
JOIM
www.joim.com

JOURNAL OF INVESTMENT MANAGEMENT, Vol. 7, No. 2, (2009), pp. 73–85

© JOIM 2009

S U R V E Y S A N D C R O S S O V E R S

DEALING WITH DIMENSION: OPTION PRICING
ON FACTOR TREES

Sanjiv R. Das a,∗ and Brian Granger b

We present a scheme for pricing derivatives on M assets on K -factor recombining trees with N
periods. The computational complexity of these trees is O(N K +1), i.e. polynomial in N , making it
possible to price a wide range of derivatives without resorting to Monte Carlo simulation. Numerical
implementation examples are provided, along with a discussion of the issues that arise when these
models are implemented on multicore processors. A calibration example is provided that shows how
individual assets may be embedded on a multi-factor tree.

1 Introduction

The complexity of derivative securities has grown
immensely since the advent of the single stock
option pricing model of Black and Scholes (1973),
and the corresponding discrete-time tree model of
Cox et al. (1979). Derivatives are now being writ-
ten on multiple underlying securities, and even
when written on the same underlying, there may
be several stochastic processes driving the evolution
of the stochastic process of the security on which
the derivative is written.

∗Corresponding author. Leavey School of Business, Santa
Clara University, Santa Clara, CA 95053, USA.
aLeavey School of Business, Santa Clara University, Santa
Clara, CA 95053, USA. E-mail: srdas@scu.edu
bPhysics Department, California Polytechnic State Uni-
versity, San Luis Obispo, CA 93407, USA. E-mail:
bgranger@calpoly.edu

We present a methodology for pricing derivative
securities on high-dimensional lattices based on an
underlying factor structure. To fix ideas consider the
case of pricing an option on a single stock. There
are two approaches we might use. One, we directly
model the stock price on a binomial tree and price
options on it (a single factor approach, where the
stock is the factor itself). Two, we may represent
the movement of the stock as a function of a set
of underlying factors plus an idiosyncratic factor (a
multi-factor approach). The advantage of the latter
approach is that we may model many stocks using
the same lattice, whereas in the single factor model,
a separate tree would be required for each stock.
We would also then need to account for the corre-
lations between stocks (across trees) which would
make the model eventually more complicated than
the multi-factor approach. In our approach, correla-
tions among all the assets we may model on the tree
are parsimoniously generated from the correlations

SECOND QUARTER 2009 73

74 SANJIV R. DAS AND BRIAN GRANGER

of the smaller factor set. The multi-factor approach
also enables the pricing of options on portfolios.

In the ensuing exposition, we assume that the reader
is familiar with option pricing trees used widely
in the finance literature in papers by Cox et al.
(1979), Nelson and Ramaswamy (1990), amongst
others. The approach in this paper will result in a
representation of a K -factor model on a (K + 1)-
dimensional lattice over N time periods. We impose
two conditions on this lattice structure:

• The factors are orthogonal. This is achieved by
the appropriate modeling of the factors. The
numerical illustration in the paper will also make
this aspect of the model clear.

• Each single factor is representable by a recombin-
ing tree, such that the number of nodes after N
periods is linear in N . For example, in the case
of single binomial trees, after N periods, we will
have (N + 1) nodes.

The outcome of these conditions is that the K -
factor tree is formed as the product space of the
individual factor trees. Since each tree recombines,
the product space is also recombining. From a com-
putational standpoint, we get the following three
results.

(1) The computational effort for each single tree is
O(N 2).

(2) The complexity for the K -factor tree will be
O(N K +1), i.e. the computational effort is
polynomial in N . If the trees did not recom-
bine, then complexity would be O(2NK), i.e.
exponential in N × K .

(3) For K = 3 (and even K = 4), we are able
to compute a 50-step tree in a few seconds,
which is fast and covers most models, since even
interest rate models are at most projectable onto
a set of 3 to 4 factors.

We present an illustration of the implementation
of the model using data on IBM and projecting the

evolution of the stock onto a 3-factor tree. We show
that the model returns values exactly the same as in
the one-factor model and corresponds to Black–
Scholes.

Further, we also begin to explore the issues that
emerge when these K -factor tree algorithms are
implemented on recent multi-CPU and multi-core
hardware.

Finally, we present the algorithmic set up required
for pricing options on portfolios of many assets.
Next, we move on to elucidating the model notation
and representation.

2 Model features

2.1 Virtual multi-factor trees

We assume a set of securities Si , i = 1, . . . , M .
The factors are denoted Fj , j = 1, . . . , K , and the
times in the model are denoted t = 0, 1, . . . , N .
We create one recombining tree for each factor Fj ,
where we denote each node in the tree as Fj(t , s),
where t is the time and s is the index of the node
level at each time t . A two-period tree would appear
as shown in Figure 1. We may think of the factor

Figure 1 A tree for a single factor Fj . Nodes are denoted
with notation F (t , s), where t denotes time, and s
denotes the level at time t , with s = 0 the topmost
node, and s = t the lowest node.

JOURNAL OF INVESTMENT MANAGEMENT SECOND QUARTER 2009

DEALING WITH DIMENSION: OPTION PRICING ON FACTOR TREES 75

Figure 2 A tree for a single factor Fj , normalized.

tree in each factor as the cumulative normalized
factor deviations in the factor. This would result in
the factor starting at value Fj(0, 0) = 0 and then
moving up +1 or down −1 each period. Hence,
the normalized factor tree would be as portrayed in
Figure 2.

The K -factor tree is the joint product of several
trees. We never construct the joint tree in our pro-
gram code; indeed, all we need to do is to develop
the individual factor trees and then manage the joint
tree carefully by accessing each individual factor tree
as needed when running the option pricing algo-
rithm. We call this a virtual joint tree approach
and it will be elucidated later. Hence, substantial
memory is saved in the computer implementation
of the model. Since the memory required for each
tree is O(N), then the memory required across all
trees is also O(N). If the joint tree were actually
constructed for the underlying factors, then the
memory required would be O(N K). Thus, we pro-
ceed from memory usage of O(2NK) (in the case of
nonrecombining trees), to O(N K) (for recombin-
ing multi-factor trees), to O(N) for recombining
virtual multi-factor trees.

Keeping each tree separately is like having a virtual
product tree, but we do not need to use up valuable
memory resources in maintaining it. Conceptually
however, we have a tree of order N K . For example,

Figure 3 A typical node and branches on a tree for two
factors (K = 2). If extended one more period, the lattice
would have 9 nodes, i.e. (N + 1)K .

if K = 2, then every node on the tree would have
four branches, and would appear as in Figure 3.

Note however, that we do need to keep one tree of
O(N K) for the actual derivative security that we are
pricing, since that is derived from all the individual
underlying factor trees. But we only keep individual
trees for the factors, and no trees for the securities
that are functions of the factors, as we describe next.

2.2 Security trees

Given we have constructed a tree in K factors, we
then superimpose each security as a function of
these factors to develop security trees on top of the
factor tree. We assume that we have a function map-
ping the return ri on security Si to the movements
in the factors. That is,

ri = f (F1, F2, . . . , FK),

where the Fjs are the normalized factors. We posit
the following linear factor model for returns

ri = δi0 + δi1F1 + · · · + δiK FK + ei

= δi0 +
K∑

j=1

δijFj + ei ,

where each Fj is orthogonalized. The coefficients
δ1 · · · δK are the shock terms to be applied on
the lattice. These factor sensitivities may be deter-
mined by regression or other factor model technique

SECOND QUARTER 2009 JOURNAL OF INVESTMENT MANAGEMENT

76 SANJIV R. DAS AND BRIAN GRANGER

commonly used by portfolio managers. The δs allow
us to map the risk for each security i to the factors.
For instance, the variance of returns will be

Var(ri) ≡ σ2
i =

K∑
j=1

δ2
ijσ

2
j + σ2

ei
. (1)

The exact application procedure is best clarified
with an example.

Example: We present here a simplistic example using
data. The pricing example deals with valuing an
option on a single stock, and is deliberately simple so
as to illustrate the approach. Of course, options on
single stocks can be valued much faster by directly
modeling the stock tree than a factor tree. But we
note that once we understand how to embed a single
stock on a factor tree, embedding multiple stocks is
no different. Therefore, our example is with no loss
of generality.

We downloaded the daily returns on IBM (from
CRSP), and the Fama–French factors for 5 years,
from January 2001 to December 2005. The mean
daily return for the stock is 0.0173% and the stan-
dard deviation of returns is 1.852%. Hence, the
annualized standard deviation of returns assuming
252 trading days in the year is 29.4%.

We use the most widely specified common three
factors, excess market return (RMRF), small minus
big stocks (SMB), and high minus low book-to-
market (HML), respectively. In order to access the
benefits of the virtual factor tree, the factors must
be orthogonal. We orthogonalized the SMB factor
by regressing it on the RMRF factor, and adding the
residuals to the intercept of the regression. Likewise,
we orthogonalized the HML factor by regressing
it on RMRF and the orthogonalized SMB fac-
tor, and added the residuals to the intercept. We
then regressed IBM’s returns on these factors. The
resulting regression is

rIBM = 0.0412 + 1.1349RMRF − 0.1778SMB

− 0.6391HML. (2)

All coefficients are statistically significant, and the
R2 = 0.50. We also computed the annualized
standard deviations for the orthogonalized factors,
which happen to be σRMRF = 0.1774, σSMB =
0.0868, σSMB = 0.0747, and that of the resid-
uals is σi = 0.2083. These values are then used
to determine the cumulative return on IBM at any
node on the lattice using the normalized factor trees.
Suppose at node s at time t = 2, FRMRF = +2,
FSMB = 0, FHML = −2, and Fi = −2, then the
cumulative return from the initial node on the tree
to the current node will be

ri(t , s) =
K∑

j=1

(δijσij
√

h)Fj + σi
√

hFi

=
K∑

j=1

aijFj + ai0Fi , (3)

where we denote the idiosyncratic factor for the
stock as Fi , and the time normalized loadings are
denoted {ai1, . . . , aiK , ai0}. The time interval for
the tree in the model is denoted h (in years). Note
that we ignore the constant term δi0 as the model
will be risk-neutralized (discussed in the next sub-
section) to make the return of all assets risk free. For
the same reason, the intercept in the factor regres-
sion is not required. More explicitly, for example,
if h = 1/12, then based on Eq. (2), and the factor
volatilities stated below that equation,

ri = (1.1349 × 0.1774 × √
1/12) × (+2)

+ (−0.1778 × 0.0868 × √
1/12) × (0)

+ (−0.6391 × 0.0747 × √
1/12) × (−2)

+ (1 × 0.2083 × √
1/12) × (−2)

= − 0.0316.

Hence, the stock price of IBM on the lattice at this
node (after 2 months with an initial price of 90) will
be: S = S0eR = 90e−0.0316 = 87.20. In this way
we can populate the four-dimensional lattice (three
market factors and one idiosyncratic factor) for all

JOURNAL OF INVESTMENT MANAGEMENT SECOND QUARTER 2009

DEALING WITH DIMENSION: OPTION PRICING ON FACTOR TREES 77

levels of stock prices and time on the tree. Given
this, the run time of the algorithm on this virtual
stock tree will be O(N K +1).

2.3 Obtaining the risk-neutral stock tree

For a model with K factors, each of which is bino-
mial, and an additional idiosyncratic factor, every
node will branch to a set of 2K +1 nodes. Without
loss of generality, we will assume that the move-
ments up and down of all factors occur with equal
probability. If the current security price is S , then
any immediately ensuing node price will be of the
form (dropping the subscript i to keep the notation
simple):

S exp [±a1 ± a2 ± · · · ± aK ± a0],
where aj = δjσj

√
h, ∀j, and a0 = σi

√
h. The

notation above denotes that we are considering all
possible binary combinations up and down of the
factors. Each of the ensuing nodes occurs with equal
probability, that is 1/(2K +1). For example if K = 3
(as we have in our example), and if the values
of {F1, F2, F3, Fi} = {+1, +1, +1, −1}, then the
stock price on this branch will be Sea1+a2+a3−a0 with
probability 1/16. (As another example, Figure 4
shows the branching process for K = 2).

These dynamics capture the volatility of the process
on the tree but do not ensure that the discounted (at
risk free rate rf) security price is a martingale under
the assumed equiprobable probability measure. In
order to transform the process to be risk-neutral we
enhance the definition of the ensuing nodes with
a drift term d , i.e. S exp [±a1 ± a2 ± · · · ± aK ±
a0 + d]. In Figure 4, we present an explicit por-
trayal of nodes for a two-factor (K = 2) model.
Note that the additional return drift d is added to
all nodes irrespective of the other factors, hence it
results in a mean shift with no impact on the vari-
ance of returns. The martingale condition at a node
at time t requires that the (t+h)-forward price of the
stock be equal to its expected value over all the ensu-
ing nodes at the forward time (t +h). The following

Figure 4 A typical node and branches on a tree for two
factors (K = 2) plus an additional idiosyncratic factor
specific to the security. An additional drift term is added
to each node to ensure the process is risk-neutral. Each
branch is equiprobable.

condition needs to be satisfied to make sure that the
discounted security price is a martingale:

Serf h = 1

2K +1

∑
nodes

S exp [±a1 ± a2

± · · · ± aK ± a0 + d]
= S

2K +1
ed

∑
nodes

exp [±a1 ± a2

± · · · ± aK ± a0],
where the term [±a1 ± a2 ± · · · ± aK ± a0] stands
for combinations of {a1, . . . , a0} with positive and
negative signs. The notation

∑
nodes stands for a

summation over all ensuing branches from a given
node. Re-arranging the equation above, we get the
solution for the risk-neutral drift term d as follows:

d = ln

[
erf h 2K +1∑

nodes exp [±a1 ± a2 ± · · · ± aK ± a0]

]
.

(4)

SECOND QUARTER 2009 JOURNAL OF INVESTMENT MANAGEMENT

78 SANJIV R. DAS AND BRIAN GRANGER

In the Cox et al. (1979) approach, the tree is risk-
neutralized by adjusting the probabilities on the
up and down branches, rather than making a drift
adjustment to the process itself. In our case, we pre-
fer the drift adjustment, as it enables equiprobable
branches, and also provides an analytic form for the
drift which improves the speed of the model. Once
the drift d is obtained the evolution of the tree is as
depicted in Figure 4.

2.4 Pricing example

We continue with the example for IBM and price
calls and puts using the Fama–French factor lat-
tice and the estimated parameters from Subsection
2.2. The historical volatility of returns for IBM
(annualized) is computed to be 0.294. Table 1

Table 1 Option prices from the multi-factor model.

Factor j δj σj (annualized)

Factor loadings and volatilities
RMRF 1 1.1349 0.1774
SMB 2 −0.1778 0.0868
HML 3 −0.6391 0.0747
Idiosyncratic 0 1 0.2083

Run time Memory
N Call price Put price (seconds) (MB)

10 12.2036 8.6745 0 0.61
20 12.1893 8.6605 0 15.58
30 12.1834 8.6545 3 109.21
40 12.1805 8.6513 8 441.96
50 12.1787 8.6494 26 1316.17
BS 12.1710 8.6423 0 —

BS: Black–Scholes
The table contains the input values and call and put option prices as
N , the number of time steps is varied. The maturity of the options
is T = 1 year, and the risk-free rate is r = 0.04, dividends are
set to zero. The initial stock price is set to $90 and the strike is
at-the-money. The first panel in the table shows the factor loadings
of IBM’s return on the Fama–french factors, as well as the factor
volatilities. The model was run on a Mac with a 2 Ghz Intel Core
Duo processor and 1.5 GB 667 Mhz DDR2 SDRAM. Programs
are written in the C programming language.

presents the inputs to the problem as well as
the output values for varying time steps on the
lattice.

As a check, the value of the options was also com-
puted using Black–Scholes and a volatility equal
to the historical volatility of the stock. We also
note that the historical volatility of the stock may
be recovered from the factor loadings and volatil-
ities, using Eq. (1) and a simple check will show
that the variance is indeed equal to that directly
computed from the time series of stock returns.
The annual variance of the stock may be computed
from the factor variance Eq. (1) given previously as
follows:

σ2
i =

K∑
j=1

δ2
j σ

2
j + σ2

ei

= 1.13492(0.0315) + 0.17782(0.0075)

+ 0.63912(0.0056) + 0.0434

= 0.0864.

Taking the square-root we get the annualized volatil-
ity as 29.4%. Note that h = 1 in the example above.
Since the factors are orthogonal, there are no covari-
ance terms. The annualized volatility is exactly that
computed earlier in Section 2.2.

From Table 1, it is seen that as the number of
time steps N increases, the option prices converge
to the Black–Scholes value. In addition, the con-
vergence is monotone, which suggests that even
with a lower N , we may be able to extrapolate
the value of the option to that for much larger N
using any standard extrapolation scheme (such as
Richardson (1910)’s extrapolation for example; see
also Richardon (1927)). We also note the highly
efficient run times achieved despite the massive tree
sizes involved. For N periods and K factors, the
number of nodes is

∑N +1
i=1 iK . For N = 50, we

compute a total of 1,758,276 nodes in under half a
minute.

JOURNAL OF INVESTMENT MANAGEMENT SECOND QUARTER 2009

DEALING WITH DIMENSION: OPTION PRICING ON FACTOR TREES 79

3 Computer implementation of the factor
lattice model

On modern computer hardware, the one and two
factor tree models have very short runtimes. For
example, on a recent MacBook Pro with a 2.53 GHz
Intel Core 2 Duo processor, the single factor model
with N = 1000 runs in 3 milliseconds and the two
factor model with N = 1000 runs in 4.4 seconds.
However, because of the exponential scaling of the
algorithm with K , the runtimes increase dramati-
cally for models with 3 or more factors (K > 2). It
is thus desirable to explore the possibility of imple-
menting these models on parallel hardware such as
multicore processors, graphics processors (GPUs)
or clusters.

In this section we begin to explore the performance
characteristics of the one and two factor tree models
that are relevant in evaluating potential paralleliza-
tion strategies. For these explorations, we have
written a series of C programs that clarify the rel-
ative importance of floating point operations and
memory bandwidth in these algorithms. All of these
programs were run on an 2.53 GHz Intel Core 2
Duo processor with 6 MB of L2 cache.

Our experiments show that on current processors
both the one and two factor tree models are not
CPU bound, but rather, are memory bandwidth
limited. To show this we have run two versions of the
K = 1 and K = 2 models (see Appendix A). The
first version does the full recursion on the K dimen-
sional option tree. Because this version operates on
the full tree, there are many memory operations.
The second version does the same number of float-
ing point operations as the first version, but no
memory operations. If the algorithm were CPU
bound, the runtimes of these two versions would
be nearly identical. Instead, we find that the first
version takes about twice as long to run as the sec-
ond (see Appendix A). This shows that a significant
amount of time is spent with the CPU waiting for

the memory subsystem to provide the data needed
for subsequent floating point operations.

Another way of seeing that these algorithms are
memory bandwidth limited is to look at the num-
ber of floating point operations per memory access.
For the general K -factor model, each node requires
2K floating point operations (1 multiply and 2K −1
adds) and 2K (64 bit) memory accesses. Thus, there
is exactly 1 floating point operation performed per
memory access. This result is independent of the
number of factors K or periods N and again shows
that the bottleneck in these factor tree algorithms is
the memory bandwidth.

How is this relevant for efforts to parallelize these
algorithms using multicore processors? Because cur-
rent multicore processors share the overall memory
bandwidth, there will be little benefit to using
multithreading across processor cores for these algo-
rithms. However, this does suggest that it is worth
pursuing parallel versions of these models on hard-
ware that has higher total memory bandwidth, such
as GPUs and clusters.

4 Options on multiple assets

The concepts from the prior sections make it easy
to extend the model to pricing options on multiple
assets. We consider two cases here. One, is the pric-
ing of options on a portfolio. This may be used to
model options on an index, or to model credit port-
folios. These are essentially options on a weighted
sum of the assets. Two, we consider options
whose payoffs are a function of asset ratios or
products.

4.1 Options on portfolios

Given a portfolio comprising M � K assets, the
factor lattice makes it easy to value options on the
portfolio. Since each asset in the portfolio may be
embedded on the factor tree, each node on the
tree will have M assets implicitly, though imple-
mentation may create M virtual asset trees as seen

SECOND QUARTER 2009 JOURNAL OF INVESTMENT MANAGEMENT

80 SANJIV R. DAS AND BRIAN GRANGER

in the example earlier. Given portfolio weights
wi , i = 1, . . . , M in securities Si , the current value
of the portfolio at any node is simply

M∑
i=1

wiSi , where
M∑

i=1

wi = 1.

This approach will be especially useful for arbitrage
traders attempting to model S&P500 options using
the entire set of stocks (a bottom-up approach) ver-
sus modeling the stochastic process for the S&P500
index directly (a top-down approach). The chosen
factor structure may be either the Fama–French type
of model we have already examined, or developed
from a principal component decomposition of the
time series of returns. In the latter case, the com-
ponents are orthogonal by construction, and the
principal components analysis (PCA) delivers the
component time series and also the factor loadings.
This makes implementation direct and simple. The
value of an option on a portfolio depends not only
on the volatility of each asset in the portfolio, but
also on the correlations amongst them. Account-
ing for correlations would be difficult, but with the
multi-factor approach this is seamlessly embedded
into the method.

Being able to model options on portfolios is useful
because they are not analytically tractable. Options
on sums of lognormal variables pose problems as
the underlying is no longer lognormal and does not
fall into the standard Black–Scholes paradigm (see
Curran (1994) for one solution approach).

4.2 Options on the ratio of two assets

Options may also be written on payoffs where the
distinct returns of each asset are retained, not amal-
gamated into one common portfolio value as in the
previous subsection. We illustrate the handling of
these options by examining an option on the ratio
of two assets. These options are known as outper-
formance options, or options to exchange one asset

for another. The risk-neutral returns on two assets
may be written as

r1 =
K∑

j=1

δ1j + e1 + d1

r2 =
K∑

j=1

δ2j + e2 + d2,

where di , i = {1, 2} is the risk-neutral drift on the
two assets. In a single period of interval h the growth
in these assets will be

S1(h) = S1(0)er1h, S2(h) = S2(0)er2h.

Consider a call on the ratio of these two assets at
strike price X . The payoff function for this option
is max[0, S1/S2 − X]. We may write the ratio as

S1

S2
= exp

 K∑

j=1

(δ1j − δ2j)︸ ︷︷ ︸
δj

Fj + (e1 − e2)︸ ︷︷ ︸
e

+ (d1 − d2)︸ ︷︷ ︸
d

= exp

 K∑

j=1

δjFj + e + d

 .

We note that E (e) = 0 and E (e1e2) = 0. The
variance of e is σ2

e = σ2
1 + σ2

2 .

Therefore, the problem reduces to one where we
effectively have a single security with factor loadings
δj and idiosyncratic variance σ2

e . Implementation
follows as usual.

5 Summary

Pricing options on multiple assets requires the mod-
eling of multivariate stochastic processes. As the
number of assets grows, the modeling of option
pricing trees in the usual manner becomes com-
putationally infeasible. The standard solution has

JOURNAL OF INVESTMENT MANAGEMENT SECOND QUARTER 2009

DEALING WITH DIMENSION: OPTION PRICING ON FACTOR TREES 81

been to resort to Monte Carlo simulation. How-
ever, pricing American options via simulation poses
many tricky issues and has not been found to
be ideal in many situations. In this paper, we
present an approach where a medium-dimensional
factor tree may be used over any dimension in
assets to achieve parsimonious and computationally
efficient option pricing. We are able to com-
pute option prices on trees that have more than
1.7 million nodes in under a half minute. We
demonstrate how these tree models are calibrated,
and begin to explore the issues that arise when
the models are run on multi-core or multi-CPU
hardware.

To summarize, we consider any claim with value
C (S1, . . . , SM , t). We note that the same scheme
could be implemented by finite-differencing as well.
A lattice method can always be mapped into an
explicit finite-difference scheme on a log-spaced
grid. After constructing the PDE satisfied by the
claim, and rotating the co-ordinate system to get
rid of the cross-derivative term, we do a log change
of variables, discretize explicitly, then we have
an orthogonal, recombining tree. This requires
O(N K) storage, with N being the number of
nodes in each factor direction, and total work of
O(N K +1). We do not, of course, store all the
nodes in the conceptual tree, only at each time-
slice.

A deficiency of the approach as it currently stands
is that imposing orthogonality is a tough restriction
when correlations are state-dependent. Extending
these approaches using a multivariate GARCH
approach or using dyamic conditional correlations
(DCC) is an important extension.

What next? Trading options on portfolios of assets
has not become prevalent in practice for the lack
of pricing algorithms such as the one presented in
this paper. The arena in which the greatest promise
exists is the valuation of basket options in the credit

arena. Therefore extending these multi-factor tree
models to embedding default is the next research
step.

Acknowledgment

We are grateful for discussions of the model with
Terry Marsh and Paul Pfleiderer. Jacob Sisk pro-
vided several neat ideas on improving the efficiency
of the program code. Das also acknowledges the
support of the Dean Witter Foundation and fund-
ing from a Breetwor Fellowship.

Appendix A. Performance issues in one and
two factor models

In this Appendix, we present the C program code
that we have used to study the relative importance of
floating point operations and memory bandwidth
in the one and two factor models. When this code
was run on a 2.53 GHz Intel Core 2 Duo proces-
sor with 6 MB of L2 cache, we got the following
results:

n = 10000
1 factor, full calculation time in seconds = 0.344381
1 factor, CPU bound calculation time in seconds = 0.159952
Ratio (cpu/full) = 0.464462

n = 1000
2 factor, full calculation time in seconds = 4.396845
2 factor, CPU bound calculation time in seconds = 2.302681
Ratio (cpu/full) = 0.523712

Thus, in the 1 factor model with N = 10000 peri-
ods the full algorithm took 2.15 times as long as
the CPU bound version. Likewise, the 2 factor
model with N = 1000 took 1.91 times as long
as its CPU bound equivalent. We have repeated
these tests for different numbers of periods and
found similar numbers (the ratio is always approx-
imately 2). We thus conclude that these algorithms
are memory bandwidth limited for all K and all
N . This is consistent with our calculation of the
number of floating point operations per memory

SECOND QUARTER 2009 JOURNAL OF INVESTMENT MANAGEMENT

82 SANJIV R. DAS AND BRIAN GRANGER

A.1 C Program Code

// Das and Granger (2008)
// Explore the relative importance of floating point operations and
// memory bandwidth on 1 and 2 factor tree models. This code does the full
// recursion on the option tree, but with made up initial values on the
// leaves of the tree for simplicity.
//
// Compile with: gcc -o benchmark benchmark.c -lm
//
// Output on MacBook Pro (2.53 GHz Intel Core 2 Duo):
// n = 10000
// 1 factor, full calculation time in seconds = 3.443810e-01
// 1 factor, CPU bound calculation time in seconds = 1.599520e-01
// Ratio (cpu/full) = 0.464462
//
// n = 1000
// 2 factor, full calculation time in seconds = 4.396845e+00
// 2 factor, CPU bound calculation time in seconds = 2.302681e+00
// Ratio (cpu/full) = 0.523712
#include <stdio.h> #include <math.h> #include <stdlib.h> #include
<time.h>

// Recursion for 1 factor model
double ktree1full(double *opt, int n, double a) {

int i, j;
for (i=0;i<n;i++)

for (j=0;j<n-i;j++)
opt[j] = a*(opt[j] + opt[j+1]);

return opt[0];
}

// Fake, CPU bound recursion for 1 factor model
// Same # of operations as ktree1full, but no memory transfer
double ktree1cpu(int n, double a) {

int i, j;
double p, q, r;
p = 1.0; q = 2.0; // Arbitrary
for (i=0;i<n;i++)

for (j=0;j<n-i;j++)
r = a*(p + q); // Same ops, no memory transfer

return r;
}

JOURNAL OF INVESTMENT MANAGEMENT SECOND QUARTER 2009

DEALING WITH DIMENSION: OPTION PRICING ON FACTOR TREES 83

// Recursion for 2 factor model
double ktree2full(double *opt, int n, double a) {

int i, j, k;
int base, offset;
for (i=0;i<n;i++)

for (j=0;j<n-i;j++)
for (k=0;k<n-i;k++) {

base = j*(n+1)+k;
offset = (j+1)*(n+1)+k;
opt[base] = a*(opt[base]+opt[offset]+ \

opt[base+1]+opt[offset+1]);
}

return opt[0];
}

// Fake, CPU bound recursion for 2 factor model
// Same # of operations as ktree2full, no memory transfer
double ktree2cpu(int n, double a) {

int i, j, k;
int base, offset;
double p, q, r, s, t;
p = 1.0; q = 2.0; s = 3.0; t = 4.0; // Arbitrary
for (i=0;i<n;i++)

for (j=0;j<n-i;j++)
for (k=0;k<n-i;k++) {

base = j*(n+1)+k;
offset = (j+1)*(n+1)+k;
r = a*(p+q+s+t); // Same ops, no memory transfer

}
return r;

}

// Run benchmarks for 1 factor model (n periods)
void benchmark1(int n) {

clock_t start, end;
double deltat1, deltat2;
int i;
double *opt;

opt = (double *)malloc(sizeof(double)*(n+1));

SECOND QUARTER 2009 JOURNAL OF INVESTMENT MANAGEMENT

84 SANJIV R. DAS AND BRIAN GRANGER

// Fake terminal nodes of the option tree
for (i=0;i<n+1;i++) {

opt[i] = 1.0;
}

printf("\nn = %i\n", n);

start = clock();
ktree1full(opt, n, 0.5);
end = clock();
deltat1 = (double)(end-start)/CLOCKS_PER_SEC;
printf("1 factor, full calculation time in seconds = %e \n",

deltat1);

start = clock();
ktree1cpu(n, 0.5);
end = clock();
deltat2 = (double)(end-start)/CLOCKS_PER_SEC;
printf("1 factor, CPU bound calculation time in seconds = %e \n",

deltat2);
printf("Ratio (cpu/full) = %f\n", deltat2/deltat1);

free(opt);
}

// Run benchmarks for 2 factor model (n periods)
void benchmark2(int n) {

clock_t start, end;
double deltat1, deltat2;
int i;
double *opt;

opt = (double *)malloc(sizeof(double)*((n+1)*(n+1)));

// Fake terminal nodes of the option tree
for (i=0;i<(n+1)*(n+1)-1;i++) {

opt[i] = 1.0;
}
printf("\nn = %i\n", n);

start = clock();
ktree2full(opt, n, 0.5);
end = clock();

JOURNAL OF INVESTMENT MANAGEMENT SECOND QUARTER 2009

DEALING WITH DIMENSION: OPTION PRICING ON FACTOR TREES 85

deltat1 = (double)(end-start)/CLOCKS_PER_SEC;
printf("2 factor, full calculation time in seconds = %e \n",

deltat1);

start = clock();
ktree2cpu(n, 0.5);
end = clock();
deltat2 = (double)(end-start)/CLOCKS_PER_SEC;
printf("2 factor, CPU bound calculation time in seconds = %e \n",

deltat2);
printf("Ratio (cpu/full) = %f\n", deltat2/deltat1);

free(opt);
}

int main() {
benchmark1(1000);
benchmark2(1000);
return 0;

}

accesses, which is unity regardless of K and N (see
Section 3).

References

Black, F. and Scholes, M. (1973). “The Pricing of Options
and Corporate Liabilities.” Journal of Political Economy, 81,
637–654.

Cox, J., Ross, S., and Rubinstein, M. (1979). “Option Pric-
ing: A Simplified Approach.” Journal of Financial Economics
7, 229–263.

Curran, M. (1994). “Valuing Asian and Portfolio Options by
Conditioning on the Geometric Mean Price.” Management
Science 40, 1705–1711.

Nelson, D. and Ramaswamy, K. (1990). “Simple Bino-
mial Processes as Diffusion Approximations in Financial
Models.” Review of Financial Studies 3, 393–430.

Nichols, B., Buttlar, D. and Farrell, J. (1996). “Pthreads Pro-
gramming: A POSIX Standard for Better Multiprocessing,”
O’Reilly Publishing, California.

Pthreads Programming: A POSIX Standard for Better Multipro-
cessing. O’Reilly Publishing.

Richardson, L.F. (1910). “The Approximate Arithmetical
Solution by Finite Differences of Physical Problems Includ-
ing Differential Equations, with an Application to the
Stresses in a Masonry Dam.” Philosophical Transactions of
the Royal Society of London Series A 210, 307–357.

Richardson, L.F. (1927). “The Deferred Approach to the
Limit.” Philosophical Transactions of the Royal Society of
London Series A 226, 299–349.

Keywords: High-dimension; multi-factor trees;
multi-threading

SECOND QUARTER 2009 JOURNAL OF INVESTMENT MANAGEMENT

