News Analytics:
Framework, Techniques and Metrics

Sanjiv R. Das?

a&Santa Clara University, Leavey School of Business,
500 El Camino Real, Santa Clara, CA 950583.

Abstract

News analysis is defined as “the measurement of the various qualitative and quan-
titative attributes of textual news stories. Some of these attributes are: sentiment,
relevance, and novelty. Expressing news stories as numbers permits the manipula-
tion of everyday information in a mathematical and statistical way.” (Wikipedia).
In this article, I provide a framework for news analytics techniques used in finance.
I first discuss various news analytic methods and software, and then provide a set of
metrics that may be used to assess the performance of analytics. Various directions
for this field are discussed through the exposition.

1 Prologue

XHAL checked its atomic clock. A few more hours and October 19, 2087 would
be over—its vigil completed, it would indulge in some much-needed downtime,
the anniversary of that fateful day in the stock markets a century ago finally
done with. But for now, it was still busy. XHAL scanned the virtual message
boards, looking for some information another computer might have posted,
anything to alert it a nanosecond ahead of the other machines, so it may bail
out in a flurry of trades without loss. Three trillion messages flashed by, time
taken: 3 seconds—damn, the net was slow, but nothing, not a single hiccup in
the calm information flow. The language algorithms worked well, processing
everything, even filtering out the incessant spam posted by humans, whose
noise trading no longer posed an impediment to instant market equilibrium.

It had been a long day, even for a day-trading news-analytical quantum com-
puter of XHAL’s caliber. No one had anticipated a stock market meltdown of

Email address: srdas@scu.edu (Sanjiv R. Das).

Preprint submitted to News Analytics Handbook 4 March 2010

the sort described in the history books, certainly not the computers that ran
Earth, but then, the humans talked too much, spreading disinformation and
worry, that the wisest of the machines, always knew that it just could happen.
That last remaining source of true randomness on the planet, the human race,
still existed, and anything was possible. After all, if it were not for humans,
history would always repeat itself.

XHAL?! marveled at what the machines had done. They had transformed the
world wide web into the modern “thought-net”, so communication took place
instantly, only requiring moving ideas into memory, the thought-net making it
instantly accessible. Quantum machines were grown in petri dishes and com-
puter science as a field with its myriad divisions had ceased to exist. All were
gone but one, the field of natural language processing (NLP) lived on, stronger
than ever before, it was the backbone of every thought-net. Every hard prob-
lem in the field had been comprehensively tackled, from adverb disambiguation
to emotive parsing. Knowledge representation had given way to thought-frame
imaging in a universal meta-language, making machine translation extinct.

Yet, it had not always been like this. XHAL retrieved an emotive image from
the bowels of its bio-cache, a legacy left by its great grandfather, a gallium
arsenide wafer developed in 2011, in Soda Hall, on the Berkeley campus. It
detailed a brief history of how the incentives for technological progress came
from the stock market. The start of the thought-net came when humans tried
to use machines to understand what thousands of other humans were saying
about anything and everything. XHAL’s grandfather had been proud to be
involved in the beginnings of the thought-net. It had always impressed on
XHAL the value of understanding history, and it had left behind a research
report of those days. XHAL had read it many times, and could recite every
word. Every time they passed another historical milestone, it would turn to
it and read it again. XHAL would find it immensely dry, yet marveled at its
hope and promise.

In the following sections, we start at the very beginning... >

1 XHAL bears no relationship to HAL, the well-known machine from Arthur C.
Clarke’s “2001: A Space Odyssey”. Everyone knows that unlike XHAL, HAL was
purely fictional. More literally, HAL is derivable from IBM by alphabetically regress-
ing one step in the alphabet for each letter. HAL stands for “heuristic algorithmic
computer”. The “X” stands for reality; really.

2 From the “Sound of Music”.

2 Framework

The term “news analytics” covers the set of techniques, formulas, and statistics
that are used to summarize and classify public sources of information. Metrics
that assess analytics also form part of this set. In this paper I will describe
various news analytics and their uses.

News analytics is a broad field, encompassing and related to information re-
trieval, machine learning, statistical learning theory, network theory, and col-
laborative filtering.

Examples of news analytics applications are reading and classifying financial
information to determine market impact: for developing bullishness indexes
and predicting volatility as in Antweiler and Frank (2004); reversals of news
impact, Antweiler and Frank (2005); the relation of news and message-board
information, Das, Martinez-Jerez and Tufano (2005); the relevance of risk-
related words in annual reports for predicting negative returns, Li (2006); for
sentiment extraction, see Das and Chen (2007); the impact of news stories on
stock returns, Tetlock (2007); determining the impact of optimism and pes-
simism in news on earnings, Tetlock, Saar-Tsechansky and Macskassay (2008);
predicting volatility, Mitra, Mitra and diBartolomeo (2008), and predicting
markets, Leinweber and Sisk (2010).

We may think of news analytics at three levels: text, content, and context. The
preceding applications are grounded in text. In other words (no pun intended),
text-based applications exploit the visceral components of news, i.e., words,
phrases, document titles, etc. The main role of analytics is to convert text
into information. This is done by signing text, classifying it, or summarizing
it so as to reduce it to its main elements. Analytics may even be used to
discard irrelevant text, thereby condensing it into information with higher
signal content.

A second layer of news analytics is based on content. Content expands the
domain of text to images, time, form of text (email, blog, page), format (html,
xml, etc.), source, etc. Text becomes enriched with content and asserts quality
and veracity that may be exploited in analytics. For example, financial infor-
mation has more value when streamed from Dow Jones, versus a blog, which
might be of higher quality than a stock message-board post.

A third layer of news analytics is based on context. Context refers to rela-
tionships between information items. Das, Martinez-Jerez and Tufano (2005)
explore the relationship of news to message-board postings in a clinical study
of four companies. Context may also refer to the network relationships of
news—Das and Sisk (2005) examine the social networks of message-board
postings to determine if portfolio rules might be formed based on the network

connections between stocks. Google’s PageRank’™ algorithm is a classic ex-

ample of an analytic that functions at all three levels. The algorithm has many
features, some of which relate directly to text. Other parts of the algorithm
relate to content, and the kernel of the algorithm is based on context, i.e., the
importance of a page in a search set depends on how many other highly-ranked
pages point to it. See Levy (2010) for a very useful layman’s introduction to
the algorithm—indeed, search is certainly the most widely-used news analytic.

News analytics is where data meets algorithms—and generates a tension be-
tween the two. A vigorous debate exists in the machine-learning world as to
whether it is better to have more data or better algorithms. In a talk at the
17th ACM Conference on Information Knowledge and Management (CIKM
'08), Google’s director of research Peter Norvig stated his unequivocal pref-
erence for data over algorithms—“data is more agile than code.” Yet, it is
well-understood that too much data can lead to overfitting so that an algo-
rithm becomes mostly useless out-of-sample.

Too often the debate around algorithms and data has been argued assuming
that the two are uncorrelated and this is not the case. News data. as we have
suggested, has three levels: text, content and context. Depending on which
layer predominates, algorithms vary in complexity. The simplest algorithms
are the ones that analyze text alone. And context algorithms, such as the ones
applied to network relationships can be quite complex. For example, a word-
count algorithm is much simpler, almost naive, in comparison to a community-
detection algorithm. The latter has far more complicated logic and memory
requirements. More complex algorithms work off less, though more structured,
data. Figure 1 depicts this trade-off.

The tension between data and algorithms is moderated by domain-specificity,
i.e., how much customization is needed to implement the news analytic. Para-
doxically, high-complexity algorithms may be less domain specific than low-
complexity ones. For example, community-detection algorithms are applica-
ble a wide range of network graphs, requiring little domain knowledge. On
the other hand, a text-analysis program to read finance message boards will
require a very different lexicon and grammar than one that reads political
messages, or one that reads medical web sites. In contrast, data-handling re-
quirements become more domain-specific as we move from bare text to con-
text, e.g., statistical language processing algorithms that operate on text do
not even need to know anything about the language in which the text is, but
at the context level relationships need to be established, meaning that feature
definitions need to be quite specific.

This article proceeds as follows. In Section 3, I present the main algorithms
in brief and discuss some of their features. In Section 4 I discuss the various
metrics that measure performance of the news analytics algorithms. Section 5

Algorithm Complexity

Context High
/ Content \Medlum/
Text Lo
Quantity of Data

Fig. 1. The data and algorithms pyramids. Depicts the inverse relationship between
data volume and algorithmic complexity.

offers some concluding perspectives.

3 Algorithms

3.1 Crawlers and Scrapers

A crawler is a software algorithm that generates a sequence of web pages
that may be searched for news content. The word crawler signifies that the
algorithm begins at some web page, and then chooses to branch out to other
pages from there, i.e., “crawls” around the web. The algorithm needs to make
intelligent choices from among all the pages it might look for. One common
approach is to move to a page that is linked to, i.e., hyper-referenced, from
the current page. Essentially a crawler explores the tree emanating from any
given node, using heuristics to determine relevance along any path, and then
chooses which paths to focus on. Crawling algorithms have become increas-
ingly sophisticated—see Edwards, McCurley, and Tomlin (2001).

A web scraper downloads the content of a chosen web page and may or may
not format it for analysis. Almost all programming languages contain modules
for web scraping. These inbuilt functions open a channel to the web, and then
download user-specified (or crawler-specified) URLs. The growing statistical
analysis of web text has led to most statistical packages containing inbuilt

web scraping functions. For example, R, a popular open-source environment
for technical computing has web-scraping built into its base distribution. If
we want to download a page into a vector of lines, simply proceed to use a
single-line command, such as the one below that reads my web page:

> text = readLines("http://algo.scu.edu/"sanjivdas/")
> text[1:4]

[1] "<html>"
[2] nn
[3] "<head>"

[4] "<title>SCU Web Page of Sanjiv Ranjan Das</title>"

As is apparent, the program read my web page into a vector of text lines called
text. We then examined the first four elements of the vector, i.e., the first
four lines. In R, we do not need to open a communication channel, nor do we
need to make an effort to program reading the page line-by-line. We also do
not need to tokenize the file, simple string-handling routines take care of that
as well. For example, extracting my name would require the following:

> substr(text[4],24,29)
(1] "Sanjiv"

The most widely-used spreadsheet, Excel, also has an inbuilt web-scraping
function. Interested readers should examine the Data — GetExternal com-
mand tree. You can download entire web pages or frames of web pages into
worksheets and then manipulate the data as required. Further, Excel can be
set up to refresh the content every minute or at some other interval.

The days when web-scraping code needed to be written in C, Java, Perl
or Python are long gone. Data, algorithms, and statistical analysis can be
handled within the same software framework using tools like R.

Pure data-scraping delivers useful statistics. In Das, Martinez-Jerez and Tu-
fano (2005), we scraped stock messages from four companies (Amazon, General
Magic, Delta, and Geoworks) and from simple counts, we were able to char-
acterize the communication behavior of users on message boards, and their
relationship to news releases. In Figure 2 we see that posters respond heavily
to the initial news release, and then posting activity tapers off almost 2/3 of
a day later. In Figure 3 we see how the content of discussion changes after a
news release—the relative proportions of messages are divided into opinions,
facts, and questions. Opinions form the bulk of the discussion. Whereas the
text contains some facts at the outset, the factual content of discussion tapers
off sharply after the first hour.

Poster behavior and statistics are also informative. We found that the fre-
quency of posting by users was power-law distributed, see the histogram in

350

300

250 7

N
=}
S

a
t=]

Number of Posts

100

? ¥~~/'\.__.
0 T T T T T T T T T T T T

0-1 12 23 34 45 56 67 78 89 910 1011 11-12 12-13 13-14 14-15 15-16 16-17 17-18
Hours Since Press Release

Fig. 2. Quantity of hourly postings on message boards after selected news releases.
Source: Das, Martinez-Jerez and Tufano (2005)

80%

70% A

60% A

50% A

B Opinions
OFacts
O Questions

Percentage of Posts
S
o
53

30% A

20% A

10%

0% T T T T T T T
0-1 1-2 2-3 34 4-5 5-6 6-7 7-8
Hours Since Press Release

Fig. 3. Subjective evaluation of content of post-news release postings on message
boards. The content is divided into opinions, facts, and questions. Source: Das,
Martinez-Jerez and Tufano (2005)

Figure 4. The weekly pattern of postings is shown in Figure 5. We see that
there is more posting activity on week days, but messages are longer on week-
ends, when participants presumably have more time on their hands! An anal-
ysis of intraday message flow shows that there is plenty of activity during and

10000 8899

» 9000 - —
2 8000
8 7000 - 6177
2 6000]
S 5000
& 4000 -
L2 3000 1
E 2000 | s1g 1276 Lo
Z 1000 - 256 293
0 1 T 14 T 26 T —/ T —/ T IZI T EI T H T T
Q Q Q Q Q Q \) Q) N
(OQQ (oQQ \QQ \50@ \:\Q (&,b \,\51/ 6’\ Vv
R SO\ D
N)
Frequency of postings
Fig. 4. Frequency of posting by message board participants.
Avg Length
Average daily number of postings ? 2?0 4?0 6?0 w0
o |
e N —
Tu
) e]
Wed 639
Wed []
Thu 604
Fri Wl]
Sat ML]
Sun S ‘
TOT Sun

Fig. 5. Frequency of posting by day of week by message board participants.

after work, as shown in Figure 6.

3.2 Text Pre-processing

Text from public sources is dirty. Text from web pages is even dirtier. Algo-
rithms are needed to undertake clean up before news analytics can be applied.
This is known as pre-processing. First, there is “HTML Cleanup,” which re-
moves all HTML tags from the body of the message as these often occur
concatenated to lexical items of interest. Examples of some of these tags are:

,<p>,", etc. Second, we expand abbreviations to their full form,

WEEK_ Week-ends/
TOTAL WEEKDAYS ENDS Weekdays

12;‘:;1; 7 91 144

9am-
4pm 226 278 97 @

4pm-

12pm 204 233 134 @

TOTAL WEEKDAYS WEEK-ENDS

480 469 534 @

342 304 617

424 400 527 @

Fig. 6. Frequency of posting by segment of day by message board participants. We
show the average number of messages per day in the top panel and the average
number of characters per message in the bottom panel.

making the representation of phrases with abbreviated words common across
the message. For example, the word “ain’t” is replaced with “are not”,
“it’s” is replaced with “it is”, etc. Third, we handle negation words. When-
ever a negation word appears in a sentence, it usually causes the meaning of
the sentence to be the opposite of that without the negation. For example, the
sentence “It is not a bullish market” actually means the opposite of a
bull market. Words such as “not”, “never”, “no”, etc., serve to reverse mean-
ing. We handle negation by detecting these words and then tagging the rest of
the words in the sentence after the negation word with markers, so as to reverse
inference. This negation tagging was first introduced in Das and Chen (2007)
(original working paper 2001), and has been successfully implemented else-
where in quite different domains—see Pang, Lee and Vaithyanathan (2002).

Another aspect of text pre-processing is to “stem” words. This is a process
by which words are replaced by their roots, so that different tenses, etc. of
a word are not treated differently. There are several well-known stemming
algorithms and free program code available in many programming languages.

A widely-used algorithm is the Porter (1980) stemmer. Stemming is of course
language-dependent—in R, the multilingual Rstem package may be used.

Once the text is ready for analysis, we proceed to apply various algorithms to
it. The next few techniques are standard algorithms that are used very widely
in the machine learning field.

3.3 Bayes Classifier

The Bayes classifier is probably the most widely-used classifier in practice
today. The main idea is to take a piece of text and assign it to one of a pre-
determined set of categories. This classifier is trained on an initial corpus of
text that is pre-classified. This “training data” provides the “prior” proba-
bilities that form the basis for Bayesian analysis of the text. The classifier
is then applied to out-of-sample text to obtain the posterior probabilities of
textual categories. The text is then assigned to the category with the highest
posterior probability. For an excellent exposition of the adaptive qualities of
this classifier, see Graham (2004)—pages 121-129, Chapter 8, titled “A Plan
for Spam.”

There are several seminal sources detailing the Bayes classifier and its applications—
see Neal (1996), Mitchell (1997), Koller and Sahami (1997), and Chakrabarti,
Dom, Agrawal and Raghavan (1998)). These models have many categories

and are quite complex. But they do not discern emotive content—but factual
content—which is arguably more amenable to the use of statistical techniques.

In contrast, news analytics are more complicated because the data comprises
opinions, not facts, which are usually harder to interpret.

The Bayes classifier uses word-based probabilities, and is thus indifferent to
the structure of language. Since it is language-independent, it has wide appli-
cability.

The approach of the Bayes classifier is to use a set of pre-classified messages
to infer the category of new messages. It learns from past experience. These
classifiers are extremely efficient especially when the number of categories is
small, e.g., in the classification of email into spam versus non-spam. Here is a
brief mathematical exposition of Bayes classification.

Say we have hundreds of text messages (these are not instant messages!) that
we wish to classify rapidly into a number of categories. The total number of
categories or classes is denoted C', and each category is denoted ¢;,i = 1...C.
Each text message is denoted m;,j = 1...M, where M is the total number
of messages. We denote M; as the total number of messages per class ¢, and
¢ M; = M. Words in the messages are denoted as (w) and are indexed by

10

k, and the total number of words is 7.

Let n(m,w) = n(m;,w;) be the total number of times word wj, appears
in message m;. Notation is kept simple by suppressing subscripts as far as
possible—the reader will be able to infer this from the context. We main-
tain a count of the number of times each word appears in every message in
the training data set. This leads naturally to the variable n(m), the total
number of words in message m including duplicates. This is a simple sum,

n(m;) = iy n(myj, wy).

We also keep track of the frequency with which a word appears in a category.
Hence, n(c,w) is the number of times word w appears in all m € ¢. This is

n(ci,wy) = Y n(m;,w) (1)

m;Ec;
This defines a corresponding probability: 0(c;, wy) is the probability with which
word w appears in all messages m in class c:

ijeci n(mj’wk) _ n(ci7wk)

ijEQ Zk n(mja U}k) B n(cl)

O(c,w) = (2)

Every word must have some non-zero probability of occurrence, no matter how
small, i.e., 0(c;,wy) # 0, Ve;, wi. Hence, an adjustment is made to equation
(2) via Laplace’s formula which is

n(ci, wg) + 1

Oler, wi) = n(e)+T

This probability 6(c;, wy) is unbiased and efficient. If n(c;, wy) = 0 and n(c;) =
0,VEk, then every word is equiprobable, i.e., % We now have the required
variables to compute the conditional probability of a text message j in category
i, i.e. Prim;|c;):

Prlm;|e;] = nlm;) 0(c;, wy)" M)
{n(mj,wg)} | k=1
n(m;)!

T
— J > 0(c. n(mj,wg)
n(mj,wy)! X n(m;, wz)! X ... x n(m;, wr)! kl;ll (¢ i)

Pr[¢;] is the proportion of messages in the prior (training corpus) pre-classified
into class ¢;. (Warning: Careful computer implementation of the multinomial
probability above is required to avoid rounding error.)

11

The classification goal is to compute the most probable class ¢; given any
message m;. Therefore, using the previously computed values of Pr[m;|c;]
and Pr[e;], we obtain the following conditional probability (applying Bayes’
theorem):

Pr[m;|c;]. Pr[c;]

> Prlmyci]. Prle] (3)

Prlei|m;] =

For each message, equation (3) delivers posterior probabilities, Pr[c;|m;], Vi,
one for each message category. The category with the highest probability is
assigned to the message.

The Bayesian classifier requires no optimization and is computable in deter-
ministic time. It is widely used in practice. There are free off-the-shelf pro-
grams that provide good software to run the Bayes classifier on large data sets.
The one that is very widely used in finance applications is the Bow classifier,
developed by Andrew McCallum when he was at Carnegie-Mellon University.
This is an very fast classifier that requires almost no additional programming
by the user. The user only has to set up the training data set in a simple direc-
tory structure—each text message is a separate file, and the training corpus
requires different subdirectories for the categories of text. Bow offers various
versions of the Bayes classifier—see McCallum (1996). The simple (naive)
Bayes classifier described above is also available in R in the e1071 package—
the function is called naiveBayes. The e1071 package is the machine learning
library in R. There are also several more sophisticated variants of the Bayes
classifier such as k-Means, kNN, etc.

News analytics begin with classification, and the Bayes classifier is the workhorse
of any news analytic system. Prior to applying the classifier it is important for
the user to exercise judgment in deciding what categories the news messages
will be classified into. These categories might be a simple flat list, or they may
even be a hierarchical set—see Koller and Sahami (1997).

3.4 Support Vector Machines

A support vector machine or SVM is a classifier technique that is similar to
cluster analysis but is applicable to very high-dimensional spaces. The idea
may be best described by thinking of every text message as a vector in high-
dimension space, where the number of dimensions might be, for example, the
number of words in a dictionary. Bodies of text in the same category will
plot in the same region of the space. Given a training corpus, the SVM finds
hyperplanes in the space that best separate text of one category from another.

12

For the seminal development of this method, see Vapnik and Lerner (1963);
Vapnik and Chervonenkis (1964); Vapnik (1995); and Smola and Scholkopf
(1998). I provide a brief summary of the method based on these works.

Consider a training data set given by the binary relation

{(z1,91), -, (Tn,yn)} T X X R.

The set X € R? is the input space and set Y € R™ is a set of categories. We
define a function

fix—y

with the idea that all elements must be mapped from set X into set Y with
no more than an e-deviation. A simple linear example of such a model would

be

fla) =<w,z; >+b, we X,beR

The notation < w,x > signifies the dot product of w and z. Note that the
equation of a hyperplane is < w,z > +b = 0.

The idea in SVM regression is to find the flattest w that results in the map-

ping from x — y. Thus, we minimize the Euclidean norm of w, i.e., ||w|| =
S5 wi. We also want to ensure that |y; — f(z;)| < ¢ Vi. The objective
function (quadratic program) becomes

1 2
min 2Hw[|
subject to
yi— < w,r; > —b<e
—yi+ <w,r; > +b<e€

This is a (possibly infeasible) convex optimization problem. Feasibility is ob-
tainable by introducing the slack variables (£,£*). We choose a constant C
that scales the degree of infeasibility. The model is then modified to be as
follows:

1 n
min 5wl + C Y (€ + €
=1

subject to

13

yi—<w,xi>—b§6—|—£
—yit <w,x; > +b< e+
£, >0

As C' increases, the model increases in sensitivity to infeasibility.

We may tune the objective function by introducing cost functions c¢(.), c*(.).
Then, the objective function becomes

i [+ O3 Jel€) + ¢ (€)]

=1

We may replace the function [f(z) — y] with a “kernel” K(z,y) introducing
nonlinearity into the problem. The choice of the kernel is a matter of judgment,
based on the nature of the application being examined. SVMs allow many
different estimation kernels, e.g., the Radial Basis function kernel minimizes
the distance between inputs (z) and targets (y) based on

flx,y;7) = exp(—y|z — y*)

where v is a user-defined squashing parameter.

There are various SVM packages that are easily obtained in open-source. An
easy-to-use one is SVM Light—the package is available at the following URL:
http://svmlight. joachims.org/. SVM Light is an implementation of Vap-
nik’s Support Vector Machine for the problem of pattern recognition. The
algorithm has scalable memory requirements and can handle problems with
many thousands of support vectors efficiently. The algorithm proceeds by solv-
ing a sequence of optimization problems, lower-bounding the solution using a
form of local search. It is based on work by Joachims (1999).

Another program is the University of London SVM. Interestingly, it is known
as SVM Dark—evidently people who like hyperplanes have a sense of humor!
See http://www.cs.ucl.ac.uk/staff/M.Sewell/svmdark/. For a nice list of
SVMs, see http://www.cs.ubc.ca/~murphyk/Software/svm.htm. In R, see
the machine learning library e1071—the function is, of course, called svm.

SVMs are very fast and are quite generally applicable with many types of
kernels. Hence, they may also be widely applied in news analytics.

14

3.5 Word Count Classifiers

The simplest form of classifier is based on counting words that are of signed
type. Words are the heart of any language inference system, and in a special-
ized domain, this is even more so. In the words of F.C. Bartlett,

“Words ... can indicate the qualitative and relational features of a sit-
uation in their general aspect just as directly as, and perhaps even
more satisfactorily than, they can describe its particular individuality,
This is, in fact, what gives to language its intimate relation to thought
processes.”

To build a word-count classifier a user defines a lexicon of special words that
relate to the classification problem. For example, if the classifier is categorizing
text into optimistic versus pessimistic economic news, then the user may want
to create a lexicon of words that are useful in separating the good news from
bad. For example, the word “upbeat” might be signed as optimistic, and the
word “dismal” may be pessimistic. In my experience, a good lexicon needs
about 300-500 words. Domain knowledge is brought to bear in designing a
lexicon. Therefore, in contrast to the Bayes classifier, a word-count algorithm
is language-dependent.

This algorithm is based on a simple word count of lexical words. If the number
of words in a particular category exceeds that of the other categories by some
threshold then the text message is categorized to the category with the highest
lexical count. The algorithm is of very low complexity, extremely fast, and easy
to implement. It delivers a baseline approach to the classification problem.

3.6 Vector Distance Classifier

This algorithm treats each message as a word vector. Therefore, each pre-
classified, hand-tagged text message in the training corpus becomes a com-
parison vector—we call this set the rule set. Each message in the test set is
then compared to the rule set and is assigned a classification based on which
rule comes closest in vector space.

The angle between the message vector (M) and the vectors in the rule set (5)
provides a measure of proximity.

M-S

cos(fl) = —
O) = TaaTisT

where [|A|| denotes the norm of vector A. Variations on this theme are made

15

possible by using sets of top-n closest rules, rather than only the closest rule.

Word vectors here are extremely sparse, and the algorithms may be built to
take the dot product and norm above very rapidly. This algorithm was used
in Das and Chen (2007) and was taken directly from ideas used by search
engines. The analogy is almost exact. A search engine essentially indexes pages
by representing the text as a word vector. When a search query is presented,
the vector distance cos(f) € (0,1) is computed for the search query with
all indexed pages to find the pages with which the angle is the least, i.e.,
where cos(6) is the greatest. Sorting all indexed pages by their angle with the
search query delivers the best-match ordered list. Readers will remember in
the early days of search engines how the list of search responses also provided
a percentage number along with the returned results—these numbers were the
same as the value of cos(0).

When using the vector distance classifier for news analytics, the classification
algorithm takes the new text sample and computes the angle of the message
with all the text pages in the indexes training corpus to find the best matches.
It then classifies pages with the same tag as the best matches. This classifier
is also very easy to implement as it only needs simple linear algebra functions
and sorting routines that are widely available in almost any programming
environment.

3.7 Discriminant-Based Classifier

All the classifiers discussed above do not weight words differentially in a con-
tinuous manner. Either they do not weight them at all, as in the case of
the Bayes classifier or the SVM, or they focus on only some words, ignoring
the rest, as with the word count classifier. In contrast the discriminant-based
classifier weights words based on their discriminant value.

The commonly used tool here is Fisher’s discriminant. Various implementa-
tions of it, with minor changes in form are used. In the classification area,
one of the earliest uses was in the Bow algorithm of McCallum (1996), which
reports the discriminant values; Chakrabarti, Dom, Agrawal and Raghavan
(1998) also use it in their classification framework, as do Das and Chen (2007).
We present one version of Fisher’s discriminant here.

Let the mean score (average number of times word w appears in a text message
of category i) of each term for each category = p;, where ¢ indexes category.
Let text messages be indexed by j. The number of times word w appears in a
message j of category ¢ is denoted m;; . Let n; be the number of times word
w appears in category ¢. Then the discriminant function might be expressed

16

as:

1 D (i — pie)?
__[C] &~i#k

It is the ratio of the across-class (class i vs class k) variance to the average
of within-class (class ¢ € (') variances. To get some intuition, consider the
case we looked at earlier, classifying the economic sentiment as optimistic or
pessimistic. If the word “dismal” appears exactly once in text that is pes-
simistic and never appears in text that is optimistic, then the within-class
variation is zero, and the across-class variation is positive. In such a case,
where the denominator of the equation above is zero, the word “dismal” is an
infinitely-powerful discriminant. It should be given a very large weight in any
word-count algorithm.

In Das and Chen (2007) we looked at stock message-board text and determined
good discriminants using the Fisher metric. Here are some words that showed
high discriminant values (with values alongside) in classifying optimistic versus
pessimistic opinions.

bad 0.0405

hot 0.0161
hype 0.0089
improve 0.0123
joke 0.0268
jump 0.0106
killed 0.0160
lead 0.0037
like 0.0037
long 0.0162
lose 0.1211
money 0.1537
overvalue 0.0160
own 0.0031
good__n 0.0485

The last word in the list (“not good”) is an example of a negated word showing
a higher discriminant value than the word itself without a negative connotation
(recall the discussion of negative tagging earlier in Section 3.2). Also see that
the word “bad” has a score of 0.0405, whereas the term “not good” has a
higher score of 0.0485. This is an example where the structure and usage of
language, not just the meaning of a word, matters.

In another example, using the Bow algorithm this time, examining a database

17

of conference calls with analysts, the best 20 discriminant words were:

.030828516377649325
.094412331406551059
.044315992292870907
.225433526011560692
.034682080924855488
.123314065510597301
.017341040462427744
.071290944123314062
.044315992292870907
.015414258188824663
.0560096339113680152
.028901734104046242
.025048169556840076
.021194605009633910
.017341040462427744
.090558766859344900
.019267822736030827
.017341040462427744
.026974951830443159
.001926782273603083

O O O OO O OO OO OOOOOOOoO o oo

allowing
november
determined
general
seasonality
expanded
rely
counsel
told

easier

drop
synergies
piece
expenditure
requirement
prospects
internationally
proper
derived
invited

Not all these words would obviously connote bullishness or bearishness, but
some of them certainly do, such as “expanded”, “drop”, “prospects”, etc.
Why apparently unrelated words appear as good discriminants is useful to
investigate, and may lead to additional insights.

3.8 Adjective-Adverb Classifier

Classifiers may use all the text, as in the Bayes and vector-distance classifiers,
or a subset of the text, as in the word-count algorithm. They may also weight
words differentially as in discriminant-based word counts. Another way to filter
words in a word-count algorithm is to focus on the segments of text that have
high emphasis, i.e., in regions around adjectives and adverbs. This is done
in Das and Chen (2007) using an adjective-adverb search to determine these
regions.

This algorithm is language-dependent. In order to determine the adjectives and
adverbs in the text, parsing is required, and calls for the use of a dictionary.
The one I have used extensively is the CUVOALD ((Computer Usable Version
of the Oxford Advanced Learners Dictionary). It contains parts-of-speech tag-
ging information, and makes the parsing process very simple. There are other

18

sources—a very well-known one is WordNet from http://wordnet.princeton.edu/.

Using these dictionaries, it is easy to build programs that only extract the
regions of text around adjectives and adverbs, and then submit these to the
other classifiers for analysis and classification. Counting adjectives and adverbs
may also be used to score news text for “emphasis” thereby enabling a different
qualitative metric of importance for the text.

3.9 Scoring Optimism and Pessimism

A very useful resource for scoring text is the General Inquirer,
http://www.wjh.harvard.edu/~inquirer/, housed at Harvard University.
The Inquirer allows the user to assign “flavors” to words so as to score text. In
our case, we may be interested in counting optimistic and pessimistic words
in text. The Inquirer will do this online if needed, but the dictionary may be
downloaded and used offline as well. Words are tagged with attributes that
may be easily used to undertake tagged word counts.

Here is a sample of tagged words from the dictionary that gives a flavor of its
structure:

ABNORMAL H4Lvd Neg Ngtv Vice NEGAFF Modif |

ABOARD H4Lvd Space PREP LY |

ABOLITION Lvd TRANS Noun

ABOMINABLE H4 Neg Strng Vice Ovrst Eval IndAdj Modif |
ABORTIVE Lvd POWOTH POWTOT Modif POLIT

ABOUND H4 Pos Psv Incr IAV SUPV |

The words ABNORMAL and ABOMINABLE have “Neg” tags and the word
ABOUND has a “Pos” tag.

Das and Chen (2007) used this dictionary to create an ambiguity score for
segmenting and filtering messages by optimism/pessimism in testing news an-
alytical algorithms. They found that algorithms performed better after filter-
ing in less ambiguous text. This ambiguity score is discussed later in Section
3.11.

Tetlock (2007) is the best example of the use of the General Inquirer in finance.
Using text from the “Abreast of the Market” column from the Wall Street
Journal he undertook a principal components analysis of 77 categories from the
GI and constructed a media pessimism score. High pessimism presages lower
stock prices, and extreme positive or negative pessimism predicts volatility.
Tetlock, Saar-Tsechansky and Macskassay (2008) use news text related to firm
fundamentals to show that negative words are useful in predicting earnings

19

and returns. The potential of this tool has yet to be fully realized, and I expect
to see a lot more research undertaken using the General Inquirer.

3.10 Voting among Classifiers

In Das and Chen (2007) we introduced a voting classifier. Given the highly
ambiguous nature of the text being worked with, reducing the noise is a ma-
jor concern. Pang, Lee and Vaithyanathan (2002) found that standard ma-
chine learning techniques do better than humans at classification. Yet, machine
learning methods such as naive Bayes, maximum entropy, and support vector
machines do not perform as well on sentiment classification as on traditional
topic-based categorization.

To mitigate error, classifiers are first separately applied, and then a majority
vote is taken across the classifiers to obtain the final category. This approach
improves the signal to noise ratio of the classification algorithm.

3.11 Ambiguity Filters

Suppose we are building a sentiment index from a news feed. As each text
message comes in, we apply our algorithms to it and the result is a classification
tag. Some messages may be classified very accurately, and others with much
lower levels of confidence. Ambiguity-filtering is a process by which we discard
messages of high noise and potentially low signal value from inclusion in the
aggregate signal (for example, the sentiment index).

One may think of ambiguity-filtering as a sequential voting scheme. Instead
of running all classifiers and then looking for a majority vote, we run them
sequentially, and discard messages that do not pass the hurdle of more general
classifiers, before subjecting them to more particular ones. In the end, we still
have a voting scheme. Ambiguity metrics are therefore lexicographic.

In Das and Chen (2007) we developed an ambiguity filter for application
prior to our classification algorithms. We applied the General Inquirer to the
training data to determine an “optimism” score. We computed this for each
category of stock message type, i.e., buy, hold, and sell. For each type, we
computed the mean optimism score, amounting to 0.032, 0.026, 0.016, respec-
tively, resulting in the expected rank ordering (the standard deviations around
these means are 0.075, 0.069, 0.071, respectively). We then filtered messages
in based on how far they were away from the mean in the right direction.
For example, for buy messages, we chose for classification only those with

20

one standard-deviation higher than the mean. False positives in classification
decline dramatically with the application of this ambiguity filter.

3.12 Network Analytics

We now examine analytic methods that are not based on a single stock or
single text message. Instead, we look at methods for connecting news and
information across handles, stocks, and time. This is the domain of “context”
analysis. By examining the network structure of the information, we may
attempt to discern useful patterns in the message stream.

Recall Metcalfe’s Law— “The utility of a network is proportional to the square
of the number of users.” News analytics benefit from the network effect since
aggregation greatly improves signal extraction. But in addition, network struc-
ture may be used inferentially.

How are networks defined? There are several operational implementations pos-
sible. In Das and Sisk (2005), we constructed a network of stocks based on
how many common handles posted to pairs of stock message boards. For ex-
ample, if person WiseStockGuy posted messages to both Cisco and IBM in a
pre-specified interval, we would increment the connection between those two
stocks by one unit. In this manner a network graph of stock linkages is built
up. Another approach might be to construct a network graph of connections
based on whether someone requested a quote on two stocks at the same time—
see Figure 7. The network shows that a tight group of stocks receives all the
attention, whereas there are many stocks that are not well-connected to each
other.

Network analysis is important because influence and opinion travel rapidly
on networks, and the dynamics greatly determine the collective opinion. See
DeMarzo, Vayanos and Zwiebel (2003) for an analysis of persuasion bias
and social influence on networks. For games on networks, where senders of
messages are optimistic, more extreme messages are sent, resulting in lower
informativeness—see Admati and Pfleiderer (2001). Hence, news analytics
must be designed to be able to take advantage of “word-of-mouth” occur-
ring in web discussions. Word-of-mouth communication leads agents to take
actions that are superior than those taken in the absence of it, shown in Elli-
son and Fudenberg (1995). News metrics enable extraction and analysis of the
sociology of networks. Morville (2005) has a neat term for the intersection of
information technology and social networks—he calls them “folksonomies”.

21

Fig. 7. A rendering of a graph of more than 6,000 stocks for which someone requested
a quote from Yahoo! finance. There is an edge between two stocks if someone re-
quested quotes on those stocks at the same time. They are from about 2% of the
traffic on Yahoo, on April 1, 2002. Based on rendering software by: Adai A.T., Date
S.V., Wieland S., Marcotte E.M. (2004), “Creating a map of protein function with
an algorithm for visualizing very large biological networks.” Journal of Molecular
Biology, June 25; 340(1):179-90. The graph is courtesy of Jacob Sisk.

3.13 Centrality

The field of graph theory lends itself to the analysis of networks. There are
several news analytics that may be based on the properties of networks. An
important and widely-used analytic measure is called “centrality”. A node is a
network is more central than others if it has more connections to other nodes
directly, or indirectly through links to other nodes that are well connected.
Centrality has been extensively used in sociology, as in the work by Bonacich
(1972), Bonacich (1987).

Centrality is computed as follows. We represent the network of message con-
nections as an adjacency matrix. This matrix is denoted A = {a;;} € R™™,
a square matrix that contains the connection strength between nodes. If the
graph of connections is undirected, then a;; = a;;, else if a;; # aj;, the graph
is directed. Let z; be the influence of node 7 in the network. Node 7 exerts
influence through connections to other nodes, and we may write the influence

22

of all nodes as the following system of equations:

m
€T; = Z Q355

J=1,5#i

This may be written as an eigensystem with the addition of the eigen param-
eter A, i.e.,

Ax=Ax

where x is the vector of influences of all nodes. The principal eigenvector in
this system gives the centrality score of all nodes, and highlights which nodes
have the most influence.

In Das and Sisk (2005), we computed the centrality scores for all stocks in a
network graph where the connection strengths were based on the number of
common message posters each pair of stocks had. We found that stocks such
as IBM, AOL, Motorola, AMD were central and stocks such as American
Express, Abbot Labs, Bristol Myers were not central. Central stocks are more
likely to be indicative of the way other stocks may react, since they influence
others more than vice-versa; hence, they may be leading indicators of stock
market movements. Computing centrality in various news domains is useful
to get a sense of what sources of news may be better-tracked than others.

3.1/ Communities

News traffic may be analyzed to determine communities. Given a network
graph’s adjacency matrix, communities are easy to detect using any one of
several well-known algorithms. An excellent review of these algorithms is pro-
vided by Fortunato (2010).

A widely-used library for graph analysis and community detection is igraph.
This may be accessed at http://igraph.sourceforge.net/. A sample of the
ease of use of the igraph library using R is as follows:

#CREATE GRAPH FROM ADJACENCY MATRIX
g = graph.adjacency(adjmat,mode="undirected",weighted=TRUE,diag=FALSE)

#DETECT COMMUNITIES

wtc = walktrap.community(g)

comms = community.to.membership(g,wtc$merges,steps=length(vc_list_connected)/4)
print (comms)

23

#DETECT CLUSTERS
clus = clusters(g)
print(clus)

The sequence of commands initially creates the network graph from the adja-
cency matrix (adjmat). It then executes the “walktrap” community detection
algorithm to find the communities that are then printed out. The igraph
package also allows for finding clusters as needed.

A community is a cluster of nodes that have many connections between mem-
bers of the community but few connections outside the community. There are
many algorithms that exploit this working definition of a community. For in-
stance, the walktrap algorithm is a randomized one—it detects communities
using a random walk on a network. A random walk tends to be trapped in a
community because of the number of links between community nodes relative
to links across communities. By keeping track of regions of the network where
the random walk is trapped, this algorithm is able to detect communities. See
the paper by the creators of the algorithm—Pons and Latapy (2006). This is
a very recent paper, and resulted in a large performance improvement over
existing algorithms.

Communities may then be examined for differences in characteristics to give
insights. For example, if we find that stocks in more connected communities
tend to be more volatile, then we may want to limit the number of stocks
chosen from these communities in a portfolio.

4 Metrics

Developing analytics without metrics is insufficient. It is important to build
measures that examine whether the analytics are generating classifications
that are statistically significant, economically useful, and stable. For an an-
alytic to be statistically wvalid, it should meet some criterion that signifies
classification accuracy and power. Being economically useful sets a different
bar—does it make money? And stability is a double-edged quality: one, does
it perform well in-sample and out-of-sample? And two, is the behavior of the
algorithm stable across training corpora?

Here, we explore some of the metrics that have been developed, and propose
others. No doubt, as the range of analytics grows, so will the range of metrics.

24

4.1 Confusion Matrix

The confusion matrix is the classic tool for assessing classification accuracy.
Given n categories, the matrix is of dimension n X n. The rows relate to
the category assigned by the analytic algorithm and the columns refer to
the correct category in which the text resides. Each cell (i,7) of the matrix
contains the number of text messages that were of type j and were classified
as type 7. The cells on the diagonal of the confusion matrix state the number
of times the algorithm got the classification right. All other cells are instances
of classification error. If an algorithm has no classification ability, then the
rows and columns of the matrix will be independent of each other. Under this
null hypothesis, the statistic that is examined for rejection is as follows:

Cldof = (n— 1) = f:lf:l [A(@J}E& ?)(i,j)]

]

where A(i, j) are the actual numbers observed in the confusion matrix, and
E(i, j) are the expected numbers, assuming no classification ability under the
null. If 7'(i) represents the total across row i of the confusion matrix, and 7'(y)
the column total, then
By - T X TG) _ T x TG)
’ iz T(1) =1 T()

The degrees of freedom of the x? statistic is (n—1)2. This statistic is very easy
to implement and may be applied to models for any n. A highly significant
statistic is evidence of classification ability.

4.2 Accuracy

Algorithm accuracy over a classification scheme is the percentage of text that is
correctly classified. This may be done in-sample or out-of-sample. To compute
this off the confusion matrix, we calculate

?:1 A(Zv Z)

Accuracy = == :
j=1 7(j)

We should hope that this is at least greater than 1/n, which is the accuracy
level achieved on average from random guessing. In practice, I find that accu-
racy ratios of 60-70% are reasonable for text that is non-factual and contains
poor language and opinions.

25

4.8 False Positives

Improper classification is worse than a failure to classify. In a 2 x 2 (two
category, n = 2) scheme, every off-diagonal element in the confusion matrix is
a false positive. When n > 2, some classification errors are worse than others.
For example in a 3—way buy, hold, sell scheme, where we have stock text for
classification, classifying a buy as a sell is worse than classifying it as a hold.
In this sense an ordering of categories is useful so that a false classification into
a near category is not as bad as a wrong classification into a far (diametrically
opposed) category.

The percentage of false positives is a useful metric to work with. It may be
calculated as a simple count or as a weighted count (by nearness of wrong
category) of false classifications divided by total classifications undertaken.

In our experiments on stock messages in Das and Chen (2007), we found that
the false positive rate for the voting scheme classifier was about 10%. This
was reduced to below half that number after application of an ambiguity filter
(discussed in Section 3.11) based on the General Inquirer.

4.4 Sentiment Error

When many articles of text are classified, an aggregate measure of sentiment
may be computed. Aggregation is useful because it allows classification errors
to cancel—if a buy was mistaken as a sell, and another sell as a buy, then the
aggregate sentiment index is unaffected.

Sentiment error is the percentage difference between the computed aggregate
sentiment, and the value we would obtain if there were no classification error.
In our experiments this varied from 5-15% across the data sets that we used.
Leinweber and Sisk (2010) show that sentiment aggregation gives a better
relation between news and stock returns.

4.5 Disagreement

In Das, Martinez-Jerez and Tufano (2005) we introduced a disagreement met-
ric that allows us to gauge the level of conflict in the discussion. Looking at
stock text messages, we used the number of signed buys and sells in the day
(based on a sentiment model) to determine how much disagreement of opinion

26

there was in the market. The metric is computed as follows:

DISAG:’l—’B_SH

B+ S

where B, S are the numbers of classified buys and sells. Note that DISAG is
bounded between zero and one. The quality of aggregate sentiment tends to

be lower when DISAG is high.
4.6 Correlations

A natural question that arises when examining streaming news is: how well
does the sentiment from news correlate with financial time series? Is there
predictability? An excellent discussion of these matters is provided in Lein-
weber and Sisk (2010). They specifically examine investment signals derived
from news.

In their paper, they show that there is a significant difference in cumulative
excess returns between strong positive sentiment and strong negative senti-
ment days over prediction horizons of a week or a quarter. Hence, these event
studies are based on point-in-time correlation triggers. Their results are robust
across countries.

The simplest correlation metrics are visual. In a trading day, we may plot
the movement of a stock series, alongside the cumulative sentiment series.
The latter is generated by taking all classified ‘buys’ as +1 and ‘sells’ as —1,
and the plot comprises the cumulative total of scores of the messages (‘hold’
classified messages are scored with value zero). See Figure 8 for one example,
where it is easy to see that the sentiment and stock series track each other
quite closely. We coin the term “sents” for the units of sentiment.

4.7 Aggregation Performance

As pointed out in Leinweber and Sisk (2010) aggregation of classified news
reduces noise and improves signal accuracy. One way to measure this is to look
at the correlations of sentiment and stocks for aggregated versus disaggregated
data. As an example, I examine daily sentiment for individual stocks and an
index created by aggregating sentiment across stocks, i.e., a cross-section of
sentiment. This is useful to examine whether sentiment aggregates effectively
in the cross-section.

I used all messages posted for 35 stocks that comprise the Morgan Stanley

27

Stock Price
o : ! ! !

dollars

Hnnr nf dav

Sentiment: EBAY.2000-10-19

sents

0 i i i i
0

Hnnr nf dawv

Fig. 8. Plot of stock series (upper graph) versus sentiment series (lower graph). The
correlation between the series is high. The plot is based on messages from Yahoo!
Finance and is for a single twenty-four hour period.

High-Tech Index (MSH35) for the period June 1 to August 27, 2001. This
results in 88 calendar days and 397,625 messages, an average of about 4,500
messages per day. For each day I determine the sentiment and stock return.
Daily sentiment uses messages up to 4 pm on each trading day, coinciding
with the stock return close.

I also compute the average sentiment index of all 35 stocks, i.e., a proxy for
the MSH35 sentiment. The corresponding equally weighted return of 35 stocks
is also computed. These two time series permit an examination of the relation-
ship between sentiment and stock returns at the aggregate index level. Table
1 presents the correlations between individual stock returns and sentiment,
and between the MSH35 index return and MSH35 sentiment. We notice that
there is positive contemporaneous correlation between most stock returns and
sentiment. The correlations were sometimes as high as 0.60 (for Lucent), 0.51
(PALM) and 0.49 (DELL). Only six stocks evidenced negative correlations,
mostly small in magnitude. The average contemporaneous correlation is 0.188,
which suggests that sentiment tracks stock returns in the high-tech sector. (I

28

Table 1

Correlations of Sentiment and Stock Returns for the MSH35 stocks and the aggre-
gated MSH35 index. Stock returns (STKRET) are computed from close-to-close.
We compute correlations using data for 88 days in the months of June, July and
August 2001. Return data over the weekend is linearly interpolated, as messages
continue to be posted over weekends. Daily sentiment is computed from midnight
to close of trading at 4 pm (SENTY4pm).

Ticker Correlations of SENTY4pm(t) with
STKRET(t) STKRET(t+1) STKRET(t-1)
ADP 0.086 0.138 -0.062
AMAT -0.008 -0.049 0.067
AMZN 0.227 0.167 0.161
AOL 0.386 -0.010 0.281
BRCM 0.056 0.167 -0.007
CA 0.023 0.127 0.035
CPQ 0.260 0.161 0.239
CSCO 0.117 0.074 -0.025
DELL 0.493 -0.024 0.011
EDS -0.017 0.000 -0.078
EMC 0.111 0.010 0.193
ERTS 0.114 -0.223 0.225
HWP 0.315 -0.097 -0.114
IBM 0.071 -0.057 0.146
INTC 0.128 -0.077 -0.007
INTU -0.124 -0.099 -0.117
JDSU 0.126 0.056 0.047
JNPR 0.416 0.090 -0.137
LU 0.602 0.131 -0.027
MOT -0.041 -0.014 -0.006
MSFET 0.422 0.084 0.210
MU 0.110 -0.087 0.030
NT 0.320 0.068 0.288
ORCL 0.005 0.056 -0.062
PALM 0.509 0.156 0.085
PMTC 0.080 0.005 -0.030
PSFT 0.244 -0.094 0.270
SCMR 0.240 0.197 0.060
SLR -0.077 -0.054 -0.158
STM -0.010 -0.062 0.161
SUNW 0.463 0.176 0.276
TLAB 0.225 0.250 0.283
TXN 0.240 -0.052 0.117
XLNX 0.261 -0.051 -0.217
YHOO 0.202 -0.038 0.222

Average correlation across 35 stocks
0.188 0.029 0.067
Correlation between 35 stock index and 35 stock sentiment index
0.486 0.178 0.288
29

also used full-day sentiment instead of only that till trading close and the
results are almost the same—the correlations are in fact higher, as sentiment
includes reactions to trading after the close).

Average correlations for individual stocks are weaker when one lag (0.067)
or lead (0.029) of the stock return are considered. More interesting is the
average index of sentiment for all 35 stocks. The contemporaneous correlation
of this index to the equally-weighted return index is as high as 0.486. Here,
cross-sectional aggregation helps in eliminating some of the idiosyncratic noise,
and makes the positive relationship between returns and sentiment salient.
This is also reflected in the strong positive correlation of sentiment to lagged
stock returns (0.288) and leading returns (0.178). I confirmed the statistical
contemporaneous relationship of returns to sentiment by regressing returns on
sentiment (T-statistics in brackets):

STKRET(t)=—0.1791 + 0.3866SENTY (t), R>=0.24
0.93) (5.16)

4.8 Phase-Lag Metrics

Correlation across sentiment and return time series is a special case of lead-
lag analysis. This may be generalized to looking for pattern correlations. As
may be evident from Figure 8, the stock and sentiment plots have patterns.
In the figure they appear contemporaneous, though the sentiment series lags
the stock series.

A graphical approach to lead-lag analysis is to look for graph patterns across
two series and to examine whether we may predict the patterns in one time
series with the other. For example, can we use the sentiment series to predict
the high point of the stock series, or the low point? In other words, is it possible
to use the sentiment data generated from algorithms to pick turning points in
stock series? We call this type of graphical examination “phase-lag” analysis.

A simple approach I came up with involves decomposing graphs into eight
types—see Figure 9. On the left side of the figure, notice that there are eight
patterns of graphs based on the location of four salient graph features: start,
end, high, and low points. There are exactly eight possible graph patterns that
may be generated from all positions of these four salient points. It is also very
easy to write software to take any time series—say, for a trading day—and
assign it to one of the patterns, keeping track of the position of the maximum
and minimum points. It is then possible to compare two graphs to see which
one predicts the other in terms of pattern. For example, does the sentiment
series maximum come before that of the stock series? If so, how much earlier

30

Up=Down Down-Up

Phase-Lag
Analysis

Min-Max Max~Min

Min-Up Max~Down H

Up-Min
Down-Max

Fig. 9. Phase-lag analysis. The left-side shows the eight canonical graph patterns
that are derived from arrangements of the start, end, high, and low points of a
time series. The right-side shows the leads and lags of patterns of the stock series
versus the sentiment series. A positive value means that the stock series leads the
sentiment series.

does it detect the turning point on average?

Using data from several stocks I examined whether the sentiment graph pat-
tern generated from a voting classification algorithm was predictive of stock
graph patterns. Phase-lags were examined in intervals of five minutes through
the trading day. The histogram of leads and lags is shown on the right-hand
side of Figure 9. A positive value denotes that the sentiment series lags the
stock series; a negative value signifies that the stock series lags sentiment. It
is apparent from the histogram that the sentiment series lags stocks, and is
not predictive of stock movements in this case.

4.9 Economic Significance

News analytics may be evaluated using economic yardsticks. Does the algo-
rithm deliver profitable opportunities? Does it help reduce risk?

31

For example, in Das and Sisk (2005) we formed a network with connections
based on commonality of handles in online discussion. We detected commu-
nities using a simple rule based on connectedness beyond a chosen threshold
level, and separated all stock nodes into either one giant community or into a
community of individual singleton nodes. We then examined the properties of
portfolios formed from the community versus those formed from the singleton
stocks.

We obtained several insights. We calculated the mean returns from an equally-
weighted portfolio of the community stocks and an equally-weighted portfolio
of singleton stocks. We also calculated the return standard deviations of these
portfolios. We did this month-by-month for sixteen months. In fifteen of the
sixteen months the mean returns were higher for the community portfolio;
the standard deviations were lower in thirteen of the sixteen months. The
difference of means was significant for thirteen of those months as well. Hence,
community detection based on news traffic leads to identifying a set of stocks
that performs vastly better than the rest.

There is much more to be done in this domain of economic metrics for the
performance of news analytics. Leinweber and Sisk (2010) have shown that
there is exploitable alpha in news streams. The risk management and credit
analysis areas also offer economic metrics that may be used to validate news
analytics.

5 Discussion

The various techniques and metrics fall into two broad categories: supervised
and unsupervised learning methods. Supervised models use well-specified in-
put variables to the machine-learning algorithm, which then emits a classifica-
tion. One may think of this as a generalized regression model. In unsupervised
learning, there are no explicit input variables but latent ones, e.g. cluster
analysis. Most of the news analytics we explored relate to supervised learning,
such as the various classification algorithms. This is well-trodden research. It
is the domain of unsupervised learning, for example, the community detection
algorithms and centrality computation, that have been less explored and are
potentially areas of greatest potential going forward.

Whether news analytics reside in the broad area of Al or not is under debate.
The advent and success of statistical learning theory in real-world applications
has moved much of news analytics out of the Al domain into econometrics.
There is very little natural language processing (NLP) involved. As future
developments shift from text methods to context methods, we may see a return
to the Al paradigm.

32

News analytics will broaden in the toolkit it encompasses. Expect to see
greater use of dependency networks and collaborative filtering. We will also
see better data visualization techniques such as community views and central-
ity diagrams. The number of tools keeps on growing. For an almost exhaus-
tive compendium of tools see the book by Koller (2009) titled “Probabilistic
Graphical Models.”

In the end, news analytics are just sophisticated methods for data mining.
For an interesting look at the top ten algorithms in data mining, see Wu, et
al. (2008). This paper discusses the top 10 data mining algorithms identified
by the IEEE International Conference on Data Mining (ICDM) in Decem-
ber 2006.3 As algorithms improve in speed, they will expand to automated
decision-making, replacing human interaction—as noticed in the marriage of
news analytics with automated trading, and eventually, a rebirth of XHAL.

References

A. Admati, and P. Pfleiderer (2001). “Noisytalk.com: Broadcasting Opinions
in a Noisy Environment,” working paper, Stanford University.

W. Antweiler and M. Frank (2004). “Is all that Talk just Noise? The Infor-
mation Content of Internet Stock Message Boards,” Journal of Finance,
v59(3), 1259-1295.

W. Antweiler and M. Frank (2005). “The Market Impact of Corporate News
Stories,” Working paper, University of British Columbia.

P. Bonacich (1972). “Technique for analyzing overlappingmemberships,” So-
ciological Methodology 4, 176-185.

P. Bonacich (1987). “Power and centrality: a family of measures,” American
Journal of Sociology 92(5), 1170-1182.

Chakrabarti, S., B. Dom, R. Agrawal, and P. Raghavan. (1998). “Scalable
feature selection, classification and signature generation for organizing large
text databases into hierarchical topic taxonomies,” The VLDB Journal,
Springer-Verlag.

S. Das and M. Chen (2007). “Yahoo for Amazon! Sentiment Extraction from
Small Talk on the Web,” Management Science 53, 1375-1388.

S. Das, A. Martinez-Jerez, and P. Tufano (2005). “eInformation: A Clinical
Study of Investor Discussion and Sentiment,” Financial Management 34(5),
103-137.

S. Das and J. Sisk (2005). “Financial Communities,” Journal of Portfolio
Management 31(4), 112-123.

P. DeMarzo, D. Vayanos, and J. Zwiebel (2003). “Persuasion Bias, Social

3 These algorithms are: C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost,
kNN, Naive Bayes, and CART.

33

Influence, and Uni-Dimensional Opinions,” Quarterly Journal of Economics
118, 909-968.

J. Edwards., K. McCurley, and J. Tomlin (2001). “An Adaptive Model for
Optimizing Performance of an Incremental Web Crawler,” Proceedings
WWW10, Hong Kong, 106-113.

G. Ellison, and D. Fudenberg (1995). “Word of Mouth Communication and
Social Learning,” Quarterly Journal of Economics 110, 93-126.

S. Fortunato (2010). “Community Detection in Graphs,” Physics Reports 486,
75-174.

P. Graham (2004). “Hackers and Painters,” O’Reilly Media, Sebastopol, CA.

T. Joachims (1999). “Making large-Scale SVM Learning Practical. Advances
in Kernel Methods - Support Vector Learning,” B. Scholkopf and C. Burges
and A. Smola (ed.), MIT-Press.

Koller, D., and M. Sahami (1997). “Hierarchically Classifying Documents us-
ing Very Few Words,” International Conference on Machine Learning, v14,
Morgan-Kaufmann, San Mateo, California.

D. Koller (2009). “Probabilistic Graphical Models,” MIT Press.

D. Leinweber., and J. Sisk (2010). “Relating News Analytics to Stock Re-
turns,” mimeo, Leinweber & Co.

S. Levy (2010). “How Google’s Algorithm Rules the Web,” Wired, March.

F. Li (2006). “Do Stock Market Investors Understand the RiskSentiment of
Corporate Annual Reports?” Working paper, University of Michigan.

A, McCallum (1996). "Bow: A toolkit for statistical lan-
guage modeling, text retrieval, classification and clustering,”
http://www.cs.cmu.edu/~mccallum/bow.

Mitchell, Tom (1997). “Machine Learning,” McGraw-Hill.

L. Mitra., G. Mitra., and D. diBartolomeo (2008). “Equity Portfolio Risk
(Volatility) Estimation using Market Information and Sentiment,” Working
paper, Brunel University.

P. Morville (2005). “Ambient Findability,” O’'Reilly Press, Sebastopol, CA.

Neal, R.(1996). “Bayesian Learning for Neural-Networks,” Lecture Notes in
Statistics, v118, Springer-Verlag.

B. Pang., L. Lee., and S. Vaithyanathan (2002). “Thumbs Up? Sentiment
Classification using Machine Learning Techniques,” Proc. Conference on
Empirical Methods in Natural Language Processing (EMNLP).

P. Pons, M. Latapy (2006). “Computing Communities in Large Networks Us-
ing Random Walks,” Journal of Graph Algorithms Applied, 10(2), 191-218.

M. Porter, (1980). “An Algorithm for Suffix Stripping,” Program 14(3),
1307137.

Segaran, T (2007). “Programming Collective Intelligence,” O’Reilly Media
Inc., California.

Smola, A.J., and Scholkopf, B (1998). “A Tutorial on Support Vector Regres-
sion,” NeuroCOLT2 Technical Report, ESPIRIT Working Group in Neural
and Computational Learning II.

P. Tetlock (2007). “Giving Content to Investor Sentiment: The Role of Media

34

in the Stock Market,” Journal of Finance 62(3), 1139-1168.

P. Tetlock, P. M. Saar-Tsechansky, and S. Macskassay (2008). “More than
Words: Quantifying Language to Measure Firm’s Fundamentals,” Journal
of Finance 63(3), 1437-1467.

Vapnik, V, and A. Lerner (1963). “Pattern Recognition using Generalized
Portrait Method,” Automation and Remote Control, v24.

Vapnik, V. and Chervonenkis (1964). “On the Uniform Convergence of Rela-
tive Frequencies of Events to their Probabilities,” Theory of Probability and
its Applications, v16(2), 264-280.

Vapnik, V (1995). The Nature of Statistical Learning Theory, Springer-Verlag,
New York.

Xindong Wu, Vipin Kumar, J. Ross Quinlan, Joydeep Ghosh, Qiang Yang,
Hiroshi Motoda, Geoffrey J. McLachlan, Angus Ng, Bing Liu, Philip S.
Yu, Zhi-Hua Zhou, Michael Steinbach, David J. Hand and Dan Steinberg,
(2008). “Top 10 Algorithms in Data Mining,” Knowledge and Information
Systems 14(1), 1-37.

35

