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We develop a model for pricing securities whose value may depend simultaneously on equity, interest-
rate, and default risks. The framework may also be used to extract probabilities of default (PD) functions

from market data. Our approach is entirely based on observables such as equity prices and interest rates,
rather than on unobservable processes such as firm value. The model stitches together in an arbitrage-free
setting a constant elasticity of variance (CEV) equity model (to represent the behavior of equity prices prior
to default), a default intensity process, and a Heath-Jarrow-Morton (HJM) model for the evolution of riskless
interest rates. The model captures several stylized features such as a negative relation between equity prices
and equity volatility, a negative relation between default intensity and equity prices, and a positive relationship
between default intensity and equity volatility. We embed the model on a discrete-time, recombining lattice,
making implementation feasible with polynomial complexity. We demonstrate the simplicity of calibrating the
model to market data and of using it to extract default information. The framework is extensible to handling
correlated default risk and may be used to value distressed convertible bonds, debt-equity swaps, and credit
portfolio products such as collateralized debt obligations (CDOs). Applied to the CDX INDU (credit default
index–industrials) Index, we find the S&P 500 index explains credit premia.
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1. Introduction
Several financial securities depend on more than just
one category of risk. Prominent among these are cor-
porate bonds (which depend on interest-rate risk and
on credit risk of the issuing firm) and convertible
bonds (which depend, in addition, on equity risk). In
this paper, we develop and implement a model for
the pricing of securities whose values may depend on
one or more of three sources of risk: equity risk, credit
risk, and interest-rate risk.
Our framework is based on generalizing the re-

duced-form approach to credit risk (Duffie and Sin-
gleton 1999, Madan and Unal 2000) to include a
process for equity. The typical reduced-form model
involves two components, one describing the evo-
lution of (riskless) interest rates, and the other, an
intensity process that captures the likelihood of firm
default; equity is not modeled explicitly. But any
default process for a company’s debt must obviously
also apply to that company’s equity. That is, when
debt is in default, equity must also go into some post-
default value. Motivated by this, we knit an equity
process into a reduced-form model in an arbitrage-
free manner; equity in the integrated model now fol-
lows a jump-to-default process, i.e., it gets absorbed at

zero when a default happens.1 The resulting frame-
work captures simultaneously the three sources of
risk mentioned above, and can be calibrated to mar-
ket data to extract default probabilities or price hybrid
securities.
Although our model is anchored in the reduced-

form approach, the specifics draw on insights gained
from the structural approach to credit risk (cf. Merton
1974, Black and Cox 1976, and others). Our start-
ing point, the idea that default is associated with an
absorbing value for equity, is itself borrowed from
structural models. The process we posit for the evolu-
tion of equity prices prior to default—a constant elas-
ticity of variance (CEV) process—is also motivated
by structural models. An important characteristic of
the Merton (1974) model is its generation of the so-
called leverage effect, a negative relationship between
equity prices and equity volatility. The leverage effect
has also been documented empirically (e.g., Christie

1 As the junior-most claim of the firm, it is natural to set the value of
equity in default to zero; this is also consistent with the assumption
that absolute priority holds in bankruptcy. However, our model is
easily modified to allow a nonzero value for equity in the event of
default.
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1982). The CEV specification for equity prices gen-
erates a leverage effect in our reduced-form setting.
Finally, we take the default intensity in our model
to vary inversely with equity prices (and, therefore,
directly with equity volatility). This specification is
also motivated by the existence of a similar relation in
the Merton (1974) model between default likelihood,
equity prices, and equity volatility.
Our final framework, then, involves the following

components. We have a CEV model describing the
evolution of equity prices prior to default, an intensity
process for default, and a riskless interest-rate model
(for which purpose we use the Heath-Jarrow-Morton
1990 (HJM) model, although any other interest-rate
model could be used). The result is a single parsimo-
nious model accounting for correlations that combines
the three major sources of risk.
We implement the model in a discrete-time setting,

using the Nelson and Ramaswamy (1990) approach
to discretize the CEV model. Rather than specify-
ing an exogenous process for the default probabil-
ity, we make it a dynamic function of both equity
and interest-rate information. This enables us to
derive default probabilities as endogenous functions of
the information on the lattice, jointly calibrated to
equity prices and default spreads. As a consequence,
default information in the model is extracted from
both equity- and debt-market information rather than
from just debt-market information (as in reduced-
form credit-risk models) or from just equity-market
information (as in structural credit-risk models). This
allows valuation, in a single consistent framework,
of hybrid debt-equity securities such as convertible
bonds that are vulnerable to default, as well as of
derivatives on interest rates, equity, and credit. Our
model can also serve as a basis for valuing credit port-
folios where correlated default is an important source
of risk. Finally, the model enables the extraction of
credit-risk premia.
Our framework has several antecedents and points

of reference in the literature. We have already men-
tioned the connection to both reduced-form and struc-
tural models. Jump-to-default equity models, in which
equity gets absorbed at zero following a default, have
also been examined in Davis and Lischka (1999),
Carayannopoulos and Kalimipalli (2003), Campi et al.
(2005), Carr and Linetsky (2006), and Le (2006).2 The
first two papers use the Black-Scholes (1973) model
for the equity-price process prior to default which is

2 See also Linetsky (2004) for solutions in continuous time. Carr
and Wu (2005) show how a similar model may be calibrated with
options data. Other related papers in the literature include Jarrow
(2001) and Takahashi et al. (2001). Incorporation of equity risk into
reduced-form models has also been examined in Jarrow (2001) and
Mamaysky (2002), but using a different approach: Equity values are
derived through a posited dividend process.

a special case of the CEV model we use, and which
does not admit the leverage effect; the other three, like
ours, use the CEV process.3 The specification of the
default intensity process in Davis and Lischka (1999)
is somewhat more restrictive than ours; their default
intensity is perfectly correlated with the equity pro-
cess, whereas we allow it to depend on both equity
returns and interest rates and other information as
well. Carayannopoulos and Kalimipalli (2003) use a
default intensity specification similar to ours but their
model does not allow for stochastic interest rates.
Campi et al. (2005) assume a constant intensity pro-

cess for default; they do not allow for stochastic inter-
est rates either. Le (2006) and Carr and Linetsky (2006)
endogenize the default probability in a manner sim-
ilar to our paper. Le calibrates the model to option
prices to recover default probabilities in the model.
Then he applies these default probabilities to credit
spreads to identify implied recovery rates. Carr and
Linetsky, working in a continuous-time setting but
without interest-rate risk, are able to provide explicit
closed-form solutions for survival probabilities, credit
default swaps (CDSs) spreads, and European option
prices.
Also related to our paper are the reduced-form

models in Schönbucher (1998, 2002) and Das and
Sundaram (2000), which study “defaultable HJM”
models. These are HJM models with a default process
tacked on. Our model generalizes these to include
equity processes as well. In particular, the Das and
Sundaram (2000) model results as a special case of
our framework if the equity process is switched off.
Our framework may also be viewed as a general-
ization of Amin and Bodurtha (1995) (see also Bren-
ner et al. 1987). The Amin-Bodurtha model com-
bines interest-rate risk and equity risk (in the form
of a Black-Scholes model) but does not incorporate
credit risk. Because there is no default, equity in their
model is necessarily infinitely lived and never gets
“absorbed” in a postdefault value. Other frameworks
are nested within our model too. For example, if the
equity and hazard-rate processes are switched off, we
obtain the HJM model, whereas if the interest-rate and
hazard-rate processes are switched off, we obtain a
discrete-time CEV tree, as described by Nelson and
Ramaswamy (1990).
Our lattice design allows recombination, making

the implementation of the model simple and efficient;
indeed, the model is fully implementable on a spread-
sheet. Unlike many earlier models, we are able to

3 An earlier version of our paper used the Black-Scholes model too.
Our investigation of a more general framework was motivated by
comments from the referee and editor concerning the shortcom-
ings of the Black-Scholes framework, in particular the absence of a
leverage effect.
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(a) price derivatives on equity and interest rates with
default risk; (b) extract probabilities of default (PD)
endogenously in the model; (c) provide for the risk-
neutral simulation of correlated default risk in a man-
ner consistent with no arbitrage and consistent with
equity correlations (which we believe, has not been
undertaken in any model so far); and (d) extract credit
risk premia.
The rest of this paper proceeds as follows. In §2 we

develop the pricing lattice in the state variables of the
model in a manner that allows for additional struc-
ture to accommodate default risk. Section 3 deals with
implementation issues, including a discussion of how
default swaps may be used to calibrate the model for
subsequent use. We show that the model may gener-
ate a wide range of spread curve shapes. Empirical
calibration to markets is undertaken to evidence the
ease of implementation. This section also explores the
impact of default risk on embedded options within
classic bond structures. Section 4 applies the model to
the extraction of credit risk premia and uses data from
Dow Jones CDX index firms to examine the principal
components of these premia. Finally, an analysis of
the model application to correlated default products
is provided. Section 5 concludes by summarizing the
economic and technical benefits of the model.

2. The Model
As we have noted, the motivation for our model is
simple. If the default process for a company’s debt
is described by a hazard rate � (as in the standard
reduced-form model approach), then � must also
apply to that company’s equity. That is, when debt
is in default, equity must also go into some default
value. As the junior-most claim of the firm, it is nat-
ural to set the value of equity in default to zero, but
our model is easily modified to allow a nonzero value
for equity in the event of default.
An early model of defaultable equitywas presented in

Samuelson (1972) and is discussed in Merton (1976).
We begin with a brief description of Samuelson’s
result, then discuss the directions in which we gener-
alize it.

2.1. The Samuelson (1972) Model
Consider a continuous-time setting in which equity
prices evolve according to a geometric Brownian
motion

dS�t�=�S�t� dt+�S�t� dW�t�


but with the added twist that equity prices could
suddenly jump to zero and get absorbed there. Sup-
pose that the jump-to-default is governed by a con-
stant intensity Poisson process with hazard rate � > 0.
This is a simple example of a jump-to-default equity
process. Samuelson (1972) shows that the price of a

call option on such equity is given by

C = exp�−�T �CBS�Se�T 
K
T 
�
 r�

= CBS�S
K
T 
�
 r + ���

Here, CBS�S
K
T 
�
 r� is the standard Black-Scholes
call option pricing function with current stock price S,
option strike K, option maturity T , interest rate r ,
and stock volatility � ; and � is, of course, the default
intensity. Note that the call is priced by the Black-
Scholes model with an adjusted risk-neutral interest
rate �r + ��.4

From the perspective of a credit-risk model, there
are three weaknesses to this setting. One is the
assumption of a constant equity volatility � on the
nondefault segment. The so-called leverage effect sug-
gests that equity volatility should increase as equity
prices fall. Empirical support for the leverage effect
is provided in several papers, such as Christie (1982).
Theoretical support comes from structural models
such as Merton (1974) in which equity prices and
equity volatility are inversely related. Ideally, we
would like the posited equity price process to incor-
porate this feature. A second weakness is the assump-
tion of constant interest rates, which makes the model
inappropriate for studying hybrids such as convert-
ible bonds that depend on both equity risk and
interest-rate risk. The third is the assumption of a con-
stant hazard rate. In general, one would expect the
likelihood of a jump to default to be inversely related
to firm value, increasing as firm value decreases.
Equally, because equity is a strictly monotone func-
tion of firm value, we would expect hazard rates to
move inversely to equity prices. Structural models
exhibit the analogy of such a property with the likeli-
hood of default and equity prices moving in opposite
directions.
In the following sections, we describe a model that

has these properties. We proceed in several steps,
describing first the equity process we shall employ
to capture the leverage effect, then the interest-rate
model, and finally, the specification of the hazard rate
function.

2.2. The Equity Model
The first step in our model is to identify a process
for describing the movement of equity prices prior to
default, in which equity prices and volatility move
in opposite directions. A simple generalization of
the Black-Scholes model, which possesses the desired

4 Note that the option price is not just the price of a nondefaultable
call option, i.e., BMS�S0
K
T 
�
 r�, multiplied by the risk-neutral
probability of survival exp�−�T �. The drift of the risk-neutral
equity process is also affected by the jump-to-default compen-
sator (�). For an excellent exposition of default jump compensators,
see Giesecke (2001).
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property, is the CEV model. In continuous time, the
risk-neutral CEV equity process is described by

dS�t�= r�t�S�t� dt+�S�t�� dZ�t�
 (1)

where � ∈ �0
1� is the CEV coefficient (some-
times called the leverage coefficient). The instantaneous
volatility is �S�−1, so this specification exhibits the
leverage effect for � < 1.5 For � = 1, the CEV process
reduces to Black-Scholes geometric Brownian motion.
Our objective is to modify this process in two direc-
tions. One is to discretize the model. The second is to
append to it an intensity process for default.
As a parenthetical comment, we should note that

for � < 1, the CEV price process (1) can penetrate zero
even in the absence of jumps (see, e.g., Davydov and
Linetsky 2001 for details). Thus, when a default inten-
sity process is appended to it, the resulting model
will admit both drift to default as in structural credit-
risk models, and jump to default as in reduced-form
models.
Nelson and Ramaswamy (1990) show how to dis-

cretize the CEV process (1) in a recombining bino-
mial tree. To achieve our object, we generalize their
construction so as to allow for a third branch from
each node of the tree representing a jump to default.
We describe here the branching process at a generic
node t. Let the stock price at t be denoted S�t� and
the length of one period on the tree be h years. Let
��t� denote the (risk-neutral) likelihood of a jump to
default at node t; this probability may depend on the
information at node t, but to keep notation simple, we
suppress these arguments. Finally, let R�t� denote the
gross (i.e., 1 + net, continuously compounded) one-
period interest rate at node t. Then, the risk-neutral
evolution of stock prices on the tree is given by the
following set of equations:

S�Ys�t��=


��s�1−��Ys�t��

1/�1−�� if Ys�t� > 0

0 if Ys�t�≤ 0

Ys�t+h�=




Ys�t�+
√
h

with probability q�t��1−��t��

Ys�t�−
√
h

with probability �1− q�t���1−��t��

0 with probability ��t�

q�t�=




�R�t�/�1−��t���− b�t�

a�t�− b�t�
if Ys�t� > 0

0 if Ys�t�≤ 0


(2)

5 As noted earlier, the Merton (1974) structural model also implies
an equity process that admits the leverage effect. The relationship
between the processes is discussed in online Appendix B (provided
in the e-companion, which is part of the online version that can be
found at http://mansci.journal.informs.org/).

a�t�= S�Ys�t�+
√
h�

S�Ys�t��

 (3)

b�t�= S�Ys�t�−
√
h�

S�Ys�t��
� (4)

Note again that the probabilities above are the risk-
neutral probabilities. In the language of the usual
binomial tree, a�t� is the size of the “up move” in the
binomial tree, and b�t� the size of the “down move.”
On the nondefault part of the tree, we may write

Ys�t+h�= Ys�t�+Xs�t�
√
h
 Xs�t� ∈ #+1
−1$
 (5)

where Xs is a binomial random variable driving the
equity process in the model prior to default. The rep-
resentation (5) makes it easier to show how the
desired correlation between the equity process in the
model and the term structure of interest rates may be
injected.
The next segment describes the interest-rate model.

Following that, we stitch together the equity and in-
terest-rate processes, and then, finally, take up the
specification of the default probability ��t�.

2.3. The Term-Structure Model
We adopt the discrete-time, recombining form of a
one-factor HJM model. We provide a short review of
the model here. Initially, we prepare the univariate
HJM lattice for the evolution of the term structure,
and subsequently stitch on the equity process defined
above.
At any time t, we assume that zero-coupon bonds

of all maturities are available. For any given pair of
time points �t
 T � with 0 ≤ t ≤ T ≤ T ∗ − h, let f �t
 T �
denote the time-t forward rate applicable to the period
�T 
T +h�. The short rate is f �t
 t�= r�t�. Forward rates
are taken to follow the stochastic process:

f �t+h
T �=f �t
T �+&�t
T �h+��t
T �Xf �t�
√
h
 (6)

where & is the drift of the process and � the volatility;
Xf �t� is a random variable taking values in the set
#−1
+1$. Both & and � are taken to be only functions
of time, and not other state variables. This is done to
preserve the computational tractability of the model.
We denote by P�t
T � the time-t price of a default-

free zero-coupon bond of maturity T ≥ t. As usual,

P�t
T �= exp
{
−

T /h−1∑
k=t/h

f �t
 kh� ·h
}
� (7)

The well-known recursive representation of the drift
term & of the forward-rate and spread processes, is
required to complete the risk-neutral lattice. Let B�t�
be the time-t value of a money-market account that
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uses an initial investment of $1 and rolls the proceeds
over at the default-free short rate:

B�t�= exp
{t/h−1∑

k=0
r�kh� ·h

}
� (8)

The equivalent martingale measure Q is defined
with respect to B�t� as numeraire; thus, under Q all
asset prices in the economy discounted by B�t� will
be martingales. Let Z�t
T � denote the price of the
default-free bond discounted using B�t�* Z�t
 T � =
P�t
T �/B�t�. Z is a martingale under Q, i.e., Z�t
T �=
Et�Z�t+ h
T �� for all t, T . It follows that Z�t+ h
T �/
Z�t
T � = �P�t + h
T �/P�t
 T �� · �B�t�/B�t + h��. Alge-
braically manipulating the martingale equation leads
to a recursive expression relating the risk-neutral
drifts & to the volatilities � at each t:

T /h−1∑
k=t/h+1

&�t
 kh�

= 1
h2

ln
(
Et

[
exp

{
−

T /h−1∑
k=t/h+1

��t
 kh�Xf h
3/2

}])
� (9)

This completes the description of the interest-rate
process.

2.4. The Joint Process
We now connect the two processes for the term struc-
ture and the defaultable equity price together on a
bivariate lattice. There are two goals here. First, we
set up the probabilities of the joint process so as to
achieve the correct correlation between equity returns
and changes in the spot rate, which we denote as ,.
Second, our lattice is set up so as to be recombining,
allowing for polynomial computational complexity,
providing for fast computation of derivative security
prices.
Specification of the joint process requires a proba-

bility measure over random shocks �Xf �t�
Xs�t��. This
probability measure is chosen to (i) obtain the cor-
rect correlations, (ii) ensure that normalized equity
prices and bond prices are martingales, and (iii) to
make the lattice recombining. Our lattice model is
hexanomial, i.e., from each node, there are six emanat-
ing branches or six states (of which two are absorbing
states). Table 1 depicts the states.
Note that the table contains two free parameters

m1 and m2 in the probability measure. We solve for
the correct values of m1 and m2 to provide a default-
consistent martingale measure, with the appropriate
correlation between the equity and interest-rate pro-
cesses, also ensuring, that the lattice recombines. The
details of this derivation and the properties of the tree
are presented in the online appendix (provided in the

Table 1 Branching Process and Probability Measure

Xf Xs Probability

1 1 p1 = 1
4 �1+m1��1− 	�t��

1 −1 p2 = 1
4 �1−m1��1− 	�t��

−1 1 p3 = 1
4 �1+m2��1− 	�t��

−1 −1 p4 = 1
4 �1−m2��1− 	�t��

1 def p5 = 	�t�/2

−1 def p6 = 	�t�/2

Notes. This tableau presents the six branches from each
node of the pricing lattice, as well as the probabilities for
each branch. “Def” stands for the default/absorbing state.
The first four branches relate to the nondefaulted path and
the last two branches lead to absorbing states.

e-companion). As shown there, m1 and m2 have the
form

m1=
A+B

2

 m2=

A−B

2

A= 4er�t�h�1−��t��−1−2�a�t�+b�t��

a�t�−b�t�

 B= 2,

1−��t�
�

These values may now be used in Table 1. Proba-
bility bounds are presented in the online appendix
in Table EC.1. In the special case where � = 1, i.e.,
we have the basic geometric Brownian motion, and
the discrete time model is implemented with the
usual Cox et al. (1979) approach. In this case, the
expressions above for a�t�, b�t� are given by a�t� =
exp��s

√
h�, and b�t�= exp�−�s

√
h�.

2.5. The Default Process
To close the model, we must specify a process for the
default probability ���t��. One way to do this is to
embed an exogenous ��t� process, but this increases
implementation complexity by adding an extra dimen-
sion to the lattice model. It will also make it harder to
ensure the desired correlations between default likeli-
hood and equity returns or equity volatility.
We take a different approach, therefore, and endog-

enize the default likelihood by assuming that ��t� at a
given node is a function of equity prices and interest
rates at that node. That is, with ��t� = 1− e−��t�h, we
express the default intensity ��t� as

��f�t�
 S�t�
 t/ 0� ∈ �0
��� (10)

As usual, f�t� denotes the forward rates at that node,
and S�t� the stock price; t indexes current time,
and 0 some set of parameters. We note that a simi-
lar endogenous default intensity extraction, but in a
less general setting, has been implemented in Das and
Sundaram (2000), Carayannopoulos and Kalimipalli
(2003), and Acharya et al. (2002).
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Endogenizing the default probability in this fashion
creates a parsimonious lattice and facilitates imple-
mentation of the model. We note also that default
probabilities have been shown to be connected to the
term structure (see Duffie et al. 2005 who find that
default probabilities are functions of the equity index
and term structure).
Various possible parameterizations of the default

intensity function may be used. For example, the fol-
lowing model (subsuming the parameterization of
Carayannopoulos and Kalimipalli 2003) prescribes the
relationship of the default intensity ��t� to the stock
price S�t�, short rate r�t�, and time on the lattice
�t− t0�.

��t� = exp�a0 + a1r�t�− a2 ln S�t�+ a3�t− t0��

= exp�a0 + a1r�t�+ a3�t− t0��

S�t�a2
� (11)

For a2 ≥ 0, we get that as S�t�→ 0, ��t�→�, and as
S�t�→�, ��t�→ 0.
In addition to the probability of default of the

issuer, a recovery rate is required in the two states
in which default occurs. The recovery rate may be
treated as constant, or as a function of the state vari-
ables in this model. It may also be pragmatic to
express recovery as a function of the default intensity,
supported by the empirical analysis of Altman et al.
(2002).

2.6. Example: Two-Period Tree
Here, we present a simple illustration of a pricing tree
in three dimensions, one each for time (t), interest
rate (i), and stock price (j)—a tree in (t
 i
 j) space.
The initial node is denoted (1
1
1) and after one
period, we have four nodes (interest rates go up and
down, and stock price goes up and down), denoted
#�2
1
1�
 �2
1
2�
 �2
2
1�
 �2
2
2�$. Because the tree
is recombining, after two periods, we will have only
nine nodes. In Table 2 are the results of calculations
for two periods. At each node, we show the one-
period probability of default. The table presents all
the details of the inputs used in the example. This
table should be useful to readers who wish to imple-
ment the model, and it also details all the inputs
required for building the pricing lattice. We have
assumed the Cox, Ross, and Rubinstein (1979) (CRR)
process for the equity model, i.e., the CEV coefficient
is � = 1. The approach requires a parsimonious set
of inputs, all of which are observable and may be
accessed from standard sources.

3. Numerical Analysis
This section performs numerical analysis with the
model developed above. We open in §3.1 with a dis-
cussion of CDSs and their pricing in the model. Sec-
tion 3.2 presents examples showing how different

Table 2 Two-Period Tree Example

Input values

Forward rate
Parameter Value Forward rates volatilities

a0 0�1 0.060 0.0020
a1 0�1 0.065 0.0019
a2 1�0 0.070 0.0018
a3 0�1
S 100
�s 0�40
� 0�4
h 0�5
� 1

Output price lattice

[t i j] r S 	

1 1 1 0.0600 100�0000 0.0058
2 1 1 0.0663 132�6896 0.0044
2 1 2 0.0663 75�3638 0.0077
2 2 1 0.0637 132�6896 0.0046
2 2 2 0.0637 75�3638 0.0081
3 1 1 0.0725 176�0654 0.0033
3 1 2 0.0725 100�0000 0.0058
3 1 3 0.0725 56�7971 0.0102
3 2 1 0.0700 176�0654 0.0035
3 2 2 0.0700 100�0000 0.0061
3 2 3 0.0700 56�7971 0.0108
3 3 1 0.0675 176�0654 0.0037
3 3 2 0.0675 100�0000 0.0064
3 3 3 0.0675 56�7971 0.0113

Notes. In this table, we present the results of a two-period tree based on given
input parameters. The example here may be useful for anyone replicating our
model to check their results. The input parameters are the default function
values �a0� a1� a2� a3�, the stock price S, stock volatility �s, correlation of
term structure with stock prices �, and the time step on the tree h. The initial
forward rate term structure and corresponding volatilities are also given. The
output price lattice is recombining, and therefore, there are �n+1�2 nodes at
the end of the nth period on the lattice. The lattice starts at node �1�1�1� and
then moves to four nodes in the subsequent period, and then to nine nodes,
etc. At each time step there are two axes �i� j� for interest rates and stock
prices, respectively. The default probability (	) for the next period is also
stated at each node, and is a function of r , S, and time. The default function
is 	= 1− exp�−�h�, where � = exp�a0 +a1r +a3ih�/�S

a2 �, where i indexes
nodes on the interest rate branch of the tree. Note that a3 modulates the slope
more severely when rates are low than high. Alternative specifications would
be to replace i with t . It can be seen that the default probability declines as
S increases, and increases in r .

parameters result in various default swap spread term
structures. In §3.3, we examine the effect of the lever-
age coefficient � on the spread curves generated by
the model. Section 3.4 looks at the pricing of hybrid
securities, in particular convertible bonds, and exam-
ines how default risk affects the prices of corporate
bonds, with or without convertible features. Finally,
§3.5 describes how the model may be used for pricing
credit correlation products.

3.1. Calibrating the Model with Credit Default
Swaps (CDSs)

A credit default swap (or CDS) is a bilateral con-
tract in which one party (the protection buyer) makes
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a steady stream of payments to the other party (the
protection seller) until the occurrence of a credit event
on a reference credit (that we refer to as a bond).
The price of a default swap is quoted as a spread

rate per annum. Therefore, if the default swap rate is
100 bps, and the protection buyer is to make quarterly
payments, then the buyer would pay 25 bps per $100
of par each quarter to the seller. Pricing of default
swaps has been described in detail in Duffie (1999).
The increasing amount of trading in default swaps
now offers a source of empirical data for calibrating
the model. Other models, such as CreditGrades,6 also
use default swap data. A recent paper by Longstaff
et al. (2005) undertakes an empirical comparison of
default swap and bond premia in a parsimonious
closed-form model.
Because the value of a default swap is zero at incep-

tion, the fair price of the swap can be identified by
equating (under the risk-neutral measure) the present
values of the expected payments made on the swap
by the protection buyer to the expected receipts from
the swap on default. We make the following assump-
tions: (a) in any period in which default occurs, recov-
ery payoffs are realized at the end of the period; and
(b) default is based on the default intensity at the
beginning of the period.
We price a T maturity default swap on a unit

face value reference bond (RB) of maturity T ′ ≥ T ,
denoted RB�t� at time t, with corresponding cashflows
of CF�t�. The pricing recursion for the bond under
the recovery of market value (RMV) condition at each
node on the tree obeys the following condition:

RB�t� = e−r�t�h

{ 4∑
k=1

�pk�t��RBk�t+h�+CFk�t+h��

}

· �1−��t��1−4��
 (12)

where 4 is the recovery rate on the bond (here
assumed constant), and �pk�t� = pk�t�/�1 − ��t��
 k =
1
 � � � 
4 are the four probabilities for the nondefault
branches of the lattice, conditional on no default occur-
ring, and k indexes the four states of nondefault.
Therefore,

∑4
k=1 �pk�t�= 1
∀ t.

Next, we compute the expected present value of all
payments in the event of default of the zero-coupon
bond, denoted CDS�t�. Again, the lattice-based recur-
sive expression at each node is:

CDS�t� = e−r�t�h

{ 4∑
k=1

�pk�t�CDSk�t+h�

}
�1−��t��

+��t�RB�t��1−4�
 CDS�T �= 0� (13)

6 CreditGrades is a model developed by RiskMetrics, which uses
default swaps to calibrate an extended Merton-type model to ob-
tain PD.

The formula above has two components: (i) the first
part is the present value of future possible losses on
the default swap, given that default does not occur at
time t. (ii) the second part is the present value of the
loss (sustained at the end of the period). Note that the
formula contains RB�t��1 − 4�, which is the present
value of loss at the end of the period, RB�t+h��1−4�.
Finally, we calculate the expected present value of

a $1 payment at each point in time, conditional on
no default occurring. The recursion at each node is as
follows:

G�t� =
[
e−r�t�h

{ 4∑
k=1

�pk�t�Gk�t+h�+ 1
}]

· �1−��t��
 G�T �= 0� (14)

G�0� will then represent the present value of $1 in
premiums paid at each time period, conditional on no
default having occurred.
In order to get the annualized basis points spread (s)

for the premium payments on the default swap, we
equate the quantities s × h×G�0� = CDS�0�, and the
premium spread is

s = CDS�0�
h×G�0�

× 10
000 bps� (15)

In the equation above, we multiply by 10,000 and
divide by the time interval h in order to convert the
amount into annualized basis points. We use this cal-
culation in the illustrative examples that are provided
in the following section.

3.2. Credit Default Swap Spread Curves
In this section we demonstrate that the model is able
to generate varied spread curve shapes. The reference
instrument is taken to be a unit valued zero coupon
bond with the same maturity as the default swap.
In the plots in Figure 1 we present the term struc-

ture of default swap spreads for maturities from one
to five years. The default intensity is specified as
��t� = exp�a0 + a1r�t� + a3�t − t0��/S�t�

a2 . Keeping a0
fixed, we varied parameters a1 (impact of the short
rate), a2 (impact of the equity price), and a3 (impact
of the term structure of credit premia) over two val-
ues each. Four plots are the result. The other inputs to
the model, such as the forward rates and volatilities,
stock price and volatility, are provided in the descrip-
tion of the figure. Comparison of the plots provides
an understanding of the impact of the parameters.
When a3 > 0, the term structure of default swap

spreads is upward sloping, as would be expected.
When a3 < 0, i.e., default spreads are declining, con-
sistent with a reduction in premia over time. Hence,
we may think of a3 as the slope parameter in the
model. Comparison of the plots also shows the effect
of parameter a2, the coefficient of the equity price S�t�.
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Figure 1 Term Structure of Default Swap Spreads for Varied Default
Function Parameters �� = 1�
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a0 = –0.5, a1 = 2, a2 = 1.0, a3 = 0.25
a0 = –0.5, a1 = 2, a2 = 0.5, a3 = –0.25
a0 = –0.5, a1 = –2, a2 = 0.5, a3 = –0.25
a0 = –0.5, a1 = –2, a2 = 1.0, a3 = 0.25

Notes. This figure presents the term structure of default swap spreads for
maturities from one to five years. The figure has four plots. The default inten-
sity is written as ��t�= exp�a0 + a1r �t�+ a3�t − t0��/S�t�

a2 . Keeping all the
other parameters fixed, we varied parameters a1, a2, and a3. Hence, the four
plots are the result. Periods in the model are quarterly, indexed by i. The
forward rate curve is very simple and is just f �i� = 0�06+ 0�001 ln�i�. The
forward rate volatility curve is �f �i� = 0�01+ 0�0005 ln�i�. The initial stock
price is 100, and the stock return volatility is 0.30, given � = 1. Correlation
between stock returns and forward rates is 0.30, and recovery rates are a
constant 40%. The default function parameters are presented on the plots.

As a2 > 0 increases, default spreads decline as the
stock price lies in the denominator of the default
intensity function, as can be seen in the plots. A com-
parison of curves in Figure 1 shows that parameter a1,
the coefficient on interest rates, has a level effect on
the spread curve. In sum, our four-parameter default
function is flexible enough to capture a variety of eco-
nomic phenomena as well as to generate a spectrum
of curve shapes.

3.3. The Impact of the Leverage Parameter �
Because our model is based on a default-extended
CEV process, varying the CEV coefficient � enables
the simulation of varied leverage effects. If we assume
the CRR model (� = 1) as a base case, then reduc-
tions in � will increase the leverage effect. Figures 2
and 3 show how changes in � impact the term struc-
ture of CDS spreads. The diffusion coefficient in the
CEV model is set up so that the total volatility is
roughly the same across varied choices of �, which
will result in a meaningful comparison. For this, we
follow Nelson and Ramaswamy (1990) in setting �s

to satisfy the following condition: �sS�0�� = �CRRS�0�
(total CEV volatility at inception equals total CRR
volatility). From all three figures, we see that increases
in the leverage effect result in an increase in spreads

Figure 2 Term Structure of Default Swap Spreads for Varying
Leverage (Varying �)
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Notes. This figure presents the term structure of default swap spreads for
maturities from one to five years. The default intensity is written as ��t� =
exp�a0 + a1r �t�+ a3�t − t0��/S�t�

a2 . The figure has two graphs. Keeping all
the other parameters fixed, we fixed parameters a0 =−0�5� a1 =−2� a2 = 1�
and a3 = 0�25 for the first plot and a0 =−0�5� a1 =−2� a2 = 0�5� and a3 =
−0�25 for the second. Periods in the model are quarterly, indexed by i. The
forward rate curve is very simple and is just f �i� = 0�06+ 0�001 ln�i�. The
forward rate volatility curve is �f �i� = 0�01+ 0�0005 ln�i�. The initial stock
price is 100, and the stock return volatility is 0.30, given � = 1. Because the
stock volatility when � = 1 is 0.4, as we change the CEV coefficient �, we
also adjust the variable � so as to keep the conditional total volatility of the
diffusion roughly the same, by the following equation: �sS

�

0 = �CRRS0. This
ensures that the total diffusion volatility in the CEV model is approximately
the same as in the CRR model, and is the same approach as used by Nelson
and Ramaswamy (1990) for comparisons. Correlation between stock returns
and forward rates is 0.30, and recovery rates are a constant 40%. We varied
� from 0.5 to 1.0. We note very minor changes in CDS spread curves.

indicating that the direction of the impact conforms
to theory. However, the change in leverage appears
to have only a small quantitative effect on spreads,
suggesting that the level of total volatility matters
more in the pricing of CDS than the particular form
of the volatility function. For simplicity, therefore, in
the remainder of the paper, we set � = 1 (i.e, use the
defaultable CRR model) in examples and computa-
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Figure 3 Term Structure of Default Swap Spreads for Varying
Leverage (Varying �)
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Notes. This figure presents the term structure of default swap spreads for
maturities from one to five years. The default intensity is written as ��t� =
exp�a0 + a1r �t�+ a3�t − t0��/S�t�

a2 . Keeping all the other parameters fixed,
we fixed parameters a0 = −1�814681� a1 = 58�55167� a2 = 2�16029� and
a3 =−0�37119. Periods in the model are quarterly, indexed by i. The forward
rate curve is very simple and is just f �i� = 0�06+ 0�001 ln�i�. The forward
rate volatility curve is �f �i� = 0�01 + 0�0005 ln�i�. The initial stock price is
58.31, and the stock return volatility is 0.40, given � = 1. Correlation between
stock returns and forward rates is 0.0, and recovery rates are a constant
40%. We varied � from 0.5 to 1.0. Since the stock volatility when � = 1 is
0.4, as we change the CEV coefficient �, we also adjust the variable � so as
to keep the conditional total volatility of the diffusion roughly the same, by
the following equation: �sS

�

0 = �CRRS0. This ensures that the total diffusion
volatility in the CEV model is approximately the same as in the CRR model,
and is the same approach as used by Nelson and Ramaswamy (1990) for
comparisons. We note very minor changes in CDS spread curves.

tions. Further, in online Appendix B we analyze the
link between the Merton structural model and our
CEV reduced-form model; as we show, the relation-
ship is a complex one, relating the parameters for firm
volatility and leverage in the Merton case to equity
volatility and elasticity in the CEV model.

3.4. Impact of Default Risk on Embedded Options
The model may be easily used to price callable-
convertible debt. One aspect of considerable interest
is the extent to which default risk impacts the pricing
of convertible debt through its effect on the values of
the call feature (related to interest-rate risk) and the
convertible feature (related to equity-price risk). We
chose an initial set of parameters to price convertible
debt and examined to what extent changing levels of
default risk impacted a plain vanilla bond versus a
convertible bond. The parameters and results are pre-
sented in Figure 4.
Given the base set of parameters, we varied a0

from zero to four. As a0 increases, the level of
default risk increases too. For each increasing level
of default risk, we plot the prices of a defaultable
plain vanilla coupon bond with no call or convert-
ible features. We also plot the prices of a callable-

Figure 4 Comparison of Callable-Convertible Bonds and Plain
Defaultable Bonds in Different Volatility Environments
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Notes. We assumed a flat forward curve of 6%. We also assumed a flat curve
for forward rate volatility of 20 basis points per period. The maturity of the
bonds is taken to be five years, and interest is assumed to be paid quarterly
on the bonds at an annualized rate of 6%. Default risk is based on default
intensities that come from the model in Equation (11). The base parameters
for this function are chosen to be a0 = 0, a1 = 0, a2 = 2, and a3 = 0. Under
these base parameters default risk varies only with the equity price. In our
numerical experiments we will vary a0 to examine the effect of increasing
default risk. The stock price is S�0� = 100. The recovery rate on default is
0.4, and the correlation between the stock return and term structure is 0.25.
If the bond is callable, the strike price is 100. Conversion occurs at a rate of
0.3 shares for each bond. The dilution rate on conversion is assumed to be
0.75. This figure contains three panels. The top panel presents a comparison
of bond prices when equity volatility is set to 20% (for � = 1), and the default
probability parameter a0 is varied on the x-axis. The middle panel shows the
same comparison when the volatility is 40%. The bottom panel shows the
corresponding default probability.

convertible bond. Note that this numerical experiment
has been kept simple by setting a1 = a3 = 0, so that
there are no interest-rate and term effects on the
default probabilities.
The results comparing the plain coupon bond with

a callable-convertible coupon bond are presented in
Figure 4 (top panel). The value of a0 is varied
from zero (low default risk) to four (higher risk).
Bond values decline as default risk (a0) increases. As
default risk increases, the difference in price between
the callable-convertible and vanilla bonds rapidly
declines and eventually goes to zero. Because default
risk effectively shortens the duration of the bonds,
it also reduces the value of the call option. Hence,
the price difference between the vanilla bond and
the callable-convertible bond declines as a0 increases.
Moving from the top to middle panel is based on one
change, i.e., equity volatility was increased from 20%
per year to 40% per year. The results are the same,
but bond prices converge faster. Hence at high equity
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Figure 5 Comparison of Default Risk Effects on Callable-Convertible
Bonds and Plain Defaultable Bonds for Different Equity
Dependence
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Notes. We assumed a flat forward curve of 6%. We also assumed a flat curve
for forward rate volatility of 20 basis points per period. The maturity of the
bonds is taken to be five years, and interest is assumed to be paid quarterly
on the bonds at an annualized rate of 6%. Default risk is based on default
intensities that come from the model in Equation (11). The base parameters
for this function are chosen to be a0 = 0, a1 = 0, a2 = 1, and a3 = 0. Under
these base parameters default risk varies only with the equity price. In our
numerical experiments we will vary a0 to examine the effect of increasing
default risk. The stock price is S�0� = 100 and stock volatility is 20% (for
� = 1). The recovery rate on default is 0.4, and the correlation between the
stock return and term structure is 0.25. If the bond is callable, the strike price
is 105. Conversion occurs at a rate of 0.3 shares for each bond. The dilution
rate on conversion is assumed to be 0.75. This figure contains two panels.
The upper panel presents a comparison of bond prices when a2 = 1, and
the default probability parameter a0 is varied on the x-axis. The lower panel
shows the same comparison when a2 = 0�75, which is higher default risk.

volatility, default risk impacts the convertible value
faster, as there are more regions in the state space on
our pricing tree with greater PD. Therefore, default
risk systematically impacts the commingled values of
interest-rate calls and equity convertible features in
debt contracts. By shortening the effective duration of
the bond, both options decline in value, which is driv-
ing the price of the callable-convertible closer to that
of the vanilla bond (see Buchan 1998 for early work
on such effects in the pricing of convertible bonds).
In Figure 5 we vary the dependence of default risk

on equity prices. The base case is presented in the
upper panel of the figure when the coefficient a2 = 1.
In the lower panel, we changed a2 = 0�75, resulting in
higher default risk. Hence, the prices are lower in the
lower panel. The values of parameters for the conver-
sion feature and for the call feature were chosen so as
to make the plain bond and the callable-convertible
equal in price in the upper panel. Reducing the value
of a2 to inject more default risk in fact increases the
price of the callable-convertible relative to that of the

plain bond, and the effect is higher for greater lev-
els of default risk. Here, increases in default risk tend
to increase the difference between equity call option
values and the bond callable feature, ceteris paribus,
and this drives an increasing wedge between the con-
vertible bond and the plain bond. Further, the level
of parameter a2 also determines whether defaultable
bond prices are convex or concave in default risk—
both possibilities are pictured in the two panels of Fig-
ure 5. At lower levels of default risk, the convertible
bond is concave in a0, and at higher levels it becomes
convex.
Therefore, depending on market conditions and the

level of default risk, increases in default risk may in-
crease or decrease the price differential of two bonds
that have embedded options. This highlights the need
for careful consideration of default risk effects using
an appropriate model that considers all forms of risk
and their interactions.

3.5. Correlated Default Analysis
The model may be used to price credit baskets. There
are many flavors of these securities, and some popu-
lar examples are nth to default options, and collater-
alized debt obligations (CDOs). These securities may
be valued using Monte Carlo simulation, under the
risk-neutral measure, based on the default functions
fitted using the techniques developed in this paper.
The first step in modeling default correlations is

to model the correlation of default intensity amongst
issuers. Because our model calibrates default func-
tions ��f�t�
 S�t�
 t� for each issuer, credit correlations
are determined from the correlations of the forward
curve, and issuer stock prices, which are observable.
Suppose we are given the function for default inten-
sity of issuer i, i= 1
 � � � 
n, as �i�t�= exp�ai

0+ ai
1r�t�+

ai
3�t − t0��/Si�t�

ai2 . Let the covariance matrix of
�r�t�
 S1�t�
 S2�t�
 � � � 
 Sn�t��

′ be 7. Then, the covariance
matrix of default intensities #�i�t�$i=1
���
n is V �t� ≈
J �t�7J �t�′, where J �t� ∈Rn×�n+1� is the Jacobian matrix
whose ith row is as follows:

Ji�t� =
[
:�i�t�

:r�t�

0
 � � � 
0


:�i�t�

:Si�t�

0
 � � � 
0

]

=
[
ai
1�i�t�
0
 � � � 
0


−ai
2

Si�t�
�i�t�
0
 � � � 
0

]
�

We may contrast this approach with the somewhat
ad hoc practice of using equity correlations as a proxy
for asset correlations, which are used in turn to drive
default correlations in structural models. Our method
is closer to the approach, also used in practice, of a
factor structure that drives default correlations. How-
ever, our approach has a significant advantage over
other factor models—i.e., we calibrate each default
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function in a manner that is based on observables,
and is also consistent with a no-arbitrage model over
default, equity, and interest-rate risks. A comprehen-
sive examination of credit correlations in this frame-
work is undertaken in Bandreddi et al. (2005).7

4. Default Risk Premia
In this section, we present a simple empirical applica-
tion of the model by fitting it to the 30 names in the
CDX INDU Index. Our calibration will permit us to
extract credit risk premia.
The model is calibrated as follows. The stock price

is taken from CreditGrades. Stock volatility is based
on a historical estimate from 1,000 days past returns.8

To obtain the forward curve of interest rates each
day, we extracted constant maturity yields for all
maturities up to five years available from the Federal
Reserve website (http://www.federalreserve.gov/
releases/h15/data.htm), and through the standard
bootstrapping approach, converted the yields into
forward rates at quarterly intervals. Where necessary,
linear interpolation is used. The interest-rate volatility
is computed as the historical volatility of each forward
rate over the sample period. The correlation between
equity and interest rates was set equal to the historical
correlation between the stock return and the three-
month interest rate, computed on a rolling basis, with
one-year histories. The CDS spreads for maturities
from one to five years are taken from CreditGrades.
The four parameters of the default function are fitted
to these CDS spreads using Matlab. A least-squares
difference of the CDS spreads to model spreads is
undertaken to obtain best fit. Once calibrated, the
one-year risk-neutral PD is calculated.
We compare the default probabilities from Credit-

Grades (that are under the physical measure, and rep-
resent the real-world PD), to the risk-neutral prob-
abilities that we extract from the CDS spreads. The
ratio of the risk-neutral probabilities to the real-world
ones (usually greater than one), are a metric of the
risk premium in the market for credit risk. See Berndt
et al. (2005) for a comprehensive look at default risk
premia extraction from CDS and expected default fre-
quencies. For our analysis we use the one-year default
probabilities.
Because our model develops a function for default

intensities �i�t�, for each issuer i, the one-year proba-
bility of default is a function of the expected integrated
intensity for one year, taken under the risk-neutral

7 This approach to credit correlations is a bottom-up model, similar
to the popular class of copula models. In contrast are the top-down
class of models, see for example, Giesecke and Goldberg (2005) and
Longstaff and Rajan (2006).
8 Recall that we are assuming for this illustration that � = 1. In
general we would have to calibrate the model to the value of �
also.

Figure 6 Average Risk-Neutral One-Year PD Plotted Against Those
Under the Statistical Measure
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Notes. The data comes from 30 firms in the Dow Jones CDX Index. The
period covered is from January 2000 to June 2002.

measure, which is Y = E∗�
∫ 1
0 �i�t� dt�, where E∗ is the

expectations operator. We undertook this integration
using a tree. Given the integral, the one-year proba-
bility of default is �1− exp�−Y ��.

4.1. Empirical Analysis
Using data from CreditGrades for the period from
January 2000 to June 2002, for the 30 issuers from the
CDX INDU Index, we calibrated the model each day
to CDS spreads. Using the fitted parameters, we com-
puted the one-year risk-neutral default probabilities,
and quantified the risk premia by dividing the risk-
neutral default probability by the default probability
from CreditGrades. Figure 6 shows the plot of the
average default probabilities (equally weighted across
30 firms) over time, and Table 3 shows the average
premia over time. This corresponds to the measure
presented in Berndt et al. (2005).
A principal components decomposition of risk pre-

mia shows that there are two main components, as
shown in Figure 7. We also compared the time series of
the main principal component to the time series of the
S&P 500 index, and found them to track closely, with a
correlation of 50%; see Figure 8. This finding has con-
nections to Duffie et al. (2005) where the S&P index is
found to contain predictive value for defaults. We also
compared the principal components to the time series
of the VIX (volatility) index. In this case, the correla-
tions were not significantly different from zero.

5. Concluding Comments
The following economic objectives are met by our
model. First, we develop a pricing model cover-
ing multiple risks, which enables security pricing
for hybrid derivatives with default risk. Second,
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Table 3 Issuers with Respective Risk Premium Ratios and
Date Ranges

Ticker No. of obs. Start date End date Risk premium

AL 531 2000-04-28 2002-07-05 3�6935
AA 608 2000-01-03 2002-07-05 7�4249
CSX 608 2000-01-03 2002-07-05 1�0750
DE 608 2000-01-03 2002-07-05 1�0955
F 608 2000-01-03 2002-07-05 1�0463
BA 608 2000-01-03 2002-07-05 2�2341
CAT 608 2000-01-03 2002-07-05 1�1370
CTX 607 2000-01-04 2002-07-05 1�1144
GR 608 2000-01-03 2002-07-05 1�9886
IP 608 2000-01-03 2002-07-05 1�4127
DOW 608 2000-01-03 2002-07-05 3�4821
NSC 608 2000-01-03 2002-07-05 1�1005
LEN 608 2000-01-03 2002-07-05 1�3695
RTN 196 2001-09-17 2002-07-05 1�3161
TXT 608 2000-01-03 2002-07-05 1�1899
UNP 608 2000-01-03 2002-07-05 1�2366
ROH 608 2000-01-03 2002-07-05 1�9879
WY 608 2000-01-03 2002-07-05 1�6437
PHM 608 2000-01-03 2002-07-05 1�1663
MWV 608 2000-01-03 2002-07-05 2�0782
EMN 608 2000-01-03 2002-07-05 1�2730
NOC 608 2000-01-03 2002-07-05 1�4382
BNI 608 2000-01-03 2002-07-05 1�1417
LMT 608 2000-01-03 2002-07-05 1�4602
LEA 608 2000-01-03 2002-07-05 1�0968
HOM 608 2000-01-03 2002-07-05 9�0993
AXL 369 2000-12-29 2002-07-05 1�1679
GM 608 2000-01-03 2002-07-05 1�2862
IR 608 2000-01-03 2002-07-05 1�6958
DD 606 2000-01-03 2002-07-05 14�7494

Notes. The dates are in the form YYYY-MM-DD. The issuers are primarily
from the Dow Jones CDX index set. The risk premium is the average ratio of
the risk-neutral default probability to that under the physical measure.

the model enables the extraction of easy-to-calibrate
default probability functions for state-dependent
default. Third, using observable market inputs from
equity and bond markets, we value complex secu-
rities via relative pricing in a no-arbitrage frame-
work, e.g., debt-equity swaps, distressed convertibles.
Fourth, the model is useful in managing credit portfo-
lios and baskets, e.g., CDOs and basket default swaps.
Finally, the extraction of credit risk premia is feasible
in the model.
Technically, our hybrid defaultable model com-

bines the ideas of both structural and reduced-form
approaches. It is based on a risk-neutral setting in
which the joint process of interest rates and equity
are modeled together with the boundary conditions
for security payoffs, after accounting for default. We
use a default-extended CEV equity model that allows
volatility to vary in accordance with the leverage effect
from structural models. The martingale measure in
the paper is default consistent. The model is embed-
ded on a recombining lattice, providing fast com-
putation with polynomial complexity for run times.
Cross-sectional spread data permits calibration of an

Figure 7 Principal Components Decomposition of Average Credit
Risk Premia, Computed as the Ratio of Risk-Neutral
One-Year PD to Those Under the Statistical Measure
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Notes. The data comes from 30 firms in the Dow Jones CDX Index. The
period covered is from January 2000 to June 2002. There are two main com-
ponents.

implied default probability function, which dynami-
cally changes on the state space defined by the pric-
ing lattice. The model is parsimonious and we have
been able to implement it on a spreadsheet. Further
research, directed at parallelizing the algorithms in
this paper and improving computational efficiency is

Figure 8 Comparison of the First Principal Component of Credit Risk
Premia Against the S&P 500 Index
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Notes. The main component comes from a principal components decom-
position of average credit risk premia, computed as the ratio of risk-neutral
one-year PD to those under the statistical measure. The data comes from 30
firms in the Dow Jones CDX index. The period covered is from January 2000
to June 2002. There are two main components. The correlation between the
main component and the S&P 500 index is 50%.



Das and Sundaram: An Integrated Model for Hybrid Securities
Management Science 53(9), pp. 1439–1451, © 2007 INFORMS 1451

under way. On the economic front, the model’s effi-
cacy augurs well for extensive empirical work.

6. Electronic Companion
An electronic companion to this paper is available
as part of the online version that can be found at
http://mansci.journal.informs.org/.
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Online Appendix
A. Deriving the Branching Process with Risk-Neutral Probabilities
In order for the normalized equity process to be a martingale, we require that at every node, we adjust
the probability measure over Xs�t� such that

E

[
S�t+h�

S�t�

]
= exp	r�t�h��

In addition, under the Heath-Jarrow-Morton (1990) (HJM) model, the mean value of the random
variable Xf must be zero, and its variance should be 1. These properties are verified as follows:

E�Xf �=
1
4
	1+m1+ 1−m1− 1−m2− 1+m2��1−��t��+ ��t�

2
	1− 1�

= 0�

Var�Xf �=
1
4
	1+m1+ 1−m1+ 1+m2+ 1−m2��1−��t��+ ��t�

2
	1+ 1�

= 1�
Now, we compute the two conditions required to determine m1 and m2. We use the expectation of
the equity process to determine one equation. We exploit the fact that under risk-neutrality the equity
return must equal the risk free rate of interest. This leads to the following:

E

[
S�t+h�

S�t�

]
= 1
4
�1−��t��	a�t��1+m1�+ b�t��1−m1�+ a�t��1+m2�+ b�t��1−m2��+

��t�

2
	0�

= exp	r�t�h�� (EC.1)

Hence the stock return is set equal to the risk-free return. This implies the following from a simplifi-
cation of Equation (EC.1):

m1+m2 =
4er�t�h/�1−��t��− 2	a�t�+ b�t��

a�t�− b�t�
≡A� (EC.2)

Our second condition comes from the correlation specification. Let the correlation (coincident with
covariance for unit valued variables) between the shocks 	Xf �t��Xs�t�� be equal to �, where −1≤ �≤ 1.
A simple calculation follows (ignoring the branches of default, since the correlation in that case is
undefined):

Cov	Xf �t��Xs�t�� =
1
4
�1−��t��	1+m1− 1+m1− 1−m2+ 1−m2�

= m1−m2
2

�1−��t��� (EC.3)

Setting this equal to �, we get the equation

m1−m2 =
2�

1−��t�
≡ B� (EC.4)

ec1
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Table EC.1 Bounds on Default Probabilities

Condition on mi Limit value of ��t�

0≤ 1
4 �1+m1�

1
2b�t�

�−2er�t�h − a�t��+ b�t���+ 2��

1
4 �1+m1�≤ 1

1
4a�t�− 2b�t�

�−2er�t�h − a�t���− 4�+ b�t���− 2��

0≤ 1
4 �1−m1�

1
2a�t�

�−2er�t�h − a�t���− 2�+ b�t���

1
4 �1−m1�≤ 1

1
2a�t�− 4b�t�

�2er�t�h + a�t���+ 2�− b�t���+ 4��

0≤ 1
4 �1+m2�

1
2b�t�

�−2er�t�h − b�t���− 2�+ a�t���

1
4 �1+m2�≤ 1

1
4a�t�− 2b�t�

�−2er�t�h − b�t���+ 2�+ a�t���+ 4��

0≤ 1
4 �1−m2�

1
2a�t�

�−2er�t�h − b�t��+ a�t���+ 2��

1
4 �1−m2�≤ 1

1
2a�t�− 4b�t�

�2er�t�h + b�t���− 4�− a�t���− 2��

Notes. These eight conditions specify limit values on one period default probabilities ��t�. Some
of these conditions may not apply in the sense that they suggest negative limits for probabilities,
which are superseded by the lower limit condition of zero value. The upper bound on ��t� will
be the minimum of the positive limits in the table.

Solving the two Equations (EC.2) and (EC.4) leads to the following solution:

m1 =
A+B

2
� m2 =

A−B

2
� (EC.5)

These values may now be substituted into the probability measure in Table 1. Notice that since the
interest rate r�t� only enters the probabilities and not the random shock Xs�t�� ∀ t, the equity lattice
will also be recombining, just as was the case with the HJM model for the term structure. Hence,
the product space of defaultable equity and interest rates will also be recombining. As interest rates
change, the probability measure will also change, but this will not impact the recombining property of
the lattice. Finally, note that the analysis here is valid irrespective of the properties of the equity process
chosen, and applied, in particular to any choice of constant elasticity of variance (CEV) coefficient in
the models we consider.

A.1. Ensuring a Valid Probability Measure
It is also necessary that the solutions for m1 and m2 be such that the resultant probabilities do
not become negative or greater than 1. From Table EC.1, we see that the necessary condition is
−1≤mi ≤+1� i = 1�2. To see this, note that the greatest absolute value of the probabilities on the
non-defaultable branches is when �= 0. Given this, we require the following 2 conditions on m1, so
as to be valid probabilities:

0≤ 1
4 	1+m1�≤ 1� 0≤ 1

4 	1−m1�≤ 1�
which implies that −1≤m1 ≤+1. The same condition is derived for m2.
Of course, the preceding analysis really implies that there is a range for the value of default proba-
bility ��t� which is consistent with the equity and term structure processes. Hence, we can derive the
corresponding values of ��t� that correspond to the permissible ranges for m1, m2 above. This results
in 8 bounds, which are presented in Table EC.1. After computing the value of the default probability
we check that it satisfies these bounds, else we set it to be within the range values.

B. Leverage Effects in the CEV and Structural Models
In the classical structural model of Merton (1974), the stock value and its volatility are derived from
assumptions concerning the firm value process. As the value of the firm falls in this model, equity
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Figure EC.1 Matching the CEV Model to the Merton Model for Varying Debt Levels
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Notes. We present the equity value-equity volatility plot for varying debt F . We plot the stock price on the x-axis (in increments of ten above the
debt face value) and the volatility from the Merton (dotted line) and CEV (full line) models on the y -axis. We also report the � coefficient that fits
the two curves best. The input values used are F = �10�50�150�, � = 0�3, rf = 0�02, T = 5. We can see that � ranges from 0.5 to 1 depending
on the debt level F . The curves from the CEV model fit the Merton model rather well. When debt levels are low, the coefficient � becomes closer
to 1, as in the last plot. Reading from left to right and top to bottom, the fitted value of parameter �C is �5�72�2�78�0�65�.

value falls while the volatility of equity rises, which is, of course, the leverage effect. Formally, let V
denotes the value of the firm’s assets, � the volatility of these asset returns, F the face value of the
zero-coupon debt held by the firm, T the maturity date of the debt, and r the risk-free rate. Then, the
value S and the volatility �S of equity in the Merton model are described by the following well-known
equations:

S = VN�d1�− e−rT F N
(
d1−�

√
T
)

(EC.6)

�S = �
 S

 V

V

S
≡ �N�d1�

V

S
� (EC.7)

Equations (EC.6) and (EC.7) implies that equity volatility declines as S increases.
In the CEV model, the equity process is specified directly as dS = rS dt + �CS

� dZ. Thus, the local
volatility of equity returns is

�CEV = �CS
�−1� � ≤ 1� (EC.8)
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Equation (EC.8) too implies a negative relationship between equity volatility and equity values, and
indeed, in both cases, equity volatility is a convex function of equity values. This raises an interesting
question concerning the potential structural foundations of CEV models: To what extent can the equity
volatility-equity value relationship (EC.7) be “mimicked” by the CEV process?
Figure EC.1 addresses this question. Each panel plots equity volatility against equity values. The
dashed line in each panel represents outcomes in the Merton model. To generate these, we fixed the
debt face value F of debt in the model, as also all the other parameters except for the initial firm
value V . Then, we varied V from low to high values, and used (EC.6)–(EC.7) to obtain the curves. The
solid line in the figures represents the CEV plot from (EC.8); in each case, �C and � were chosen to
minimize the sum of squared differences between the Merton-model implied curve and the CEV one.
The figure indicates that the leverage effect of CEV models can, for given ranges of equity values,
imitate very closely that generated by structural models. Nonetheless, some caution is in order before
interpreting the CEV model as an approximation of a structural model. For one thing, equity volatility
in the CEV model goes to zero as S →	 (except when � = 1). On the other hand, equity volatility
in the Merton model converges to the firm volatility � > 0 as V →	. Thus, the two curves cannot
resemble each other “globally.”
More generally, local equity volatility in the structural model is the result of an interplay of four
parameters: the leverage ratio F /V , the time-to-maturity T , the risk-free rate r , and firm volatility � ,
while in the CEV model, it depends on three parameters, �, �C , and the level of current equity prices S.
There is no obvious way to “map” the structural parameters into the CEV parameters. Thus, for
example, while the leverage effect in the CEV model is regulated by the parameter �, there is no direct
interpretation of this parameter within the Merton framework.
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