
Journal of Econometrics 106 (2002) 27–65
www.elsevier.com/locate/econbase

The surprise element: jumps in interest rates
Sanjiv R. Das ∗

Department of Finance, Leavey School of Business, Santa Clara University,
500 El Camino Real, Santa Clara, CA 95053-0388, USA

Received 25 May 1999; revised 22 February 2001; accepted 30 April 2001

Abstract

That information surprises result in discontinuous interest rates is no surprise to
participants in the bond markets. We develop a class of Poisson–Gaussian models
of the Fed Funds rate to capture surprise e2ects, and show that these models o2er
a good statistical description of short rate behavior, and are useful in understanding
many empirical phenomena. Jump (Poisson) processes capture empirical features of
the data which would not be captured by Gaussian models, and there is strong evi-
dence that existing Gaussian models would be well-enhanced by jump and ARCH-type
processes. The analytical and empirical methods in the paper support many applica-
tions, such as testing for Fed intervention e2ects, which are shown to be an important
source of surprise jumps in interest rates. The jump model is shown to mitigate the
non-linearity of interest rate drifts, so prevalent in pure-di2usion models. Day-of-week
e2ects are modelled explicitly, and the jump model provides evidence of bond mar-
ket overreaction, rejecting the martingale hypothesis for interest rates. Jump models
mixed with Markov switching processes predicate that conditioning on regime is im-
portant in determining short rate behavior. ? 2002 Elsevier Science S.A. All rights
reserved.

JEL classi$cation: C13; C22
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1. Introduction

“Natura non facit saltum”– Nature does not Jump Alfred Marshall, title
page, Principle of Economics, 1890.
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Surprise is an intrinsic element of Bnancial markets and a simple fact of
life. The Bxed-income markets are no exception to this.
Despite vast amounts of available public information on the economy, and

exhaustive quantities of research, surprises still occur with suDcient magni-
tude and regularity to substantially impact yields, bond prices and bid-ask
spreads. Demand shocks such as market behavior at Treasury auctions often
result in jumps, as do economic news announcements. Balduzzi et al. (1998c)
examined 17 di2erent types of economic announcements, and found that eight
of them signiBcantly impacted the market. Green (1998) also found that the
release of information increases information asymmetry, impacting the Trea-
sury market. Similar results were provided by Dwyer and Hafer (1989), and
Hardouvelis (1988). Exogenous intervention in the markets by the Federal
Reserve causes jumps. Supply shocks are another factor, as regular debt re-
fundings inject suDcient volume to magnify price e2ects. As Merton (1976)
emphasizes, routine trading information releases are well depicted by smooth
changes in interest rates, yet bursts of information are often reGected in price
behavior as jumps.
This research examines the role of jump-enhanced stochastic processes in

modeling the Fed Funds rate. The paper o2ers three distinct sets of con-
tributions. (1) We develop an analytical modeling framework for jumps in
Bxed-income markets. 1 (2) We establish that modeling surprises with jump
based models provides a better statistical characterization of the short interest
rate than is possible with complex Gaussian models. (3) We present a range
of applications of the model to demonstrate that these models o2er a rich
habitat in which to characterize various bond market phenomena.
From a statistical point of view, there are three features of the short rate

process that consistently exist in bond markets.

(1) Higher moment behavior: changes in interest rates demonstrate consid-
erable skewness and kurtosis, which can substantially a2ect the pricing
of derivative securities. Table 1 provides summary statistics for the short
rate of interest. The presence of leptokurtosis in interest rate changes is
undeniable and makes an initial case for jump models. 2

1 See Ahn and Thompson (1988), Attari (1997), Babbs and Webber (1995), Backus et al.
(1997), Burnetas and Ritchken (1996), Chacko (1998), Chacko and Das (1998), Das and
Foresi (1996), DuDe and Kan (1996), DuDe et al. (2000), Heston (1995), Naik and Lee
(1993), Piazzesi (1998), Shirakawa (1991), Van Steenkiste and Foresi (1999) for a range of
jump-di2usion theoretical models.

2 See Backus et al. (1997) for an excellent exposition of why jumps may better explain the
high degree of curvature in yield curves.
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Table 1
Descriptive statisticsa

Statistic r dr

Mean 5.8100 −0:0005
Standard deviation 1.9558 0.2899
Skewness 0.3032 0.3950
Excess kurtosis −0:8304 19.8667
Minimum 2.58 −2:70
Maximum 10.71 2.83

aThe table presents descriptive statistics for the Fed Funds rate over the period January 1988
to December 1997. The data is daily in frequency. The statistics reported are for the interest
rate level (r) and the change in interest rates (dr).

(2) Volatility behavior: short rate volatility is very high, and is persistent. 3

By enhancing jump models with ARCH features and regime switches,
this aspect is captured.

(3) Autocorrelation and mean reversion: interest rates evidence both, which
complicates the assessment of information e2ects. Mean reversion may
arise naturally from underlying macroeconomic currents, or from correc-
tions on account of bond market overreaction. By modeling information
surprises via a jump, these e2ects are separated in the paper.

Using a set of analyses on Fed Funds data, we conclude that mixed models
with time-varying volatility and jumps are predicated, because neither model
stand-alone is able to Bt the empirical distribution of the data appropriately.
Previous work 4 employing time-varying volatility models, such as ARCH
processes, o2ers strong evidence that time varying volatility models provide
a good empirical Bt. We Bnd that signiBcant improvements are obtained when
jumps are introduced into this class of models.
The model has many possible applications. After establishing that jumps

play an essential role in describing interest rate dynamics, we explore seven
di2erent empirical phenomena using various jump models. First, information
e2ects are captured easily in our models. As in Balduzzi et al. (1998c), we
too Bnd that volatility is signiBcantly higher after a news release.
Second, we examine the pattern of higher-order moments of the short rate

process, analytically and empirically. Conditional skewness and kurtosis varies
with the time interval between data observations, and results in distinctly di2-
erent patterns for time-varying volatility models versus jump models. Poisson–
Gaussian models better match conditional and unconditional skewness and
kurtosis at varying maturities than time-varying models without jumps.

3 Coleman et al. (1993) Bnd that in the 1980s, the standard deviation of monthly changes
in the short (1-month) rate was 128 basis points. Du2ee (1996) discusses the idiosyncratic
variation in short rates.

4 See Brenner et al. (1996) and Koedijk et al. (1996).
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Third, Federal Reserve activity impacts the short rate via information sur-
prises. Using Fed Open Market Committee meeting dates in our jump model
shows that two-day meetings of the FOMC have a substantially greater sur-
prise component than one-day meetings. 5

Fourth, we are able to analyze day-of-week e2ects using the model. Jumps
appear to occur more frequently on Wednesdays, probably on account of
option expiry e2ects.
Fifth, there is a growing literature on the non-linearity of the drift in

interest rates, which has cast doubts on the simple linear mean-reverting
form used in most di2usion models (see Ait-Sahalia, 1996a, b; Chapman and
Pearson, 2000; Stanton, 1997). Discussion of these issues was also taken up
by Bodoukh et al. (1998), Ang and Bekaert (1998), and Du2ee (1999). The
addition of a jump process to the di2usion model ameliorates the non-linearity.
The more appealing inference is that non-linearity is caused by information
e2ects, which, when captured via a jump model, resurrect simpler linear drift
models.
Sixth, we examine overreaction in the bond markets (as in Hamilton, 1996).

A specialized version of the model in the paper allows us to detect contin-
uation and reversal e2ects, by examining their impact on jump probabilities.
We Bnd evidence in favor of both e2ects, implying that Fed funds rates are
not martingales. The reversal e2ect is predominant, evidencing overreaction.
Finally, in a managed interest rate regime, the jump behavior in short rates

comprises of two components: (a) infrequent changes in target rates by the
Fed, and (b) frequent deviations from the targets, which are market driven
(see Balduzzi et al., 1997, 1998a). An extension of the Poisson–Gaussian
model to encompass regime-switches o2ers additional evidence in support
of this empirical phenomena. (More supporting evidence was also presented
by Naik and Lee (1993), Gray (1996), and Piazzesi (1998)). We Bnd that
the short rate process sometimes inhabits a high interest rate regime, where
discontinuous behavior predominates, yet is more frequently in a low rate
regime, evidenced by smooth rate transitions. We conclude that conditioning
on the regime is important in determining the choice of jump model.
The detailed content of the paper comprises three sections, theoretical, em-

pirical and applications. Section 2 provides a menu of jump-di2usion ana-
lytics. Section 3 contains an empirical assessment of jump models. Jumps
are shown to account for a large part of the total variation in interest rates,
and capture the patterns of higher-order moments which cannot be generated
by di2usion models with time varying volatility alone. We demonstrate the
strong complimentarity of jump and di2usion stochastic process choices in
modeling the term structure. In Section 4, we present a series of applications,

5 For recent work in this domain, see Piazzesi (1999).
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demonstrating the usefulness of jump models in relation to the empirical
phenomena described above. Finally, Section 5 o2ers conclusions and ideas
for future research.

2. Model speci�cation

The analytics for stochastic processes governing interest rates are more
complex than that usually encountered for equities and foreign exchange rates.
Mean reversion is one source of analytical complexity in models with jumps.
It makes the probability function for the stochastic process dependent on the
timing of jumps as well as their size (without mean reversion, the density
function might depend on jump size only). There are also very few known
solutions to the stochastic di2erential equations governing mean reverting
jump-di2usions. These complexities make econometric analyses harder to im-
plement. In this section, we develop the primary analytics for our econometric
speciBcations; in later sections, we present extensions.

2.1. The basic stochastic process

The following is the mean reverting process for interest rates employed in
this paper:

dr= k(�− r) dt + v dz + J d	(h); (2.1)

where � is a central tendency parameter for the interest rate r, which reverts at
rate k. Therefore, the interest rate evolves with mean-reverting drift and two
random terms, one a di2usion and the other a Poisson process embodying
a random jump J . The variance coeDcient of the di2usion is v2 and the
arrival of jumps is governed by a Poisson process 	 with arrival frequency
parameter h, which denotes the number of jumps per year. The jump size
J may be a constant or drawn from a probability distribution. The di2usion
and Poisson processes are independent of each other, and independent of J
as well. The discretized version of this process is used for estimation, and the
details are presented in the following section. We assume that the coeDcients
are bounded, and that suDcient restrictions exist on the drift, di2usion and
jump coeDcients that give a unique, strong solution to Eq. (2.1).

2.2. The characteristic function

Assume that we are at time t=0, and that we are looking ahead to time
t=T . We are interested in the distribution of r(T ) given the current value of
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the interest rate r(0) ≡ r0 = r. In order to derive the T -interval characteristic
function F(r; T ; s) for the process (2.1), (s is the characteristic function pa-
rameter) we solve its Kolmogorov backward equation (KBE) subject to the
boundary condition that

F(r; T =0; s)= exp(isr); (2.2)

where i=
√−1. The backward equation is

0=
@F
@r
k(�− r) + 1

2
@2F
@r2

v2 − @F
@T

+ hE[F(r + J )− F(r)]: (2.3)

The last term comes from the e2ect of the Poisson shock. The solution (com-
prehensive details of the derivation for a much more general case are available
in DuDe et al. (2000), and are thus not provided here) is provided below:

F(r; T ; s)= exp[A(T ; s) + rB(T ; s)];

A(T ; s)=
∫
(k�B(T ; s) + 1

2v
2B(T ; s)2 + hE[eJB(T ;s) − 1]) dT;

B(T ; s)= is exp(−kT ): (2.4)

Given the characteristic function, we can obtain the moments and the prob-
ability density functions for any choice of jump distribution where the jump
intensity or distribution do not depend on the state variables.
The class of models in Eq. (2.4) are well-known and are termed exponential-

aDne models. For the original deBnition of the term, see DuDe and Kan
(1996). Also for aDne jump-di2usion models, see Das and Foresi (1996),
Chacko (1998), Chacko and Das (1998), DuDe et al. (2000), Pan (1999).
Exponential-aDne models are those where the yield to maturity on all bonds
may be written as a linear function of the state variables. These models have
been thoroughly analyzed by DuDe et al. (2000) where state-dependence of
the intensity has been provided for. The paper provides an empirical comple-
ment to this literature. At the outset, the paper assesses the basic Gaussian and
Poisson–Gaussian models. We then show that by mixing a jump model with
time-varying volatility processes, the Bt of the model improves dramatically.
Relaxation of the requirement of constant jump intensity also betters the Bt.
Finally, we examine a regime-switching model over two jump regimes.

2.3. The moments

A full derivation of the moments is provided in the appendix for com-
pleteness. To obtain the moments, we di2erentiate the characteristic function
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successively with respect to s and then Bnd the value of the derivative when
s=0. Let �n denote the nth moment, and Fn be the nth derivative of F with
respect to s, i.e. Fn= @nF=@sn. Then �n=1=in[Fn | s=0]: Likewise E[J n] de-
notes the nth moment of the jump shock. The Brst four moments (as derived
in the appendix) are:

�1 =
(
�+

hE[J ]
k

)
(1− e−kT ) + re−kT ;

�2 =
v2 + hE[J 2]

2k
(1− e−2kT ) + �21;

�3 = hE[J 3]
(
1− e−3kT

3k

)
+ 3�1(v2 + hE[J 2])

(
1− e−2kT

2k

)
+ �31;

�4 = hE[J 4]
(
1− e−4kT

4k

)
+ 3

(
(v2 + hE[J 2])

(
1− e−2kT

2k

))2

+ 4�1hE[J 3]
(
1− e−3kT

3k

)

+6�21

(
(v2 + hE[J 2])

(
1− e−2kT

2k

))
+ �41:

Given any jump distribution with Bnite moments, we can compute the values
of E[J n]; n=1–4. Given the derived moments above, provided the coeD-
cients of the stochastic process are bounded, we obtain well-behaved pro-
cesses that admit probability functions.

3. Estimation

There is a growing literature on estimation methods for term structure
models. Ait-Sahalia (1996a, b), Chapman and Pearson (2000), and Pritsker
(1998) examined single factor models and found that aDne speciBcations may
be incorrect. See also Chapman et al. (1999), Conley et al. (1997) and Stanton
(1997) for further work in this direction. There is a vast literature speciBcally
devoted to the estimation of aDne models: Balduzzi et al. (1998b, 1996),
Chacko (1998), Dai and Singelton (2000a,b), Du2ee (1999), Piazzesi (1998,
1999), Singleton (2001). In particular, Dai and Singelton (2000a,b) provide
general methods for aDne models. The papers of Ait-Sahalia (1999, 2000)
deal with the estimation of general di2usion models via maximum-likelihood,
especially those in the non-aDne class.
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Fig. 1. A plot of the Fed Funds Rate for the period January 1988–December 1997. The data
is daily and is obtained from the Federal Reserve. The total number of observations is 2609.

The estimation of jump-di2usion models has not been undertaken in the
same earnest as pure-di2usion models. This paper explores the role of various
mixed jump and time-varying volatility models, in the spirit of Naik and Lee
(1993), especially developing a set of applications for this class of models.
Probably, the earliest example of this genre, Naik and Lee (1993) developed a
jump model for interest rates in which both the mean and volatility of the in-
terest rate di2usion switched between regimes via a jump process. In addition
to this paper, Babbs and Webber (1995) and Piazzesi (1999) also carry out
the estimation of a jump model of interest rates. Chacko (1998) and Single-
ton (2001) develop characteristic function approaches to these models, both
of which also deal with jump-di2usion models of interest rates. Ait-Sahalia
(1998) provides technical conditions and tests for the presence of jumps in
the continuous-time model when observing discrete data. 6

Discrete-time analytics based on Section 2 are applied to daily data on
the Fed funds rate for the period January 1988 to December 1997. The to-
tal number of observations is 2609. The data is from the Federal Reserve
web site and is plotted in Fig. 1. In addition to the Fed Funds rate, other

6 Outside the term structure literature, there is plenty of evidence for the existence of jumps in
other economic variables. Ball and Torous (1983) and Jorion (1988) Bnds ample evidence for
jumps in the equity and foreign exchange markets, and Bates (1996, 2000) does an extensive
examination of equity and forex markets for combined jump and stochastic volatility models.
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choices have often been made for the short rate proxy. Ait-Sahalia (1996a,
b) used seven-day Eurodollar rates and Stanton (1997) used three-month
Treasury bill rates. On the other hand, the paper by Chan et al. (1992)
uses one-month T -bill yields, and Conley et al. (1997) use Fed funds rates.
The data chosen for the paper takes into account the following consider-
ations. First, by starting in 1988, we eliminate the period of the October
1987 crash, which would bias the results in favor of Bnding jumps. Sec-
ond, the choice of short rate proxy is not always inconsequential. Chapman
et al. (1999) show that for non-aDne models, severe estimation biases may
arise depending on the proxy chosen. However, their work shows that the
biases are aggravated as the maturity of the rate chosen increases. Our use
of the Fed funds rate should keep this bias lower than other choices such
as the three month rate. The descriptive statistics for the data are in Table
1. An examination of the data reveals that changes in interest rates evidence
a very high degree of kurtosis, a stylized fact that predicates the use of a
jump model. Over the entire 10 year period, rates have quickly risen to a
peak of 10% and then fallen to a low of 3%, Bnally stabilizing at a 6%
level.
Our estimation exercise uses Poisson–Gaussian models extended for

ARCH e2ects. They allow for mean-reversion in jump processes, and also
test for the impact of Federal Reserve actions and day-of-the-week
e2ects.

3.1. Estimator

In this section, a simple discrete-time approach allows us to estimate a
model where the jumps are normally distributed. 7 We estimate the Poisson–
Gaussian interest rate model using a Bernoulli approximation, Brst introduced
in Ball and Torous (1983). The assumption made here is that in each time
interval either only one jump occurs or no jump occurs. This is tenable for
short frequency data, and may be debatable for data at longer frequencies.
As Ball and Torous found, it provides an estimation procedure that is highly
tractable, stable and convergent. Since the limit of the Bernoulli process is
governed by a Poisson distribution, we can approximate the likelihood func-
tion for the Poisson–Gaussian model using a Bernoulli mixture of the normal

7 It is now well recognized that discretization of continuous-time stochastic di2erential equa-
tions for estimation does introduce an estimation bias. However, this is small when the data is
at daily frequency (Bergstrom, 1988). For a body of work on discrete time models and their
continuous-time versions, see Backus et al. (1997, 1998a, b), and Sun (1992).



36 S.R. Das / Journal of Econometrics 106 (2002) 27–65

distributions governing the di2usion and jump shocks. 8 In discrete time, we
express the process in Eq. (2.1) as follows:

Qr= k(�− r)Qt + vQz + J (�; �2)Q	(q); (3.2)

where v2 is the annualized variance of the Gaussian shock, and Qz is a
standard normal shock term. J (�; �2) is the jump shock, which is normally
distributed with mean � and variance �2. Q	(q) is the discrete-time Poisson
increment, approximated by a Bernoulli distribution with parameter q= hQt+
O(Qt). We allow the variance v2t to be ARCH in extending the Poisson–
Gaussian model, and also permit the jump intensity q to depend conditionally
on various state variables. Then, the transition probabilities for the interest
rate following a Poisson–Gaussian process are written as (for s¿ t):

f[r(s) | r(t)]

= q exp
(−(r(s)− r(t)− k(�− r(t))Qt − �)2

2(v2t Qt + �2)

)
1√

2	(v2tQt + �2)

+ (1− q) exp
(−(r(s)− r(t)− k(�− r(t))Qt)2

2v2t Qt

)
1√

2	v2t Qt
;

(3.3)

8 The Bernoulli approximation is achieved as follows: DeBne the indicator variable Yi =1 if
a jump occurs, else Yi =0 for all i : : : N , and where Qt=T=N , for the time series spanning T .

Pr[Yi =0]=1− hQt +O(Qt);

Pr[Yi =1]= hQt +O(Qt);

Pr[Yi¿1]=O(Qt): (3.1)

Let M =
∑N

i=1 Yi . M is distributed Binomial being the sum of independent Bernoulli variables.
For x occurrences,

Pr[M = x] =N Cx(hT=N )x(1− hT=N )N−x; ∀x;

lim
N→∞

Pr[M = x] =
e−hT (hT )x

x!
:

Therefore, the Bernoulli approximation converges to the appropriate Poisson density. Alter-
natively, the model used may be interpreted as a two-term truncation of a Poisson-weighted
sum of normal distributions [

∑∞
n=0 [e−h dt(h dt)n=n!fn], where each normal distribution (fn) is

conditioned on the number of jumps n; n=0; 1 : : :∞. This discussion parallels an alternative
derivation in more generality in Ch3 of Merton (1992). Another reference on the Poisson ap-
proximation to the binomial distribution may be found in Feller (1951). Finally for option
pricing, using the Poisson Limit Theorem, see Page and Sanders (1986).
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where q= hQt+O(Qt). This approximates the true Poisson–Gaussian density
with a mixture of normal distributions. Estimation involves maximizing the
function L, where

L=
T∏
t=1

f[r(t +Qt) | r(t)]

which may be written as:

max
 =[k; �; v; �; �2 ; q]

T∑
t=1

(log(f[r(t +Qt) | r(t)])):

This discrete-time model parallels a model with a mixture of distributions. As
in Ball and Torous (1983), and based on the technical speciBcations of the
stochastic process. The technical regularity conditions stated in Cramer (1946,
p. 500) are satisBed, and we obtain estimates that are consistent, unbiased, and
eDcient and attain the Cramer–Rao lower bound. In addition, this supports
the application of maximum-likelihood and thence the likelihood ratio test to
this model. The constraints are that the weights for each regime (jump vs.
no-jump) add up to one, which is already imposed in the equation above,
and that 06 q6 1, which is required at the time of estimation. Given the
tight parallel of this model to that of mixture distributions, MLE is directly
achieved as a solution to a system of Brst-order conditions @ log L=@ =0 (see
Hamilton, 1994, Section 22:3, pp. 685–689). Estimation may be undertaken
using gradient methods, or the E–M algorithm of Dempster et al. (1977).
Maximum likelihood estimation results are presented in Table 2. In or-

der to compare di2erent processes for the short rate, we estimated four
nested models on the data set. The models estimated are (i) a pure-Gaussian
model (h=0), (ii) the Poisson–Gaussian model of Eq. (2.1), (iii) an ARCH–
Poisson–Gaussian model, which consists of the Poisson–Gaussian model with
the variance of the Gaussian component following an ARCH(1) process, 9 and

9 This is done by modelling the conditional variance of the Gaussian process as follows:

v(s+Qt)2 = a0 + a1[r(s)− E(r(s)|r(t))]2; t ¡ s

and estimating the parameters a0; a1. The recent work of Corradi (2000) clariBes the work
of Nelson (1990) and shows that the continuous-time limit of ARCH type processes may be
of two types, depending on the parameterization of the Euler approximation of the ARCH
model taken to its continuous-time limit. In one case, we get a degenerate di2usion, i.e. a
asset process and volatility process driven by one di2usion only. In the other case, we get a
non-degenerate di2usion or stochastic volatility process, i.e. a two-dimensional process driven
by a two-dimensional di2usion. The ARCH model in this paper falls in the former category.
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Table 2
Basic Poisson–Gaussian estimationa

Parameter Pure Poisson–Gaussian ARCH–Poisson–Gaussian ARCH–Gaussian
Gaussian

k 2.8832 0.8542 0.5771 1.2810
3.68 2.26 2.02 4.66

� 0.0576 0.0330 0.0346 0.0974
10.91 2.57 2.50 9.78

v 0.0466 0.0173
111.01 24.01

a0 0.0001 0.0008
17.65 66.48

a1 127.0201 232.07
13.92 29.85

� 0.0004 0.0017
1.38 5.66

� 0.0058 0.0045
24.50 16.60

q 0.2162 0.1564
17.91 13.14

Log-likelihood 13938.13 14890.90 15197.67 14509.50
aWe present results for the estimation of pure-Gaussian, Poisson–Gaussian, ARCH–Poisson–

Gaussian and ARCH–Gaussian processes on daily data covering the period January 1988 to
December 1997. The total number of observations is 2609. Estimation is carried out using
maximum-likelihood incorporating the transition density function in Eq. (3.3). The discretized
ARCH–Poisson–Gaussian process estimated is speciBed as follows:

Qr= k(�− r)Qt + vQz + J (�; �2)Q	(q);

v2t+Qt = a0 + a1[Qrt − E(Qrt |rt−Qt)]2:

The other processes are special cases of the one above. T -statistics are presented below the
parameter estimates. The variable q, the probability of a jump in the interval Qt is analogous
to the continuous time parameter h for jump arrival intensity, by the relation q ≈ hQt.

(iv) a pure ARCH–Gaussian model. This parallels to a large extent the
analyses carried out by Jorion (1988) for the equity and foreign exchange
markets.
Since the ARCH–Poisson–Gaussian model subsumes the other three mod-

els, likelihood ratio tests (LRT) may be applied to compare nested mod-
els. Comparison of nested log-likelihoods between the models in Table 2
reveals that the ARCH–Poisson–Gaussian model outperforms the rest. The
likelihood ratio statistics are large and show ample evidence that the jump
is well-founded as a modelling device. As would be expected the Poisson–
Gaussian process Bts the data signiBcantly better than the pure-Gaussian one.
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Whereas the Poisson–Gaussian and ARCH–Gaussian models are not nested,
the likelihood for the Poisson–Gaussian model is greater, suggesting that
Poisson–Gaussian processes provide a better Bt than ARCH volatility mod-
els. Fig. 2 o2ers visual evidence for the better Bt of the ARCH-jump model
versus other speciBcations.
Application of the Akaike Information Criterion (not reported), where the

likelihood is adjusted downwards by the number of parameters, provides ev-
idence of this. The log-likelihood values are large and positive since the
variance of conditional changes in interest rates is of the order Qt, and less
than 1. In addition, paralleling the analysis depicted in Fig. 2, we computed
distance estimates between the Btted probability density functions and the em-
pirical distribution. Five measures of distance were used (RMSE, squared er-
rors, goodness of Bt, absolute di2erences and maximum entropy) and resulted
in overwhelming support for the ARCH–Poisson–Gaussian model (these re-
sults are not reported, and are available on request). As raised in Hansen
(1992), there may be an issue with the LRT test if the parameters for the
jump intensity are not identiBed under the null. Hansen states that LRT is
applicable when the likelihood surface is locally quadratic. If there is a nui-
sance parameter, such as the jump intensity, it may violate this condition and
result in a Gat likelihood function. In our case, we have a mixture of distri-
butions satisfying required regularity conditions, and the likelihood function
is well-behaved. In order to check this, we implemented a version of the
idea proposed in Hansen’s paper, where he suggests using a grid approach.
In Fig. 3, we present the plot of the likelihood function for varying values
of the nuisance parameter. The numerical analysis and plot conBrms that the
function is quadratic, and also that it is not Gat.
A comparison of the pure-Gaussian model and the Poisson–Gaussian model

reveals a sharp drop in Gaussian volatility (v) when jumps are introduced
into a pure-Gaussian model, suggesting that jumps account for a substantial
component of volatility. For example, in Table 2, the Gaussian volatility drops
to one-third its prior level. The unconditional mean of the interest rate under
the discretized process is given by �+h�= �+q�=#, and computations using
the values in Table 2 arrive at a value of 0.0557 or 5.57%, once again close
to the mean value in Table 1.
In the Poisson–Gaussian model (Table 2) we Bnd that q=0:2162, which

under our Bernoulli model is simply the probability of a jump on any day.
Thus, we Bnd that jumps occur once every Bve days over our sample period.
In contrast, the ARCH–Poisson–Gaussian model provides a jump probability
of only 0.1564, evidence of the fact that stochastic volatility will account for
some of the fatness in the tails of the distribution in preference to jumps.
While it is clear that pure-Gaussian models do not capture the features of
the data, Poisson–Gaussian and ARCH–Gaussian models as well fall short of
the eDcacy of the ARCH–Poisson–Gaussian model. This suggests that future
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Fig. 2. The unconditional probability density function from the raw data and the plots from the
best-Btted models of each type is presented. The upper panel presents the full distribution over
the range (−0:03; 0:03), and leptokurtosis is evident. Only the ARCH-jump model is able to
match the histogram of the raw data. The lower panel zooms in on the same distribution where
dr lies in the interval (−0:01;+0:01), the closer plot clearly brings out the good Bt from the
ARCH-jump model compared to the other models.
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Fig. 3. Diagnostic results to assess the impact of the jump intensity parameter. As per Hansen
(1992), the likelihood function will be Gat in the nuisance parameter, in this case, the jump
intensity (lying between 0 and 1). To investigate this we plotted the likelihood function for
varying values of the nuisance parameter. The table accompanying the plot also shows, by means
of a likelihood-ratio (LR) stat, that the likelihood varies signiBcantly as we move away from
the optimal jump intensity. Our model closely parallels the one described in Hamilton (1994,
pp. 685–689) for mixture distributions, and derives its nice properties from the analysis there.

theoretical work be driven in the direction of a combined ARCH–Poisson–
Gaussian model. 10

10 While the models here retain the assumption of Markovian processes, they relax the as-
sumption of di2usions only, by admitting jumps. See Ait-Sahalia (1998) for a technique to
examine the presence of discontinuity in continuous-time Markov di2usions.
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We extend the basic Poisson–Gaussian model by allowing the jump mean
parameter to vary. It is likely that the jump size distribution is positively
skewed at low levels of r and negatively skewed at high levels of r. This
can be modeled by allowing the mean of the jump size to depend on the
level of r. For example, we may use the following speciBcation for the jump
mean: �t = $0+$1(�−rt). When $1¿ 0, we obtain sharp mean reversion of the
short rate through the jump component of the process. This type of reversion
may be driven more by information surprises or by an overreaction response,
and less by macroeconomic cycles. Another approach to the handling of this
model is via a regime-switching model of interest rates, as considered in Gray
(1996) and Ang and Bekaert (1998). While this paper is enhanced with jump
processes, the di2erential rates of mean reversion across regimes in Gray’s
paper, may be indicative of the jump phenomenon being explored in this
paper. Full consideration of this type of model is presented in Section 4.4.
Table 3 reports the results of the time-varying mean reverting model when

jumps inject mean reversion. The mean reversion in the process is now at-
tributable to both the drift term and the jump term. Since jump arrivals are
uncertain, the rate of mean reversion is now time-varying, and the drift in
the interest rate becomes stochastic. Ait-Sahalia (1996a,b) and Stanton (1997)
demonstrate that the drift term displays non-linear behavior, which may be
partially explained if jumps inject ‘extra’ mean reversion at interest rates far
away from the long run mean of the short rate. In fact these papers Bnd that
the mean reversion pull is far stronger when the interest rate lies outside the
range 4%–17%, which is consistent with the phenomenon suggested here. We
extend our empirical model to estimate the parameters ($0; $1). We estimated
the Poisson–Gaussian and ARCH–Poisson–Gaussian model with time-varying
jump means (Table 3). The T -statistic for $1 is signiBcant for the jump model
indicating that the mean of the jump process is time-varying. However, when
an ARCH e2ect is added to the model, the time-varying drift coeDcient be-
comes insigniBcant. The joint evidence of these two models appears to suggest
that di2erent speciBcations of the volatility and jump may result in a linear
drift model. We explore this issue in greater detail in a later subsection.

3.2. Diagnostics

It is instructive to examine the empirical moments over di2erent data in-
tervals (see Das and Sundaram, 1999). DeBne the time interval between ob-
servations in the data as T . From Section 2.3, the conditional variance of the
jump-di2usion process is:

�2 − �21 =
v2 + hE[J 2]

2k
(1− e−2kT ):
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Table 3
Estimation of the time varying jump means modela

Model Jump-di2usion ARCH-jump

Parameter Estimate T -statistic Estimate T -statistic

k 0.6336 1.64 0.5023 1.72
� 0.0233 1.04 0.0304 1.69
v 0.0173 24.04
a0 0.0001 17.65
a1 126.6914 13.90
q 0.2163 17.91 0.1567 13.14
$0 0.0018 1.46 0.0022 3.13
$1 0.0414 3.04 0.0202 1.44
� 0.0057 23.16 0.0045 16.03

Log-likelihood 14895.65 15198.82
Log-likelihood for constant � 14890.90 15197.67
P-value for &2(1)= 0.0021 0.1294

aWe present results for the estimation of the ARCH–Poisson–Gaussian model allowing for
time variation in the mean of the jump size. This enables assessment of the mean reversion
e2ects of the jump process. Estimation is carried out using maximum-likelihood incorporating
the transition density function in Eq. (3.3). The process estimated is speciBed in the following
equations:

Qr= k(�− r)Qt + vQz + J (�; �2)Q	(q);

v2t+Qt = a0 + a1[Qrt − E(Qrt |rt−Qt)]2;

�t = $0 + $1(�− rt):
T -statistics are presented below the parameter estimates. The &2 statistic is computed for twice
the di2erence between the mean reverting jump model and the constant mean jump model
(where $0 = � and $1 = 0). The degrees of freedom used is one, being the di2erence in the
number of parameters between the two models. The variable q, the probability of a jump in
the interval Qt is analogous to the continuous time parameter h for jump arrival intensity, by
the relation q ≈ hQt.

The skewness is

Skewness =
E(J − �1)3
(�2 − �21)3=2

=
2
√
2ke−kT (1 + ekT + e2kT )hE(J 3)

3(1 + ekT )(v2 + hE(J 2))
√
(1− e−2kT )(v2 + hE(J 2))

:
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If h=0, then the skewness is zero. The kurtosis of the process is:

Kurtosis =
E(J − �1)4
(�2 − �21)2

=
(e2kT−1)(3h2E(J 2)2+6hv2E(J 2)+3v4) + khE(J 4)(e2kT+1)

(e2kT−1)(v2+hE(J 2))2
:

When h=0, i.e. no jumps, the kurtosis is 3, which is the normal level. The
conditional kurtosis declines monotonically as T increases.
As a Brst check we compute the moments of the conditional distribution

of interest rates using the estimated parameters for the jump-di2usion model
in Table 2. Given the estimated values for the jump distribution (�; �2), we
can compute the following values: E(J )=�; E(J 2)=�2 + �2; E(J 3)=�3 +
3��2; and E(J 4)=�4 + 6�2�2 + 3�4. Since our data is daily, the horizon T is
1=262=3:846 2× 10−3, given the number of trading days in a year. In order
to make a rough comparison, the moments of the change in interest rates
(dr) in Table 1 will correspond to the computed moments at T =1=262.
In fact they correspond well. The values are (values from Table 1 are in
brackets): standard deviation=0:0029 (0.0029), skewness=0:3553 (0.3950),
and kurtosis=13:36 (19.86).
To further assess the ability of the di2erent models to match the features

of the data, we carry out some diagnostics on the models using the param-
eter estimates of Table 2. What we shall see is that the ARCH-jump model
provides a very good Bt to the data, whereas the other models are found
lacking. We undertake this analysis in two ways. First, a simple comparison
of log-likelihoods reveals that the ARCH-jump-di2usion model vastly outper-
forms the other three nested models, i.e. the pure-di2usion, pure-jump and
ARCH models. Second, we assess how well the probability distributions of
the estimated models match that of the data.
In order to do so, we compare the unconditional probability density func-

tions of the changes in interest rates for our estimated models with that of the
unconditional distribution obtained from the data. Fig. 2 presents the results
of this analysis. In all the Bgures, the density from raw data (dashed line) is
drawn using a smoothed histogram and displays extremely high peakedness
and fat tails. The shorter, smoother distribution (solid line) is based on the
theoretically estimated model. Fig. 2 shows that the best-Bt Gaussian model is
substantially di2erent from that of the data which is far more leptokurtic. The
jump model improves the Bt somewhat, but is still quite di2erent, as is also
the case for the ARCH model. There is insuDcient leptokurtosis generated in
either model. However, the ARCH-jump model in Fig. 2 shows a very good
Bt, pointing to the fact that both jumps and conditional heteroskedasticity are
predicated in the search for the best speciBcation.
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Fig. 4. The plot of the term structure of kurtosis from the jump-di2usion interest rate model in
the paper. As described in Section 3.3, the kurtosis of future interest rates is computed using
the data intervaled at various maturities leading to a depiction of the ‘term-structure’ of the
fourth moment. The kurtosis here pertains to the changes in interest rates, and is therefore very
high at short maturities, and then decays rapidly to the normal asymptote of 3.

3.3. Term structure of kurtosis

There is substantial evidence of kurtosis in the data, as seen from Table 1
and Fig. 2. The di2erent models imply varied behavior of kurtosis as we vary
the time interval. We may understand this behavior well by examining the
term structure of kurtosis.
We use the higher moments to understand the di2erences between the

di2usion-based class of models and the jump-di2usion class. As the time
interval for sampling the process, i.e. T varies, the conditional skewness and
kurtosis also varies. For a stochastic volatility di2usion model, skewness and
kurtosis increase with sampling interval for a while and then drop back to
Gaussian levels when the sampling interval becomes long. In the case of a
jump-di2usion model skewness and kurtosis start at a very high level and
then decline monotonically to asymptote with Gaussian levels. These issues
are discussed in detail in Das and Sundaram (1999).
The plot in Fig. 4 depicts the kurtosis for interest rate changes where the

time interval between observations varies from 1 day to 260 days. The plot
has been generated by intervaling the data for n days, where n=1; 2; : : : ; 260.
When n¿ 1, the data set yields more than one intervaled time series; for
example, when n=2, we have two series, each 2 days apart. The reported
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Fig. 5. The plot of the term-structure of kurtosis from the three estimated models in
the paper: (i) the pure Gaussian model, (ii) the Poisson–Gaussian model, and (iii) the
ARCH–Poisson–Gaussian model. The plot for each model was generated using 500 sample-path
simulations, and then computing the kurtosis for each maturity from 500 observations each day.
We plot the kurtosis of the interest rate level (versus that of changes in the interest rate).

kurtosis is the average of the kurtosis of each series. This eliminates to some
extent any day-of-week e2ects that might a2ect the graph. The monotonic
decline in kurtosis is unmistakable, and conBrms two aspects of term-structure
models already identiBed previously in the empirical section: (i) that jumps
exist, since the declining kurtosis plot would not arise from a pure-di2usion
model alone, unless it were mixed with a jump process, and (ii) in the case
of a mixed jump-di2usion model, a declining plot would only arise if jumps
constituted a substantial component of the variation in the interest rate sample
path. This, as we have seen from the results in Table 2, is certainly the case.
Fig. 5 explores the kurtosis of r for horizons out to 5 years. The term struc-

ture of kurtosis was generated using a simulation methodology for the three
processes of interest: (i) the pure Gaussian model, (ii) the Poisson–Gaussian
model and (iii) the ARCH–Poisson–Gaussian model. For each model I gener-
ated 500 sample paths, on a daily frequency, using the estimated parameters
from Table 2. From these paths the kurtosis is computed for horizons from
1 day to 1250 trading days. As expected the pure-Gaussian model should evi-
dence no excess kurtosis in theory, and the graph is almost Gat. The Poisson–
Gaussian model will theoretically show a monotonically declining kurtosis,
and this is also seen. Finally, an ARCH–Poisson–Gaussian model is capable
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Table 4
Assessment of the discrete estimatora

Statistic Parameter

k � v � � q

True parameter 0.8542 0.0330 0.0173 0.0004 0.0058 0.2162
Estimated parameter 0.9589 0.0342 0.0173 0.0004 0.0058 0.2162
Standard error 0.2587 0.0017 0.0004 0.0003 0.0002 0.0126
T -statistic 0.4048 0.1035 0.0215 0.0114 0.0563 0.0025
Minimum 0.3760 −0:0173 0.0162 −0:0004 0.0052 0.1860
Maximum 1.8828 0.0699 0.0187 0.0013 0.0065 0.2538

aThis table presents results for a simulation evaluation of the estimator. Using the true values
of the parameters for the jump-di2usion model, we simulated 500 sample paths of length 2609
daily observations each. For each sample path we undertook discrete MLE estimation. The
following table presents summary statistics of the 500 simulated estimations. We computed the
mean and standard error for the parameters estimated, and computed t-statistics for the di2erence
in the simulated parameter estimate versus the true parameter. None of these t-statistics were
signiBcant.

of demonstrating myriad behavior, since the jump portion results in declining
kurtosis, while the ARCH portion may cause an increase in kurtosis, with an
eventual decline. Also, the overall levels of kurtosis will be higher since the
tails are fatter in the ARCH–Poisson–Gaussian model. All these aspects are
conBrmed in the graph, complementing the analysis in Fig. 2. Also note that
the term structure of kurtosis exhibits the same snake-like behavior seen in
the term structure of interest rate volatility in the paper by Piazzesi (1998).

3.4. Assessment of estimation accuracy

A simulation exercise was undertaken to determine how well the estimator
performed. The parameters for the Poisson–Gaussian model in Table 2 were
used to generate 500 sample paths from the jump-di2usion model beginning
with an initial interest rate of 7.1%, which is exactly as it was in the sample.
Each sample path was for a daily time interval, and contained 2609 observa-
tions. For each generated sample path, estimation was undertaken by discrete
maximum-likelihood. The estimates are provided in Table 4. We report the
true parameter values, along with those from the estimation. The small stan-
dard errors suggest that the estimation procedure is very accurate. 11

11 Other simulation studies that have been undertaken are those by Chapman and Pearson
(2000) and Pritsker (1998).
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4. Applications

In this section we shall employ the model to examine various phenomena
in the bond markets via the lens of the model. Our jump model is facile in
permitting many di2erent analyses. Jumps may be used to Bnd day-of-week
e2ects. We undertake an extensive analysis of Fed activity, and the model
is found to account for some of the non-linearity of the drift term when
the short rate is modeled purely as a di2usion process. We use jumps as a
way of testing for bond market overreaction, and then extend the model to
regime-shifting in the state variables. We discuss these applications one by
one.

4.1. Day of the week e9ects

In this section we examine whether jumps are more likely to occur on
speciBc days of the week, by introducing a modiBcation to make the arrival
intensity of jumps depend on the day of the week. There are several reasons
which make jumps more likely on some days of the week rather than others.
For example, jumps would be more likely on Mondays since the release of
pent up information over the weekend may drive up the possibility of a large
change in interest rates. Likewise, option expiry may inject jumps into the
behavior of interest rates, and this would be more likely on Wednesdays and
Thursdays. Jumps may also occur on Fridays when last minute trading may
create excess volatility.
By using dummy variables for each day of the week, we assume a linear

model for the arrival intensity of jumps in the short rate of interest:

qt = '0 + '1d1 + '2d2 + '3d3 + '4d4;

where '0 is the arrival probability of a jump if the day is Friday, and 'i; i=
1–4 is the incremental arrival intensity of jumps over Friday’s level when the
day of the week is Monday, Tuesday, Wednesday and Thursday, respectively.
di; i=1–4 are dummy data variables indicating the day of the week for
Monday, Tuesday, Wednesday and Thursday, respectively. Estimation was
conducted over the two models containing jumps, i.e. (i) the jump-di2usion
model and (ii) the ARCH-jump-di2usion model. The results of the estimation
are presented in Table 5.
Intuitive results emanate from this analysis. There is little evidence of

skewness (� � 0), but kurtosis exists (�¿ 0). The jump tends to be of the
order of 50 basis points. The likelihood of jumps is highest on Fridays, but
jumps are also likely on Wednesdays and Thursdays, when information from
options expiry is released. This lends credence to the proposition that jumps
are caused by large bursts of information being released into the market.
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Table 5
Jump estimation with day of the week e2ectsa

Parameter Estimate T -statistic

k 0.7960 2.09
� 0.0259 1.60
v 0.0171 24.38
'0 0.1222 6.17
'1 0.0413 1.34
'2 0.0147 0.54
'3 0.2523 6.85
'4 0.1777 5.46
� 0.0004 1.52
� 0.0057 24.94

Log-likelihood 14932.74
aThe table presents results of the estimation of a jump-di2usion model when the jump arrival

intensity is assumed to be a2ected by the day of the week. The jump intensity follows a linear
model

qt = '0 + '1d1 + '2d2 + '3d3 + '4d4;

where di; i=1–4 are dummy variables for Monday, Tuesday, Wednesday and Thursday, re-
spectively.

4.2. Federal reserve activity

Jumps may arise from intervention by the Federal Reserve in the bond
markets. The Federal Open Market Committee (FOMC) meets periodically,
and informs their open market desk of the range they wish to establish for
the Fed Funds rate. Short rates tend to track this rate rather closely. It is
possible that these meetings form an important information event. If so, a
model that accounts for this will prove to be superior for traders. In this
section, we enhance our jump model by making the jump intensity depend
on the FOMC meeting. By examining the impact of the meeting on the jump
probability we can ascertain whether the meeting is a signiBcant information
event.
This section complements the work of Hamilton (1996), Hamilton and

Jorda (1977) and Demiralp and Jorda (1999), as well as the earlier work
of Balduzzi et al. (1997, 1998a, b). These papers use various econometric
speciBcations to model the impact of Federal Reserve activity on the yield
curve. In this paper, the speciBc modelling approach is to use a model with
jumps, as is also undertaken in the work of Piazzesi (1998, 1999).
The FOMC meets eight times each year. There are two types of meetings

of the FOMC: one-day meetings and two-day meetings. There are usually 2
two-day meetings and 6 one-day meetings every year. Our sample over the
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ten-year period consists of 58 one-day meetings and 22 two-day meetings. In
total there were 80 meetings, i.e. one every 6–7 weeks. The Brst and fourth
meetings every calendar year are two-day events. They begin at 2:30 pm on
the Brst day, continuing at 9:00 am the following day. The one-day meetings
always begin at 9:00 am. All meetings begin on Tuesdays.
At these meetings, the FOMC examines information about the economy

and decides on whether to undertake open market operations in the dollar or
other currencies. They also determine the level of short-term rates. The usual
issues relating to the economic outlook are considered: consumer spending,
non-farm payroll, industrial production, retail sales, real business Bxed invest-
ment, nominal deBcit, consumer price inGation, currency rates, money supply
(M2, M3), and housing activity. At the two-day meetings additional policy
directives are issued. In particular, these relate to domestic open market op-
erations, authorization of foreign bank limits for foreign currency operations,
foreign currency directives, and procedural instructions with reference to for-
eign currency operations. We Bnd that the two-day meetings appear to have
a greater information impact than one-day meetings.
In addition to foreign currency directives, the Fed also undertakes other

distinct activity at the two-day meetings. By (the Humphrey–Hawkins) law,
the Fed must report to Congress twice a year on monetary policy, i.e. in
February and July. The two-day meetings are the setting for the discussions on
monetary policy as well. The FOMC thus votes on the range of growth rates
of M2, M3 and the debt levels it expects to see. Thus, two-day meetings tend
to evidence more forward-looking discussions than usually occur at one-day
meetings. However, these votes are not announced immediately, and only get
reported in minutes two weeks after the meeting. Thus, it is not clear that
this activity of the Fed in any way forms an information event. However, we
do Bnd that the two-day meetings seem to impact parameter estimation, in
contrast to the one-day meetings.
To begin, we carry out a few simple regressions to ascertain if the volatil-

ity of interest rates is in any way related to information released at FOMC
meetings. This is done by regressing the squared change in interest rates
on interest rate level and a dummy variable for the FOMC meeting. The
regression equation is as follows:

[rt+1 − rt]2 = a+ brt + cft+1 + et+1;

where ft is the dummy variable indicating the FOMC meeting. It may take
four di2erent forms as described in Table 6 below. Since some of the meetings
last 2 days, combinations are possible. First, we assign a dummy variable
which is the Brst day of all meetings. As can be seen, this has little impact
on volatility, and hence provides evidence of no unexpected information.
A similar result holds when we examine only one day meetings. However,
when we set the dummy variable to be the Brst day of a two-day meeting,
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Table 6
FOMC meeting impact: linear regressionsa

Dummy variable (ft) a b c R2

1st day all meetings 0.0373 0.0078 0.0441 0.0019
1.55 1.98 0.99

1st day, 1 day meetings 0.0388 0.0078 −0:0120 0.0016
1.61 1.99 −0:27

1st day, 2 day meetings 0.0377 0.0075 0.3178 0.0070
1.57 1.91 3.79

2nd day, 1 day meetings 0.0381 0.0078 0.0723 0.0018
1.58 1.98 0.86

aWe examine via simple regressions whether the FOMC meeting results in a information
surprise. The regression is

[rt+1 − rt]2 = a+ brt + cft+1 + et+1;

where ft is the dummy variable for the FOMC meeting. T -statistics are presented below the
parameter estimates.

the coeDcient comes in strongly positive. This indicates that there may be a
signiBcant information release on the Brst day of the 2-day FOMC meetings.
We also examined whether the information impact occurred on the second day
of the two-day meeting and found little e2ect. Thus, if there is an information
e2ect, it occurs on the Brst day of the two-day meeting. Table 6 summarizes
the regression results.
This informal regression proxies for the possible impact of the FOMC

meeting on interest rate changes. We now turn to the examination of whether
the probability of a jump is linked in any way to the FOMC meetings. We
achieve this using a modiBcation of our Poisson–Gaussian estimation model
depicted in Eq. (3.3). In the estimation Eq. (3.3), we specify that the arrival
probability of a jump, denoted by the parameter q, be a function of the Fed
meetings (ft). It is possible that jumps in the interest rate are caused by Fed
actions, and then the information on meetings would determine the probability
of a jump taking place. Thus we specify

qt = '0 + '1f1t + '2f2t :

The equation above accommodates a base level of jump probability '0, aug-
mented by Fed dependent attributes, '1; '2, for one-day and two-day FOMC
meetings, respectively. For the ARCH-di2usion model, we investigate whether
the Fed meetings have an impact on conditional volatility by specifying the
ARCH equation with an additional coeDcients a1 day; a2 day on the Fed event,
i.e. the variance will be a0 + a1-2t + a1 dayf1t + a2 dayf2t . First, we examine the
one-day meetings only (results not reported). The one-day meetings appear
to have very little impact on the usual levels of jump probability, as seen in
the jump-di2usion model. The parameter '1 is not signiBcant. And in fact,
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Table 7
FOMC meeting impact: one-day and two-day meetingsa

Model ARCH-di2usion Jump-di2usion

Parameter Estimate T -statistic Estimate T -statistic

k 1.2677 4.63 0.8660 2.26
� 0.0973 9.72 0.0340 2.64
v 0.0173 24.04
a0 0.0008 65.66
a1 232.9507 29.82
a1day −0:0003 −4:09
a2day 0.0009 1.81
'0 0.2114 17.39
'1day 0.0832 1.21
'2day 0.3422 2.11
� 0.0003 1.34
� 0.0057 24.48

Log-likelihood 14513.39 14894.69
aWe examine via ARCH and jump models whether the FOMC meeting results in a informa-

tion surprise. The jump model is extended by qt = '0 +'1dayf1t +'2dayf2t where f1t ; f2t are the
dummy variables for the FOMC meetings. The ARCH model is written as a0+a1-t+a1dayf1t+
a2dayf2t .

the ARCH model evidences a decrease in volatility when a one-day FOMC
meeting takes place. However, when we used the two-day meetings only, the
information impact of this dummy variable proves to be signiBcant, i.e. it
increases the probability of a jump. This probability more than doubles in
magnitude. Finally, we put both one-day and two-day meetings together in
one model and ascertain the results in Table 7. The two-day meetings result
in a sharp increase in the possibility of a jump. The one-day meetings in
fact seem to predicate a reduction in conditional volatility. One might spec-
ulate that the two-day meetings do result in information surprises, whereas
the one-day meetings conBrm the market’s forecasts. Recent work by Piazzesi
(1998, 1999) supports these results, with the Bnding that jump-di2usion mod-
els may be used to capture target-rate moves on FOMC meeting days, via the
use of target rates as an observable factor in a three-latent-factor framework.
Piazzesi also Bnds that yield volatility rises on FOMC meeting days.

4.3. The pervasiveness of the non-linear drift

In recent papers, Ait-Sahalia (1996a, b), Conley et al. (1997), Stanton
(1997) have found the drift of the short rate to be non-linear in the lagged
interest rate. Extending this speciBcation by introducing jumps may render
the drift linear in interest rates. We explore this aspect in this section. More
recent papers have addressed this issue as well, see for example, Bodoukh
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Table 8
Model estimation with non-linear drifta

Model Pure-di2usion Jump-di2usion ARCH-jump

Parameter Estimate T -statistic Estimate T -statistic Estimate T -statistic

k −81:6448 −4:67 −25:6544 −2:08 −20:0436 −2:09
� 0.0546 36.86 0.0580 18.88 0.0554 23.33
$2 −475:9293 −4:90 −142:9902 −2:02 −115:6292 −2:10
$3 0.0769 4.57 0.0264 2.38 0.0189 2.20
v 0.0465 108.47 0.0173 23.96
a0 0.0001 17.65
a1 127.0719 13.95
q= h dt 0.2162 17.90 0.1553 13.07
� 0.0004 1.43 0.0017 5.69
� 0.0058 24.46 0.0045 16.55

Log-likelihood 13944.11 14894.29 15200.17

aThis table presents the results of the estimation model where the drift term is non-linear.
The model speciBcation is as follows:

Qr= [k(�− r) + $2r2 + $3=r]Qt + vQz + J (�; �2)Q	(q);

v2t+Qt = a0 + a1[Qrt − E(Qrt |rt−Qt)]2:

et al. (1998), Ang and Bekaert (1998), Ahn and Gao (1999), and Du2ee
(1999).
We estimate four models allowing for non-linear drift terms: (i) a pure-

di2usion model, (ii) a jump-di2usion model, (iii) an ARCH-di2usion model
and (iv) an ARCH-jump-di2usion model. The ARCH-di2usion model failed
to converge. The general econometric speciBcation is as follows:

Qrt =[k(�− rt) + $2r2t + $3=rt]Qt + vtQzt + J (�; �2)Q	(h);
vt+Qt = a0 + a1[rt − E(rt |rt−Qt)]

2:

The critical parameters are ($2; $3). They examine whether the drift is a func-
tion of squared interest rates or inversely related to interest rate levels. If any
of these parameters is signiBcantly di2erent from zero, it means that the drift
term is non-linear. The results are presented in Table 8. An extended spec-
iBcation is also used and is presented in Table 9. Fig. 6 o2ers a graphical
exposition too. It is evident from the table and Bgure that the introduction
of the jump does diminish the size of the non-linear coeDcients ($2; $3).
There is also a reduction in the level of signiBcance. In fact the non-linearity
parameters are signiBcant at the 95% level but not at the 99% level once the
jump model is introduced. Hence, it is possible that the jumps do make the
model linear in drift.
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Table 9
Estimation of the time varying jump means model with non-linear drifta

Model Jump-di2usion

Parameter Estimate T -statistic

k −26:9835 −2:18
� 0.0577 20.27
$2 −149:6366 −2:11
$3 0.0272 2.45
v 0.0173 23.98
q 0.2163 17.90
$0 0.0004 1.23
$1 0.0419 3.07
� 0.0057 23.15

Log-likelihood 14899.13
aWe present results for the estimation of the Poisson–Gaussian model allowing for time

variation in the mean of the jump size when the drift term is non-linear. This enables assessment
of the mean reversion e2ects of the jump process, and its impact on the drift. Estimation is
carried out using maximum-likelihood incorporating the transition density function in Eq. (3.3).
The process estimated is speciBed in the following equations:

Qr= [k(�− r) + $2r2 + $3=r]Qt + vQz + J (�; �2)Q	(q);

�t = $0 + $1(�− rt):
T -statistics are presented below the parameter estimates. The variable q, the probability of
a jump in the interval Qt is analogous to the continuous time parameter h for jump arrival
intensity, by the relation q ≈ hQt.

4.4. Overreaction in the bond markets

Examining the time series of the Fed funds rate shows that the market
often overreacts, i.e. large moves in the interest rate are followed by speedy
reversals. This was pointed out in the paper by Hamilton (1996), where he
undertook a set of tests to examine if the Fed funds rate was a martingale. 12

He found that the martingale property failed to hold. The jump model in this
paper o2ers an alternative approach to examining this issue. 13 The existence
of overreaction would mean that the direction of the interest rate would be
predictable after large moves. If overreaction exists, then the probability of a

12 Hamilton also regressed the changes in interest rates on a constant and a dummy for the
two largest changes in interest rates (p. 32), Bnding an R2 of 0.41 (for the period 1984–1990).
He concluded that outliers were an important aspect of the data and should be modelled. This
paper o2ers jump-di2usion models as the mechanism by which to account for this distributional
property. Replicating his regression for the period 1988–1997 delivers an R2 value of only 0.07.
Thus the impact of outliers is less in the sample period used here.
13 I am grateful to David Bates for suggestions that led to the ideas here.
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Fig. 6. The drift terms from the Gaussian model and the jump-di2usion models estimated in
Table 10. A reduction in the non-linearity of the drift is evidenced.

jump in a direction opposite to that of the previous large movement in rates
would outweigh the probability of a jump in the same direction as the prior
move. To test this, we modify the jump model by making the jump intensity
a function of the product of the current and prior change in interest rates.
Thus,

qt = q0 + q1 max[0; (rt − rt−Qt)(rt−Qt − rt−2Qt)]

+q2 min[0; (rt − rt−Qt)(rt−Qt − rt−2Qt)]

= q0 + q1R+
t + q2R−

t ;

where the variables [R+
t =(rt−rt−Qt)(rt−Qt−rt−2Qt); R−

t =(rt−rt−Qt)(rt−Qt−
rt−2Qt)] capture the asymmetry and magnitude of continuations and reversals
in the data. R+

t ¿ 0 is the continuation coeDcient, and R−
t ¡ 0 is the reversal

component. The results from the estimation of this model are provided in
Table 10. The coeDcients q1, q2 are both signiBcant indicating that they
impact jump intensity strongly. The average values of R+ and R− are 0.0145
and −0:039, respectively. The average jump intensity q in this model is 0.3.
Of this, reversals account for approximately 75% of the jump intensity. Thus,
there is strong evidence in favor of market overreaction. This also indicates
that only 25% of the jumps actually persist, and result in a permanent shift
in the level of interest rates.
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Table 10
Jump intensity as a function of reversals and continuationsa

Parameter k � v q0 q1 q2 � �

Estimate 0.5375 0.0359 0.0176 0.0034 4.7879 −5:8003 0.0001 0.0063
T -statistic 1.52 1.99 29.98 1.12 61.87 −105:66 0.31 42.35

Log-likelihood 15496.07
aWe present results for the estimation of the Poisson–Gaussian model allowing for time

variation in the jump intensity as a function of continuations and reversals in the time series.
Estimation is carried out using maximum-likelihood incorporating the transition density function
in Eq. (3.3). The process estimated is speciBed in the following equations:

Qr= k(�− r)Qt + vQz + J (�; �2)Q	(qt);

qt = q0 + q1R+t + q2R−t :

T -statistics are presented below the parameter estimates.

This Bnding leads to an extension of the model to account for the di-
chotomous behavior of the Fed funds rate. As pointed out in Balduzzi et
al. (1998a), the Fed funds rate has two components: persistent changes in
the target rate, and frequent departures from the target rate, which rapidly
correct to the target. The former may be modeled as regime shifts in the
central tendency of the short rate of interest, as in the paper by Balduzzi et
al. (1997). The latter feature comprises bond market overreaction. We now
develop an extension of our model to accommodate regime changes in the
target rate. This was modeled by Gray (1996), and Naik and Lee (1993)
and the speciBcation here undertakes a similar exercise with shifting regimes
across the Poisson–Gaussian processes. We expand our deBnition of the short
rate process as follows:

Qrt = k(�t − rt)Qt + vtQz + JtQ	(ht);

States[�t; vt ; ht ; Jt]=

{
�1; v1; h1; J1]

�2; v2; h2; J2]
;

Transition matrix=

(
'1 1− '1

1− '2 '2

)
:

In addition to the usual parameters deBned in Eq. (2.1), we provide for two
regimes for the mean rate of interest �t , and for Gaussian volatility vt . The
mean value �t takes two values, {�1; �2}, and volatility vt also takes two
values {v1; v2}. Likewise, the jump parameters, ht and Jt also switch between
the two states. Changes from one regime to the other are generated via the
transition matrix where '1 denotes the probability of remaining in state 1;
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likewise, '2 denotes the probability of remaining in state 2. As discussed ear-
lier, market overreaction causes temporary deviations from the target through
the Poisson process d	. This combination of regime switching and jumps
captures three features. First, regime changes introduce persistent changes in
target rates. Second, short term deviations from targets are embedded in the
jump process d	. Thus, we capture both features detailed in Balduzzi et al.
(1998a). Finally, regime switching in volatility provides for stochastic volatil-
ity with persistence, such as in the model of Naik and Lee (1993). The jump
size Jt is assumed to be distributed normally as follows: Jt ∼ N[0; �2t ].
In order to estimate this system, we extend the discrete-time estimation

model to account for regime changes. The transition density in each state is

f[r(s)|r(t)] = qt exp
(−(r(s)− r(t)− k(�t − r(t))Qt)2

2(v2t Qt + �2t )

)

× 1√
2	(v2t Qt + �2t )

+ (1− qt)

×exp
(−(r(s)− r(t)− k(�t − r(t))Qt)2

2v2t Qt

)
1√

2	v2t Qt

(4.1)

which is the mixture density for a two-term version of the Poisson–Gaussian
transition density, with qt = htQt. Here s¿ t, i.e. time s is the observa-
tion after time t. We implement Hamilton’s method for estimation of the
regime-switching model. To begin with, we write the Markov probabilities in
logit form as follows:

'i=
exp($i)

1 + exp($i)
; i=1; 2: (4.2)

The time-varying ex-ante probabilities for states 1 and 2, [p1(s); p2(s)] are
speciBed in terms of the ex-post probabilities from the previous period, de-
noted [p̂1(t); p̂2(t)], and the Markov chain parameters ('1; '2):

p1(s)= '1p̂1(t) + (1− '2)p̂2(t);

p2(s)=1− p1(s):

The mixture distribution is then given by

f[r(s)]=p1(s)f[r(s)|r(t); i=1] + p2(s)f[r(s)|r(t); i=2]:
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Table 11
Modeling the short rate with jumps and regime-switchinga

Parameter Estimate T -statistic

k 0.4930 1.54
�1 0.1139 0.85
�2 0.0142 0.46
/1

√
# 0.0047 15.90

/2
√
# 0.0005 8.83

q1 0.0885 1.89
q2 0.6524 9.51
�1 0.0117 3.83
�2 0.0019 19.47
$1 1.2411 7.42
$2 1.5559 10.92

Log-likelihood 12725.22
aWe present results for the estimation of the Poisson–Gaussian model allowing for changes

in regimes. The system switches between two regimes, i=1; 2, and in each regime follows a
jump-di2usion process, estimated via Eq. (4.1). In each regime, the parameters for the mean
(�i) of the process, di2usion volatility (/i), jump frequency (qi) and size (�i) are varied.
The Markov chain is deBned by the switching probabilites in Eq. (4.2), with parameters $i .
Estimation is undertaken using maximum-likelihood.

Updating of the ex-post probabilities follows Bayes’ Theorem:

p̂1(s)=
p1(s)f[r(s)|r(t); i=1]

f[r(s)]
;

p̂2(s)=
p2(s)f[r(s)|r(t); i=2]

f[r(s)]
:

Parameter estimation obtains from a maximization of the log-likelihood func-
tion

{k; �1; �2; /1; /2; q1; q2; �1; �2; $1; $2}∗=argmax
T∑
t=1

log[f(rt)]:

Maximum likelihood estimation results are provided in Table 11.
The results from the model show that there are two regimes with high and

low interest rate levels. The behavior of interest rate volatility is quite di2er-
ent in the two regimes. When interest rates are high (regime 1), volatility is
higher, reGecting the level-dependence of interest rate volatility. Deviations
from targets are infrequent but large, on the order of more than 100 basis
points. Clearly at high rates, a substantial portion of the changes in interest
rates comes from discontinuous moves in rates. When interest rates are low,
volatility is also low, and while there are frequent jumps from target devi-
ations, these are of small magnitude. Overall, in the low short rate regime,
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interest rates evidence much smoother behavior. For the sample period con-
sidered, simple calculations show that a majority of the time is spent in the
low rate regime. We conclude that conditioning on the interest rate regime
is important in determining the nature of the jump model used.

5. Concluding comments

This paper explores surprise elements in the Bxed-income markets using
Fed Funds data. We conclude that jumps are an essential component of in-
terest rate models. Several examples of questions that may be explored using
jump processes are provided in this paper.
The evidence in favor of jump models of the Fed Funds rate appears

overwhelming. First, enhancement of the di2usion model with jumps resulted
in a signiBcant improvement in statistical Bt, supporting mixed models with
ARCH and jump e2ects. Second, the jump model lends itself easily to ex-
tended analysis of the impact of information variables, such as the meetings
of the Fed Open Market Committee. We found evidence that the two-day
meetings of the Fed resulted in information surprises to the market. Third,
we were able to use the jump model to examine day-of-week e2ects, and
found these to be quite signiBcant. Wednesdays and Thursdays evidence a
much higher likelihood of jumps than other days of the week, since option
expiry e2ects may result in sharp market movements. Fourth, recent research
has found that the drift term in the stochastic process for interest rates ap-
pears to be non-linear. The addition of a jump process diminishes the extent
of non-linearity. Fifth, a study of the term-structure properties of the moments
suggests the need for jump processes. Sixth, our model detected overreaction
in the bond markets, and suggests a failure of the martingale hypothesis for
Fed funds rates. Finally, the jump model lends itself to a simple extension
in which regime switching is modeled; the empirical results suggest that the
short rate evidences dichotomous behavior, discontinuous in one regime, and
smooth in the other.
It is worthwhile suggesting further avenues of research, which would ben-

eBt from the framework of this paper. First, an extensive examination of
which type of information surprise causes jumps is an open question. Locat-
ing jumps in the data and associating them with market events is one way
of addressing this question (see Balduzzi et al. (1998c), Green (1998) and
Piazzesi (1999) for recent work in this direction). Second, a question of im-
portance is whether Fed actions are endogenous or exogenous to the interest
rate markets. This aspect is a strong determinant in the choice of the mod-
eling framework (see Balduzzi et al., 1997). Third, rather than model jumps
in the level of the interest rate, modeling jumps in the mean and volatility
of the short rate is an alternate approach (see Naik and Lee, 1993). Fourth,



60 S.R. Das / Journal of Econometrics 106 (2002) 27–65

Heston 1995 employs a gamma process as an alternative to the Poisson–
Gaussian framework. A comparison of this model with the one in this paper
would be insightful. Fifth, this work may be related to the work of Brandt
and Santa-Clara (1998), who develop a method of estimation using simulated
transition density functions. Their work relates to di2usions only, and hence
may be extended to jump-di2usions and then conBrmed using the closed-form
results of this paper. Finally, examining very short frequency intra-day data
may reveal better the possible causes of jumps in bond yields. We leave this
rich menu of research projects for future work.

Acknowledgements

Many thanks to the two referees for comments and suggestions that helped
improve, sharpen and refocus the current version of the paper. I am especially
grateful for the comments of the Associate Editor, which enabled many im-
provements to this work. I also received many useful comments from Yacine
Ait-Sahalia, David Backus, David Bates, Rob Bliss, Bent Christensen, Greg
Du2ee, Edwin Elton, Nick Firoozye, Martin Gruber, Steve Heston, Ravi
Jagannathan, Apoorva Koticha, N.R. Prabhala, Ken Singleton, Marti
Subrahmanyam, Rangarajan Sundaram, Walter Torous, Raman Uppal and
Robert Whitelaw. Many thanks to Pierluigi Balduzzi, George Chacko and Sil-
verio Foresi for their innumerable suggestions on this article. Stephen Lynagh
provided capable research assistance. A major part of this work was under-
taken at Harvard Business School, and the University of California, Berkeley.
The previous incarnation of this paper was titled ‘Poisson–Gaussian Processes
and the Bond Markets’ (1998). Any errors are mine.

Appendix: Deriving moments from the characteristic function

To obtain the moments, di2erentiate the characteristic function successively
with respect to s. Let �n denote the nth moment, and Fn be the nth derivative
of F with respect to s, i.e. Fn= @F=@s. Then �n=1=inFn(s=0). Likewise let
An; Bn be the nth derivatives of A and B, respectively, with respect to s. First
let us compute the An. Substituting for B in A; we can write A as

A(T ; s)=
∫ (

k�ise−kT − 1
2
v2s2e−2kT + hE

[
eJ ise

−kT − 1
])

dT:

Then,

dA
ds

=
∫

[k�ie−kT − v2se−2kT + hie−kTE[JeJ ise
−kT

]] dT;
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d2A
ds2

=
∫

[− v2e−2kT − he−2kTE[J 2eJ ise
−kT

]] dT;

d3A
ds3

=
∫

[− ihe−3kTE[J 3eJ ise
−kT

]] dT;

d4A
ds4

=
∫

[− ihe−4kTE[J 4eJ ise
−kT

]] dT

which makes use of the fact that the integral is bounded and the expectation
E(:) is also bounded. We can also compute the derivatives of A evaluated at
s=0, which are:

(
dA
ds

)
s=0

=
∫

i[k�e−kT + he−kTE[J ]] dT

= i
(
−�e−kT − h

k
E[J ]e−kT

)
+ c1:

Using the fact that A(T =0; s)=0, we get that c1 = � + (h=k)E[J ], which
when substituted back gives us:

(
dA
ds

)
s=0

= i
((
�+

h
k
E[J ]

)
(1− e−kT )

)
:

In like fashion, we can obtain the other derivatives evaluated at s=0:

(
d2A
ds2

)
s=0

=− v2 + hE[J 2]
2k

(1− e−2kT );

(
d3A
ds3

)
s=0

=− ihE[J 3]
(
1− e−3kT

3k

)
;

(
d4A
ds4

)
s=0

= hE[J 4]
(
1− e−4kT

4k

)

and the derivatives of B with respect to s:

dB
ds

= ie−kT ;
d2B
ds2

=
d3B
ds3

=
d4B
ds4

= 0:
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We can write the intermediate value(
dA
ds

+ r
dB
ds

)
s=0

= i
((
�+

hE[J ]
k

)(
1− e−kT

)
+ re−kT

)
= i�1:

We can now evaluate the moments for the distribution of the interest rate
r which are given by �n=1=inFn(s=0). Using these results, allows lengthy
and tedious algebraic manipulation which gives us the moments presented in
Section 2.3.
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