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Abstract—The market focuses on the Cboe Volatility Index
(VIX) or Fear Index, an option-implied forecast of 30 calendar-
day realized volatility of S&P 500 returns derived from a cross-
section of vanilla options. The VIX is determined using a formula
that derives the market’s expectation of realized one-month
standard deviation of returns backed out from the near-term call
and put options on the S&P 500 index. Market participants such
as traders, asset managers, and risk managers, keenly watch the
VIX index, and are interested in achieving accurate intelligent
probabilistic forecasts of the VIX, and also of the realized
volatility of individual stocks. These volatility forecasts are useful
to options traders placing bets on the future volatility of indi-
vidual stocks. This paper examines models that only utilize past
values of the VIX and document improvements in forecasting the
VIX (and its volatility) over different horizons. The approaches
include long short-term memory (LSTM) models, simple moving
average methods, data-driven neuro volatility techniques, and
industry models like Prophet. Uniquely, we propose a novel VIX
price interval forecasting model. The driving idea, unlike the
existing VIX price forecasting models, is that the proposed novel
LSTM interval forecasting method trains two LSTMs to obtain
price forecasts and the forecast error volatility forecasts. All the
proposed forecasting methods also avoid model identification and
estimation issues, especially for a series like the VIX which is
non-stationary. We compare models and document which ones
perform best for varied horizons.

Index Terms—Long memory, non-stationarity, LSTM, Prophet,
Recurrent Neural networks, VIX, forecasts, Cboe

I. INTRODUCTION

In this paper, we examine various approaches to forecast-
ing the Cboe Volatility Index (VIX), the most widely used
volatility barometer for stock market risk. It is also known
as the “Fear Index.” Risk estimation is a widespread task
in the financial services industry [1] and begins with the
estimation of market volatility. The VIX is determined using
a formula that derives the market’s expectation of realized
one-month standard deviation of returns backed out from the
near-term call and put options on the S&P 500 index [2].
Far from being just an indicator of index volatility, VIX

forecasts are often used to calibrate individual stock volatility
forecasts using the Capital Asset Pricing Model (CAPM), so
the models in this paper apply to forecast index volatility and
that of individual stocks. These, in turn, help drive various
risk metrics like value-at-risk (VaR), conditional value-at-risk
(CVaR) and mean absolute deviation (MAD).

There are several interesting characteristics of the VIX that
make this forecasting problem of VIX and the volatility of
VIX (the so-called VVIX) an interesting one.

1) The VIX series is non-stationary. Linear time series
models for the mean that require differencing for sta-
tionarity are poor templates. First, traditional time series
models such as seasonal autoregressive integrated mov-
ing average (SARIMA) impose stationarity and normal-
ity. Second, some, but not all models assume normality.
The work in [3], [4] shows that LSTMs do better in
these settings.

2) The sample autocorrelations of the VIX series have hy-
perbolic decay. For this reason, we include a long short-
term memory (LSTM) model and also use Facebook’s
Prophet [5] model, both of which have design features
that will capture non-linearity and non-stationarity by
design.

3) The family of generalized autoregressive conditional
heteroskedasticity (GARCH) models for conditional
variance are a poor choice for volatility forecast-
ing of VIX. Volatility forecasting using traditional
time-series methods, such as GARCH, exponen-
tial GARCH (EGARCH), asymmetric power ARCH
(APARCH), Glosten-Jagannathan-Runkle (GJR) and in-
tegrated GARCH (IGARCH), [6], imposes two con-
straints, stationarity and distributional assumptions (nor-
mal or Student t). However, the nonlinear data-driven
neural net (NN) models for volatility (we call these
neuro-volatility models) do not require any constrain



4) The fact that asset returns are non-normal has impor-
tant consequences in finance, where assuming normality
leads to underestimating risks, often with dire conse-
quences. [7], [8] show that assuming non-normality in
VIX forecasting models improves on the normal models
used in [9].

5) Commonly used volatility forecast models are his-
torical simulation (HS), moving average (MA), Nor-
mal GARCH, Student-t GARCH, and exponentially
weighted moving average (EWMA) for squared continu-
ously compounded returns [6], [8]–[11]. Forecasts of the
conditional variance (σ2

t ) of the returns are obtained, and
finally, the square root is taken to obtain a forecast of
the conditional volatility (σt), as undertaken by V-Lab
(https://vlab.stern.nyu.edu). However, the square root of
the variance is an inefficient estimate of the volatility
(see [12]). Therefore, in the empirical work of this paper,
we forecast volatility directly and not the variance.

Alternative approaches in papers such as [12]–[14] focus
on the estimation of volatility (i.e., the standard deviation) of
the investment’s returns and compute VaR forecasts as well
as regularized risk forecasts based on generalized volatility
models and neuro-volatility models. In [12], the authors pro-
posed a data-driven generalized EWMA model based on sign
correlation to estimate volatility directly and obtain optimal
VaR forecasts. Neural networks (NNs) are one of the most
common methods to approximate a multivariate nonlinear
function. [13] applied a neuro-volatility model to forecast
VaR with actual financial data. In [15], a data-driven neuro-
volatility model is used to study the rolling neuro fuzzy
forecasts of the Sharpe ratio (SR). In [14], regularized adaptive
forecasts and computationally efficient forecasting algorithms
for volatility, VaR, CVaR, and model risk are studied using
various regularization methods such as ridge, lasso, and elastic
net. In contrast to the related work cited above, this paper uses
lagged values of the VIX as inputs to a neuro-volatility model
(and other models as well).

We directly forecast the VIX itself (and its volatility). First,
we use the historical time series of the VIX because it also
contains the volatility risk premium, which is difficult to
assess when using historical data on S&P returns, see [9]
who find that GARCH models underforecast the VIX and
GARCH models display an inability to match option prices
[10]. Second, [16] use options to forecast intraday values of
the VIX. [17] argues that despite its theoretical foundation
in option pricing theory, Cboe’s Volatility Index is prone to
errors in deriving its value from options, may often be based
on illiquid options, and has theoretical flaws. We, therefore,
eschew options and use time-series data of the VIX itself.

The main findings of the paper are that nonlinear models
(LSTMs) perform better on short-term forecasts of series like
VIX, with non-stationary, long-memory data. Ensembles of
linear and nonlinear models do well for longer horizon fore-
casts. For volatility of volatility, NNs (neuro volatility models)
do well, beating data-driven EWMA volatility models (though
the latter have much better run times). The ensuing sections

present VIX forecasting techniques and results, volatility of
VIX forecasts, and conclusions.

II. MULTIPLE-STEP AHEAD VIX PRICE FORECASTS

VIX represents the market’s option-implied near-term (30-
day) forecast of S&P 500 index (SPX) volatility. It is based
on the prices of SPX index options (calls and puts). The VIX
began trading in March 2004 as a futures contract, though it
was first promulgated in 1993. Since then, the Cboe formula
for the VIX has been changed to reflect a wider range of
options. Because the VIX is derived from near-term call and
put SPX option prices, it is a forward-looking measure of
market volatility. Correspondingly, a forecast of the VIX is
also a forecast of changes in option prices. As noted earlier,
individual stocks’ returns and volatility are related to that of
the market (through their stock beta), hence, the VIX is also an
important ingredient in forecasting individual stock volatility.

The price of the VIX at time t, P (t), is determined by the
stochastic differential equation (SDE)

dP (t) = µP (t)dt+ σP (t)dW (t). (1)

We consider three different approaches as well as an ensemble
approach as forecasts of non-stationary VIX price series,
described next.

A. Simple Moving Averages for VIX Forecasting

A simple moving average (SMA) calculates the average of
a selected time period of prices, usually closing prices, by
the number of periods in that range. A SMA is a technical
indicator that can aid in determining if an asset price will
continue or if it will reverse a bull or bear trend. We use SMA
to forecast future VIX values. Assume we have n historical
VIX closing prices P1, . . . , Pn. In order to forecast the future
D-day VIX, we first calculate one-day ahead forecast as

P̂n+1 =

∑n
i=n−D+1 Pi

D
.

For forecasting two-step ahead, we use the one-step fore-
cast P̂n+1 as an input, along with the historical data
Pn−D+2, . . . , Pn. This process proceeds until we have com-
puted all the required forecasts P̂n+1, . . . , P̂n+D.

B. LSTM for VIX Forecasting

LSTM is a type of Recurrent Neural Network (RNN). In
a traditional neural network, inputs and outputs are assumed
to be independent of each other. However, LSTMs have loops
inside them to have a memory of the previous computations
and hence can handle the time series data. Unlike traditional
RNNs, LSTMs do not usually encounter the vanishing gradient
problem and exploding gradient problem.

In Fig. 1, each line carries an entire vector, from the output
of one node to the inputs of others. The pink circles represent
pointwise operations, like vector addition, while the yellow
boxes are learned neural network layers. Lines merging denote
concatenation, while a line forking denotes its content being
copied and the copies going to different locations.



Fig. 1. LSTM cell

The LSTM cell contains the following components at each
step t:

• Gating variables: forget gate ft, input gate it, output gate
ot, which are NNs with sigmoid activation functions.

• Candidate cell state c̃t which is a NN with a tangent
activation function.

• Cell and hidden states: memory state ct and hidden state
ht.

Inputs to the LSTM cell at any step are Xt (current input)
, ht−1 (previous hidden state ) and ct−1 (previous memory
state). Outputs from the LSTM cell are ht (current hidden
state ) and ct (current memory state).

LSTM models are used to forecast non-stationary stock
prices (usually modelled by geometric Brownian motion
(GBM)). The sample autocorrelation of the VIX series has
a hyperbolic decay and hence it is non-stationary. We can
divide the n historical VIX closing prices P1, . . . , Pn into
multiple inputs and output patterns. From the divided data in
the input/output pattern, the LSTM model learn about how to
use the inputs to forecast the output. Thus, Pt is one-step ahead
output and its p lagged values Pt−1, . . . , Pt−p are the inputs
at each step. The LSTM model produces one-step head point
forecasts P̂p+1, . . . , P̂n for Pp+1, . . . , Pn and one-step ahead
point forecast P̂n+1 using the inputs Pn−p+1, · · ·Pn. For
forecasting two steps ahead, we use the one-step forecast P̂n+1

as an input, along with the historical data Pn−p+2, . . . , Pn.
This process proceeds until we have computed all the required
forecasts P̂n+1, . . . , P̂n+D.

C. The Prophet Model for VIX Forecasting

Prophet is a time-series forecasting package developed at
Facebook [5]. Their web page states that - “Prophet is a
procedure for forecasting time series data based on an additive
model where non-linear trends are fit with yearly, weekly, and
daily seasonality, plus holiday effects. It works best with time
series that have strong seasonal effects and several seasons of
historical data. Prophet is robust to missing data and shifts in
the trend, and typically handles outliers well.” We employ this
model so as to capture the long-run dependence in the VIX
data, to use a non-linear model, and to account for seasonality
effects in case they are salient in the data.

Prophet has three additive components in its forecast model.
(1) Trend (growth g over time, linear or nonlinear), (2)
seasonality (s, within year), cyclicality (across years), and (3)
holidays (h, irregular breaks). It is written as, for time series
y (More extensive details are in the paper [5]):

y(t) = g(t) + s(t) + h(t) + εt, (2)

where εt is the error term accounts for any unusual changes
not accommodated by the model. Prophet re-frames the fore-
casting problem as a curve-fitting exercise.

1) Growth is modeled as g(t) = C
1+exp(−k(t−m)) , where C

is the saturation level, k is the slope, base growth rate,
∂g
∂k > 0, m is the time offset, and C(t) can be made a
function of time with exogenous analyst forecasts.

2) Seasonality is modeled as a Fourier series. Here,
P : period, equal to 365 for annual, 7 for weekly.
N : components of the Fourier series. s(t) =∑N
n=1

[
an cos

(
2πnt
P

)
+ bn sin

(
2πnt
P

)]
.

3) Holidays are modeled as follows. κi is change in forecast
at time i, written into a vector κ. I(t) is a indicator
vector of holiday dummies. Then h(t) = I(t) · κ.

D. Two LSTMs for VIX Interval Forecasting

In the following architecture, we will illustrate how to train
two LSTMs to forecast D-day ahead VIX prices and construct
VIX interval forecasts using the one-step ahead forecast errors
of VIX prices.

• The first LSTM inputs n historical VIX closing prices
P1, . . . , Pn and outputs n − p one-step head points
forecasts P̂p+1, . . . , P̂n for Pp+1, . . . , Pn and D future
points forecasts P̂n+1, . . . , P̂n+D as in section B.

• One-step ahead forecast errors are obtained from the first
LSTM for Pt as et = Pt − P̂t, t = p + 1, · · · , n. We
calculate the sample sign correlation ρ̂e introduced in [12]
of the forecast errors et and determine the corresponding
normal or t distribution with appropriate degrees of
freedom (d.f.) ν. The sign correlation of et with sample
mean ē is defined as

ρ̂e = Corr(et − ē, sign(et − ē)). (3)

If et follows a Student’s t distribution with sample sign
correlation ρ̂e and finite variance, the d.f. ν can be
computed by solving the following equation:

2
√
ν − 2 = (ν − 1)ρ̂eBeta

[
ν

2
,

1

2

]
. (4)

• The sign correlation plays an important role in finding the
probabilistic forecasts of the VIX prices by determining
an appropriate data-driven t distribution of one-step ahead
forecast errors. Moreover, one-step ahead forecast errors
have time varying volatility. The volatility forecasts of et
are then computed using inputs (the sample volatility of
et) given by

Zt =
|et − ē|

2ρ̂eF (ē)(1− F (ē)
,



where F (ē) is the cumulative distribution function (cdf)
evaluated at the sample mean of et. The sample volatil-
ities based on data-driven sign correlation incorporate
skewness and non-normality as well.

• The second LSTM inputs the sample volatilities
Zp+1, . . . , Zn and use q lagged values of the sample
volatilities to forecast the one-step ahead volatility. The
second LSTM model outputs one-step head volatilty
forecasts of ep+q+1, . . . , en, as σ̂ep+q+1, . . . , σ̂

e
n and D-

step ahead volatility forecasts σ̂en+1, . . . , σ̂
e
n+D.

• Probabilistic forecasts, for example, the D-step ahead
interval forecasts, are obtained using point forecasts
P̂n+1, . . . , P̂n+D, volatility forecasts σ̂en+1, . . . , σ̂

e
D+n,

and the t/normal distribution of the forecasting errors.
The 100(1 − α)% t forecast intervals for Pt’s are given
by

P̂t ± tα/2,ν σ̂et , t = n+ 1, . . . , n+D. (5)

For example, for ν = 4 and p = 0.05, tp/2,ν = 2.776.

E. Experiment 1

1) VIX Price Forecasting: Time series data is different than
non-sequential data when it comes to cross validation. We can
create a cross validation sampling plan by splitting a time
series into multiple uninterrupted re-samples that can be tested
for strategies on both current and past observations. In finance,
this type of analysis is often called “backtesting”. We evenly
distribute the data from 2016-01-04 to 2021-04-23 into 14
slices: 2016-01-04 - 2018-01-02, 2016-04-06 - 2018-04-05,
2016-07-07 - 2018-07-06, 2016-10-06 - 2018-10-05, 2017-
01-09 - 2019-01-09, 2017-04-11 - 2019-04-11, 2017-07-13 -
2019-07-15, 2017-10-12 - 2019-10-14, 2018-01-16 - 2020-01-
15, 2018-04-18 - 2020-04-17, 2018-07-19 - 2020-07-20, 2018-
10-18 - 2020-10-19, 2019-01-23 - 2021-01-21 and 2019-04-25
- 2021-04-23. Each window size is 504 days, and the skip span
is 63 days. For each set, the last 21 days or 5 days are for the
test (validation) set, and the rest are for the training set.

For each set, either 21-day forecasts or 5-day ahead VIX
forecasts are obtained using SMA, LSTM, or Prophet sep-
arately. An ensemble forecast is calculated as the average
of the three (SMA, LSTM and Prophet) forecasts at each
forecast time point. The forecast errors (FE), RMSE and MAE,
are calculated using the observed VIX from the test set and
the forecasts. The LSTM model is implemented using Keras
library and TensorFlow backend in R. The parameters of the
model are presented in Table I.

TABLE I
INITIAL VALUES FOR THE LSTM FORECASTING MODEL

Parameters Value
Numbers of Recurrent Units 128
Number of Dense Layer Units 64
Number of Lagged Observations 21
Optimizer Adam
Batch Size 32
Epoch 50

TABLE II
CROSS VALIDATION FOR 21-DAY AHEAD VIX FORECASTS

Slice SMA LSTM Prophet Ensemble Model
RMSE MAE RMSE MAE RMSE MAE RMSE MAE

1 0.8170 0.7373 0.9867 0.8607 1.5479 1.1209 0.8237 0.7049
2 3.5141 2.9891 5.6940 4.7097 3.4152 2.5673 3.7621 3.1676
3 2.0109 1.6594 2.2477 1.6641 4.8124 4.4595 2.0304 1.8327
4 1.0334 0.8991 1.0080 0.8915 1.8618 1.5617 0.9619 0.6933
5 6.6323 5.1417 5.8308 4.2660 7.1322 5.8096 6.4715 4.8574
6 1.3014 1.1887 2.7000 2.3167 6.1722 5.9494 3.2224 2.9911
7 2.5008 2.2211 2.7687 2.3502 1.4190 1.1417 2.1862 1.8133
8 3.1923 2.6825 4.7071 3.9768 2.3748 1.8715 2.8299 2.2500
9 1.1067 1.0016 2.0712 1.8071 1.8796 1.5726 1.0205 0.8203

10 14.0617 12.6757 20.2108 16.6686 23.3017 20.4362 6.3865 4.8673
11 3.2508 2.8514 3.1906 2.8163 13.0340 12.5472 5.6936 4.8711
12 1.2418 1.0419 2.0979 1.7513 5.3918 5.2627 2.6737 2.4126
13 1.9383 1.4778 2.6679 2.2600 1.7542 1.4073 1.5063 1.2545
14 4.1641 4.0772 4.3113 3.6526 2.0480 1.8407 1.2150 1.0625
14 1.4598 1.2988 1.1920 0.9597 1.1364 0.9600 0.9030 0.6580

FE mean 3.3404 2.9032 4.3209 3.5708 5.4389 4.8249 2.9131 2.3999
FE SD 3.4663 3.0974 4.8218 3.9559 6.0504 5.4689 1.9858 1.5503

TABLE III
CROSS VALIDATION FOR 5-DAY AHEAD VIX FORECASTS

Slice SMA LSTM Prophet Ensemble Model
RMSE MAE RMSE MAE RMSE MAE RMSE MAE

1 0.7031 0.5745 0.7650 0.5896 1.5346 1.2372 0.6800 0.6012
2 2.5569 2.3066 1.8886 1.4857 2.5539 2.0768 1.5260 1.1688
3 1.8737 1.5117 1.6672 1.4670 1.6559 1.3085 0.8890 0.6573
4 1.4504 1.1928 1.3769 1.0962 2.1963 1.8598 1.5842 1.2004
5 4.9496 4.7456 2.1768 2.1205 2.6350 2.5093 3.0643 2.8558
6 0.5609 0.5293 1.0647 0.9365 5.8012 5.7085 2.3195 2.2945
7 0.6840 0.6130 1.6220 1.4365 1.6072 1.5017 1.2597 1.1164
8 2.1611 1.7143 1.6793 1.5247 2.7361 2.1171 1.8385 1.6421
9 1.1870 1.1809 3.0334 2.9191 1.9154 1.7078 1.3397 1.2080
10 4.7065 4.5199 2.5105 2.0880 5.4573 5.1612 4.1415 3.9230
11 3.1122 2.4832 1.4856 1.2522 13.1604 13.0672 5.6446 5.4183
12 1.7100 1.3527 2.0499 1.7649 4.8256 4.6212 2.7765 2.4831
13 1.1147 0.9872 1.1303 0.9222 2.0520 1.7030 1.3418 1.1472
14 1.4598 1.2988 1.1920 0.9597 1.1364 0.9600 0.9030 0.6580

FE mean 2.0164 1.7865 1.6887 1.4688 3.5191 3.2528 2.0935 1.8839
FE SD 1.3928 1.3381 0.6100 0.6079 3.1522 3.2104 1.4034 1.3978

The results for the 21-day point forecasts are summarized
in Table II, and the results for the 5-day point forecasts are
summarized in Table III. The last two rows of Table II and III
list the mean and standard deviation (SD) of forecast RMSE
and MAE for each approach across data slices. For the 21-
day forecasts, there is no dominant approach for all the sets;
therefore, the ensemble forecasts have the smallest forecast
error (mean and SD) of RMSE and MAE over all the sets.
For the 5-day forecasts, LSTM performs better than the other
two approaches in general, as it has the smallest forecast errors
over all the sets.

2) VIX Interval Forecasting: We investigate 5-day (D = 5)
interval forecasts using slice 14. The first LSTM inputs the
historical prices from 2019-04-25 - 2021-04-16, uses p = 21
lagged price values at each step, and outputs the one-step
ahead forecasts from 2019-05-24 - 2021-04-16 and 5-day
future price forecasts from 2021-04-19 - 2021-04-23. The fore-
cast errors et’s (Fig. 2) can be calculated from the differences
between the predicted prices and the true prices from 2019-
05-31 - 2021-04-16. Summary statistics show that that the t
distributions with d.f. equal to 2.7757 (sample sign correlation
ρ̂e = 0.6036 less than 0.7979 (normal distribution)) is more
appropriate to model et, which has sample mean -0.7096,
standard deviation 2.4141, skewness 1.6387 and excess kur-
tosis 11.5032. et is not significantly autocorrelated (acf(|et|
= -0.0363). However, the absolute series |et| and the squared



Fig. 2. One-step ahead forecast errors of prices

TABLE IV
5-DAY AHEAD VIX DATA-DRIVEN t INTERVAL FORECASTS: 2021-04-19 -

2021-04-23

Day Price P̂t σ̂e
t 90% interval 95% interval 99% interval

1 17.290 17.246 1.421 (15.418, 19.074) (14.742, 19.751) (12.487, 22.006)
2 18.680 17.614 1.486 (15.702, 19.525) (14.995, 20.232) (12.637, 22.590)
3 17.500 17.997 1.571 (15.977, 20.017) (15.230, 20.764) (12.738, 23.256)
4 18.710 18.402 1.501 (16.471, 20.332) (15.757, 21.046) (13.376, 23.428)
5 17.330 18.849 1.494 (16.927, 20.771) (16.216, 21.482) (13.845, 23.853)

series e2t are significantly autocorrelated (acf(|rt| = 0.3543,
acf(e2t ) = 0.3523), which indicates volatility clustering.

Bollinger bands use the SMA as the middle line and use two
standard deviations as the bandwidth assuming the normality
of stochastic prices. However, LSTM forecasting errors follow
a heavy-tailed t distribution with time varying volatility. The
second LSTM uses the sample volatilities from 2019-05-24
- 2021-04-16 and uses q = 5 lagged values of the sample
volatilities to forecast the one-step ahead volatility of forecast
errors. Table IV summarizes the real VIX prices, point price
forecasts, forecast error volatility forecasts and the interval
price forecasts (calculated using (5)) from 2021-04-19 - 2021-
04-23. The 90%, 95% and 99% forecast intervals contain the
true prices for each day. It is also shown in Fig. 4 that the 95%
forecast intervals contain the true prices over time. Moreover,
the backtesting from 2019-06-03 - 2021-04-16 has sufficient
evidence to demonstrate that the forecast intervals incorporate
the time varying volatility of the forecast errors.

III. VIX VOLATILITY FORECASTS

The SDE (1) expresses the change in VIX price using a
constant drift µ and volatility σ. Solving the above equation
for P (t) yields the solution:

P (t) = P (0) exp

{(
µ− 1

2
σ2

)
t+ σW (t)

}
.

Equivalently, we can express this equation as:

logP (t)− logP (0) =

(
µ− 1

2
σ2

)
t+ σW (t).

Fig. 3. 95% VIX forecast intervals using two LSTMs

GBM assumes the logarithmic change of the stock price to be
a normally distributed random variable according to:

rt = logPt − logPt−1 =

(
µ− 1

2
σ2

)
+ εt, ε ∼ N(0, σ2)

The nonstationary VIX price is transformed to stationary
(mean-reverting) log return series and the sample SD of the
past data is traditionally used to estimate the volatility σ.
Market participants also trade the volatility of the VIX itself,
known as the VVIX. It is also known as the VIX of VIX. This
measures the speed of change in market volatility and therefore
corresponds to the volatility sensitivity of options (vega).
VVIX may therefore be used to hedge volatility changes.
Therefore, this paper assesses not only the forecasting of
the VIX itself but also the volatility of VIX as these are
complementary series. Based on the log returns of the VIX, we
can obtain the risk forecasts such as volatility, VaR, CVaR and
MAD of VIX by using the sign correlation and identifying an
appropriate t distribution. Moreover, we can obtain intelligent
probabilistic forecasts of the VIX using the data-driven t
distribution of VIX log returns.

In this section, three VIX volatility forecasting models with
the implemented algorithms are described. Let the conditional
mean and the conditional variance of the VIX log return rt be

E(rt|Ft−1) = µt, V ar(rt|Ft−1) = σ2
t , t = 1, · · · , k,

respectively, where Ft−1 is the past data up to time t − 1.
Empirical studies in [12], [18] have shown that high-tech
stock log returns follow heavy-tailed Student-t distribution
with estimated d.f. less than 4. The sign correlation of the
VIX log return {rt, t = 1, . . . , n} with sample mean r̄ is
defined as ρ̂r = Corr(rt − r̄, sign(rt − r̄)). If rt follows a
Student’s t distribution with sample sign correlation ρ̂P and
finite variance, the corresponding d.f. ν can be computed by
solving the following (4). The following proposed volatility
forecast models are based on the sample volatility of VIX log
returns, which are defined as

Zt =
|rt − r̄|

2ρ̂rF (r̄)(1− F (r̄))
,



where F (r̄) is the cdf evaluated at the sample mean of VIX
log returns.

A. Data-Driven EWMA (DD-EWMA) VIX Volatility Forecasts
For VIX log returns, summary statistics including absolute

log returns and squared log returns show that time varying
volatility models are more appropriate for the volatility esti-
mate/forecast instead of the sample standard deviation (which
does not take account the autocorrelations of the squared or
absolute values and gives equal weights to the past values).
Following [12], the DD-EWMA VIX volatility forecasting
model is proposed as

σ̂t+1 = (1− α) σ̂t + αZt, 0 < α < 1, (6)

where Zt is the observed VIX volatility at time t and the
sample sign correlation ρ̂r is used to identify an appropriate
conditional t distribution of rt. Based on the past observations
of VIX log returns, ρ̂r and Zt are computed. The average of
the first l sample volatilities Z1, . . . , Zl is used as the initial
smoothed value σ0, and the one-step ahead forecast error sum
of squares (FESS) is calculated as

∑k
t=l+1(Zt− σ̂t−1)2. This

volatility model is data-driven in the sense that the optimal
value α∗ of the tuning parameter α is obtained by minimizing
the FESS. Using α∗, the optimal σ̂t is calculated recursively
using (6), and the last optimal value is used as the one-day-
ahead DD-EWMA volatility forecast (DDVF).

Algorithm 1 DD-EWMA VIX volatility forecasts
Require: Sample VIX volatilities Zt, t = 1, . . . , k

1: S0 ← Z̄l {Initial volatility forecast}
2: α← (0.01, 0.3) by 0.01{Set a range for α}
3: St ← α ∗ Zt + (1− α) ∗ St−1, t = 1, . . . , k
4: αopt ← minα

∑k
t=l+1(Zt − St−1)2

5: St ← αopt ∗ Zt + (1− αopt) ∗ St−1, t = 1, . . . , k
6: σ̂DD ← Sk {Calculate one-step ahead DDVF}
7: return αopt, σ̂DD

B. Neuro VIX Volatility Forecasts
A NN can approximate any real nonlinear function on a

compact domain to any degree of accuracy. Most of NN
models in finance involve stock prices as the inputs. In a
neuro volatility model, the inputs are the sample volatility.
[13] proposed and studied a data-driven neuro volatility model
for stock returns. In this paper, the nnetar function from
the R Package forecast is used to fit the neuro volatility
model to calculate VIX neuro volatility forecasts (NVF). The
one-step ahead VIX NVF is computed using inputs that are
lagged values of the sample volatility Zt, based on the sample
sign correlation of VIX log returns.

C. Prophet VIX Volatility Forecasts
Recently there has been a growing interest in using Prophet

(R/Python packages) to forecast non-stationary time series
based on observed stock prices. In this paper, the driving
idea is that Prophet is used to obtain the one-step ahead VIX
volatility forecast (PVF), using the sample volatility Zt.

Algorithm 2 Neuro VIX volatility forecasts
Require: Sample VIX volatilities Zt, t = 1, . . . , k

1: V ol.nnet← nnetar(Zt) {Fit a NN model}
2: σ̂NN ← forecast(V ol.nnet, h = 1) {Compute one-step

ahead NVF}
3: return σ̂NN

Algorithm 3 Neuro VIX volatility forecasts
Require: Sample VIX volatilities Zt, t = 1, . . . , k

1: V ol.p← prophet(Zt) {Fit a Prophet model}
2: σ̂PP ← predict(V ol.p, h = 1) {Compute one-step ahead

PVF}
3: return σ̂PP

D. Experiment 2

We apply a rolling window approach to calculate the rolling
one-step ahead VIX volatility forecasts using DD-EWMA,
NN and Prophet. The selected data is the VIX log returns
from 2019-04-25 -2021-05-21. We compose 21 overlapping
rolling windows, each of window size 504 to calculate one-
day-ahead VIX volatility forecasts from 2021-04-26 to 2021-
05-24. For example, VIX log returns from 2019-05-23 to
2021-05-21 are used to forecast the VIX volatility for 2021-
05-24. Summary statistics show that the t distribution with
d.f. equal to 3.9284 (sample sign correlation ρ̂r = 0.7041
less than 0.7979 (normal distribution)) is more appropriate
to model VIX log returns for this rolling window, which
has sample mean 0.0006, standard deviation 0.0865, skewness
1.3590 and excess kurtosis 4.7351. The absolute series |rt| and
the squared series r2t are significantly autocorrelated (acf(|rt| =
0.2310, acf(r2t ) = 0.1674), which indicates volatility clustering.
Therefore, we model the conditional distribution of rt as a t
distribution with mean µ = 0 and changing volatility σt for the
selected period. The d.f. of the t distribution is determined by
the sample sign correlation from the data. t-GARCH applies
well only for d.f. greater than four so is marginally rejected
as a candidate.

Results of rolling DDVF, NVF and PVF are summarized
in Table V. It follows from Table V, accuracy determined
by RMSE of all three methods is close, while the time
using DD-EWMA volatility forecasts is faster than that using
data-driven neuro volatility forecasts and Prophet volatility
forecasts. An ensemble volatility forecast (ENVF) is calculated
as the average of DDVF, NVF and PVF at each forecast time
point. ENVF can obtain better predictive performance over
time than that could be obtained from any of the constituent
learning algorithms alone.



TABLE V
ONE-DAY-AHEAD ROLLING VOLATILITY FORECASTS FOR 21 TRADING

DAYS: 2021-04-26 TO 2021-05-24

DD-EWMA NN Prophet Esemble
Day DDVF RMSE Time NVF RMSE Time PVF RMSE Time ENVF

1 0.075 0.087 0.003 0.074 0.070 2.029 0.060 0.082 1.394 0.069
2 0.067 0.087 0.002 0.070 0.070 1.770 0.068 0.082 1.486 0.068
3 0.058 0.087 0.002 0.044 0.068 1.987 0.073 0.082 1.248 0.058
4 0.053 0.087 0.003 0.065 0.069 1.719 0.080 0.082 1.270 0.066
5 0.048 0.087 0.002 0.062 0.070 1.696 0.117 0.082 1.338 0.076
6 0.053 0.087 0.002 0.077 0.069 1.715 0.070 0.082 1.587 0.067
7 0.048 0.087 0.003 0.071 0.068 1.762 0.077 0.082 1.251 0.066
8 0.055 0.087 0.002 0.075 0.068 1.732 0.083 0.082 1.282 0.071
9 0.050 0.087 0.003 0.073 0.069 1.733 0.083 0.082 1.350 0.069

10 0.051 0.087 0.002 0.070 0.069 1.734 0.018 0.082 1.510 0.047
11 0.065 0.087 0.002 0.099 0.071 1.710 0.077 0.082 1.286 0.080
12 0.092 0.087 0.002 0.059 0.069 1.720 0.089 0.081 1.308 0.080
13 0.101 0.087 0.002 0.121 0.075 1.650 0.101 0.082 1.308 0.108
14 0.143 0.088 0.003 0.114 0.069 1.723 0.104 0.082 1.525 0.120
15 0.166 0.088 0.002 0.235 0.069 1.760 0.131 0.082 1.253 0.177
16 0.195 0.088 0.002 0.160 0.070 1.747 0.085 0.082 1.297 0.147
17 0.168 0.088 0.003 0.142 0.070 1.727 0.096 0.082 1.289 0.135
18 0.156 0.088 0.002 0.096 0.072 1.732 0.098 0.082 1.550 0.116
19 0.138 0.088 0.003 0.090 0.072 1.748 0.099 0.082 1.241 0.109
20 0.132 0.088 0.002 0.047 0.073 1.718 0.041 0.082 1.291 0.073
21 0.116 0.088 0.002 0.086 0.072 1.738 0.061 0.082 1.317 0.088

There is strong evidence in Fig. 4 that the VIX volatility is
time varying. VaR, CVaR and MAD forecasts will have similar
results. Compared to the rolling sample standard deviation
of VIX log return, the rolling sample standard deviation
underestimates or overestimates the future volatility, VaR and
CVaR. Moreover, if we look at the VIX price fluctuation for
the period from 2021-04-26 to 2021-05-24 (left plot of Fig.
4), PVF (green line) overestimates the risk before 2021-05-
09 and underestimates it after 2021-05-09, while DDVF (blue
line) and NVF (red line) perform more accurately to reflect
the changing volatility and risk. ENVF (purple line) averages
the three models to produce the final rolling forecasts.

Using volatility forecasts σ̂t (DDVF, NVF and PVF), other
intelligent probabilistic forecasts such as VaR, CVaR and
MAD can be derived and calculated. Let f(x) be the density
function of the conditional distribution of log returns rt, and
F−1(p) be the inverse of the cdf of rt evaluated at the tail
probability p. If the VIX log return follows a t distribution
with d.f. ν, VaR and CVaR forecasts with tail probability p
can be further calculated by the following equations:

VaRpt = −1000σ̂t

√
ν − 2

ν
F−1(p, ν),

CVaRpt = 1000σ̂t

√
ν − 2

ν

(
f(F−1(p, ν))

p

(
ν + (F−1(p, ν))2

ν − 1

))
.

The portfolio MAD forecast is computed as

MADt = 2ρ̂rσ̂t
√
F (r̄)(1− F (r̄)).

Forecasting the risk measures MADt, VaRpt and CVaRpt is
equivalent to forecasting related functions of volatility and
identifying an appropriate distribution for VIX returns.

The rolling window approach is also applied to compare
the rolling one-step ahead VIX probabilistic forecasts using
DD-EWMA, neuro volatility and Prophet. The selected data
is VIX log returns from 2019-04-25 -2021-05-21. We construct
21 overlapping rolling windows, each of window size 504
to calculate a one-day ahead VIX VaR and CVaR with tail
probability p = 0.05 in Table VI and MAD forecasts in Table

Fig. 4. Comparison of one-day-ahead VIX rolling volatility forecasts with
historical volatility: 2021-04-26 - 2021-05-24

VII from 2021-04-26 to 2021-05-24. Ensemble risk forecasts
can obtain better predictive performance and will be selected
in practice.

TABLE VI
ONE-DAY-AHEAD ROLLING RISK FORECASTS FOR 21 TRADING DAYS:

2021-04-26 TO 2021-05-24

DD-EWMA NN Prophet Ensemble
Day VaR0.05 CVaR0.05 VaR0.05 CVaR0.05 VaR0.05 CVaR0.05 VaR0.05 CVaR0.05

1 112.044 169.273 110.527 166.980 89.334 134.964 103.968 157.072
2 100.764 152.182 104.665 158.073 101.410 153.156 102.280 154.470
3 87.317 131.986 65.610 99.175 109.816 165.996 87.581 132.386
4 79.587 120.307 97.839 147.898 119.305 180.346 98.910 149.517
5 72.345 109.288 93.245 140.860 176.024 265.911 113.871 172.020
6 80.161 121.208 115.906 175.257 105.362 159.314 100.476 151.926
7 72.586 109.781 106.685 161.353 115.338 174.440 98.203 148.525
8 82.216 124.326 112.213 169.688 124.203 187.820 106.210 160.611
9 74.984 113.606 109.611 166.068 124.010 187.883 102.868 155.852
10 76.801 116.429 104.624 158.610 27.615 41.864 69.680 105.634
11 96.727 146.348 148.675 224.945 115.514 174.772 120.305 182.022
12 138.530 209.146 89.245 134.737 134.212 202.627 120.663 182.170
13 152.340 229.768 182.237 274.861 152.257 229.644 162.278 244.758
14 214.564 323.483 171.467 258.509 155.767 234.839 180.599 272.277
15 249.569 376.486 352.452 531.688 196.357 296.213 266.126 401.462
16 292.028 441.123 240.729 363.633 127.365 192.391 220.040 332.383
17 251.444 380.001 213.162 322.146 143.721 217.202 202.776 306.450
18 233.507 352.617 143.382 216.520 146.648 221.452 174.512 263.530
19 207.653 313.415 135.380 204.332 149.033 224.937 164.022 247.561
20 198.287 299.321 70.103 105.823 62.181 93.865 110.191 166.336
21 174.100 262.730 129.630 195.621 91.708 138.394 131.813 198.915



TABLE VII
ONE-DAY-AHEAD ROLLING MAD FORECASTS FOR 21 TRADING DAYS:

2021-04-26 TO 2021-05-24

Day DD-EWMA NN Prophet Ensemble
1 0.052 0.052 0.042 0.048
2 0.047 0.049 0.047 0.048
3 0.041 0.031 0.051 0.041
4 0.037 0.046 0.056 0.046
5 0.034 0.043 0.082 0.053
6 0.037 0.054 0.049 0.047
7 0.034 0.050 0.054 0.046
8 0.038 0.052 0.058 0.049
9 0.035 0.051 0.058 0.048

10 0.036 0.049 0.013 0.032
11 0.045 0.069 0.054 0.056
12 0.065 0.042 0.062 0.056
13 0.071 0.085 0.071 0.076
14 0.100 0.080 0.073 0.084
15 0.116 0.164 0.091 0.124
16 0.136 0.112 0.059 0.102
17 0.117 0.099 0.067 0.094
18 0.109 0.067 0.068 0.081
19 0.097 0.063 0.069 0.076
20 0.092 0.033 0.029 0.051
21 0.081 0.060 0.043 0.061

IV. CONCLUSIONS

We examined VIX price forecasts in section II over different
horizons and found that LSTM models do best for short-
horizon forecasts and a hybrid (ensemble) model of SMA,
LSTM, and Prophet does better for longer horizons. Moreover,
we proposed a novel method to train two LSTMs to obtain the
interval forecasts of VIX prices. The driving idea, unlike the
existing VIX price forecasting models using only one LSTM,
is that the proposed approach trains one LSTM to forecast fu-
ture prices and trains the other LSTM to forecast the volatility
of the one-step ahead forecast errors. Overall, there is evidence
that nonlinear forecasting methods are predicated for non-
stationary series like the VIX as well as for cryptocurrencies,
especially to construct future interval forecasts.

Moreover, Section III of this paper also presented a compari-
son of the VIX volatility (volatility of VIX returns) forecasting
model using novel machine learning forecasting approaches
based on the time series of the VIX and (absolute) VIX log
return. NN and DD-EWMA models do better than the recently
proposed industrial model Prophet for the volatility of VIX
returns. There is evidence that models such as GARCH based
on the squared index return time series do not accurately
capture the risk premium component of volatility [9]. For
various reasons outlined in [17]), we also eschewed the use of
options data to forecast the VIX. Our main goal in this work
is to compare novel forecasting approaches for the VIX using
its own time series and the corresponding autocorrelations. Of
course, there is also the possibility of using individual stock
data to predict the VIX series as the cross-correlations have
been found to be informative in this regard [19].
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