An Approximation Algorithm for Optimal
Consumption /Investment Problems*

Sanjiv Ranjan Das
Santa Clara University
Leavey School of Business

500 El Camino Real, Santa Clara, CA 95053
srdas@scu.edu

Rangarajan K. Sundaram
Stern School of Business
New York University

New York, NY 10012
rsundara@stern.nyu.edu

Versions: December 2001, May 2002.

*Special thanks to Luis Viceira and Raman Uppal for several sugestions. We are very grateful to the
referees on the paper, as well as the editor for several useful comments which guided the paper into its
improved form.



An Approximation Algorithm for Optimal
Consumption/Investment Problems

Abstract

This article develops a simple approach to solving continuous-time portfolio choice
problems. Portfolio problems for which no closed-form solutions are available may
be handled by this technique, which substitutes the numerical solution of partial dif-
ferential equations with a non-linear numerical algorithm approximating the solution.
This paper complements the wide literature in economics on the solution of dynamic
problems in discrete time using projection methods. Our approach extends the ap-
proximation function to power forms, which are shown to fit finance type problems
well. The algorithm is parismonious, and is first illustrated by solving two basic ex-
amples, one, the standard Merton problem, and two, a jump-diffusion problem. Then,
we demonstrate that the model is easy to implement on a larger scale, by optimizing
a portfolio of 6 stock indexes, and stochastic volatility driven by two correlated state

variables.



1 Introduction

The problem of optimal consumption and portfolio choice is one with a long history. Orig-
inally formulated in continuous time by Merton [30] [31], the problem has been extended
substantially and several solution approaches have been developed. Barring the simplest
problems, analytical solutions are difficult to come by. This paper provides a simple numer-

ical approach to solving the optimal control problem using value function approximation.

For simpler problems, as in the original Merton formulation, closed-form solutions are
achieved. The papers by Lehoczky, Sethi and Shreve [26], Karatzas, Lehoczky, Sethi and
Shreve [23], Jacka [20], and Ocone and Karatzas [32] deal with explicit solutions, using the
Bellman equation approach. The martingale approach of Cox and Huang [8] is also a well
established one now, and has been extended to incomplete markets by He and Pearson [18]
[19], Karatzas, Lehoczky, Shreve and Xu [24] and Cvitanic and Karatzas [9]. These problems
are often further complicated by the choice of non-additive utility functions (see Duffie and
Epstein [12], and more recently Dumas, Uppal and Wang [14]). Other complications arise
when transactions costs are included in the analysis, as in Constantinides [7], Davis and

Norman [10], and Dumas and Luciano [13].

In all these settings, simple versions admit either closed-form solutions or problems that
are solved by applying simple numerical procedures. For example, in the case of the Bellman
approach, if the number of state variables is low, the partial differential equation of opti-
mality may be solved using finite-differencing methods. If the objective function is simple,
then easily applied recursive methods may be used, as in Bertsimas, Kogan and Lo [1] where
replication in incomplete markets is undertaken for a quadratic loss function, and the result-
ing system is quite tractable in low dimension. Bossaerts [2| examines a similar problem in

an American option setting.

There are many approximation methods for the solution of these problems (see the review
article by Taylor and Uhlig [35]). A wide variety of numerical approaches is applied such
as iterating on the value function (Christiano [6]), quadrature methods (Tauchen [33] [34]),



linear-quadratic approximations for the controls (Kydland and Prescott [25]), and parame-
terizations of the value function (Marcet [28], DeHaan and Marcet [11]). In this paper, we
develop an analog of the parameterization approach in continuous-time, and demonstrate
its application to a fairly general problem in continuous-time, that of a system driven by a
mixed jump-diffusion stochastic process. Our model is a variant of known projection meth-
ods in the literature (see Judd [22]). More recent examples of approximation methods in
the Finance literature include Campbell and Viceira [4], [5], Viceira [36], Brandt, Goyal and
Santa-Clara [3], and Longstaff [27].

In continuous-time, solving the Bellman equation is more art than science. The usual
approach involves making a clever guess as to the form of the value function, obtaining the
optimal controls, and then verifying the solution after solving the Bellman PDE subject to
the guess. Solutions have been obtained for some well-known and familiar utility functions,
but whenever the number of state variables grows, or the stochastic processes chosen are
not of the common geometric Brownian motion form, we are usually reliant on numerical
schemes. This paper develops value function approximation as a method of extending the

Bellman approach in a tractable way.

The basic idea is as follows. The optimal consumption-investment problem is set up as a
Bellman control problem in the usual way. The first-order conditions provide the functional
equations for the optimal controls, subject to solving for the value function. Rather than
attempt to solve for the value function in closed form, we posit a very general polynomial form
for the value function, extending the linear series forms that are prevalent in most models
in computational economics. Thus the value function is described as a general function
of a finite parameter set, denoted . Substituting this functional guess into the first-order
conditions gives us the optimal controls as a function of #. These optimal controls are
then plugged back into the Bellman equation which should hold for all possible outcomes of
the state variables. This will only be true when the guess for the value function coincides
with the true value function, and for complex problems, this is unlikely. However, if the

approximation to the true value function is a good one, then the distance between the



approximate value function and the exact one should be small over all points in the state
space. Thus, our solution comprises of minimizing a “distance function” between exact and
approximate value functions, by means of finding the best-fit parameter set 6, subject to

exactly satisfying the first-order conditions.

The algorithm works well, and we provide examples of its implementation in the paper.
This approach has several benefits. First, it may be used to handle higher-dimensional
problems, as well as problems with complex utility functions and stochastic processes. As an
example, we solve a jump-diffusion model in the paper. We further extend the problem to
one of higher-dimension, with solutions over a system of six assets and stochastic volatility
driven by two state variables. Second, any standard minimizer routine may be applied
for computational purposes making the problem computationally inexpensive. In fact, the
illustrations in the paper use nothing more sophisticated than the optimizer in the Excel
spreadsheet. All our implementations ran in under a minute, and were robust to different
starting parameters. Third, general polynomial functions may be used to guess the value
function. In other methods, such as weighted residuals methods, the approximation function
is not nonlinear in the parameters, whereas our approach freely permits this. Fourth, as
long as analytical derivatives of the approximated value function are obtainable, we are able
to attain a rapid implementation. In other methods, such as finite-differencing to solve
Bellman PDEs, numerical derivatives are taken, which impacts the speed and convergence
of the algorithms used. Finally, examination of the numerical solution provides hints as to

the form of the true value function, which may lead to an explicit analytical solution.

In the following sections, we provide the problem set up, and the formal presentation of
the solution method. We present our approach within the didactic framework of projection

methods. Numerical examples are also provided with appropriate discussion.



2 Stochastic Processes

Investors face a state space that is characterized by an infinite trading interval T = [0, o).
The uncertainty in the portfolio choice set emanates from a set of diffusion processes and
Poisson jump processes, with probability spaces (27, FZ, Q%) and (QV, FN QV) respectively.
Z. € R" represents a vector of Wiener processes defined on (27, F# Q%) and Ny € R™
represents a vector of orthogonal jump processes defined on (QY, FN QY), where t € T and
m,n > 0. Each jump process is described by a sequence of random times T € T such that
Nii = ¥ 1>roy- The Poisson jump arrival intensities are denoted A;, 4 = 1...m. We allow

for the jump intensities to vary stochastically on 7" as well as functions of {Z, N¢}.

We also allow for K state variables x;, € R¥ which also evolve on the same jump-diffusion

probability spaces defined above. These processes are defined as follows:
dx(t) = az(x,t)dt + 0,(x,t)dZ;(t) + Jx(x,t)dN (), t) (1)
where a,(x,t) € RE, 0,(x,t) € REX", J,(x,t) € RE*™,

The economy offers a set of L + 1 traded assets, whose values evolve stochastically on 7.
These assets comprise L risky assets (S) indexed [ = 1...L, and a riskless asset (B) which

earns a constant return r. Hence the stochastic process for this asset is
dB(t) = rB(t)dt. (2)

The remaining assets earn a random rate of return and obey the following SDE:

t
%E:)) = (S, x,t)dt + o(S,x,t)dZ + J(S, x,t)dN (A, t) (3)
where %(tt)),oz(s,t) € RL, o(S,t) € RM*™ and J(S,t) € Rb*m,

3 Optimal Portfolio Choice

The investor seeks to implement a consumption (¢;) and portfolio plan (w; € RY) so as to

maximize his lifetime utility. The utility of consumption is given by the usual class of Von-
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Neumann and Morgenstern utility functions, which we denote U(c¢;), satisfying the usual

requirements of concavity, and other technical regularity conditions.

The portfolio plan of the investor is a choice of asset weights w;,! = 1...L such that the
amount invested in the riskless asset is wy = 1 — w'l. At any time ¢, the investor chooses
how much of his current wealth W, to consume, and invests the balance in the riskless and
risky assets. Thus, the stochastic process for wealth taking into account investment and

consumption is as follows (see Merton [29] for details):
dW = {W [w'(a —r1) + r] — c} dt + Ww'odZ + Ww'JdN (4)

where 1 is a unit vector. At the initial time ¢ = 0, we are interested in solving for the
investor’s optimal consumption and investment program, so as to undertake the following

maximization:

max E {/Ooo e_”sU(cs)ds} (5)

{e;w}

where p is the investor’s time preference parameter, a scalar constant. The optimized function
at any time t is denoted as the value function, defined recursively as a function of state
variables {W, x}

V(W,x;t) = maxE; {U(c;) + V(W,x;t +dt)}. (6)

Ct, Wt
Using the method of stochastic dynamic programming (see Merton [29]), we arrive at the
Bellman equation of optimality

0 = max H(W, x) (7)

{e,w}

which in full detailed form is:

0 = max{U(c) — pV + VW [w (o —rl) + 1] — Vi

{e;w}
1 m
+§waw2WIO'O"W + I E N[V (W +wI;W,x) — V(W,x)])
j=1
1
+Veo, + §E[(adex)'Vxx(odex)] + W Viy o El(0,dZy)(cdZ)'w] (8)

LS BN VW, x4 3.) - VW, x)])}

i=1



where J; € RY is the jth column of matrix J € RY*™. Subscripts denote partial derivatives,

ie. V, = g—v‘{,, Viww = 327‘/. Likewise, Vi = %—K € RK Vi = aiza‘;' € REXK and Viyx =
% € RK. The solution method entails taking the first-order derivatives from the equation

of optimality to arrive at the optimal controls {c,w}, as functions of V(WW,x). Then, the
substitution of these values into the Bellman equation provides a second order (K + 1)-
dimensional partial differential equation in (W, x) which must be solved subject to suitably

imposed boundary conditions.

The first-order condition for consumption,
U'(c) = Viw (9)

implies the optimal consumption rule: c¢* = I (g—v‘{,) = [Uh U = %—[C]. Taking the

first-order condition for optimal portfolio weights w*, we get the (L x 1) equation system

0 = Viv(a—rl)W + Vipwoo wiW?

+ éE (Aj lain(W +w'I;W) — V(W)1D (10)

+WA{Vyy El(0xdZy)(cdZ)'}

where 2 V(W + w'J;W) € R and 1 is a unit vector.

4 The Approximation Algorithm

Exact solution of the problem in Section 3 is usually hard to achieve, except in the simplest
of cases. The problem lies in the fact that the optimal controls are complicated functions
of the state variables, and value function, which itself is the solution to a high-dimensional
differential equation. The usual approach is to guess a functional form for the value function
and then verify whether it satisfies the optimality conditions of the problem. Apart from
a few well-known cases, this approach has proven rather fruitless. Alternatively, one could

attempt to solve the differential equation using numerical methods such as finite-differencing,



but achieving a stable numerical scheme with many state variables has proven to be a

daunting task.

Here, we suggest an alternative approach which bypasses these problems. The idea
is to posit a polynomial function of the state variables as an approximation to the value
function. We choose a #-parameterized function V() = V(W,x;6), where § € RF*! is a
set of parameters {vg,v;...vp} which define the value function. If we are able to find the
“best” possible value function V*(), then we have automatically obtained the solution to

the problem, since the controls {c, w} derive immediately. The exact solution will satisfy
0= H(W,x V") (11)

subject to satisfying the constraints from the first-order conditions, in equations (9) and
(10). If we are not able to find the optimal value function, we can find the best V in a
set of value functions {V(#)} which may be chosen arbitrarily. To do this we compute the
following optimization program:

ip {3 1 (HIW () x(0): V. ) | (12)

ven 0 S

subject to

w = w'[V(IW(u),x(u);0)], Yu
c = ' [V(W(u),x(u);8)], Vu.

Here, U represents a discrete set of choices of state variables, i.e. a chosen state-space for
the problem. These values u = {W(u),x(u)} may be chosen to reflect the decision-makers
envisaged outcomes of the state variables. The function f(.) is the fitting function and may
be chosen from a range of popular options. For example, a least-squares approach would set
f(H) = H?. Alternatively, a probability weighted function such as f(H) = H? x prob(u)
may be used. A simple absolute valued function f(H) = |H]| is also possible. Optimization
is undertaken by choosing a specific V(f) and then optimizing. Searching over the set

{V(6)}will produce the best value function.



This approach has certain advantages. First, it does not require the solution of a high-
dimensional differential equation. Second, the complexity of form of the value functional
V(6) does not impact substantially the computational requirements of the algorithm. The
number of points in the state space U does however increase the number of constraints to
be satisfied in a linear way. But this was not found to be numerically difficult, and in fact,
implementation with a spreadsheet optimizer works very well. In both the simpler examples
in the following section, and the more complex one in the ensuing section thereafter, we were
able to solve the models on a simple Excel spreadsheet. The simple models barely took a
few seconds to solve. The more complex model, involving search over 10 parameters in the
value function, took about a minute and roughly 50 iterations of the Newton method. Since
the Excel optimizer is likely to be inferior to those found in formal optimization software,
alternative implementations using superior software will speed up the time to generate the

results even more.!

4.1 Context and didactic representation of the algorithm

The class of methods in which our algorithm falls is denoted as “projection methods” (See
Fletcher [16], Gaspar and Judd [17], Judd [21], [22]). These methods offer a viable alter-
native to finite-differencing techniques. Projection methods are closely related to regression
techniques, and our model, using a least-squares criterion is intuitively resident in this set of
algorithms. While finite-differencing models seek to numerically determine the exact function
by building up from the numerical derivatives, projection methods posit a parameterized ap-
proximation to the true function, substitute this into the problem, and then search over the

parameter space for the best fit solution function. Finite-differencing solutions promise more

'We fully expected to require a formal optimization package for the more complex problem we attempted.
However, we decided to attempt it first in Excel, and as it turns out, this resulted in surprisingly effective
implementation. This suggests that the structure of the problem and our implementation set up does enhance
the ease of implementing the algorithm. Hence, we did not even require the use of more sophisticated software

for the solution.
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accuracy, since they do not approximate the value function, but pay a price in convergence
problems and computational complexity. In contrast, the cost of functional approximation
buys the projection approach much more flexibility as well as better computational com-

plexity.

We provide a brief, yet general and simple exposition of a projection method. We seek to
solve for a function (denoted f(z)), embedded in a equation g[z, f(z), 8] = 0, where x proxies
for a set of state variables, and 6 is a set of parameters in the function g[.]. The function g[.]
may arise from an optimization problem. For example, in the framework of this paper, g[.]
is the Bellman equation. In another setting it may be a differential equation on the function
f(z) emanating from a physical or economic problem. In this sense, power series solutions
to differential equations may also be interpreted as a special form of projection methods.
Intuitively, notice that

glz, f(x),0] =0, Vz (13)

may be interpreted as a vector of moment conditions. The exact function f(z) may be
replaced by an approximating function f’(z;&), where £ is a set of parameters for the ap-
proximating function. Then the approach is to solve the following problem akin to the

method of moments:
E (glz, f'(2;€),0].h(z)) =0, Vz (14)

where h(x) is a set of weighting functions. Hence, projection methods may be classified by
(a) the choice of polynomial for the approximation function f’(z;&), and (b) the choice of

weights used.

The usual form of the polynomial is
fla;:6) =1+ &a'. (15)
i=1

This is the “linear” approximation form where the parameters apply linearly to the powers
of the state variables. In this paper, we extend the specification to a more general form

where the parameters enter as power coefficients of the state variables as well. Hence, for
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example, we specify:

Fw:6,8) = 0+ 3 5,2, (16)

=1

The reason for this extension is simple. We noticed that the solutions of the Bellman equation
in the few cases in which closed-form solutions were attained (for example, Merton [30], [31])
do possess such a function form for the value function. This form derives from the original
power form of the direct utility function. Hence, we decided to adopt this as a modification
to the classic polynomials used in projection methods. As will be shown, the approximation
is well-founded. Other approximations may also be used, for example, the Galerkin method,

which uses higher powers of .

The other choice that is made in projection methods is the moment weighting function
as applied to the “residuals”. The classic choice is to set h(.) = g(.), i.e. use a least-squares
objective function. We adopt this criterion in our implementation of the algorithm. Many
other weighting methods may be chosen as well. The objective function therefore, is usually
a sum or integral of the residuals from the moment functions. Sometimes, parameters may
be chosen to force the residuals to zero at a finite number of points on the state space grid,

and this approach is called the collocation method.

Besides providing a new functional form for the value function, other points of difference
are worth mentioning. In our setting, we are able to solve for the value function on a
spreadsheet, even in complex settings as is shown in the final example in the paper. The
problems are very nonlinear, yet yield a solution in a few seconds of computing time. And,
just as in the finite-differencing model, we are able to provide the values of the controls,
as well as the value function and all its derivatives at each point on the state-space grid.
This allows generation of the plots for the solution in simple and easy way as will be seen
in the figures provided for the last example in the paper. Even with a value function with
as many as 10 parameters, the spreadsheet optimizer is able to converge easily in under a
minute using the Newton’s method with forward derivatives. Therefore, we did not face

any severe root-finding problems in the implementation of the models. As will be seen from

12



the plots, the value function is very smooth, and hence the properties of the problem itself
would work in favor of this method. The following section provides illustrations of the model

implementation.

5 Illustrative Examples

5.1 A simple implementation example

Consider the following simple problem. We begin with a single asset setting, where the asset

follows a geometric Brownian motion.
dS = aSdt + oSdZ. (17)

The notation follows from the previous section. Assume a power utility function over con-
sumption where U(c) = %c". Analogous to equation (8) the Bellman equation of optimality
will be:

0= max {U(c) —pV + VyW]wR+r] — Viyc+ %VWWwQWZJQ} (18)

where R = « — r defines the equity premium/excess return. The first-order condition for
consumption gives U'(c) = Vi which implies that the optimal consumption is ¢* = (Vw)ﬁ.
Likewise, the first-order condition for the portfolio weights gives the optimal investment in

the risky asset via the equation Viy R + ViywwWo? = 0, implying that w* = — & YW Ag

o2 WVww

is well known from Merton [29], the solution to this problem provides a value function of the

form V(W) = AWTn, which implies that the optimal weights are w* = U—’Eﬁ

Now suppose we did not know the value function form in advance, and made a guess
as to its form by choosing a somewhat more general function. Let V(W) = V, + ViIW"2

where (Vj, V1, V5) are unknown scalar constants.? Qur approach then entails substituting

2This approximation varies from other approaches using simple ploynomial forms, such as in the Galerkin

method (see Judd [22], pg 373).
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this posited value function into the Bellman equation and solving for the best fit values of

(Vb, V1, V) over the state space, which comprises a range of values of W.

Let the vector of N values of W be indexed by i, such that we have W;,7 = 1...N. This
then defines a vector of values of the Bellman equation. Denote the optimized Bellman

equation vector as M;,2 = 1...N. Thus, we have
1
M; =U(c}) — pV + VigWi[wiR + 1] — Viwc; + §waw;‘2VVi202, VYW;. (19)

Note here that the equation contains the optimized values (¢}, w}) from the first-order con-
ditions. Also, the derivatives Vi and Vi are functions of W; but the notation in the form

Viv (W;) has been suppressed for expositional reasons.

Assume any unconditional distribution for ;. Denote the probability of W; as f(W;),
and YN, f(W;) = 1. For the optimal value function, it must be that M; = 0,Vi. However,
since we are guessing the value function, and may not detect its exact form, the best that
is possible is to choose (Vy, Vi, V5) so as to make the values of |M;|, Vi as small as possible.

This suggests a range of objective functions of which an example is provided below.

min > {MZ2F(W;)} (20)

{‘/0;‘/15‘/2} i=1
Under the assumption of equally weighted occurences of W;, this is simply the least squares

method.

We now explore the solution in more detail. First, we can compute the analytical deriva-
tives of the value function. We get
Vw = Vivaw2 ™!
View = ViVa(Va — W22

A VA e
£ 1
)

The set of Bellman equations becomes (for every )

1
My = AV — gl + Vi

14



1
v | ]

ﬁi(l — VQ) +r
_VI%szfl[‘/l‘/Qngfl]ﬁ

1 R 1 7
- -1 Vo—2 | 2 - 2 .2 ;-
—|—2V1V2(V2 YW, [02 = %)] Wio?, Vi

The minimization problem may be simply stated as mingy, ;.53 vy M7. Since we impose
V(W = 0) = 0, we get that V5 = 0. Further, it may easily be checked that the numerical
minimization in fact leads to the solution Vi > 0, V5 = n. This matches exactly the solutions
in Merton [31]. Hence, the technique provides the known solution. We now proceed to a

numerical illustration of a more complex model.

In this method, we need to specify the state-space grid over which the value function
is computed. The first choice to be made is the range of the state variable. This is easy
to determine in the case of consumption/investment problems, as we start our investor off
with initial wealth W, = 1. Given this, the terminal wealth may be chosen to reside over
a range from 0 to 2, where the upper support refers to a return of 100% per period, which
is substantial. Once the overall support was chosen, we did not find the model solution
to be too sensitive to the number of grid points used. The reason for this is that unlike
other approaches to solve the PDEs emanating from Bellman equations, we do not need to
compute derivatives numerically in our model, as we can compute them analytically from
the approximated value function. For instance, in the finite-difference method to compute a
grid over the value function, derivatives are taken numerically and hence are very sensitive
to mesh size on the grid. In our case, we do not encounter this problem. Hence, mesh size

is not an issue. This is an often overlooked benefit of the approach we develop here.

5.2 An example with jump processes

We extend the process driving the risky asset to including jumps with stochastic intensity.
Thus,

dS = aSdt+o0SdZ + JSAN())

15



d\ = k(6 — Ndt+ 5VAdY.

Thus, the jump intensity A\ follows a mean-reverting square-root diffusion, and we assume
that dZ,dY are orthogonal diffusions. The value function is now extended to cover the new
state variable A in addition to wealth, so that we write it as V (W, \). From (8) we get the

Bellman equation:
0 = max {U(c) — pVW,A) + VigW[wR + 7] — Viye + %VWWwQW%2
FVAR(O = \) + %VM(SQA FAE[V(W + wW ) — V(W, /\)]}
We guess the following functional form for the value function
VW, X) = Vo+ ViW" + VA" + VWA (21)
which yields the following terms
Viw = NVLWYRTT 4+ 150
View = ViVa(Va —1)W"—2
Vi = VBVA“T 4+ VW
Vi = VaVa(Va—1)A"2
From the first-order condition for consumption, we obtain the optimal value of ¢
¢ = [ViVaW" ™! + Ve T, (22)

The first-order condition for the risky asset weights is

VieW R + Viywwo?W?2 + \E %V[W +wWJ]| = 0. (23)

Thus, w* is implicitly defined as the solution to the above equation. The last term requires
VIW +wWJ] = Vo + ViW2 (1 +wJ)"> + VA" + VsW (1 + wJ)A, (24)

which provides

%V[W +wWJ] = ViVoW" (1 +w])> T+ VsWAJ. (25)

16



For the purposes of this example we assume a binary form for the jump, i.e

+j, w/prob
5 _ ) F3 wprob g (26)
—j, w/prob 3
which leads to
EVIW,N)] = Vo+ViW"™ + VA" + VWA
1
E(VIW + wW A} = Vot ViW' x S[(1+w))* + (1 = w))"]
+VaAVE + VsW A
0 1
E {8—V[W +wWJ, )\]} = §[V1V2WV2(1 +wj)"*
w
~ViVeaW " (1 —wj)¥ 7.
The first-order condition for portfolio weights may now be written as
0 = [ViVaW™ 1+ VaA| WR+ [ViVa(Va — W 2] woW? (27)

+A%[V1V2WV2(1 +wj)? = VIVaW Y2 (1 — wj) ).
The vector of Bellman equations is now written as (i now indexes the joint space over state
variables W, \):
My = U(e) = pV (Wi, \)
+ (ViVaW¥o™ + VaA) Wilw; R+ 7] — (ViVaW> ™ + V5)
+% (ViVa(Va = HW7%) wi?Wio?
+ (VaVaA ™! + VW) k(0 — )
+ (VaVa(Va = DA) 7,
o Vo VI xS+ wE)" o (1= wi)] + 1A + VoW
—2i {Vo + VAW + Vi + VEWA

Since the first-order condition for portfolio weights w is an implicit equation, we solve the

following optimization problem to obtain the values (Vy, Vi, Vo, Vi, Vi, Vs):
N

min Z Mf

{Vo,V1,V2,V3,Va,Vs} i=1

17



subject to equations (22),(27).

This problem is solved numerically, and the results are provided below. Additionally, since
the jump-diffusion based problem nests the pure-diffusion model, we can examine the features
of the first solution from Section 5.1 as well.

5.3 Numerical results

The following parameters were chosen as a base case for the jump-diffusion model.

Parameter Description Notation Value
Relative risk aversion n 0.5
Mean return on risky asset o 0.07
Riskless rate r 0.03
Subjective discount rate P 0.03
Volatility coefficient for risky asset o 0.3
Mean reversion for jump intensity () k 0.5
Mean level of A 0 7.5
Volatility coefficient of A 0 5
Jump amplitude J 0.1

In order to solve the problem we need to choose a grid of points (W, A;), Vi. We used a
range of values of W € [0, 10] and for jump intensity we assumed a two-state model where
A € {5,10}, i.e. low and high jump states. The algorithm was implemented on an Excel

spreadsheet, and converges in a few seconds. The optimal values (V, Vi, Va, V3, Vi, Vi) are:

Optimal Value Function Parameters

(Jump-diffusion model)

o W Va Vs Vi Vs
0 14.1290 0.4995 -1.0231 -0.0198 -0.0021
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The signs of the parameters are exactly as expected. Note that Vi, V, are greater than
zero, since indirect utility is increasing in the level of wealth. Likewise V3, V), V5 are less
than zero, since utility declines when jump risk increases. For the purposes of comparison,
we switched off the jump process to reduce the problem to the pure-diffusion model. To do
so, we set the parameters as follows: (k, 8,4, 7, ) to zero. In this setting, the value function

is:

Optimal Value Function Parameters

(Pure-diffusion model)

Voo W Voo V3 Vi Vs
0 18.0889 0.5000 0 O 0

This solution corresponds exactly to that of the known solution in Merton [29]. Notice
that the value of V5, = 7 as required in theory. In the following table we present some of the

qualitative results from the two models, and undertake a comparison of outcomes.

Optimal Consumption and Investment Values

Pure-diffusion model Jump-diffusion model
A=0 A=5 A=10
w c* w* V(W, ) c* w* V(W, ) c* w* V(W, )

0.1 | 0.0012 | 0.8888 5.72 0.0020 0.5702 3.24 0.0020  0.4200 3.25
0.9 | 0.0110 | 0.8888 17.16 | 0.0181 0.5697  12.16 | 0.0182 0.4192 12.17
2.5 | 0.0306 | 0.8888 | 28.60 | 0.0505 0.5691 21.07 | 0.0507 0.4184  21.06
4.5 | 0.0550 | 0.8888 | 38.37 | 0.0910 0.5687  28.67 | 0.0916 0.4177  28.64
10.1 | 0.1235 | 0.8888 | 57.48 | 0.2052 0.5678  43.52 | 0.2071 0.4164  43.42

The table presents results from the pure-diffusion model, and the jump-diffusion model.
For varying levels of the state variables W and ), we examine three values of interest: optimal

consumption, investment in the risky asset, and the value function.

19



First, we note that as the level of wealth increases, so does the value function. Second, as
jump intensity increases, investor utility decreases since additional risk is borne. The only
exception occurs when wealth is at a very low level and the jump intensity increases from 5 to
10. This may be on account of the fact that at low levels of wealth, additional jumps cannot
harm the investor given a floor level of zero on wealth. Plus, at high levels of jump intensity,
mean reversion will lower jump risk. Third, as wealth increases, the investor consumes more.
Fourth, as jump risk increases the investor also consumes more, since investing becomes less
attractive, and consumption from the future is shifted to the present. Fifth, as jump risk
increases, the investor correspondingly invests less in the risky asset. Sixth, when there is
no jump risk, the amount invested in the risky asset is independent of wealth, as is known
from the Merton model. However, when jump risk exists, the hedging term in equation
(27) comes into play, and the choice of risky assets is no longer independent of wealth level.
Finally, jump risk has a greater effect on the investor decision when jump risk is small and

increasing than when it is large and increasing.

Computationally, the following results apply. First, the model converges to the same
solution for many different starting values that we tried. We did not specially select any initial
values. Second, the time taken for this optimization was always less than 10 seconds. Hence,
the spreadsheet optimizer does not face any root-finding problems. Third, we examined the
residuals from the Bellman equation. We did this both, in-sample and out-of-sample with
reference to the state-space grid. While we ran wealth from 0-10 on the in-sample grid, we

then tried it out-of-sample on the 10-12 region. The residuals statistics are as follows:

Residual Statistics

Sample Mean Std. deviation

In-sample ~158 x 107"  1.7x1073
Out-of-sample 2.4 x 1073 1.9 x 1073

As can be seen, the residuals are extremely small, and attest to an accurate solution. As is to

be expected the in-sample residuals are smaller than those out-of-sample, but in all cases the
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residuals are not large. We also re-optimized the model with the additional out-of-sample
points in the state space to check if the parameters of the value function changes drastically
and found the changes to be small. The statistics for the residuals after this optimization

are still very small in mean and standard deviation.

6 Higher Dimensional Problems

In the previous sections, we considered a problem where there was only one risky asset and
a single state variable driven by a jump process. The approach we presented in the previous

section is easily extendable to more securities and more state variables.

In order to demonstrate this, we extended the choice set of risky assets to six stock na-
tional indexes. The countries we considered are: United States, United Kingdom, Japan,
Germany, Switzerland and France. We extracted index date for the period January 1982 to
February 1997. From this data we computed the mean vector of returns («), and the covari-
ance matrix of returns (X). We denoted this as the “base” covariance matrix. Uncertainty

over the indexes is driven by a vector of diffusions (dz;).

To make the problem complex as well as realistic, we allowed the covariance matrix to
vary from period to period, driven by two positive state variables (x = {x1,z2}), which
multiplicatively impact the covariance matrix in a linear way. Thus the actual covariance
matrix was set to be equal to X(x) = z;29X. The two state variables are assumed to obey

the following stochastic processes:
dx = a,dt + 0,dz, (28)

where o, € R? and dz, € R?. Also note that dz,dz, = Qdt, and dz,, dz, are assumed
to be orthogonal. The two factors driving volatility are an open choice for the purposes of

calibration. Any two state variables could be utilized.

Let the value function be an extension of the prior simpler form, i.e. V(W,zq,x). If

we denote dy = o4dz, € R?, then we may write the Bellman equation over 6 assets and 2
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stochastic volatility state variables as follows (same as before with additional terms):

0 = max : Ule) = pV + Vg Ww'(a —r1) + 7] — Wiy
1
+§VWWW2W,2(X)W

1
+V, oy + EE[dy'Vxxdy] (29)

where Vy is the gradient matrix of the value function with respect to the state variables,

and V.4 is the hessian matrix.

This is a much more complex problem than those presented previously, since the imple-
mentation requires manipulation of fairly sizeable matrices. However, it is still tractable on
a spreadsheet. And, of course, the value function approximation is also extended to a 10

parameter form as follows:
VW, 21, 9) = Vo + VIWY + Vaz* + Vsado + ViWay + VeWay + Voz25. (30)

The approach taken is the same as before. We take the necessary derivatives of the value
function, and substitute them into the Bellman function, and its first order conditions, com-
puted over a grid containing all three state variables. Unlike in the past, when computation
on the spreadsheet only required a few seconds, the size of this problem required about 50
iterations in Excel, and took up to a minute in computational time. However, this is still a

computationally economical procedure.?

3We used the optimizer in Microsoft excel over a range of values of W from 0 to 2.0, values of z, 2>
were taken to be 0.5, 1.0 and 1.5. The settings of the optimizer were as follows: convergence criterion was
0.0001, the precision setting was at 0.000001, the maximum number of iterations set to 500 (never reached),
tolerance at 5%. The estimates were based on the tangent method, with forward derivatives. Search was
implemented using Newton’s method. Finally, the results and time did not vary much at all despite a wide
range of choices of starting parameters, even naive choices such as setting the initial values to all be 0.1 or

0.5, for example.
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6.1 Numerical results for higher-dimensional problem

In this section we present the results for the extended problem outlined above. The means

for the six country stock index (monthly) returns were as follows:

US UK JP GE SW FR
0.0102 0.0084 0.0080 0.0120 0.0102 0.0113

The “base” covariance matrix of monthly returns is:

US UK JP GE SW FR
0.0018 0.0014 0.0010 0.0010 0.0012 0.0013
0.0014 0.0032 0.0018 0.0016 0.0016 0.0019
0.0010 0.0018 0.0048 0.0015 0.0016 0.0020
0.0010 0.0016 0.0015 0.0033 0.0020 0.0023
0.0012 0.0016 0.0016 0.0020 0.0026 0.0019
0.0013 0.0019 0.0020 0.0023 0.0019 0.0037

The state variables for stochastic volatility are assumed to evolve as follows:

dz, _ 31 " 011 012 dz (31)
dzsy (8% 021 022 dzy

and dz1dzy = Corr(dz;, dze)dt. The remaining input parameters were as follows:

Parameters 7 p r o a9 o011 O1p 091 0 Corr(dz,dz)

0.5 0.005 0.006 0.2 02 0.1 01 01 0.1 0.5

We ran the algorithm on this problem and obtained the ten parameters of the value function.

These are as follows:

Vo Vi V2 Vs Vi Vs Ve V7 Vs Vo
10.1137 3.4771 0.4281 23.1806 0.0538 23.1817 0.0538 0.6441 0.6441 -17.1148
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The results of this model are presented using plots, as this will make for clearer exposition.
To start with, we examine the resulting value function from the model. The value function
V (W, z1,25) is hard to plot in four dimensions. Hence, we decided to present it for varying
values of W, and for values of the product (x; X x2), which is the term that enters the
stochastic volatility process. Our graph is two-dimensional, with terminal wealth W on the
x-axis, and the value function on the y-axis. Figure 1 presents the plots of the results. We plot
different lines for varying values of the volatility factors. First, notice that the value function
(i.e. indirect utility) is increasing in wealth as expected. Second, the numerically computed
indirect utility function derives its shape from the original direct one, and is therefore concave
and increasing monotonically. Third, as the volatility of the assets increases, indirect utility
drops as one would expect. However, in the presence of risk-aversion, the growing volatility

factor results in greater percentage reductions in utility.

We also present (in Figure 2) the plots depicting optimal consumption as terminal wealth
changes and for different levels of the volatility state variables. The relationship is as ex-
pected. As wealth increases, consumption also increases but at a decreasing rate. As volatil-
ity increases, amount of consumption declines as the amount invested shifts to provide a

greater investment buffer in ensuing risky periods.

7 Concluding Comments

This paper develops a simple numerical approach to solving optimal consumption and in-
vestment problems when analytic solutions are not achievable. The Bellman problem is
translated into an econometric one, where we minimize a parameterized objective function
of the Bellman equation over the state space, based on a polynomial guess for the value
function. The method is tractable, and converges quickly. The approach offers a means
to numerically guessing the form of the value function which, if fortuitous, may lead to an

analytic solution.
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The algorithm may be extended to solving problems in other domains in finance, such as
asset-liability management, optimal replication of derivative securities, equilibrium problems

with incomplete markets and market micostructure games.
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Figure 1: The Value Function

The value function V (W, 21, z5) is presented for values of W, and for values
of the product (1 xx3), which is the term that enters the stochastic volatility
process. Our graph is two-dimensional, with terminal wealth W on the x-

axis, and the value function on the y-axis.
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Figure 2: The Consumption Function

The consumption function ¢(W, z1,x2) is presented for values of W, and for
values of the state variables, (z1,z2), which are the terms that enter the
stochastic volatility process. Our graph is two-dimensional, with terminal

wealth W on the x-axis, and the value function on the y-axis.
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