’ systemic risk levels.

Exhibit 4 extends this consistency check by 
displaying the union of the four models’ top f ive risky 
institutions in each six-month interval. We note that 
in each interval there are between 5 and 13 FIs, where 
5, of course, represents complete agreement among the 
four models and 20, of course, is the maximum pos-
sible number of FIs in the union. The average number 
of FIs is 6.45, showing considerable consistency among 
the four models in determining the top risky FIs.

We see Lehman Brothers (LEHMQ) appear con-
sistently as a top systemically risky institution up until 
its demise in 2008. Around the time of the f inancial 
crisis in 2008, we also see Fannie Mae (FNMA) and 
the Federal Mortgage Credit Corporation (FMCC) 
show up as key contributors to systemic risk. Inter-
estingly, though, these institutions were beginning 
to appear in the top risky list in 2003, suggesting 
that our methodology may have been able to pro-
vide an early warning about these mortgage-related 
institutions and their role in the systemic risk of the 
f inancial system.

In the latter time periods from our sample, we see 
Lloyds (LYG), Royal Bank of Scotland (RBS), Bank 
of America (BAC), and Deutsche Bank (DB) appear 
consistently, ref lecting the fact that these institutions 
have been troubled in the last few years. Other large 
US banks that appear regularly, as is to be expected, 
are Citigroup (C), J.P. Morgan ( JPM), and Morgan 
Stanley (MS). Many Japanese banks also appear, such 
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as Mitsubishi (MTU), Mizuho (MFG), and Sumitomo 
Mitsui (SMFG).

We can also investigate the links between institu-
tions that contribute the most to systemic risk in each 
six-month interval. Exhibit 5 illustrates this for model R. 
We see the same SIFIs that show up in Exhibit 4, but in 
this graphic, we show links (pairs of FIs) rather than indi-
vidual FIs. As expected, up to the crisis we see Lehman 
(LEHMQ) appear on a regular basis, both as affecting 

other FIs and being affected by others. Santander (SAN) 
appears on both sides of links throughout the sample. 
Morgan Stanley (MS) seems to be at the receiving end 
of most links in which it appears. In the latter third of 
the sample, Mitsubishi (MTU) and Mizuho (MFG), both 
Japanese banks, demonstrate mutual systemic spillover 
risk to each other. They are also connected to another 
Japanese FI, Sumitomo Mitsui (SMFG). These examples 
illustrate that, in addition to designating individual SIFIs, 

E x h i b i t  2
Systemic Risk over Time (1995–2015)

Notes: The plot shows systemic risk computed from data for the top 20 FIs (by assets). All four models, C (dashed line), D (dotted line), G (dotted dashed 
line), and R (solid line), are represented. The average correlation between all four models’ time series is 95%.
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our model may also be used to designate systemically 
risky relationships.

We may wish to explore how sensitive the systemic 
risk measure is both, to changes in the financial strength 
of the FIs and to changes in the strength of the con-
nections between the FIs. Specifically, we explore the 
changes in our systemic risk measures when we impose 
a blanket-wide increase in all the PD values (i.e., all 
PDs, li) and when we impose a blanket-wide decrease 
or increase in all the pairwise correlations (i.e., all the 
rij, subject, of course, to remaining within the interval 
[−1,1]). In Exhibit 6, we demonstrate the effect of these 
changes at two snapshots in time: December 29, 2000 
and December 31, 2007. We see from the exhibit that 
reasonable changes in either the PD values or in the 

correlation values affect the systemic risk score, mir-
roring the importance of considering the strength of 
both the individual FIs and the interconnections between 
the FIs in calculating systemic risk.

Finally, we consider the def iciency of return-
based models highlighted by Löff ler and Rapauch 
(2018). They showed that many of these popular models 
permitted banks to take on more risk, thereby raising 
overall systemic risk but at the same time reducing their 
own risk contribution relative to others, sometimes to 
the extent that their systemic risk contribution would 
even decline. We examine whether our model suffers 
from such a deficiency by increasing an FI’s PD by 1% 
while holding all the other FIs’ PD values frozen and 
then calculating how much the FI’s institution risk 

E x h i b i t  3
Institution Risk Measures

Notes: We display the institution risk measure using model G. This decomposes the systemic risk by institution. The upper plot is for December 2007, and 
the lower is for December 2014.
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E x h i b i t  4
Top SIFIs

Notes: The graphic shows the FIs that contribute the most to systemic risk every half year in the sample across all four models. Each row displays the union 
of each of the four models’ top five FIs that contribute the most risk. If the FIs are the same across all models, we will see exactly five FIs listed in a row; if 
not, then a few more will appear. One can see high agreement across models because the average number of firms in the rows is only 6.45.
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E x h i b i t  5
Top Risky Links

Notes: The graphic shows the five links with the highest connectedness risk measure in each six-month interval according to model R. The links are listed in 
the form i:j for a directed link from institution i to institution j.
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measure changes compared to each of the other FIs. 
Exhibit 7 shows this effect for the top 20 FIs in 2007 
and for the top 20 FIs in 2014. At both times, for 
each of the 20 FIs, we see from the exhibit that the 
FI’s own institution risk measure increases more than 
that of the other FIs, because, for each row, the values 
on the diagonal are higher than the other values. A 
closer analysis of the data used to create the exhibit 
shows that the other FIs’ institution risk measure actu-
ally decreases generally, and the highest increase in the 
data is only about half of the increase of the FI whose 
PD is increased. This indicates that our metric is not 
susceptible to gaming by any one bank.

CONCLUDING COMMENTS

Using data science and modeling tools from the 
social networks arena, we capture the systemic risk of 
a f inancial system in a Merton-on-a-network model 
that includes three important determining elements: (1) 
connectedness (via banking networks), (2) joint default 
risk (from an extension of the Merton 1974 model), and 
(3) size (i.e., the market value of a bank’s assets, also 
implied from the Merton model). We define and analyze 
four important properties of our systemic risk measure 

and develop four different models that generally have 
these properties.

Empirical examination demonstrates that sys-
temic risk, as well as the risk assigned to individual 
banks within the system, are similar across these four 
models, suggesting that the framework is robust to 
implementation design, in contrast to conf licting find-
ings about other systemic risk measures, as shown by 
Benoit et al. (2013). 10  The metric also does not appear 
to suffer from the def iciency noted by Löff ler and  
Rapauch (2018).

The current model supports many theoretical 
and empirical extensions. For example, whereas the 
model setting is that of the f inancial system, we may 
embed this model within a broader general equilib-
rium model of the entire economy, either by adding 
other sectors or by making the f inancial system 
variables functions of the broader macroeconomy. 

10 This article found systemic risk results to vary markedly 
across the four models they surveyed, namely marginal expected 
shortfall and SES, both from Acharya et al. (2017); the systemic 
risk measure from Acharya, Engle, and Richardson (2012) and 
Brownlees and Engle (2012); and the ΔCoVaR from Adrian and 
Brunnermeier (2016).

E x h i b i t  6
Percentage Changes in Systemic Risk Measures

Notes: This exhibit demonstrates how the systemic risk score changes with changes in the PD or changes in the strength of the network structure.
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E x h i b i t  7
Spillover Risk–Change in Institutional Risk Measures

Notes: We see how much a single bank’s increase in its PD affects its institution risk measure (i.e., its contribution to systemic risk) in comparison to that of 
the other banks. The left panel is for 2007 and the right for 2014. This experimental analysis was done for the case of model G. The largest numbers are 
on the diagonal, indicating that an increase to a bank’s own PD increases its institution risk measure more than it increases any of the other 19 banks’ insti-
tution risk measures. The diagonal values are higher than the off-diagonal values, which are mostly indistinguishable from zero. Also note that the difference 
in increases are more marked for 2007 before the crisis than they were for 2014.

Furthermore, we are able to extract the time series 
for systemic risk, which may be related to macroeco-
nomic variables and events. Our framework supports 
objective real-time measurement of systemic risk, 
identif ication of SIFIs, and identif ication of systemi-
cally important connections between FIs so that the 
system may be analyzed, monitored, and controlled 
by regulators. The article demonstrates the eff icacy 
of open big data in conjunction with data science 
techniques in risk management.

A p p e n d i x

PROOFS OF MODEL PROPERTIES

Financial Properties for the Homogenous 
Models C, D, and G

All four desired f inancial properties for S hold in 
models C, D, and G, as we next proceed to establish.

Property 1: All other things being equal, S is 
minimized by dividing the credit risk equally among 

the n FIs and is maximized by putting all the credit 
risk into one institution. To make all other things be 
equal, we set the total assets, 1 a1ai

n
i

TΣ == , constant; set the 
total credit risk, 1ci

n
i

TΣ == 1 c, equal to a constant, ctotal; and 
set Mij equal to the same number, m, if i ≠ j while, of course, 
keeping Mii = 1 for all i. For the singular case in which m = 1, 
all the institutions act like a single institution, and so it makes 
no difference to S how the credit risk is spread among the 
institutions. For the general case in which m < 1, from the 
definition of S in Equation 10, we see that maximizing or 
minimizing S now corresponds to maximizing or mini-
mizing c Mc 1

2
1c m c cT

i
n

i i
n

j i i j= Σ + Σ Σ= = ≠ , subject to the restric-
tion that 1c cT

i
n

i total= Σ ==1 c .
Because m < 1, it is clear that 1

2
1c m c ci

n
i i

n
j i i jΣ + Σ Σ ≤= = ≠  

( )1
2

1 1
2 2c c c c ci

n
i i

n
j i i j i

n
i totalΣ + Σ Σ = Σ == = ≠ = . However, if all the credit  

risk is put into one institution, we have 1
2

1
2c m c c ci

n
i i

n
j i i j totalΣ + Σ Σ == = ≠ , 

the highest possible value, and so S is maximized when all 
the credit risk is concentrated into one FI.

On the other hand, the Lagrange multiplier method 
tells us that we have minimized 1

2
1c m c ci

n
i i

n
j i i jΣ + Σ Σ= = ≠  subject 

to the restriction 1c ci
n

i totalΣ ==  when (denoting the Lagrange 
multiplier by l),
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−
. That is, when S is minimized, all ci have the same 

value. The second equation then tells us that each c
c
ni
total= ,  

and so we have that S is minimized by dividing the credit 
risk equally among the n institutions.

Property 2: S should increase as the institutions’ 
defaults become more connected. Consider the case in 
which a and c are both held constant so that S only depends 
on M, specifically through the expression

c Mc
1 1

c M cT

i

n

j

n

i ij j∑∑=
= =

in the numerator of our model’s definition of S. Clearly, 
the bigger the values of Mij, the larger S becomes. Because 
Mii must always equal 1, S is minimized when M = I, the 
identity matrix, and is maximized when the components 
of the M matrix are all ones. We note that when M = I

c Mc c1
2

2cT
i
n

i  = Σ == , the 2-norm of the vector c, whereas 

when M is all ones, = Σ ==  c Mc c1 1cT
i
n

i , the 1-norm of the 
vector c.

Property 3: If all the assets, ai, are multiplied 
by a common factor, α > 0, it should have no effect 
on S. In our model, if we replace each ai with αai, we then 

replace c McT  by α c McT  and replace 1Ta with α1Ta. 

Because the α then cancel in the expression for S from 
Equation 10, we have the desired property that systemic 
risk is unchanged.

Property 4: Substanceless partitioning of an 
institution into two institutions should have no effect 
on S. If institution i’s assets are artificially divided into two 
institutions of size γai and (1 − γ)ai for some γ ∈ [0, 1], where 
both of these new institutions are completely connected to 
each other and both have the same connections with the 
other banks that the original institution did, then this divi-
sion is without substantive meaning and should not affect the 
value of S. Without loss of generality, we can let the index 
of the divided institution i = n, so, in our model, the new 
(n + 1)-vector c is

c
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1

1
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where we note that M(n+1)n = Mn(n+1) = 1 to ref lect the fact that 
both of the new institutions are completely connected to each 
other. A quick computation shows that the new c McT  is 

equal to the old c McT , and because a1 + … + an = a1 + … + 
a(n−1) + γan + (1 − γ)an, we also have that the new 1Ta is equal 
to the old 1Ta. Therefore, the value of S in Equation 10 is 
unchanged, and our model has this desired property.

Financial Properties for the 
Nonhomogeneous Model R

Property 1: All other things being equal, S is 
minimized by dividing the risk equally among the n 
FIs and is maximized by putting all the risk into one 
institution. Paralleling our approach in the previous section, 
we hold the total assets, 1 a1ai

n
i

TΣ == , constant and hold the 
total risk, 1 1 ρρΣ ρ ==i

n
i

T , equal to a constant. If we replace c 
and M in the model from the previous section for S given 
in Equation 10 with r and the identity matrix I, we get our 
new model for S in Equation 13. Therefore, the proof of 
Property 1 from the previous section with m = 0 also estab-
lishes Property 1 for the model of S in Equation 13.

We note that if the numerator in the definition of S in 
Equation 13 were 1i

n
iΣ ρ= , the 1-norm of r, instead of ρρ ρρT ,  

the 2-norm of r, we would lose Property 1.
Property 2: S should increase as the institutions’ 

defaults become more connected. An increasing con-
nection means Mij is increasing, which, from Equation 12, 
means that ri increases. As any ri increases, we have from 
Equation 13 that S increases, assuming, as we also did in the 
previous section, that a is held constant.
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Property 3: If all the assets, ai, are multiplied by 
a common factor, α > 0, it should have no effect on 
S. In our model, if we replace each ai with αai, we replace 

ρρ ρρT  by α ρρ ρρT , and we replace 1Ta with α1Ta. Because the 
α then cancel in the expression for S given in Equation 13, 
we have the desired property that systemic risk is unchanged.

Property 4: Substanceless partitioning of an 
institution into two institutions should have no 
effect on S. This property does not hold. Let’s say we arti-
f icially divide institution n’s assets into two institutions, 
call them institution nnew and institution (n + 1)new, of 
size γan and (1 − γ)an. Because the division is artif icial, 

( 1) ( 1) ( 1)( 1)M M M Mn n n n n n n nnew new new new new new new new
= = =+ + + + , which al l  

equal Mnn, where n again represents the divided insti-
tution before it was divided, and, for any i < n, Mn inew

=   

( 1) ( 1)M M Mn i in i nnew new new
= =+ +  equals Mni = Min.

From Equation 12, we see that the ri are unchanged for 
i = 1, 2, ..., n. However, an extra (n + 1)th component now 
has been added to the vector r, where rn+1 = rn, which must 
increase the norm of r, which must increase the systemic 
risk S in Equation 13. Therefore, artificial division of a FI 
increases S instead of having no effect on it.
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