
JOIM
www.joim.com

JOURNAL OF INVESTMENT MANAGEMENT, Vol. 7, No. 4, (2009), pp. 1–12

© JOIM 2009

S U R V E Y S A N D C R O S S O V E R S

FINANCIAL APPLICATIONS WITH PARALLEL R
Sanjiv R. Das a,∗ and Brian Granger b

The use of statistical packages in finance has two functions. One, econometric analysis of large
volumes of data, and two, programming financial models. A popular package for these purposes is
R. In this article we will examine two canonical applications of parallel programming for option
pricing. We use the ParallelR package developed by REvolution Computing. We price options using
trees and Monte Carlo simulation. Both these approaches are commonly used for option pricing and
are amenable to parallelization and grid computing. In this paper we demonstrate the application
using the widely used mathematical/statistical R package.

1 Introduction

R is an open-source programming language for
statistics and econometrics. R evolved at Bell Labs
and is similar to the S language that is also widely
known and used in statistical applications. But it is
more than a mere statistical language. It is a full-
blown programming environment for numerical
and scientific computing. In this article we demon-
strate the use of a parallel version of R for option
pricing applications.

∗Corresponding author. Finance Department, Leavey School
of Business, Santa Clara University, Santa Clara, CA 95053,
USA.
aLeavey School of Business, Santa Clara University, Santa
Clara, CA 95053, USA. E-mail: srdas@scu.edu
bPhysics Department, California Polytechnic State Uni-
versity, San Luis Obispo, CA 93407, USA. E-mail:
bgranger@calpoly.edu

R is already widely used in academic research. There
are many financial packages that have been devel-
oped and are becoming increasingly popular. The
Rmetrics suite of packages comprises fArma for
autoregressive time series modeling, fOptions for
pricing options, fBonds for fixed-income models,
fCopulae for credit risk modeling, etc. There are
several other packages provided by Rmetrics and
these are being extended to additional models on
an on-going basis.1

R is an open source project and is supported
on all hardware platforms. For readers unfamiliar
with R, the software, tutorials and full docu-
mentation are available at the project website on
Source Forge (http://www.r-project.org/).
R is an excellent platform for scientific comput-
ing because it combines many features. First, it
is an industrial strength platform for statistics and

FOURTH QUARTER 2009 1

2 SANJIV R. DAS AND BRIAN GRANGER

econometrics, and contains all the required tools,
applicable in a canned manner. Therefore, the user
can easily run many statistical analyses with just a
few commands. In this mode, R offers all the tools
that come with pure statistical packages such as SAS,
SPSS, and Stata. In finance, for example, one may
run a GARCH analysis with only a few lines of
program code. Second, R is interactive. Analyses
may be run from the command line with imme-
diate response. Therefore, while R is a full-blown
programming language, it also supports interactive
computation making it suitable for a wide range
of user styles. Third, R is a matrix or array-based
language, and therefore subsumes the functional-
ity of mathematical packages directed at scientific
computing, such as Matlab and Gauss. Fourth, R
comes with several libraries and toolboxes that may
be put to specialized purpose. As of March 2009,
the R repository, known as CRAN (Comprehensive
R Archive Network) contained over 1700 packages.
All software in CRAN is free. Hence, the adoption
rate for R has accelerated, enhancing the network
benefits of a growing scientific community.

There are several other R programming packages for
finance. The RQuantLib package supports option-
pricing and fixed-income functions. Thequantmod
package is (quite obviously) for quantitative mod-
eling in finance. One could go on and on, but the
list would not be exhaustive, and it’s best to refer to
internet sources that keep these packages up to date
and have current listings.2

Despite this proliferation of R tools for finance,
there are very few free tools for financial applications
that exploit the newest hardware, i.e. multicore
processor machines, GPUs and computing clus-
ters. The paucity of parallel programming solutions
using R is symptomatic of these early days of par-
allel programming packages, as is the absence of
documentation that enables ordinary application
programmers to get up and running in short order.
This article seeks to provide a gentle introduction

to the basics of a newly developed solution to
parallel computing in R, namely the ParallelR
package. This is developed by REvolution Com-
puting, a company that styles itself as the “Red
Hat of R computing”.3 The ParallelR package
is very easy to install and use. This package needs
to be used in conjunction with the Network Spaces
(NWS) Server. Network Spaces is a system that is
widely used to allow different scripts and programs
to communicate with each other. These programs
may reside on the same machine or on multiple
machines. Appendix A details how to install these
tools (NWS and ParallelR), and Appendix B
explains how to deploy them.

Parallel implementations of programs are best elu-
cidated with examples. The rest of the article is
directed towards finance academics who may be
interested in getting up and running with the system
with a short learning curve.

2 Parallel Monte Carlo

The simplest examples of parallel computing are
cases where an algorithm can be broken down into
distinct subprocesses, each of which operates com-
pletely separately. What this means is that there
is no interprocess communication nor is there any
shared data. These problems are known as “embar-
rasingly parallel” and the procedure only involves
a final aggregation step after all subprocesses have
returned the results of their computations.

The pricing of European options is an exemplar
of such problems and offers a good starting point
for demonstrating the use of ParallelR. We price
European calls in the Black and Scholes (1973) and
Merton (1973) models. In this model the risk-
neutral stock price evolution is given by

S(t + h) = S(t) exp

[(
r − 1

2
σ2

)
h + σε(t)

√
h
]

,

ε(t) ∼iid N (0, 1) (1)

JOURNAL OF INVESTMENT MANAGEMENT FOURTH QUARTER 2009

FINANCIAL APPLICATIONS WITH PARALLEL R 3

where S(t) is the stock price at time t , h is a small
time interval (measured in fractions of years), r is
the risk free rate of interest, and σ is the volatility of
the stock. The initial stock price is S(0). The stan-
dard normal distribution is denoted N (0, 1) above.
Equation (1) represents the price path of the stock
S(t) as driven by repeated draws of the random
variable ε(t).

The Monte Carlo simulation proceeds by gener-
ating m paths of stock prices, where each path is
denoted by Sj(t), t = 1 . . . T for the j-th path.
Each path is assumed to have n steps, such that
an option of maturity T will have a time-step of
h = T /n. The terminal stock price on each path is
denoted Sj(T). The final call price will be given by

Call Price

= exp (−rT)
1

m

m∑
j=1

max [0, Sj(T) − K]

(2)

Figure 1 Program code for Monte Carlo call option pricing with ParallelR.

Since this involves a simple sum over the outcome
of m paths, the work of each path can be farmed
out to different “workers”, i.e. processor cores on
the same machine or CPUs on different computers.
This simple divide-and-conquer approach is a hall-
mark of embarrassingly parallel problems. In this
article we focus only on parallelism across multiple
cores on the same computer, and leave parallelism
on a computing grid for future exposition.

The program code for this model is presented in
Figure 1.

The program contains a pricing functionmcoption
(lines 2–14) that computes the call price with no
parallelization. (We have eschewed vectorization of
the program in line 9 because we want to empha-
size the parallelization features). In order to run
this function across multiple cores of a dual-core
machine, we invoke function mcparallel (lines
16–19) which breaks down the problem into equal
parts and sends each part to a separate core or

FOURTH QUARTER 2009 JOURNAL OF INVESTMENT MANAGEMENT

4 SANJIV R. DAS AND BRIAN GRANGER

“worker”. The function mcparallel calls the func-
tion mcoption. (The first two letters “mc” in these
functions stands for Monte Carlo).

Line 22 of the program initializes the Network
Spaces (NWS) library (we assume that the NWS
server has already been activated as shown in
Appendix B).The number of worker cores is defined
in line 23. Line 24 initializes the “sleigh” that brings
all cores in the CPU into operation. Line 25 calls
the function mcparallel and also starts the sys-
tem timer to analyze the run time performance of
the program. Lines 26–27 print results and close the
sleigh that shackles the cores together in parallel.

Line 17 of the program that contains the critical
call to each worker core of the CPU, sending out
simulation path requests. Each core is assigned an
equal share of the total number of paths m.

Starting up and running ParallelR

Before running the R program, we need to make
sure that the NWS server is up and running. To do
this, invoke from the command line:

/opt/REvolution/ParallelR/bin/
nwsserver start

To check that the server is running, open a browser
and go to the following URL :
http://localhost:8766

In order to assess progressive performance, we run
the Monte Carlo simulation for m = 100, 000
paths and n = 52 steps over a one-year horizon
in three different ways:

(1) We run the model without using the paral-
lelR package. Hence, we make a direct call to
the mcoption function and the results are as
follows.

> system.time(mcoption(100,100,1,
0.3,0.03,52,100000))

user system elapsed
145.605 0.855 145.286

The elapsed time is 145 seconds, i.e. over 2
minutes.

(2) Next, we run the model using parallelR but use
only one worker (core) of the CPU. The timing
results are as follows.

> library(nws)
> numw = 1
> sl = sleigh(workerCount=numw)
> syst = system.time(mcparallel

(100,100,1,0.3,0.03,52,100000,
numw))

[[1]]
[1] 13.3047

> print(syst)
user system elapsed

1.065 0.246 145.767
> close(sl)

We see that the elapsed time is essentially the
same as before when we did not use the parallel
environment.

(3) Finally, we run the model with two workers in
a parallel environment. The results are:

> numw = 2
> sl = sleigh(workerCount=numw)
> syst = system.time(mcparallel

(100,100,1,0.3,0.03,52,100000,
numw))

[[1]]
[1] 13.20356

[[2]]
[1] 13.17537

> print(syst)
user system elapsed

0.600 0.142 78.577
> close(sl)

JOURNAL OF INVESTMENT MANAGEMENT FOURTH QUARTER 2009

FINANCIAL APPLICATIONS WITH PARALLEL R 5

We see that the elapsed time (78 seconds) is
now half of that taken when only one worker
was invoked for the task. The final price will
be the average of the prices generated by the
two workers. We note here that the goal of this
exercise is to demonstrate the syntax for paral-
lelizing Monte Carlo programs in R, and is by
no means a fast approach for option pricing.
The example here shows how the use of both
cores of the processor halves the time taken.
Were the serial version of the model to run
much faster, then it is also likely that the over-
head required in managing the two cores might
be a significant portion of the run time, and the
gains from parallelization would be less striking.
Nonetheless, even with these caveats, the ease
with which parallelized Monte Carlo models
may be implemented is evident from the simple
syntax involved.

3 Option pricing on trees

In this section we provide an example of how
parallelism may be applied to call option pricing
on a binomial tree. We employ the well known
approach for call pricing on trees developed by
Cox, Ross and Rubinstein (1979), known as the
CRR model. In our implementation we use the
variant proposed by Jarrow and Rudd (1983). The
basic details of the scheme are provided below, in
order to introduce the notation. It is assumed here
that the reader has taken a basic course in finance,
and is thereby familiar with these models. If not,
the original papers offer simple expositions that are
easily followed, and there are several text books on
option pricing that also exposit the methodology.

We assume an initial stock price s and that the stock
pays no dividends. The strike price of the call option
is denoted k, and the time to maturity is t years. The
annualized standard deviation of the stock’s return
is denoted v and the risk free rate is r . The stock
price is assumed to follow a binomial branching
process over n periods, where each period period is

of length h = t/n. In each period the stock may
proceed from its current value to two values, an “up”
value or a “down” one. The stock moves up by a mul-
tiplicative factor u = exp [(r − 0.5v2)h + v

√
h].

Similarly, it moves down by a multiplicative factor
d = exp [(r − 0.5v2)h − v

√
h]. These two factors

{u, d } define the Jarrow-Rudd version of the CRR
model. The probability of moving up is denoted
q and correspondingly, the probability of moving
down is denoted (1−q). In these models, the prob-
ability q = (R − d)/(u − d), where R = exp (rh)
is the “drift” of the stock price, equal to the amount
that $1 would grow to in one period at the risk free
rate of interest. It is well-established that for there to
be no arbitrage in the markets, the following con-
dition should be satisfied: d ≤ R ≤ u. Under these
assumptions for u and d , it can easily be shown that
the tree recombines, i.e., beginning from a given
node, an up-move followed by a down-move in the
stock price ends up at the same node on the tree
two periods hence.

Once the underlying stock price tree is put in place,
the call option price today (denoted c0) is priced
by the method of “backward recursion.” What this
means is that at the final maturity of the option
on the tree, i.e., at the leaves, the payoff of the
option is calculated, based on the stock prices at
each leaf, i.e., ct = max [0, st − k], where ct is the
call option value at time t (maturity). This done for
all (n + 1) terminal leaves on the stock tree. Then,
one period prior to maturity, the option prices at
each node on the tree are based on the expected
present value of the ensuing two nodes, i.e., ct−h =
[qcu

t +(1−q)cd
t]/R, for all nodes at time t −h. The

variable cu is the value of the option at the up-node
from the current node, and the value cd is that of the
down-node on the lower branch emanating from
the current node. Then, using the option values at
time (t−h), the values at time (t−2h) are computed
for all nodes at this time. In general at time (jh), the
option values for (j +1) nodes are computed using
the formula: cjh = [qcu

(j+1),h + (1 − q)cd
(j+1),h]/R.

FOURTH QUARTER 2009 JOURNAL OF INVESTMENT MANAGEMENT

6 SANJIV R. DAS AND BRIAN GRANGER

Figure 2 Program code for binomial tree call option pricing with ParallelR.

In this recursive fashion we arrive at today’s price of
the option, i.e., c0. The program to implement this
algorithm is presented in Figure 2.

The program details are as follows. Lines 3–5 con-
tain a function backrec that implements the back-
ward recursion described in the previous paragraph.
Lines 7–36 contain the main function bincall to
which the parameters of the call option are passed.
Lines 8–13 perform the basic set up of values for
the JR model. Lines 15–23 contain the code to gen-
erate the entire stock price tree stkp for n periods.
Lines 26–29 calculate the terminal values of the call
option.

Backward recursion is implemented in lines 30–33.
Note that for each period i, there are i nodes to
be computed based on (i + 1) nodes in the fol-
lowing period. The calculation of each node can be
sent to any of the cores of the CPU. On a dual-
core machine, each core of the CPU will handle
roughly i/2 node calculations. For each calculation
the function backrec is called. The optimal load-
ing of the cores and distribution of work is handled
by the ParallelR package through the function
eachElem. The key line to pay attention to here
is line 31. The backrec function is used, and the
parameters that are passed are transmitted in a list.
Each item in the list is processed by one of the

JOURNAL OF INVESTMENT MANAGEMENT FOURTH QUARTER 2009

FINANCIAL APPLICATIONS WITH PARALLEL R 7

cores of the CPU and eventually, the individual
results are returned to the variable we called res
(short for result, but it could be given any name as
desired). This list is then collapsed into an array in
line 32.

The main program code that loads the NWS library,
defines the number of cores to be used, initializes
the sleigh and then calls the option pricing function
is presented in lines 39–43. Results are printed by
line 44, and the sleigh is closed in line 46.

We ran the program for the following parameter
values: s = k = 100, t = 1 year, v = 0.30,
r = 0.03. The number of periods is taken to be
n = 100. First we used one core of the CPU, and
then we used both. Run times for these experiments
are as follows:

> source("jr_par.R")
[1] 13.29692

user system elapsed
6.767 0.679 106.709

> source("jr_par.R")
[1] 13.29692

user system elapsed
7.470 0.802 80.519

We see that the single core run took 107 seconds
of elapsed time and for the dual-core elapsed time
is 80 seconds. The dual core version is not twice
as fast simply because not all aspects of the pro-
gram have been parallelized, only line 31 of the
program. We have also not undertaken several other
optimizations (such as vectorization) of the code
because we wanted to demonstrate only the ease of
use of the eachElem function in ParallelR. It is
seen that we have replaced a loop over all i nodes
in the i-th period with a single line of parallelized
code.

Not doing vectorization violates one of the golden
rules in parallel computing: “fully optimize the
serial version before even thinking about a parallel

version.” It is important to note that the reason we
see parallel speedup in these examples is that the
serial version is deliberately slow. If the serial ver-
sion were optimized, the parallel versions may not
be much faster and might even be slower than the
serial version if the serial version is very fast and
the parallel version has too much overhead to result
in an overall speedup. The most appropriate way
to use ParallelR is to price a set of options that
have different strike prices/dates. Then we would
use an optimized/vectorized CRR/JR function and
have ParallelR call it many times for the differ-
ent parameters. In this way we would use these tools
and obtain great speedup as well.

4 Discussion

Users of mathematical/statistical packages for sci-
entific computing are always looking for improve-
ments in computing efficiency. The advent of
multi-core CPUs has ushered in a new age of high-
performance computing by enabling parallelism
on a single machine, versus that on clusters of
machines. Software has been struggling to keep
up with advances in hardware, and scientists find
that writing parallel programs is not an easy task.
Financial engineers would prefer that their mathe-
matical tools make the transformation of their code
to parallel versions as easy as possible.

In this article, we explored how parallelism
is implementable with a widely used package,
the open source programming language R. We
showed how two simple commands, eachElem
and eachWorker, may be used to take advan-
tage of multiple cores with minimal changes to the
programming code. We showed how eachElem
makes running loops in option pricing trees eas-
ier to code as well as run faster. We showed how
eachWorker could be used to speed up a Monte
Carlo pricing algorithm. It is clearly the approach
of choice for embarrassingly parallel problems like
those encountered in Monte Carlo models. We used

FOURTH QUARTER 2009 JOURNAL OF INVESTMENT MANAGEMENT

8 SANJIV R. DAS AND BRIAN GRANGER

R with two add-ons. One, a Network Spaces (NWS)
library nws and two, a parallel programming pack-
age known as ParallelR. The entire environment
is mostly free and easy to install and use. We hope
the examples provided here of simple canonical
problems in finance will lead to widespread use of
these tools.

Acknowledgments

We thank REvolution Computing for making
ParallelR available to us for the experiments in
this paper.

A Installing R and ParallelR

R is available for free from the CRAN repository.
CRAN stands for Comprehensive R Archive Net-
work. The website is http://cran.r-project.
org/. It is extremely easy to download the entire
program and set it up on Windows, Mac or Linux
systems. Additional packages are easy to download
and install as needed.

The R package with further optimizations is avail-
able for free from REvolution Computing as well
(http://www.revolution-computing.com/).
They provide a version of R called REvolution R
that is fully compatible with all R packages. It is
free, open-source, and may be downloaded from
their website.

In order to get ParallelR, you need to purchase
it separately for a license fee. This version is called
REvolution R Enterprise and is essentially REvolu-
tion R plus ParallelR. All installs are very simple
and require no special system administration by the
user at all.

For the user interested in starting from scratch and
learning R, the documentation on the R project
page is of very high quality and any one of the
tutorials and basic manuals there will get you
started and reasonably proficient in a few hours.
See for example the web document http://cran.

r-project.org/doc/manuals/R-intro.html.
This provides a comprehensive introduction to R.

B Using ParallelR

B.1 Starting the Network Spaces Server

To start the NetWorkSpaces server, use the
nwsserver command. The nwsserver script is
in the bin subdirectory of the ParallelR installa-
tion directory. Start the server by going to the
subdirectory and issuing the following command:

/opt/REvolution/ParallelR/bin/
nwsserver start

To shut down the server, use the following
command:

/opt/REvolution/ParallelR/bin/
nwsserver stop

B.2 Starting the R parallel environment

Start R (the Revolution R version) by clicking on
the application icon.

Load the NetWorkSpaces package, nws. You do this
by calling the library:

library(nws)

If the nws package is not installed then you will
need to install the binary first in the usual man-
ner in which R packages are installed. To do this,
click on “Packages & Data” and then run “Package
Installer.” Search for “nws” in the usual repositories
and then go ahead and ask R to install the binary of
the package. The entire process is obvious from the
various screens that come up.

Verify that the NetWorkSpaces server is running.
Any command that uses the server will do, for
example:

sl <- sleigh()

JOURNAL OF INVESTMENT MANAGEMENT FOURTH QUARTER 2009

FINANCIAL APPLICATIONS WITH PARALLEL R 9

If you do not get an error, the server is running. See the following start-up sequence for an example:

Welcome to REvolution R Version 1.3.0 - 100% R and more...
REvolution R Copyright (C) 2009 REvolution Computing, Inc.

Includes R version 2.7.2 (2008-08-25)
Copyright (C) 2008 The R Foundation for Statistical Computing
ISBN 3-900051-07-0

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type ’license()’ or ’licence()’ for distribution details.

R is a collaborative project with many contributors.
Type ’contributors()’ for more information and
’citation()’ on how to cite R or R packages in publications.

Type ’revo()’ to visit www.revolution-computing.com for the latest REvolution
R news, ’forum()’ for the community forum, or ’readme()’ for release notes.
Type ’demo()’ for some demos, ’help()’ for on-line help, or ’help.start()’
for an HTML browser interface to help. Type ’q()’ to quit REvolution R.

> library(nws)
> sl = sleigh()
Error in socketConnection(serverHost, port = port, open = "a+b",

blocking = TRUE) : cannot open the connection
In addition: Warning message:
In socketConnection(serverHost, port = port, open = "a+b", blocking = TRUE) :

sanjiv-dass-imac.local:8765 cannot be opened
> sl = sleigh()

The command worked the second time because
the first time it was run without starting up the nws
server. After seeing the error, the user starts the NWS
server (by issuing the command: /opt/REvo-
lution/ParallelR/bin/nwsserver start).
Once that is done, the “sleigh()” command works
just fine.

Next, we will look at two simple ways in which
parallelism may be implemented in the ParallelR
framework: (i) using the eachElem command, and
(ii) using the eachWorker command.

B.3 Example: sleigh() with eachElem

Here is a simple example of testing the use of R in
parallel mode with a system timer.

• The sleigh function creates the workers and
returns the Sleigh object that is used to maintain
the state of the computation.

• The eachElem function executes a speci-
fied function multiple times in parallel with
a varying set of arguments, returning a
list of length equal to the number of

FOURTH QUARTER 2009 JOURNAL OF INVESTMENT MANAGEMENT

10 SANJIV R. DAS AND BRIAN GRANGER

executions containing the results of those
computations.

• The eachWorker function executes a spec-
ified function exactly once on each worker
in the sleigh. A common use of eachWorker
is to provide an initial state for a compu-
tation, for example, by loading packages or
data. It can be used to run simulations in
parallel.

In this example, we use the eachElem command.

01 #TEST_EACHELEM.R
02 #PROGRAM TO TEST THE EACHELEM

OPERATION
03 workerdo = function(nsim) {
04 rtot = 0.0
05 for (i1 in 1:nsim) {
06 for (i2 in 1:1000) {
07 rtot = rtot + rnorm(1)
08 }
09 }
10 }
11
12 test1 = function(n) {
13 s = sleigh(workerCount = n)
14 res = eachElem(s,workerdo,

rep(100,100))
15 close(s)
16 }
17
18 for (n in 1:4) {
19 print(system.time(test1(n)))
20 }

Lines 3–10 contain the function workerdo that
is being executed. Lines 12–16 contain the calling
function test1 that breaks up the total task into
subcalls and invokes the function workerdo. In
lines 18–20, the program is run with the number
of elements (workers) increasing from 1 to 4. The
key command to note is in line 14. The command
eachElem is called using the sleigh s, a collection

of workers, in this case, CPU cores. The function
that is being called by the sleigh is workerdo. And
the workerdo function parameter nsim is being
passed through a variable rep(100,100). What
is rep(100,100)? It is a 100 element long vec-
tor, each element of which is of value 100. Hence,
workerdo will be called a 100 times, each time
with parameter nsim equal to a value of 100. What
ParallelR does through the function eachElem
is to distribute each of these 100 function calls to
workerdo to each core of the CPU in an opti-
mal manner. Hence, every one of the 100 calls is
assigned to each core when it is free and ready to
receive the job.

In this program we keep increasing the number of
workers in the sleigh and see if it improves the
run time. Note that we run this experiment on
a dual-core computer, and so, after n = 2, we
will not expect to see any further improvement in
performance. The run time result is:

> source("test_eachelem.R")
user system elapsed

0.511 0.143 121.645
user system elapsed

0.331 0.115 71.109
user system elapsed

0.372 0.143 73.661
user system elapsed

0.507 0.273 75.623

Each row of the results above corresponds to n =
1, 2, 3, 4 assigned workers (cores). When the worker
count is 1, both cores of the dual-core machine
are not used, and the program takes longer to run
(about 122 seconds of elapsed time) than when the
worker count is raised to 2 (an elapsed time of about
71 seconds). Increasing the worker count to greater
than 2 does not make much difference as the num-
ber of cores is limited to 2. In fact there is a slight
increase in elapsed time, because of the additional
overhead of managing virtually the third and fourth
workers.

JOURNAL OF INVESTMENT MANAGEMENT FOURTH QUARTER 2009

FINANCIAL APPLICATIONS WITH PARALLEL R 11

Next we implement the same model using the
eachWorker command.

B.4 Example: sleigh() with eachWorker

01 #TEST_EACHWORKER.R
02 #PROGRAM TO TEST EACHWORKER
03 workerdo = function(nsim) {
04 rtot = 0.0
05 for (i1 in 1:nsim) {
06 for (i2 in 1:1000) {
07 rtot = rtot + rnorm(1)
08 }
09 }
10 }
11
12 test2 = function(n) {
13 s = sleigh(workerCount=n)
14 res = eachWorker(s,workerdo,

floor(10000/n))
15 close(s)
16 }
17
18 for (n in 1:4) {
19 print(system.time(test2(n)))
20 }

Lines 3–10 contain the function workerdo that
is being executed. Lines 12–16 contain the calling
function test2 that breaks up the total task into
subcalls and invokes the function workerdo. In
lines 18–20, the program is run with the number
of elements (workers) increasing from 1 to 4. The
key command to note is in line 14. The command
eachWorker is called using the sleigh s, a collec-
tion of CPU cores. The function being called by the
sleigh is workerdo. And the workerdo function
parameter nsim is being passed through a variable
floor(10000/n). What is floor(10000/n)?
It is the nsim parameter that will be passed to
workerdo for each worker that is invoked. The
total number we want is nsim equal to 10000. If
there is only one worker then a single call to one core

will be made with nsim equal to 10000. If there are
two workers (cores) to be used, then nsim will be
5000 for each worker. Likewise for three and four
workers.

The program was run with n = 1, 2, 3, 4 and the
results are shown below for increasing n. The run
times are as follows:

> source("test_eachworker.R")
user system elapsed

0.068 0.059 118.499
user system elapsed

0.092 0.073 68.915
user system elapsed

0.120 0.096 71.217
user system elapsed

0.251 0.219 73.617

The program is run on a dual-core machine. When
only one worker is active, a single core is used and
one core remains idle. The elapsed run time is 118
seconds. When we go from one to two workers,
the elapsed time drops dramatically to 69 seconds.
Thereafter increasing the number of workers does
not help much as the number of cores is fully
used.

We see that the elapsed time is similar for this exam-
ple irrespective of whether we use the eachElem or
the eachWorker command.

Notes
1 See www.rmetrics.org.
2 Seehttp://cran.r-project.org/web/views/Fin-
ance.html.

3 See www.revolution-computing.com. Why any com-
pany would want to be associated with a red hat beats
me!

References

Black, F. and Scholes, M. (1973). “The Pricing of Options
and Corporate Liabilities.” Journal of Political Economy 81,
637–654.

FOURTH QUARTER 2009 JOURNAL OF INVESTMENT MANAGEMENT

12 SANJIV R. DAS AND BRIAN GRANGER

Cox, J., Ross, S. and Rubinstein, M. “Option Pricing: A
Simplified Approach.” Journal of Financial Economics 7,
229–263.

Jarrow, R. and Rudd, A. (1983). Option Pricing, Irwin,
Homewood Illinois.

Merton, R. (1973). “Theory of Rational Option Pricing.”
Bell Journal of Economics and Management Science 4(1),
141–183.

JOURNAL OF INVESTMENT MANAGEMENT FOURTH QUARTER 2009

