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S U R V E Y S A N D C R O S S O V E R S

“Survey and Crossovers” provides surveys of the literature in investment management or short
papers exemplifying advances in finance that arise from the confluence with other fields. This section
acknowledges current trends in, and the cross-disciplinary nature of the investment management
business, while directing the reader to interesting and important recent work.

RANDOM LATTICES FOR OPTION PRICING
PROBLEMS IN FINANCE

Sanjiv R. Dasa

While the use of Monte Carlo methods is well established for pricing derivatives, this paper
focuses on a random-lattice approach, also known in the literature as the stochastic-mesh
method. The method is reviewed here. We show that the method may be refined with
an ad-hoc bias correction, that suitably adjusts these models for accuracy. The paper
presents experimental results, related analysis, and a set of applications, demonstrating
easy applicability to popular choices for option pricing stochastic processes. The flexibility
and ease of implementation of this approach, as seen from the examples, suggests that this
approach has wide practical applicability.

1 Introduction

Financial securities are called “derivatives” if
their value is derived from some other primary
“underlying” security or economic variable. For
example, a “call” (C0) option on a stock (S0),
where the subscript zero indicates “initial price”
at time 0, is a contract where the buyer of the
option receives at the maturity of the contract (i.e.
at time T ), the difference between the stock price
(ST ) and a preset “strike” price (K), if this amount
is positive. A put option is the converse contract

aSanta Clara University, Leavey School of Business, 500
El Camino Real, Santa Clara, CA 95053, USA.

and pays off when K > ST . At T , the option buyer
obtains a positive payoff with some probability.
The payoff at maturity for calls is defined to be:

CT = max(0, ST − K). (1)

The option buyer pays an upfront premium to
the option writer. We present an algorithm to
determine as precisely as possible what the fair
premium (C0) should be.

The pricing of options requires assumptions about
the stochastic process of the underlying security (a
stock, for example), and a computation of the fair
value of the option under strict economic assump-
tions which ensure that no arbitrages (i.e. “free
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lunches”) are permitted. The price of a call option
is given by:

C0 = E∗
0[e−rT max(0, ST − K)], (2)

where r is the market’s risk free rate of inter-
est, and the expectation E∗(·) is taken over the
possible outcomes of ST , and sometimes the paths
of r as well. The probability measure under which
E∗ operates is known as the “risk-neutral” mea-
sure, and is derived from no-arbitrage principles.
No discussion of this aspect of option pricing is
offered here, and the reader is referred to the
seminal work of Harrison and Kreps (1979) for
a complete exposition. If the probability density
of ST under the risk-neutral measure is denoted
as f(ST ), then the pricing model comprises an
integral as follows:

C0 =
∫ ∞

K

e−rT (ST − K)f(ST )dST . (3)

In a few limited cases, such as when ST is log-
normal this integral yields a closed form solution.
Most often, numerical integration is required,
leading to a search for fast, accurate algorithms.

Merton (1990) (Ch3) provides the groundwork
for the theoretical validity of modeling secu-
rity prices using continuous-time mathematics.
Applicable numerical techniques usually consist
of building a layered lattice of security prices
depicting the evolution of prices in time, and
performing the required computations on them.
If we use a lattice approach, the continuous-
time, continuous-space model is transformed into
a discrete-time, discrete-space one, leading to
approximation error. The error is usually miti-
gated by choosing a denser lattice representation
for the stochastic process. The trade-off comes
from the corresponding increase in computational
effort of traversing a denser lattice.

The “lattice” is the generic term for any graph we
build for the pricing of financial securities. Each
lattice is a layered directed graph, where the nodes

at each level represent the possible values of the
underlying security in that period. The entire life
of the option spans the time T . When time is dis-
cretized, we obtain a discrete time step h, indexed
by a variable t, i.e.

∑
t h(t) = T . When h is uni-

form throughout the lattice, the number of levels
is d = T/h. Only edges between successive levels
are permitted, and each edge is labeled with the
probability (pij(t)) of the corresponding change
in the security price (from Si(t − 1) to Sj(t)) in
time period t.

There are two types of lattices we will consider.
The first type of lattice only permits nodes to have
in-degree1 of exactly 1, and this lattice is also
known as a “tree”. The second type allows the in-
degree to be greater than 1 for some or all nodes.
Hence, there may be more than one path leading
to a node, and this type of lattice is also com-
monly called a “recombining” tree (a misnomer)
or simply referred to by the general term “lattice.”
The starting security price S0 comprises the sin-
gle “root” of the lattice, and the last level contains
all the possible final outcomes of the stock price,
which are the “leaves” of the lattice. Since the
lattice represents a stochastic process, the sum
of probabilities assigned to edges (which proxy
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Figure 1 Stock price tree.
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Figure 2 Stock price lattices.

for probabilities) emanating from every node is
always 1, i.e.

∑
j pij(t) = 1, ∀ i, t. Examples of

both types of lattice are presented in Figs. 1 and 2.
In Fig. 1, we present an example of a symmetric
tree,2 though asymmetric trees are also often used.

Once the graphical representation of the stochas-
tic process on the lattice is ready, we can price
the derivative security by computing the expected,
discounted value of the payoffs at maturity under
the risk-neutral measure. The lattice solution is a
discretized version of Eq. (3):

C0 =
L∑

l=1

e−rT max[0, Sl(T ) − K]Pr(l), (4)

where l indexes the leaves, L being the total
number of leaves, and Pr(l) is the probability
of reaching leaf l on the lattice. Hence each leaf
value is given by e−rT max[0, Sl(T )−K]×Pr(l),
which embeds three components: (i) the dis-
counting factor e−rT , (ii) the terminal payoff
max[0, Sl(T ) − K], and (iii) the probability of
the leaf Pr(l).3 If we denote d to be the depth
of the tree, then L = 2d for a binary tree. The

probability of each leaf occurrence will be the
product of probabilities of all the edges on the
path to the leaf, i.e. Pr(l) = ∏

(i,j)∈�l
pij, where

�l is the set of edges on the path from the root to
the leaf l.

The derivative security’s value on the lattice can
be computed by dynamic programming from the
leaves to the root. We first compute the value
Cl(d) = max[0, Sl(T ) − K] at each leaf of the
tree. To obtain values at nodes at level (d −1), we
weight each node at level d by the edge probabil-
ities connecting the node i to the ensuing nodes.
Hence, dynamic programming entails computing
the value of each node at each level on the lattice
as follows:

Ci(t − 1) = e−rh


∑

j

pij(t)Cj(t)


, ∀ i, t

(5)

This eventually results in obtaining the desired
value C(0).

Via dynamic programming, each edge is explored
only once, even though on a tree, the edge may

Journal Of Investment Management Second Quarter 2011



Random Lattices for Option Pricing Problems in Finance 137

be on the path of more than one leaf. Hence, the
computational effort on the tree is a function of
the number of edges on the tree. If the width of the
tree (i.e. the maximum number of nodes at each
level) is m, then the computation time is O(dm2).
In trees (as in Fig. 1), the width m grows exponen-
tially in depthd, making it difficult to exhaustively
enumerate the leaf values according to Eq. (4). In
recombining lattices (as in Fig. 2), this problem
is mitigated as the width m is bounded, or grows
only linearly in depth d, and exhaustive enumera-
tion may be feasible. Hence, recombining lattices
result in polynomial time (in depth d) algorithms,
whereas computing on trees results in exponential
effort (in d).

The simplest form of derivative security does not
permit the buyer to exercise his option prior to
maturity. These contracts are known as “Euro-
pean” options and are to be contrasted with con-
tracts which allow for premature exercise, known
as “American” options. American options entail
the solution of an optimal stopping problem, i.e.
stopped random walks, requiring dynamic pro-
gramming on the lattice. The earliest example of
this type of algorithm was developed by Cox et al.
(1979).

We present an algorithm for American options
where the lattice is recombining (i.e. not a tree).
Moreover, the lattice itself is generated by Monte
Carlo simulation. We call these random lattices.
We provide results on using random lattices for
(i) pricing derivative securities, and (ii) imple-
menting options models with optimal stopping
(i.e. American option problems).4 This research
builds on earlier work where stochastic meshes
have been used to represent stochastic processes
to solveAmerican option pricing problems.11 The
results here extend the same idea by providing dif-
ferent bounds for the optimal stopping problem
using a bucketing argument, and a new correction
for bias.

Say that it is possible to exercise a call option
prior to maturity. Then, the value of the option
may be higher than one which can be exercised
only at maturity, since it affords greater flexibil-
ity to the holder of the option. In order to evaluate
this option, we start working back along the lat-
tice from the leaves. Each node is computed to
be the expected value of the nodes that follow it
(i.e. dynamic programming). If we compare this
expected value of continuing along the tree with
the value of immediate exercise, we are able to
decide which strategy to adopt, i.e. to exercise or
refrain from doing so. In any case, we choose the
more lucrative of the two approaches and hence
the value of that node will be the value of the bet-
ter of the two choices. In this way, we solve the
optimal stopping problem on a lattice.

There are two ways in which lattices may be
created. The usual approach is to establish a
deterministic rule for building the lattice so that
it recombines. However, it may not always be
possible to preserve the properties of the stochas-
tic process on a recombining tree, and hence,
there are many problems which have not yielded
to deterministic lattice engineering. An alternate
approach is to build the lattice randomly. This
gives a very dense, recombining lattice allowing
fast, feasible computation (see Figs. 2 and 3). We
discuss the existing literature on this next.

1.1 Extant research

Monte Carlo simulation methods allow fast com-
putation of high-dimensional problems. However,
direct simulation does not admit the implemen-
tation of dynamic programming. By generating
lattices randomly, we are able to combine the
computational benefits of Monte Carlo simu-
lation with the ability to implement dynamic
programming on a lattice.

The method was first suggested in Tilley (1993),
who proposed a bundling algorithm whereby the
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Figure 3 Randomly generated lattice.

results of a Monte Carlo simulation would be sum-
marized by keeping track of the simulated paths in
“bundles”. This gives rise to the idea of running a
Monte Carlo simulation on a restricted, finite state
space, and by keeping track of the paths in bun-
dles, we create a lattice which summarizes (with
some error) the stochastic process for the under-
lying assets, so that a lattice can then be used for
pricing. A review of this method, and other Amer-
ican option pricing techniques is available in the
paper by Boyle et al. (1997).

In another enhancement, the work of Barraquand
and Martineau (1995) explored the stratification
of the state space by payoff and not by the
underlying state variables. This injects substan-
tial economy into the random lattice and speeds
up computation. There are problems in which the
payoff space is Markovian and it may not be nec-
essary to maintain a lattice in the original state
variables in order to determine the stopping time
for the American option pricing problem. Boyle
et al. (1997) argue that the stratification algorithm
often leads to estimation error. They demon-
strate that maintaining the state space in payoff
terms may not lead to the correct conditional
distribution, generating bias.

There are other biases too. Any lattice scheme
for the pricing of American options results in

estimators that are biased from “missing the
boundary”. The optimal stopping rule implic-
itly defines an “early exercise boundary” for the
option. This is just the first passage time bound-
ary for optimal stopping which exists under the
optimal solution to the problem. If the trajectory
of the stock price crosses the boundary, the option
is exercised. In the case of a continuous state
space, the option is exercised early when the stock
price touches the boundary. However, in a lat-
tice scheme, the stock price never just touches the
boundary unless the lattice node resides exactly
on the boundary, which occurs in the odd rare
instance. Usually, the stock price crosses through
the boundary and hence, the exercise value is
overstated, leading to an bias in the estimator.

Figure 4 describes early exercise in American put
options. Put options pay off when the stock price
falls below the exercise price. Early exercise often
occurs in the case of put options, which are said
to be “in-the-money” when St < K. At any time,
the payoff is given by max(0, K − St). If the
stock price drops below K, then the holder of the
option may wish to exercise early and cash in on
the difference, i.e (K − ST ), rather than wait for
a probabilistic further gain. Dynamic program-
ming identifies the nodes at which this is optimal

Time ---------------------------------->

Stock
Price

Early
Exercise

Boundary
Early

Exercise

Sample
Path

Figure 4 Depiction of early exercise and bias for
American put options.
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to do, i.e. those nodes below the early exercise
boundary. Figure 4 shows the lattice with a sin-
gle sample path through it which leads to an early
exercise when the stock price crosses below the
early exercise boundary. Since the node does not
lie exactly on the boundary, the payoff (K − ST )

is overstated by the distance from the boundary.
This leads to the bias.

In the next few sections, we develop in detail some
of the theory of the random lattice method and also
provide many numerical experiments to show the
efficacy of the method. This work follows on and
is complementary to the original prior work of
Broadie and Glasserman (1997a,b).

In particular, we highlight some of the new ideas
introduced in this paper. First, we increase the
accuracy of the scheme by using a pair of ran-
dom lattices instead of a single random lattice.
This so-called “antithetic-lattice” method pro-
vides considerable error-reduction. Second, we
suggest a computationally facile approach which
reduces the lattice bias problem. Third, we exploit
the theory of dynamic programming to develop
a lower bound based on the “smooth-pasting”
conditions.5 Finally, we show how to adjust
the lattice to minimize the expected error from
the scheme. We provide numerical examples for
many classic models that our approach may be
applied to.

Our algorithm is tested on some popular prob-
lems. We look at the pricing of Asian options
(providing an alternative to the work of Aing-
worth et al. (2000)). We also compute the prices
of GARCH options6 and compare our results to
those of Ritchken and Trevor (1999). And finally,
we price options on stocks with stochastic volatil-
ity, corresponding to the works of Scott (1987),
and Heston (1993). Thus, the random lattice algo-
rithm is flexible, and we are able to replicate
the results of the distinct approaches in the other
papers mentioned above.

2 The random lattice algorithm

This methodology consists of a preprocessing
step, in which the random lattice is built to embed
the stochastic process, and a post-processing or
pricing step.

2.1 Preprocessing

(1) Bucketing: the basic idea for the lattice is
to restrict the stochastic process to a finite
number of discrete values. This defines a set
of “buckets” into which every stock price is
assigned. We denote the number of buckets to
be m, which is the width of the tree. The num-
ber of levels in the tree is d, its depth. Thus,
the random lattice takes on a matrix structure,
of size m×d. A simple scheme for assigning
buckets is to divide the difference between the
minimum and maximum of the stock price
by m, i.e. equal buckets. Bucketing leads
to approximation error. The approximation
error may be further reduced by choosing
more complex bucketing schemes.

(2) Lattice generation: to generate the lattice, we
conduct n root-leaf random walks through
it, starting with the same value at the root
for each path. If the lattice has depth d,
we compute dn transitions. At each node,
we generate the next stock price randomly
using a discretized version of the stochastic
process. For example, if the stock follows
a geometric Brownian motion then the next
stock price would be generated by drawing
a random number ε ∼ N(0, 1) and applying
the following stochastic process:

St = S0 exp

[(
r − σ2

2

)
t + σε

√
t

]
. (6)

Once we have obtained the next stock price,
we round it up or down to the nearest bucket.
Then we proceed to generate the next stock
value and so on. For any single sample path,
the walk makes d moves, i.e. the depth of
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the lattice. Given the matrix structure of the
lattice, at every level, we have m preced-
ing nodes leading to m nodes in the next
period. We index the points in time by t, t =
0, 1, . . . , d, which defines the d levels on the
tree. There is one edge for each pair of nodes
in adjacent time periods. See Fig. 3 for a
representation of the random lattice.

(3) Lattice probabilities: for every edge on the
lattice from node i at time t to node j at time
t + 1, we maintain a count of the number of
traversals made via the edge, and denote the
count as ct(i, j). We also keep track of the
total number of out-traversals from node i at
time t, which we denote as ct(i). Therefore,

ct(i) =
m∑

j=1

ct(i, j) (7)

From this, we derive the transition probabil-
ities pij(t) (from the ith node at time t to the
jth node at time t + 1) on the lattice, i.e.

pt(i, j) = ct(i, j)

ct(i)
(8)

Once we have the probabilities for the lattice,
the stochastic process is in place. The lattice
is recombining in the bucket structure. This
step consists of making n walks through the
lattice, with d steps per walk, resulting in a
total processing time of O(n×d). In addition,
the storage required is also polynomial in the
depth and width of the tree, i.e. O(dm2). Note
that n determines the accuracy with which
the bucket to bucket transition weights are
estimated.

2.2 Postprocessing

We first compute the final payoffs at the last level
of the lattice. For example, if the lattice is used to
price call options, the payoff at the dth level would
be max(0, Sd −K), where K is the exercise price.

The payoff values at each node define another
m × d matrix, which we denote as G(i, t), where
i indexes the bucket and t indexes the time period
on the lattice.

The price of the option at the root node is deter-
mined via dynamic programming on the lattice.
Once the values at time d are computed from the
payoff rule, the values at the preceding period
(d − 1) are computed to be the expected dis-
counted value of the nodes at time d. In the case
of American options, where exercise of the option
is possible before maturity, we check whether
the value of immediate exercise would be greater
than the value of continuing to hold the option for
another period. The scheme is easily modified to
accommodate this optimal stopping rule. There-
fore, the dynamic programming step implements
the following equation:

G(i, t)

= max


St − K,

m∑
j=1

e−rhpt(i, j)G(j, t + 1)


,

∀ i = 1, . . . , m. (9)

where r is the discount rate, and h is the time inter-
val. From the equation, it is clear that the value
G(i, t) is the better of the immediate value of early
exercise (St − K) and the expected discounted
value based on successor nodes G(j, t + 1), ∀ j.
This step requires m2 calculations, and since it is
done over d periods, the total effort involved in
postprocessing is O(dm2). (Note that this is usu-
ally min [O(dm2), O(dn)], but usually dm2 <

dn.) The time consumed is usually less than this
bound, since in many cases ct(i, j) = 0. There-
fore, before applying Eq. (9), we first check
whether the out-degree value ct(i) is non-zero,
and indeed, there are many nodes for which the
out-degree is zero. In actual experiments, we
found the postprocessing time to be a fraction of
preprocessing time.
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3 Error bounds for the fully polynomial
randomized algorithm

Bucketing introduces approximation error. In
this section, we characterize the error, and also
explore modifications to the scheme to reduce the
error.

3.1 Worst-case bounds

Bucketing requires the distribution of the stock
price to be supported on m points, x1, x2, . . . , xm,
where m is a reasonable number. Denote the prob-
ability measure on these points to be f(xi), i =
1, . . . , m. Because of rounding, bucketing results
in a shifting of the support from its true points.
The shift will be as much as half the width of the
bucket, which we denote to be δ = S max −S min

2m
.

Our payoff function is written as g(xi), i =
1, . . . , m. The expected value of the true payoff
is
∑m

i=1 g(xi)f(xi),
∑m

i=1 f(xi) = 1 (for continu-
ous probability functions we would write this as∫

g(x)f(x)dx).

The error induced by bucketing may be as bad as a
full δ

2 shift in the support points (since rounding is
made to the closest bucket point). If every bucket
was at the maximum one-sided error, and g(xi)

is assumed to be monotone, this would result in
an expected value of

∑m
i=1 g(xi + δ/2)f(xi). The

difference between this value and the true value
is the approximation error:

Approximation Error

=
m∑

i=1

[g(xi + δ/2) − g(xi)]f(xi)

≈ δ

2

m∑
i=1

∂g

∂xi

f(xi) (10)

where the last step applies a truncated Taylor
series expansion for g(xi). For an option, the

payoff function is g(x) = (x−K)+ = max(0, x−
K). Hence, the maximum value of ∂g

∂x
is 1. There-

fore, the worst case approximation error per
period is

O

(
δ

2

m∑
i=1

∂g

∂xi

f(xi)

)
= O(δ). (11)

If there are d periods then the total error bound is
O(dδ).

These error bounds are overly pessimistic. Note
that:

(1) In many cases the error is exactly zero, in
the regions where ∂g

∂x
= 0, because g(x) =

(x − K)+ = 0, which occurs when x ≤ K.
(2) Except for the last level of the lattice the pay-

off at t < d is always lower than (x − K)+
because the amount has been discounted for
(d − t) periods already.

The error may be further reduced by improving
the bucketing scheme, which we shall explore in
subsequent sections.

3.2 Minimization of expected error

In this section we analyze the expected error
from the scheme and show how it needs to be
set up so as to reduce bias in the estimator.
We begin by examining the stochastic process
used for the stock price. The geometric Brown-
ian motion under the risk-neutral measure in the
case of the Black–Scholes model (1973) is as
follows

dS = rSdt + σSdZ (12)

where r is the interest rate and dZ is a Wiener
increment and so dZ ∼ N(0, 1). It is well known
that the solution to this SDE, given an initial stock
price of S0, is

St = S0 exp [(r − 0.5σ2)t + σZt] (13)
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The drift term requires the correction −σ2

2 so
that the discounted expected stock price is simply
S0, ∀ t. It can easily be shown that E[Ste

−rt] = S0

by working the equation above and taking expec-
tations with respect to the random variable Zt

which is Gaussian.

The maximum error in each bucket is δ
2 . We

require that the expected error in each bucket be
zero. More formally, we want

E

[
δ

m∑
i=1

∂g

∂xi

f(xi)

]
= 0 (14)

where the expectation Eδ is taken over the ran-
domly generated values for the next stock price.
Intuitively, embedding an error of mean zero
ensures that the scheme is unbiased. In the case
of the Black–Scholes model it is easy to develop
a scheme of this sort. Since the stock price is dis-
tributed lognormally, we know the distribution for
the model and can work out the correct dividing
point in the bucket so as to make sure that the
expected error from rounding up equals that from
rounding down.

One approach to doing so is as follows. Assume
the bucket has lower and upper limits [Sl, Sh]
respectively, and recall that Sh = Sl + δ. The cur-
rent stock price is S0. We want to find the point
Smid ∈ (Sl, Sh) such that∫ Smid

Sl

Sf(S|S0)dS =
∫ Sh

Smid

Sf(S|S0)dS (15)

This equation can be easily solved numerically
to yield the value of Smid. Under this scheme
S is distributed equally around Smid in expecta-
tion for each bucket, resulting in a zero expected
error from the approximation. The result of this
rounding scheme is that the stock price remains
a martingale after bucketing, which (i) ensures
an arbitrage-free lattice, and (ii) guarantees that
the current stock price is equal to the expected

value of the future evolution of the stock under
the risk-neutral measure.

3.3 Computation of the standard error
of the approximation

In the preceding subsection, we provided a mod-
ified bucketing scheme which offered a means to
eliminating the bias from bucketing, so that the
expected error from the approximation would be
zero. This approach essentially allocated simu-
lated values to the upper or lower buckets in a
manner chosen to ensure that average error from
bucketing would be unskewed, i.e. zero. We now
compute the variance of the bucketing error condi-
tional on a bucketing scheme that has an expected
error of zero.

Recall from the previous section that the bucket
of length δ has two end points, Sl, at the lower end
and Sh at the upper end. In Eq. (15) we derived
the bias-free mid point of the bucket, denoted as
Smid. In most cases in finance, the distribution
tends to be Gaussian or some variants thereof.
Hence, to be conservative, we examine the uni-
form distribution, since its variance would be
much higher than that of a Gaussian distribution.
From the variance of the uniform distribution we
find that the variance of the approximation error is
given as:

Variance of the bucketing scheme

= 1

12
[Sh − Sl]2 = 1

12
δ2. (16)

Hence, the standard error from bucketing is δ√
12

.
Since the worst-case error bound is O(δ), it is
more than 3.4 times away from the expected
error of zero, and is unlikely to occur. Therefore,
the worst case standard error indicates that the
scheme actually does much better than the worst
case approximation error bound. Of course, in
the case of the Black–Scholes model where the
returns are Gaussian, the variance can be exactly
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computed. In general, the models for which we
use the random lattice scheme, are likely to be
non-Gaussian, and no closed-form solution for
the variance is available; then the calculation
based on the uniform distribution tends to be a
conservative bound. We now demonstrate some
illustrative results from the algorithm.

4 Applications

We consider many applications for the algorithm.
The simplest application is for the Black–Scholes
model for which we also have closed form
solutions. The next application considers Asian
options which is a canonical problem for the
instance of path-dependent options.

4.1 Application to the Black–Scholes
model

We applied the algorithm to the standard call
option pricing problem, under the Black–Scholes
assumptions (see Section 3.3.2). Call option
prices were computed for various strike prices,
and the results are presented in Table 1. Time
was divided into 20 time periods, i.e. d = 20.
The computational time is very short, a few
seconds, once the lattice has been set up. The

Table 1 Comparison with Black–Scholes.

Strike price Black–Scholes RandLatt Price ratio

90 19.9886 19.9759 0.9994
95 16.4386 16.4316 0.9996

100 13.2696 13.2643 0.9996
105 10.5151 10.5105 0.9996
110 8.1809 8.1773 0.9996

This table presents computed values for the Black–Scholes model
using the random lattice scheme. The parameters for the call
option are a initial stock price of 100, exercise prices of 90–110,
option maturity is 1 year. The annualized stock volatility is 20%,
and annualized interest rate is 10%. The lattice consists of d = 20
levels, and the number of buckets is m = 300. The number of
sample paths used to generate the random lattice is n = 100, 000.

preprocessing step to create the lattice itself takes
less than one minute. The results are presented
in Table 1, which contains details of the experi-
ment, i.e. the parameter settings. Since we also
know the solution to the Black–Scholes model
in closed form we are able to present the price
ratio between the lattice algorithm and the true
continuous time model. It can be seen that the
error is negligible. Since the algorithm is accurate
across all strikes, the lattice provides highly stable
pricing.

4.2 Application to Asian options

This section parallels the work ofAingworth et al.
(2000) (AMO) and Huan et al. (2000). AMO
developed a new scheme for pricing a particu-
lar class of path-dependent options, namelyAsian
options. These options pay off based on the aver-
age stock price along the path taken by the stock
from inception of the option until maturity.

Our approach is different from that of AMO in the
following ways:

(1) PricingAsian options is usually exponentially
expensive, since the number of paths grows
exponentially, and exhaustive enumeration of
the lattice is required. Hence, it is usually
computed using Monte Carlo methods. The
path-dependence makes the average price
tree non-recombining even when the stock
price tree itself may be recombining. AMO
introduce a polynomial algorithm by super-
imposing on the recombining stock price tree
a set of buckets at each node for the average
price. The difference between their algorithm
and ours is that we use bucketing across the
state space at a given time period, not at each
node, as AMO do.

(2) We generate the tree randomly, not determin-
istically as they do.

(3) Our scheme uses a lattice of out-degree m,
instead of a tree with out-degree 2 in
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AMO, which offers faster rates of conver-
gence to the true continuous time stochastic
process.

(4) The lattice here is general, and applies to
any stochastic process. The preceding papers
were specific to models that used the sim-
ple geometric Brownian motion process for
stock prices, and exploited features of that
tree. In the AMO paper, the stock price tree
is recombining, so that the number of stock
prices at each level exactly equals the level
of the tree (i.e. at the dth level there are d

stock prices). This means that the stock price
space is very small resulting in an econom-
ical lattice, even after expanding the state
space to include buckets for the average stock
price. Our algorithm is more general, in that
we make no assumptions about the availabil-
ity of a recombining tree for the underlying
stock price. We only generate buckets for the
stock and average stock price across maturity,
making no assumptions about recombination,
allowing the structure of the random lattice to
impose that feature.

Table 2 Pricing Asian options.

Exercise price

Maturity (years) Algorithm 40 45 50 55 60

0.5 HLD 10.754 6.361 3.007 1.104 0.315
RL 10.762 6.362 3.001 1.109 0.326

1.0 HLD 11.544 7.613 4.519 2.417 1.174
RL 11.514 7.571 4.478 2.395 1.171

1.5 HLD 12.283 8.668 5.740 3.583 2.122
Ds 12.301 8.674 5.732 3.579 2.127

2.0 HLD 12.953 9.580 6.790 4.631 3.055
RL 12.965 9.577 6.779 4.627 3.060

This table presents computed values for Asian options using the random lattice scheme. The parameters for the call
option are a initial stock price of 50, exercise prices of 40–60, option maturity is 0.5–2 years. The annualized stock
volatility is 30%, and annualized interest rate is 10%. The lattice consists of d = 20 levels, and the number of buckets
is m = 300. The number of sample paths used to generate the random lattice is n = 100, 000. HLD stands for the
Huang-Lyuu-Dai algorithm and RL stands for the Random-Lattice algorithm.

There are refinements possible to the bucketing
scheme to reduce the approximation error intro-
duced by forcing the average stock price into a
set of fixed buckets. The paper by Huang et al.
(2000) (HLD) provides one such approach. The
HLD paper is a refinement of theAMO algorithm,
where the bucketing scheme is improved to reduce
the error bound. We ran our algorithm (denoted
RL) on the same parameters as those of HLD and
the results are reported in Table 2. We show that
our results give the same values as those of HLD
(Huang et al., 2000).

4.3 Improvement in accuracy using an
antithetic lattice

An application of the antithetic variable approach
goes a long way in reducing estimation error. We
applied the technique to the random lattice in the
following way. Since bucketing results in error
from forced branching to a nodal value differ-
ent from that actually simulated, we can reduce
error by generating an antithetic random variate
for every simulation.
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Recall that the stochastic process for the Black–
Scholes model is given by the following geomet-
ric Brownian motion:

dS = rSdt + σSdZ (17)

The solution to this stochastic differential equa-
tion is:

St = S0 exp[(r − 0.5σ2)t + σZt] (18)

= S0 exp[(r − 0.5σ2)t + σε
√

t] (19)

where ε ∼ N(0, 1). We simulate this stochastic
process by generating random variables ε from
a Gaussian distribution. The antithetic approach
we adopt consists of simulating two random lat-
tices in parallel. Denote these lattices by A and B.
During the preprocessing step, we construct lat-
tices A and B using random numbers ε and −ε

respectively. After obtaining the random lattices,
we get two option prices. The average of these
two prices is an estimate with much lower error
because of the negative correlation that exists
between lattice A and lattice B. The required
caveat is that we achieve this if the payoff func-
tion G(x) is monotone, which it certainly is in
the case of pricing options, either for the Black–
Scholes model or the Asian option model (see the
arguments in Boyle et al. (1997)). The antithetic
pair of random lattices also ensures an unbiased
estimator.

We tested this algorithm by pricing options on
both lattices. The details of the experiment are
summarized in Table 3. The accuracy of the price
ratio is very high, and the variance ratio between
the antithetic random lattice algorithm and the
standard algorithm is 19. The cost is that the run
time is doubled.

5 Extensions to other popular models

In this section, we extend the random lattice tech-
nology to several popular stochastic processes.

Table 3 Error reduction using antithetic lattices.

Black–Scholes call option model

Stock price 100
Exercise price 90
Maturity (yrs) 1.0
Volatility 0.2
Interest rate 0.1

No of estimate samples 50
Black–Scholes price 19.9886
Lattice A price 20.0049
Lattice B price 19.9681
Average price 19.9864

Lattice A std error 0.000261
Lattice B std error 0.000092
Average lattice std error 0.000021

Accuracy ratio 0.9999
Pessimistic variance ratio 19.19

This table presents computed values for the Black–Scholes
model using the random lattice scheme. The parameters for the
call option are a initial stock price of 100, exercise price of
90, option maturity is 1 year. The annualized stock volatility is
20%, and annualized interest rate is 10%. The lattice consists
of d = 20 levels, and the number of buckets is m = 300. The
number of sample paths used to generate the random lattice is
n = 100, 000. We ran three estimators, Lattice A stand-alone,
its antithetic lattice, Lattice B stand alone, and the average of the
two lattices. For each estimator, we ran the algorithm 50 times
(i.e. sample size 50), to get the mean and variance of the three
estimators. The accuracy ratio is the ratio of the RL estimator
(antithetic average price) to the true closed-form solution price,
i.e. 19.9864/19.9886. The variance ratio is the ratio of the vari-
ance of the antithetic average price estimator to the variance of
Lattice B which is the better of the two stand-alone estimators.

We also price options on bivariate processes here,
and obtain a high degree of accuracy. In the case
of bivariate stochastic processes, the random lat-
tice is a very economical representation of the
stochastic process when compared to the tree ver-
sion. If a bivariate stochastic process is depicted
on a non-recombining tree, then for each variate,
we would have an up and down move, resulting
in a tree with out-degree 4. At depth d = 20, this
tree would have 420 distinct paths, yet the random
lattice is set up using only 100,000 sample paths, a
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small fraction of the total. In the following exam-
ples, we show that the algorithm maintains a high
degree of accuracy.

5.1 GARCH models

It is now well-known that the stochastic pro-
cess for the stock price is not i.i.d lognormal
as we assumed it to be in the preceding sec-
tions. The stock price distribution is usually
fat-tailed and negatively skewed. Modifications
to the distribution for the stock price come in
many flavors and one of the most popular is the
Generalized Autoregressive Conditionally Het-
eroskedastic model, also known as GARCH. This
model was developed originally in papers by
Engle (1982), Bollerslev (1986), and a nice survey
is provided in Bollerslev et al. (1994).

The GARCH model posits the lognormal diffu-
sion for stock prices but volatility is non constant
and varies over time in a conditionally het-
eroskedastic manner. Essentially, the volatility in
period t depends on the volatility in preceding
periods (t − 1, t − 2, . . . , t − k). It also depends
on the diffusion from period (t − 1). A particular
case is the case where volatility depends only on
the last lagged volatility, which econometricians
denote the GARCH (1,1) model. We may thus
write volatility σ as following the discrete time
evolution:

σ2
t+1 = a0 + a1σ

2
t + a2σ

2
t ε2

t . (20)

In this equation we have ignored the risk premium,
without loss of any generality. The discretized
version of the lognormal model for the stock price
then becomes:

St+1 = St exp

[(
r − 1

2
σ2

t+1

)
+ σt+1εt+1

]
(21)

where volatility σt is not a constant, but varies
over time. Note that here, unlike in the preceding

sections, the volatility σ is per period and is
not annualized. Also, we require that a0, a1,

a2 ≥ 0.

The GARCH system injects additional skewness
and kurtosis into the conditional distribution of
stock prices. The version presented here is one of
the simplest possible specifications. More details
can be found in the extensive work of Duan
(1996), Duan and Simonato (2000) and Duan and
Zhang (2001). In essence the GARCH model pos-
tulates that high volatility in one period is more
likely to be followed by high volatility in the
next.

PricingAmerican options under GARCH requires
the development of a bivariate lattice: in (a) the
stock price and (b) the volatility. Extending the
univariate lattice is extremely easy to do, and
the algorithm fits seamlessly into the preceding
framework. Accuracy is managed by choosing
the correct buckets for volatility in addition to
the buckets for the stock price. We found that the
number of buckets required for volatility is much
smaller, and there is little degradation in accuracy.
One plausible reason for this might be the fact that
the volatility is mean reverting and the range in
which it lies is quite narrow.

Generating the lattice randomly off the stochas-
tic process has three advantages: (i) there is no
need to develop a separate scheme for a recom-
bining lattice for each different stochastic process
chosen. (ii) The lattice is much finer and more
accurate than other schemes that have some spe-
cific recombination mechanics. (iii) Simulation
of the risk neutral process automatically ensures
that the lattice preserves martingale properties so
that the model remains arbitrage-free. In compar-
ison to the Markov chain approach of Duan and
Simonato (2000) where the transition function is
known in closed-form, the approach in this paper
works even when the transition density function
is not available.
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The paper by Ritchken and Trevor (1999) devel-
ops a specific recombination scheme for GARCH
models. Their algorithm matches moments in a
recombining tree with out-degree m, where m is
usually 3. Our model instead uses a random lattice
with out-degree m > 200. In order to compare our
algorithm with theirs we replicated their prices
using our algorithm. Our prices are within a small
fraction of theirs, even though the random lattice
approach is not tailored to the GARCH model,
as their’s is. Table 4 presents prices of European
calls for a range of strike prices and maturities.
We also report the prices they obtained in their
paper for comparison. Most prices are within a
small fraction of the comparison algorithm.

5.2 Special adjustments for American options

In the introduction, we observed that the estima-
tor is biased for American options (specifically

Table 4 Random lattices for the GARCH model.

Maturity (days)

Strike Algorithm 5 10 30 50 100

95.0 RT 5.012 5.086 5.560 6.030 7.028
RL 5.010 5.085 5.563 5.993 7.018

97.5 RT 2.665 2.915 3.712 4.316 5.468
RL 2.665 2.911 3.710 4.279 5.458

100.0 RT 0.927 1.309 2.268 2.930 4.148
RL 0.916 1.297 2.261 2.896 4.141

102.5 RT 0.178 0.439 1.263 1.885 3.069
RL 0.184 0.441 1.262 1.867 3.070

105.0 RT 0.018 0.108 0.639 1.148 2.214
RL 0.021 0.111 0.643 1.143 2.221

This table presents computed values for the GARCH model using the random lattice scheme. The parameters
for the call option are a initial stock price of 100, exercise prices of 95–105, option maturity varying from 5
to 100 days. The average annualized stock volatility is 20%, which is also equal to the initial volatility σ0,
and annualized interest rate is zero percent. The lattice consists of d = 20 levels, and the number of stock
price buckets is 250. The number of volatility buckets is 11. The number of sample paths used to generate the
random lattice is n = 100,000. The GARCH equation parameters are: a0 = 6.575 × 10−6 , a1 = 0.90, and
a2 = 0.04. RL stands for the Random-Lattice algorithm and RT stands for the Ritchken–Trevor algorithm.
The prices from their algorithm were in Table 3 of their paper.

American put options, see Fig. 4). To recall, the
estimator is biased because whenever early exer-
cise occurs the node is never really on the early
exercise boundary of the option, on account of the
discreteness injected into the state space when-
ever a lattice is used. It is usually away from
the boundary which means that the early exer-
cise value is an overestimate. Hence, at the point
at which the early exercise decision is made we
would like to embed a suitable reduction in the
early exercise value to correct the bias.

In this section, we consider two adjustments that
are possible to reduce the bias of the estimator. We
use American put options to illustrate the ideas in
the algorithm. The following arguments allow us
to impose the right correction.

• The solution to the American option pricing
problem comprises determining the optimal
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stopping time in the life of an option. This
occurs when taking the immediate exercise
value is more lucrative than the continuation
value from not exercising the option. Hence
there is a boundary B(t) which is a function of
time, which may be drawn such that if the stock
price crosses the boundary then it is optimal to
exercise the option early (see Fig. 4). It has
been theoretically established that this bound-
ary is unique and continuous (for an excellent
exposition of such issues in optimal stopping
problems, see Dixit (1991) and refer to Fig. 4).
The bias comes from the slippage encountered
when the nodes in the pricing lattice do not sit
exactly on the boundary.

• Recall that the random lattice contains a dis-
cretized state space in stock price values which
are δ apart from each other. Hence the maxi-
mum possible amount of bias is δ.

• We now exploit the “value-matching” and
“smooth-pasting” conditions from the theory of
continuous-time dynamic programming which
states that under optimality, these two condi-
tions are always satisfied. The value-matching
condition states that at the stopping boundary,
the value of continuation and early exercise are
exactly equal. We define a new quantity, which
we call the “exercise distance” or γ . This is
computed as follows:

γ = [St(i) − K]+ − P(St(i), t) (22)

where St(i) is the stock price at time t and node i

on the lattice. K is, as before, the exercise price.
The function P(St(i), t) stands for the current
continuation value of the American put option
on the lattice at St(i). The value-matching con-
dition simply states that when St(i) ∈ B(t),
then γ = 0.

• Since the boundary is known to be unique, and
continuous, it is also true that |γ| increases
monotonically as we move away from the
boundary B(t). This result is based on the well-
known “smooth-pasting” condition, which is

t=0 t=T

B(t)

Stock
sample path

K

Early exercise
boundary

}delta

}gamma

S0

= Early exercise node

Figure 5 Depiction of bias correction variables for
American put options.

essentially a smoothness condition. The condi-
tion, which is satisfied under optimal stopping
is that (see Samuelson (1965), Merton (1990)
Ch 8, Dixit (1991) and Dumas (1991)).

[Smooth-pasting]:
∂Pt

∂B(t)
= 1. (23)

Hence, we may use the value of γ to impose
the correction to the bias (see Fig. 5).

• Note that γ ≤ δ, because at worst, the stock
price at which it pays to exercise early will
be one bucket away from the boundary B(t).
Hence, a useful correction is to take the early
exercise value, when exercise occurs, and sub-
tract an amount equal to γ

2 . In order to get a
lower bound, subtract the amount δ

2 . Hence
Eq. (9) becomes a modified early exercise rule
is as follows (SP stands for smooth-pasting):

If (γ ≥ 0) and (γ ≤ δ) then

[SP-1]: G(i, t)

= max

(
G(i, t), St − K − γ

2

)
,

∀ i = 1, . . . , m. (24)
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which gives an intermediate correction, and for
a lower bound we apply the following:

[SP-2]: G(i, t) = max

(
G(i, t), St − K − δ

2

)
,

∀ i = 1, . . . , m.

(25)

The IF condition above ensures that the correc-
tion is applied only to nodes around the bound-
ary and in the exercise region and nowhere
else.

• Hence, the value-matching and smooth-pasting
conditions together allow us to apply the stated
bias correction.7

To illustrate, we priced the American put in the
GARCH model. For comparison we report the
prices from Ritchken and Trevor (1999). Table 5
shows that the two corrections (RL-SP-1 & RL-
SP-2) result in lower values of the estimator than
RL. As expected, the bound from RL-SP-2 is
lower than that from the average correction in
RL-SP-1. Therefore, we can think of RL-SP-2 as
a lower bound (low bias), RL-SP-1 as the inter-
mediate price, and RL as an upper bound (high
bias).

Here again, the values are very close to those
reported by Ritchken and Trevor and the various
corrections to the RL method for the bias do give
better values.

5.3 Stochastic volatility models

In the case of GARCH models, both the stock
return process and the volatility process are driven
by the same random shock, which we denoted as
εt . A more general form of volatility is obtained
by making the variance of stock returns follow its
own stochastic process. Hence we get a bivari-
ate diffusion system represented by the following

Table 5 Random lattices for the GARCH model,
American puts.

Maturity American European
(days) Algorithm price price

10 RT 1.192 1.175
RL 1.304 1.172
RL-SP-1 1.288 –
RL-SP-2 1.189 –

50 RT 2.398 2.281
RL 2.457 2.270
RL-SP-1 2.437 –
RL-SP-2 2.322 –

100 RT 3.143 2.882
RL 3.184 2.873
RL-SP-1 3.126 –
RL-SP-2 2.997 –

This table presents computed values for the GARCH model using
the random lattice scheme to price American put options. We do
not price calls here since we know that theoretically, in the pres-
ence of no dividends, the American call is never exercised early.
The parameters for the put option are a initial stock price of 100,
exercise price of 100, option maturity varying from 10 to 100 days.
The average annualized stock volatility is 20%, which is also equal
to the initial volatility σ0, and annualized interest rate is 0%. The
lattice consists of d = 20 levels, and the number of stock price
buckets is 250. The number of volatility buckets is 11. The number
of sample paths used to generate the random lattice isn = 100,000.
The GARCH equation parameters are: a0 = 6.575 × 10−6 ,
a1 = 0.90, and a2 = 0.04. The interest rate is assumed to be
r = 0.10. RL stands for the Random-Lattice algorithm and RT
stands for the Ritchken–Trevor algorithm. RL-SP stands for the
smooth pasting version of the Random-Lattice algorithm, which
effectively generates a lower estimate. We implemented two ver-
sions of this algorithm. The prices from the RT algorithm were in
Table 3 of their paper.

stochastic differential equations:

dS = rSdt + √
VSdZ (26)

dV = κ(θ − V)dt + η
√

VdW (27)

dZ.dW = ρ dt (28)

Here, r is the riskfree interest rate and
√

V is
the stock volatility. The stock price is driven by
the Wiener increment dZ, which is a standard
Brownian motion. The variance of stock returns
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V follows a mean-reverting stochastic process
where the mean reversion rate is κ and the long
run mean of the process is θ. The variance V

itself has its own volatility, governed by parame-
ter η, and Wiener increment dW . The correlation
between the diffusions dZ and dW is determined
by parameter ρ.

The GARCH model is applied with a minor mod-
ification to the volatility process to account for
the differences in specification. Therefore, with
a small change, the approach applies seamlessly.
There is only one known closed form solution for
this particular model, developed in the work of
Scott (1987) and the more recent work of Heston
(1993). For a detailed analytical exploration of the
statistical properties of the model see the paper
by Das and Sundaram (1999). Heston under-
takes a graphical comparison of the prices from a
model with stochastic volatility versus one with

Table 6 Random lattices for the stochastic volatility
model.

Strike SV model SV model
price (θ = 0.01) (θ = 0.04) Black–Scholes

90.0 10.045 10.095 10.073
92.5 7.687 7.748 7.727
95.0 5.520 5.594 5.577
97.5 3.667 3.748 3.739
100.0 2.218 2.302 2.301
102.5 1.223 1.296 1.292
105.0 0.607 0.663 0.656
107.5 0.271 0.307 0.301
110.0 0.109 0.128 0.125

This table presents computed values for the Heston SV model
using the random lattice scheme. The parameters for the call option
are a initial stock price of 100, exercise price of 80–120, option
maturity of 100 days. The average annualized stock volatility is
10%, which is also equal to the initial volatility σ0, and annualized
interest rate is 0%. The lattice consists of d = 20 levels, and the
number of stock price buckets is 250. The number of volatility
buckets is 11. The number of sample paths used to generate the
random lattice is n = 100,000. The SV equation parameters are:
κ = 2, θ = 0.01, and η = 0.1. The interest rate is assumed to be
r = 0.

constant volatility, i.e. the Black–Scholes model.
We present illustrative results in Table 6.

6 Conclusions

In this article, we showed that it is possible to
achieve a very fast computation scheme for option
pricing using a random lattice approach. The lat-
tice is dense, which minimizes the approximation
error. The error may be designed to be zero in
expectation by choosing an appropriate bucketing
scheme. The use of antithetic variates drastically
cuts down the simulation error. A benefit from the
random lattice approach comes from the reduced
storage required in the algorithm. The lattice often
only needs to be maintained in the relevant state
variable, not in all variables. Hence, the mem-
ory required is reduced. We are also able to prune
some processing by ignoring all nodes with out-
degree zero, since there is no probability mass on
those edges of our random lattice.

Many refinements are possible to the algorithm.
Since our algorithm entails numerical integra-
tion over the buckets, we can increase accuracy
by employing better aggregation of values using
Newton–Coates formulae. The lattice may be
drawn in return space rather than in stock price
space. This makes the lattice symmetric, which
usually results in better convergence rates. The
algorithm may be applied to a larger gamut of
option types.

Random lattices are especially useful for pricing
American options. The lattice enables fast com-
putation, which allows for rapid checking of the
optimal stopping conditions during dynamic pro-
gramming. We developed alternatives to earlier
bounds on American options by exploiting the
theory of continuous-time optimal control, via
the use of the value-matching and smooth-pasting
conditions. We also developed a correction to the
bias that emanates naturally from implementing
optimal stopping in discrete state spaces. Our
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experiments on GARCH models demonstrated
these bounds and corrections.

For example, other common models of option
pricing may be implemented, and also the pric-
ing of mortgage-backed securities. Very high
dimensional problems such as the average of 15
stocks may be computed on a lattice of much
lower dimension (see also Broadie and Glasser-
mann (1997b)). Better randomization schemes for
preprocessing may also be used.

Finally, we believe that this algorithmic idea may
be extended to the domain of stochastic control
problems. Preliminary work has shown that an
expansion of the state space with the addition
of a control space permits the same approach
to be extended to the solution of optimal con-
trol problems with a polynomial time algorithm.
The flexibility and ease of implementation of this
approach, as seen from the examples, suggests
that this approach has wide practical applicability.
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Notes
1 The term “in-degree” carries the natural connotation, i.e.

how many arcs or branches of the tree enter a particular
node.

2 Symmetry here is the situation in which the same number
of branches emanates from each node.

3 In more complex options, the terminal payoff may not
be a function of the terminal price Sl(t), but may depend
on the path leading to leaf l. In such cases, the leaf value
contains a summation over root-leaf paths.

4 American options do not admit closed-form pricing equa-
tions. The only American options for which closed-form
solutions are available are American call options on
stocks that do not pay dividends, since it can be shown
that it is never optimal to exercise these options early,
making them equal in price to European calls.

5 These are conditions that the optimal solution must
satisfy in continuous-time dynamic programming.

6 These are options written on stocks where the volatil-
ity of the stock follows a Generalized Auto-Regressive
Conditionally Heteroskedastic (GARCH) process.

7 Since we have converted the problem into one pertaining
to a discrete state space, we only need the value-matching
and smooth-pasting conditions. In continuous state space
problems, an additional condition on the second deriva-
tive also applies, known as the “super-contact” condition.
See Dumas (1991) for details.
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