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W
e develop a Bayesian model of
rating changes based on the
joint stochastic process of the
probabilities of default of

many issuers. Since changes in PDs are related
to changes in ratings, we employ a modified
(i.e., “biased”) Bayesian model to calibrate the
historical time series of PD changes to histor-
ical rating transition matrices. 

Rating transitions punctuate changes in
the prices of securities issued by firms. Firms
such as Moody’s, Standard & Poor’s, and Fitch
announce rating changes during periodic
reviews of the creditworthiness of firms. There
is now a vast history of rating transition data
summarized into rating transition matrices (see
Exhibit 1 for an example). 

Rating transitions are important for
market players for many reasons. First, they
signal real changes in the value of firms, resulting
in a series of repricings of issued securities.

Second, they impact investment portfo-
lios subject to rating-based restrictions. For
example, money market funds are not per-
mitted to hold more than a small fraction of
low-grade paper.

Third, securities that are indexed to rat-
ings are impacted. Credit-sensitive notes, for
example, are bonds whose coupons are indexed
to rating levels. Fourth, credit portfolio risk is
simulated according to rating transitions.
Hence, ratings are important in all aspects of
the credit markets.

Rating transition matrices have been
used in the pricing of credit risk-sensitive secu-
rities. A framework for this form of modeling
was first developed by Jarrow, Lando, and
Turnbull [1997]. Extensions to this work have
followed in rapid succession, as in Das and
Tufano [1996], Kijima [1998], and Kijima and
Komoribayashi [1998]. 

While these approaches use fixed transi-
tion matrices (albeit with time-dependent risk
premiums), other models have used stochastic
transitions (see Lando [1994, 1998], Nakazato
[1997], Li [1998], and Arvanitis, Gregory, and
Laurent [1999]). Applications to swap pricing
are developed in Huge and Lando [1999].

Myriad approaches have been used to
estimate rating transition matrices. A simple
approach in continuous time is presented in
Lando and Skodeberg [2002]. A detailed
empirical examination of a range of state vari-
ables in the estimation of rating transition
matrices has been carried out by Kavvathas
[2001]. Bangia, Diebold, and Schuermann
[1999] demonstrate the influence of business
cycle effects on the ratings migration process. 

Kiesel, Perraudin, and Taylor [2001] inves-
tigate the interaction of spread volatility with
ratings. Since ratings are a coarser (and slower-
moving) measure, they show that, for high-
quality debt, spread volatility is a severe risk,
even in the absence of ratings transition risk.
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The growing evidence on the dynamics of ratings
may be distilled into some general conclusions. While
rating transition matrices have traditionally been presented
as constant, it is widely accepted that they are not time-
homogeneous. Various reasons have been offered for this,
mostly based on underlying macroeconomic state variables.

Also known is the feature of ratings drift, in that
high-quality credits tend to drift lower in their ratings,
and low-quality firms tend to drift higher. Hence mean
reversion in ratings is also present. 

Ratings are a slower-moving variable than the under-
lying state variables, partly on account of the human pro-
cess involved, and naturally too because they are discrete
measures as compared to the continuous variables on
which they are based. Finally, many market participants
see ratings as changing too infrequently, and being ex
post; i.e., the information revealed in a ratings change has
often already been reflected in the spreads for an issuer. 

Therefore, there is a need for a process of rating
dynamics that is not as fast-changing as various state vari-
ables, yet is sufficiently timely. We show that this may be
achieved in a simple Bayesian model of rating changes
based on probabilities of default that incorporates the
characteristics described. 

A recent development in the credit markets has been
the use of model-based probabilities of default (PD) for
credit analysis. Various models based on Merton [1974]
are now in vogue, such as those of KMV (see Crosbie
[1999]) and RiskMetrics (see Finkelstein et al. [2002]).
These models use the equity process of the firm as the basis
for computing and updating PDs, as frequently as hourly.
Other approaches, termed hybrid ones like Moody’s, mix

a market-based equity approach with balance sheet-based
accounting information, calibrated to historical default
experience, to compute PDs (see Sobehart et al. [2000]).

In either modeling approach, PDs proxy for a large
number of state variables that drive changes in firms’ credit
quality, proxied by ratings. Thus, PDs can be used to refine
the process of estimating the relationship between credit-
related state variables and the stochastic process of rating
transitions.

Estimating the process of rating transitions at the
simplest level involves counting. Under the assumption of
time-homogeneity of the transition matrix, the estimator
of each cell in the transition matrix (i, j ) is derived from
the count of transitions from rating i to rating j , denoted
Nij/ΣjNij, ∀i. If we assume that the transition matrix is
not time-homogeneous, then the values in the cells of
the matrix may be defined as functions of a set of state vari-
ables, as implemented by Kavvathas [2001]. Hence, esti-
mation of rating transition matrices has been based on
transition data and other state variables, in either a time-
homogeneous or inhomogeneous framework. 

The approach we take differs from other research  in
some important ways. First, it uses PDs as a sufficient statistic
for other state variables. This has the advantage of making
the model parsimonious. Second, the Bayesian approach
enables calibration of the speed of rating transitions at a
rate between that of the state variable and that of human
judgment, i.e., in a more timely fashion. The approach
also incorporates the human judgment factors that may be
present in the ratings updates, by calibrating the Bayesian
system to observed transition matrices. 

2 BAYESIAN MIGRATION IN CREDIT RATINGS BASED ON PROBABILITIES OF DEFAULT DECEMBER 2002

E X H I B I T 1
Sample Empirical Rating Transition Matrix

1 2 3 4 5 6 Default (D)

1 0.9081 0.0833 0.0068 0.0006 0.0012 0.0000 0.0000

2 0.0070 0.9065 0.0779 0.0064 0.0006 0.0014 0.0000

3 0.0009 0.0227 0.9105 0.0552 0.0074 0.0026 0.0006

4 0.0004 0.0035 0.0597 0.8695 0.0532 0.0119 0.0020

5 0.0020 0.0031 0.0084 0.0790 0.8070 0.0901 0.0123

6 0.0068 0.0079 0.0092 0.0111 0.0716 0.8414 0.0588

D 0 0 0 0 0 0 1

Rating Rating Category

Based on data from Moody’s.
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The model we develop is useful for many reasons.
First, it is simple and intuitive, requiring little more than
a Bayesian updating rule. Second, the results mimic the
true process of rating changes well. The transitions in the
model are neither too fast, a problem with PD changes,
nor too slow, an aspect of the human process for ratings.
Third, rating agencies may use the model to propose rating
changes, and market participants may find the approach
useful for forecasting rating changes. 

Finally, as we will show, the model replicates his-
torical transitions, using only PD data, lending support to
the argument that PDs may be sufficient statistics for rating
changes. 

I. THE MODEL

Some basic notation sets up the model. We assume
there are K credit rating classes indexed by k = 1, …, K.
The rating classes are arranged in descending order of credit
quality; i.e., rating class 1 is the best, and rating class K is
the worst. 

There are N issuers indexed by i = 1, …, N, in these
K classes. The rating class for each issuer is denoted Rit,
where t indexes time. 

Associated with each rating class is a mean proba-
bility of default (PD), denoted µkt, which is the mean PD
for rating category k at time t. The stochastic process for
the rating level PD is as follows: 

(1)

σk(µkt) is an arbitrary although positive and bounded func-
tion on µkt. Mk is the rate of mean reversion, and θk is the
long-run mean of the process. The driving random shock
is εkt. The only restriction imposed on the choice of
stochastic process is that it be positive. 

Associated with each issuer is a probability of default
(PD), denoted λit, which denotes the likelihood of issuer
i defaulting within one year of time t. The PDs follow a
stochastic process. 

For example, a simple version of the dynamics is 

(2)

ηi(λit) is an arbitrary although bounded function on λit.
Gi is the rate of mean reversion, and µkt is the current
mean of the process. The driving random shock is εit.

λ λ µ λ η λ εi t it i k t it i it itG t, + , += + − ∆ +1 1[ ] ( )

µ µ θ µ σ µ εk t kt k k kt k kt ktM t k, + = + − ∆ + , ∀1 [ ] ( )

Again, a positive stochastic process is assumed. 
We may allow for arbitrary correlation among all

the random shocks. 
Equation (1) may be estimated from a time series of

the average of the PDs for each rating class. Equation (2)
is estimated from the time series of PDs for each issuer,
according to: 

(3)

where 

Hence data from the rating level series is introduced
to proxy for the latent mean of the process. 

Bayesian Changes in Rating

Ratings and PDs are positively related. That is, as
PDs increase, we expect ratings to rise (remember, the
quality drops as the rating level increases from 1 to K). We
posit a conditional mapping from PDs to ratings; i.e.,
there is a function hiCi, such that hi:λiCi → k. Ci is a
general function of the history of PDs. 

Because this is a many-to-few type of mapping, the
relationship is coarse—each rating class includes a range
of PDs. Across rating classes, these PD ranges overlap as
well, so they are not distinctly defined. Therefore, our
techniques are more useful and relevant. 

Ratings do not change as frequently as PDs. There
are two reasons for this. First, the coarse mapping means
that every time a PD changes, it need not result in a rating
change. 

Second, even when the PD changes enough to pop-
ulate the range of another rating class, this may simply be
on account of a wild overreaction in the equity markets,
which the rating agencies do not necessarily respond to.
In fact, if they did overreact, and the overreaction is cor-
rected the following day, this would mean a rating reversal
within a two-day period. Therefore actual ratings cannot
be mapped to PDs too directly, as any model that does so
would induce excessive ratings volatility, not observed
empirically.1

Yet it is also known that rating changes are often
slow, and the rating agencies are criticized for not updating
their ratings frequently enough. Thus, there is a need for

µ µ µi t k t R tit, + , + , += =1 1 1

λ λ µ λ η λ εi t it i i t it i it itG t, + , += + − ∆ +1 1[ ] ( )
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ratings to track PDs somewhat more closely than they do
at present, but not too closely as to be too volatile. We
present a Bayesian approach to achieving this desired
middle ground. 

Using time series data of PDs (λit ) for each issuer
and ratings (Rit ), we calibrate a Bayesian model of rating
changes. 

At every time t, there is a known prior probability
of the issuer being in every rating class. This prior prob-
ability is denoted 

This probability is also the posterior probability of the
rating class from the previous period (t – 1). 

From time t to time t + 1, there is an observed
change in the PD, i.e., a move from λit to λi,t +1. The
model then determines whether this change in PD
amounts to a change in rating as well. 

Using the estimated stochastic processes in Equa-
tions (1) and (2), we can determine the conditional prob-
ability density of the innovation in λit . This density
function is denoted 

This density is also conditioned on the current rating
level, which is necessary to parameterize Equation (2). 

A simple application of Bayes’ theorem enables the
computation of posterior probabilities:

(4)

Given these posterior probabilities, we determine
the rating as follows: 

These posteriors are then used in the next round of
updating.  

This approach has some useful features that are con-
sistent with the empirical reality of ratings transitions.

R Pr R ki t k i t it, + , += = |1 1argmax [ ]λ

Pr R k

f R k Pr R k

f R k Pr R k
i k

i t it

i t it it it

k
K

i t it it it

[ ]

[ ] [ ]

[ ] [ ]

, +

, +

= , +

= |

=
| , = . =

∑ | , = . =
, ∀ ,

1

1

1 1

λ
λ λ

λ λ

f R ki t it it[ ]λ λ, + | , =1

Pr R k iit[ ]= , ∀

First, transitions are dynamic. Second, the model makes
rating changes persistent, which matches the empirical
stickiness of ratings. Third, the passage to default is pro-
gressive and not sudden. Hence, the Bayesian approach
formalizes the fact that sufficient evidence is required of
an improvement or degradation in credit quality before
a rating change is announced. Finally, because the rating
changes are based on the stochastic process for PDs, they
are time- and state-dependent. 

Initializing the Transition System

Given a time series of PD and rating data, we can
establish the unconditional probability density for each rating
category. At the simplest level, this may be thought of as the
histogram of PDs within a rating class. If the unconditional
density function is denoted g(λik), we can initialize the
system for each issuer at one of two possible values.

1. Set the starting rating for each issuer, i.e., Ri0 at
the most likely value:

2. Set the starting value at the mean PD for issuer
i, i.e., equal to argmaxk g(

–λik). We then set the
prior probabilities equal to:

Of course, the Bayesian system would not work if
the prior were exactly zero, so we ensure that there is
some small positive probability for each prior, even if the
probability is zero. 

Modified Bayesian Model

It is possible to generate time series data based on
the parameters of the PD stochastic processes, and run
the entire PD system forward using Monte Carlo simu-
lation, keeping track of all rating transitions. A count of
the transitions developed from this simulated data is sum-
marized in a rating transition matrix (call this the fitted
transition matrix). We may then compare this transition
matrix to that developed from actual transitions over time
(the empirical matrix), frequently published by rating agen-
cies like Moody’s and Standard & Poor’s. 

Pr R k g k i ki i[ ] ( )0 0= = | , ∀ ,λ

R g ki i0 0= |kargmax ( )λ
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Of course, the two transition matrices need not
coincide, unless the Bayesian system perfectly captures
the behavior of the rating agencies in the way they pro-
cess PD data. There are many reasons why differences
may occur. 

First, rating agencies use information beyond that in
the PDs. Second, rating updates as the rating agencies see
revised PDs need not weight the probabilities in the pure
Bayesian form we have described. 

This may happen because they update probabilities
in a biased manner, i.e., not exactly as per Equation (4).
By modifying the Bayesian model, we can capture the
effects of these biases, so as to provide a more flexible
system that better depicts the way ratings evolve with PDs. 

We achieve this by introducing K new parameters
(γk, k = 1, …, K ) into the updating rule: 

(5)

We may think of the new parameters γk, k = 1, …,
K as coefficients that bias each conditional probability for
each rating. For example, if the rating agency were biased
in favor of rating k = 3, then γ3 would be a large number
relative to the other γk, k ≠ 3 values. 

There is another benefit to the flexibility introduced
with these parameters. By optimally choosing them, we
can ensure that the historical system generated from the
data generates a fitted transition matrix that is as close as
possible to the empirical one. Hence, the introduction of
K parameters enables effective calibration. We demonstrate
in an application that it is possible to carry out such a cal-
ibration, which may be used to support 1) the prediction
of rating changes, and 2) automated changes in ratings.

Finally, after the K parameters have been fitted, the
user of the methodology may modify the parameters to
change the rate of migration between rating classes. For
example, if the modeler believes that rating changes should
occur faster than in the current model, a reduction in the
bias parameters γk will result in quicker migrations. 

Hence, the Bayesian approach to rating changes pro-
vides flexibility in the modeling of transitions. A further
extension would make the bias parameters themselves
functions of exogenous state variables, thereby allowing
the rating transition matrix’s time- and state-dependence
to be based on factors other than PDs. 

Pr R k

f R k Pr R k

f R k Pr R k
i k

i t it
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k
K
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γ λ λ

II. MONTE CARLO SIMULATION

The simulation of rating changes is easy to imple-
ment, once the stochastic processes for PDs have been
calibrated to historical data.2 The following are the three
Monte Carlo steps at each time t: 

1. Generate a sample of the rating mean PDs at time
(t + 1). Given the current µkt, draw µk,t+1, ∀k,
using parameterized Equation (1). 

2. Generate a sample of the individual PDs at time
(t + 1). Given current λit, draw λi,t+1, ∀i, k, using
the µk,t+1 values from Step 1. 

3. Update the rating category Rit, for each i, using
the modified Bayesian rule. Here, we determine
rating changes, if any. Then roll forward to the
next period by repeating Step 1. 

It is important during the simulation to account for
the correlation between the various rating class shocks
εkt, k = 1, …, K, that may be computed from the resid-
uals of Equation (1). Within a rating class, the correlation
of issuer shocks εit, i = 1, …, K, for a given k, is obtained
from the residuals of Equation (2). 

We summarize the set of system state variables during
simulation in Exhibit 2. In each stage of the simulation,
we keep track of the mean PD of each rating class k, the
PD of each issuer i, and the rating of each issuer. 

III. NUMERICAL FITTING OF SYSTEM 
TO HISTORICAL TRANSITIONS

Our data set comprises all rating transitions over
the period from January 1993 through December 1997.
There are 589 issuers in this data set. Following Moody’s
rating scheme, the issuers are divided into six rating cat-
egories. We begin with the initial rating and PD of each
issuer, and the unconditional distributions of PDs for
each rating class.

DECEMBER 2002 THE JOURNAL OF FIXED INCOME 5

E X H I B I T 2
System State Variables

µk t ∈ ℜK                 Mean of the PD for rating class k
λ

it
∈ ℜN PD for issuer i

R
it

∈ ℜN Rating of issuer i

Pr[R
it

= k] ∈ℜN�K Posterior probability of rating
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Each month, we follow the change in PD for each
issuer, and simulate the change in rating based on the
modified Bayes rule in Equation (5). Over the entire
period, the simulated rating changes are used to compute
a rating transition matrix. We execute 50 simulation runs,
and the fitted matrix is taken to be the average of transi-
tion matrices across all simulations. 

This matrix depends on the set of bias parameters
γk, k = 1, …, K. We attempt to choose these parameters
so that the distance between the empirical transition matrix
and the simulated matrix is as small as possible. We define
the distance to be the sum of the absolute difference in
cell values between the two transition matrices. We under-
take an intensive numerical search over the parameters to
obtain the best fit transition matrix. 

The fitted matrix is presented in Exhibit 3, and may
be compared with the empirical one in Exhibit 1. 

The bias parameters are also provided. Notice that
for rating classes 1 to 6, the parameters γk > 1. There-
fore, the parameters tend to bias the issuer toward
remaining in the same rating category as far as possible,
until sufficient updating has occurred to provide impetus
for a rating change. This slows down the impact of drastic
changes in the PDs, causing slower changes in ratings
than in PDs. 

Notice also that the γk are higher for the issuers in
rating categories 3 and 4, i.e., the medium-quality ratings.
This occurs because ratings are mean-reverting. Firms
with high ratings tend to drift downward in quality, and
firms with low ratings, conditional on survival, tend to

drift higher in quality. Hence, firms in the middle of the
quality spectrum are more likely to remain within their
rating class, on a conditional basis from month to month.3

IV. CONCLUDING COMMENTS

The advent of models for computing probabilities
of default (PD) has provided a supplementary measure of
default likelihood in addition to credit ratings. Credit
ratings are a coarser measure of default likelihood, and
embed the same information as PDs plus a modicum of
human judgment. Rating transitions tend to occur less
frequently than PD changes, since the human judgment
involved overrides temporary spikes in state variables
driving PDs. 

We have developed a Bayesian model based on PD
changes to mimic rating changes. The free parameters in
the model are tuned to historical data to fit the human
judgment element in rating transitions. 

The model is easy to implement. We generate a
simulation-fitted transition matrix that mimics the his-
torical empirical one closely. This lends support to the
often-made argument that PDs may be used as sufficient
statistics for rating changes. Rating agencies may use this
model as a basis for proposing rating changes to credit
analysts, and finally, portfolio managers may use the model
to obtain forecasts of rating changes, based on the observed
historical time series of firm PDs. 
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E X H I B I T 3
Fitted Rating Transition Matrix and Bias Parameters

Rating Rating Category

1 2 3 4 5 6 Default (D)

1 0.9096 0.0864 0.0030 0.0009 0.0000 0.0000 0.0000

2 0.0058 0.9425 0.0507 0.0002 0.0006 0.0002 0.0000

3 0.0514 0.0042 0.9112 0.0002 0.0243 0.0084 0.0003

4 0.0723 0.0039 0.0008 0.8694 0.0003 0.0515 0.0018

5 0.0130 0.1397 0.0044 0.0017 0.7709 0.0638 0.0065

6 0.0026 0.0251 0.0253 0.0485 0.0003 0.8353 0.0628

D 0 0 0 0 0 0 1

k 1.6789 4.1071 23.2983 23.4913 5.2505 2.2548 0.4065γ

From simulations based on PD data from Moody’s.
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ENDNOTES

The authors are grateful for helpful discussions with
Moody’s Risk Management Services and Fitch Ratings. Das
thanks a Breetwor Fellowship and the Dean Witter Founda-
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1Note that some models that generate rating changes
depending on asset value changes still suffer from the deficiency
of excessive ratings volatility.

2Based on square root diffusions, the means estimated for
the six rating classes are: {0.0001, 0.0001, 0.0006, 0.0020,
0.0123, 0.0588}. The rates of mean reversion for each rating
class are: {0.4813, 0.0018, 0.6680, 0.4811, 0.4305, 2.8350}.
And the volatility parameters used are: {0.0054, 0.0102, 0.0353,
0.0241, 0.0307, 0.0778}. These are based on the data set avail-
able, and are illustrative of the implementation. Since there are
close to 600 individual default intensities, we do not report the
estimated parameters for Equation (2).

3This inference cannot be made directly from an inspec-
tion of the rating transition matrix, since it is the conditional
matrix of one-year transitions, as opposed to conditional
monthly transitions.
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