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a b s t r a c t

This paper presents a parsimonious barrier model for the optimal principal reset in a loan modification,
thereby maximizing the loan value to the lender bank and minimizing the likelihood of strategic foreclo-
sure by the homeowner. Writing down the loan-to-value (LTV) ratio will reduce the present value of
future payments on the loan, but will also reduce the probability of default, thereby saving foreclosure
losses. The optimal trade-off of these two countervailing effects will pinpoint the optimal LTV at which
the loan must be reset. We present a simple barrier option decomposition of the loan value that makes
the optimization of LTV easy to implement. An extension of the model is shown to account for varying
growth rate assumptions about house prices. The model in this paper specifically accounts for the home-
owner’s willingness to pay, and uses the framework to model shared-appreciation mortgages (SAMs).

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

The housing crisis of 2008–2009 in the US is unprecedented. By
the end of 2009, there was a glut of 3.2 million unsold new and
existing single-family homes, amounting to seven months inven-
tory.1 Home prices have fallen during and after the 2008–2009 crisis,
and as of July 2012, there were 1.5 million inventoried foreclosure
homes,2 driving prices down further. The average national decline
in home values based on the composite Case-Shiller 20-city index
from January 2006 to March 2012 was 32%, resulting in a household
wealth loss of $7 trillion.3 About 31.4% of homeowners are estimated
to have negative equity in their homes as of Q1 2012.4 In September
2010, 1 in 371 homes received a foreclosure filing, but this improved
to 1 in 686 homes by July 2012.5 Fig. 1 shows the foreclosure land-
scape across the nation. The highest foreclosure rates are in areas
with the greatest run up in prices before the crisis, i.e., the sun belt
states, where negative equity is much in evidence.

Efforts to stem the tide of foreclosures appear to have had
mixed results. Whether loan modification is an antidote is de-
bated—see Foote et al. (2009). As of May 2012, of the roughly
3.2 million loans eligible for a modification, the Treasury reported
810,443 active permanent modifications, i.e., about 27% conver-
sion, but a large number of homes nevertheless.6 Loan modification
activity has picked up in the past year—see Fig. 2—and it is important
to evaluate loans with modifications, which is the goal of this paper.
There were 385,000 permanent loan modifications in the first half of
2012.7 About 98% of modifications have a rate reduction, and 31%
entail a principal reduction.8 As of May 2012, the median principal
reduction in modifications is 25.6%.9

When modification is appropriate, it is important to determine
the optimal modification scheme and this paper presents a model
in which optimal principal modification may be determined. In a re-
cent paper, Das (2009) developed a model to show that the current
approach taken by lenders and regulators, i.e., to reduce monthly
payments by writing down interest rates, extending maturity, or
forbearing principal, often increases the propensity for homeowners
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1 New York Times, January 4, 2010—‘‘This Year’s Housing Crisis’’.
2 www.realtytrac.com, Down from 1.6 million in July 2011.
3 See ‘‘The US Housing Market: Current Conditions and Policy Considerations,’’

White paper, Federal Reserve Board of Governors (January 2012).
4 www.zillow.com, Versus 28.4% of single-family homeowners estimated to have

negative equity in their homes as of May 2011.
5 www.realtytrac.com, Versus 1 in 611 homes by July 2011.

6 HAMP Making Homes Affordable (MHA) Report, May 2012. As of July 2010, of the
roughly 4.5 million loans eligible for a modification, the Treasury reported 421,804
active permanent modifications, i.e., under 10% conversion, and therefore, in two
years, the modification success rate has sharply increased.

7 www.hopenow.com; Reported in www.dsnews.com/articles/hope-now-reports-
385k-loan-mods-in-first-half-of-2012-2012-08-14.

8 See ‘‘The US Housing Market: Current Conditions and Policy Considerations,’’
White paper, Federal Reserve Board of Governors (January 2012).

9 HAMP MHA Report, May 2012.
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to default. This leads to heavy societal costs—foreclosure discounts
are estimated to be greater than 20% of home value on average—
see Pennington-Cross (2004) for an estimate in good economic times
of 22%; Campbell et al. (2011) report this figure as 27%. An alternate
solution is to write down principal, resulting in lower foreclosure
rates, mitigation of lender losses in foreclosure, 10 and an overall
higher economic value of the loan to the lender, after accounting for
the borrower’s option to default—see Goodman (2010) for an excellent
analysis of why the negative equity problem must be tackled head on
with principal modifications. The recent introduction of the HAMP-
PRA (Principal Reduction Alternative) scheme as of October 1, 2010
by the Federal government adds the principal modification quiver to
the arsenal aimed at stemming foreclosure.

The intuition behind principal forgiveness is based on analyzing
the option to default held by the homeowner. This option is an
American (Bermudan-style) put, allowing the borrower to put
the home back to the lender. It is in-the-money when the value
of the home (the underlying) is less than the loan balance (the op-
tion strike), i.e., when there is negative equity in the home. To keep
the monthly payment fixed at some reduced level, it is usually
preferable to write down principal because it makes this option
less in-the-money (unless the rate is above market, when it makes
sense to also reduce the rate). Other approaches, such as reducing
the loan rate below market, require higher principal balances given
that the monthly payment is held fixed, taking the option further
in-the-money. Likewise, extending maturity also makes the option
more valuable, as options tend to increase in value when their
maturities increase, especially when the option to default is

in-the-money. Given the huge lender costs of foreclosure, minimiz-
ing the homeowner’s propensity to default increases the economic
value of the loan (the default-adjusted expected present value of
the modified loan’s payments), even after writing down principal.

That writing down principal is an important approach is becom-
ing self-evident. The New York Times editorial page (01/04/2010)
expressed the essence of this most effectively:

The best way to modify an underwater loan is to reduce the prin-
cipal balance, lowering the monthly payment and restoring
equity. But for the most part, lenders have refused to reduce prin-
cipal because it would force them to take an immediate loss on
the loan. Lenders also have vehemently and successfully resisted
Congressional efforts to change the law so that bankruptcy courts
could reduce the mortgage balances for bankrupt borrowers.
The administration decided not to press lenders to grant princi-
pal reductions in the flawed belief that simply making pay-
ments more affordable would be enough to forestall
foreclosures. It hasn’t. The administration also didn’t fight for
the bankruptcy fix when it was before Congress last year
despite President Obama’s campaign promise to do so.
The economy is hard pressed to function, let alone thrive, when
house prices are falling. As home equity erodes, consumer
spending falls and foreclosures increase. Lenders lose the ability
and willingness to extend credit and employers are disinclined
to hire. True economic recovery is all but impossible.
To avert the worst, the White House should alter its loan-mod-
ification effort to emphasize principal reduction. Job creation
should also be a priority so that rising unemployment does
not cause more defaults.

If we accept that principal write-downs are the optimal way to
modify distressed loans, then lenders’ reluctance to take write-offs
appears to be more of an accounting issue than an economic one.

Fig. 1. Foreclosure distribution across the nation as of July 2012. Source: www.realtytrac.com.

10 This cost, also known as the ‘‘foreclosure discount’’ comprises damage repairs to
restore the house to a sale-able condition, a distress sale discount, brokerage
commissions and direct selling costs, taxes, insurance, and property management,
and interest on capital for the holding period.
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Even so, it is possible to write down the principal in stages, so as to
avoid an abrupt accounting hit, as well as link these staged writed-
downs to continued borrower payments, thereby providing the
borrower with incentives to keep making payments. The qualita-
tive effects of staged principal write downs are the same as a
one-time write down, and for parsimony we have not provided
examples of staged write downs.

Principal write-downs are nevertheless controversial because
the benefits are hard to quantify, even though the qualitative pre-
scriptions outlined in this paper are incontrovertible. Reducing
negative equity may not always work if the lack of willingness to
pay is correlated with lack of ability to pay, though Das (2009) pro-
vides some empirical evidence that principal reduction reduces
redefault rates significantly more than a rate reduction. It is
reported11 that of 12 million mortgages that are underwater with

aggregate negative equity of $700 billion, 8.6 million mortgages with
negative equity of $425 billion are current, and opening the flood-
gates of principal reduction might not be affordable, engender moral
hazard, and raise issues of fairness vis-a-vis diligent and fiscally dis-
ciplined borrowers. However, viewed on a mark-to-market basis—
the correct way in which to look at housing loan values from the
viewpoint of the lenders—principal reductions are value increasing.
And as we will see, shared-appreciation loan modifications will mit-
igate the moral hazard issue.

Nevertheless, to optimize the loan’s economic value, we need a
model to determine the write-down amount—this paper presents
such a model for the optimal principal reset in a loan modification.
The focus is on setting the loan-to-value (LTV) ratio to a level that
maximizes the lender’s default-adjusted loan value after the mod-
ification. Homes with negative equity have LTV greater than one,
and it stands to reason that the LTV will need to be lowered below
one or at least close enough to one that the borrower’s cost of
defaulting exceeds the excess of LTV over one. Reducing the LTV
will reduce the present value of future payments on the loan, but

Fig. 2. Loan modification statistics as of May 2012. Source: HAMP (Treasury).

11 See ‘‘The U.S. Housing Market: Current Conditions and Policy Considerations,’’
White paper, Federal Reserve Board of Governors (January 2012), page 21.
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will also reduce the probability of default, thereby saving lender
foreclosure losses. The optimal trade-off of these two countervail-
ing effects will pinpoint the optimal LTV at which the loan must be
reset. We present a reduced-form barrier option decomposition of
loan value in closed form that makes the optimization of LTV easy
to implement.

The model in this paper accounts for the homeowner’s ability to
pay and willingness to pay. Many borrowers end up in foreclosure
because they have diminished financial capacity, resulting in a low
ability to pay on their monthly loan commitments. We term these
‘‘helpless’’ defaults. Foote et al. (2009) propose a government pay-
ment-sharing arrangement that would work with the home-
owner’s existing mortgage and significantly reduce monthly
payments while the homeowner is unemployed. This would defi-
nitely reduce helpless defaults. But there are other borrowers
who have the financial capacity to pay but choose not to, and exer-
cise their option to default. Defaults where there is ability but not
the willingness to pay have been termed ‘‘strategic’’ or ‘‘ruthless’’
by bankers, and are estimated to account for 26% of foreclo-
sures—see Guiso et al. (2009). Our optimal modification model ac-
counts for both situations, helpless and strategic default.

It is not easy for lenders to distinguish between loan modifica-
tion requests from homeowners with low ability to pay or low
willingness to pay. Lenders are also reluctant to write down prin-
cipal. In order to mitigate these issues, an innovative modified loan
structure, known as a shared-appreciation mortgage (or SAM) has
come into vogue. In a SAM, the lender writes down principal, but in
return takes a share of the appreciation in the home. In this struc-
ture, the homeowner gives up a part share in the home that is real-
ized by the lender if and when home values recover. In essence, the
lender effects a debt-equity swap, writing down some of the debt
in exchange for equity. The SAM makes the principal write-down
more palatable for the lender, and also avoids encouraging new
strategic defaulters to mimic helpless defaulters because they
now have to part with some of the upside in home values. Recog-
nizing the value of shared-appreciation structures in the loan mod-
ification process, the Federal government issued an amendment to
the HAMP-PRA to allow this feature as of mid-October 2010.

We show that a SAM may be decomposed into three compo-
nents, thereby making it easy to value. First, the value of the loan
conditional on no default, i.e., the non-default value of the loan.
We show that this portion of the loan is a down-and-out cash-or-
nothing call option. Second, a component that comprises the ex-
pected value of the loan conditional on default, i.e., the default
recovery value of the loan. We show that this portion of the loan
is equal to a down-and-out call option rebate. Third, the loan value
has a component for the shared appreciation delivered by the SAM.
This portion is equal to a down-and-out vanilla call option. We ob-
tain all these three component values in closed-form and make val-
uation of SAMs facile. In addition to the closed-form solution, we
also present a tree-based model that is flexible and can handle
staged views of the evolution of home prices so that the model
may be tuned to reflect the views of market participants. A special
case of both these models for SAMs is of course, a model for a reg-
ular mortgage without shared appreciation.

The contributions of the paper are as follows:

1. Technical contribution: We develop two models (a closed-
form equation and a tree model) for optimizing loan
modications in the presence of strategic default. The
model also accounts for non-tradability (illiquidity) of
the underlying home, and the ability and willingness to
pay by the borrower. We use the model to examine the
sensitivity of home values to various loan parameters.
The models in this paper are reduced-form (in the Duffie
and Singleton (1999) class of models), and not in the

structural class of models, as in Merton (1974). The model
is also similar to the class of empirical prepayment mod-
els in the MBS literature, i.e., Boudoukh et al. (1997), as
opposed to the rational models, such as Kau and Keenan
(1999), and Stanton (1995). This model is close in spirit
to Campbell and Cocco (2010), where negative equity
triggers default.

2. Practical contribution: Loan modications with shared
appreciation are shown to mitigate the risks of strategic
default, because lenders can modify the loan to lower LTVs
than without shared appreciation, yet maximize the value
of the loan via the shared appreciation component. There-
fore, we show that loan modifications with shared appreci-
ation by the lender are recommended.

The model may be used for a range of home price growth sce-
narios, in particular mean-reversion in home prices and different
growth rates for different periods, thereby allowing the modeler
to determine the optimal loan modification under various future
price assumptions in the housing markets. In short, the paper pro-
vides a comprehensive analysis of how principal forgiveness may
be applied to optimally solving the negative equity aspect of the
housing crisis.

The paper proceeds as follows. Section 2 introduces the frame-
work we use for the dynamics of home values and the notation for
the paper. Section 3 develops the barrier formulation of the model.
This approach allows us to accommodate the borrower’s willing-
ness to pay, thereby accounting for strategic defaulters. It also ac-
counts for the appreciation share in a SAM, and its impact on the
default barrier. Section 4 presents the basic intuition for the
decomposition of the loan value using barrier formulations, and
derives the closed-form loan value described in the previous para-
graph. This section also discusses the fundamental partial differen-
tial equation driving the pricing in the model. This is necessary in
order to account for the non-tradability of the underlying asset. In
Section 5 we present numerical examples to demonstrate the
implementation of the model and examine its comparative statics.
We compare the optimal modification with and without the shared
appreciation feature. Section 5.1 extends the closed-form model
with a single growth rate assumption to a tree model with varying
growth rates each period to allow for changes in the housing mar-
ket and to incorporate mean reversion in house prices in the mod-
el. This extension also handles coupon interest on the loan.
Section 5.2 deals with real world implementation details. Section 6
provides further discussion and extensions of the model.

2. Model

Our reduced-form model values a home loan over an investor
horizon, that may, for example, range from one to five years. It is
reduced-form in that it models default as the event of the house
price hitting a barrier and values the loan as the expected value
of the loan principal over non-default or foreclosure states—cou-
pon cash flows are also handled in the extended model in Sec-
tion 5.1. The model also includes shared-appreciation rights that
may be held by the lender. The default barrier depends on the bor-
rower’s willingness to pay and may itself be a function of individ-
ual borrower characteristics and macro-economic conditions. An
extended version of this model is used in Das and Kim (2012) to
examine gains from investments in distressed debt and portfolio
construction for the benefits of pooling and diversification in this
barrier default model.

Home value Ht is a stochastic process. This may be quite gen-
eral; we assume it is a geometric Brownian motion, i.e.

dHt ¼ lHt dt þ rHt dZt ð1Þ

S.R. Das, R. Meadows / Journal of Banking & Finance 37 (2013) 636–647 639
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where the drift is l and the volatility is proportional to r. The ran-
domness is generated by a Wiener increment dZt. Since options are
involved, discounting under the risk-neutral probability measure
will be required, and r is the applicable risk-free rate of interest. La-
ter in this paper, we will adjust the drift l to account for premia
that are related to housing price risk and the non-tradability/illi-
quidity of the underlying asset. We will also show how to generalize
l to vary with time, i.e., denoted lt, so as to account for mean-
reversion in house prices and varying growth rate assumptions.

Let the horizon of the optimization be T years for loan balance L.
At the end of the T years, the borrower may be in foreclosure, in
which case the foreclosure present value is a fraction / 2 (0,1) of
the home value. The loss on foreclosure is the fraction (1 � /) of
the home’s value.

Foreclosure occurs when the borrower exercises the option to
default, i.e., ‘‘puts’’ the home back to the lender at a strike price
equal to the loan balance—see Merton (1974), Kau and Keenan
(1999), Deng et al. (2000), Ambrose et al. (2001), Das (2009)—all pa-
pers dealing with the option to default. The option to default is in-
the-money at time t when the home value is less than the loan bal-
ance (H < L), i.e., when there is negative equity in the home. In such
cases the loan-to-value (LTV) ratio is greater than unity. Given that
the borrower has a put option to default, the previously cited work
shows that there is an LTV at which it is optimal for the borrower to
default. Equivalently, there is a default home-value level D (the de-
fault barrier) at which the borrower decides to default. Normalizing
initial home value H0 = 1, we express D < 1 as the fraction of initial
home value below which the borrower defaults—in this setting
when H0 = 1, L is the loan-to-value ratio (LTV). We do not need to as-
sume that this is the same for all borrowers with identical homes;
indeed, borrowers exhibit widely varying default behavior. We
therefore, assume that D comes from an econometric model, and
in this paper we take it to be a function of the borrower’s willingness
to pay, as well as the terms and conditions of the loan modification.

A borrower who has negative equity and does not default re-
tains the probable future appreciation of home value above the
loan balance, an amount Ht � Lt > 0 at some future date t. In a
shared appreciation mortgage (SAM) the lender retains the rights
to a share h of the pre-specified appreciation of house value H
above a strike level K. This might be, for instance, a share of posi-
tive equity, i.e., H � L, when K = L. Or, a share of future appreciation
above the current home value, i.e., when K = H0. Of course, we re-
quire that K P L, else there is no equity to pay the SAM.

In return for shared appreciation, the lender offers better terms
to the borrower, for example, a lower interest rate on the loan, or
reduced principal. The borrower’s incentive to default is a function
of this appreciation share h taken by the lender. Ceteris paribus, the
larger h is, the greater incentive to default, because the borrower
has less upside to look forward to if he continues to make loan ser-
vice payments. In other words we may write the default barrier as
a function of theta, i.e., D(h), where dD/dh > 0. As we will see in the
next section, the default barrier will also be a function of the initial
LTV, and so we write it as D(L,h). Finally, borrowers owning homes
with negative equity are unable to exercise their refinancing op-
tions, and since this class of models is used primarily by hedge
funds that have short holding periods, the refinancing option is
immaterial to this analysis.

3. Default barrier D and share h

We now provide a simple structure for the function D(h). We
then use this function to analyze how loan value changes with h,
the lender’s stake in the shared-appreciation mortgage. Our func-
tional form is as follows:

DðL; h; cÞ ¼ L exp½�cð1� hÞ� ð2Þ

where the parameter c 2 (0,1) is the borrower’s willingness to
make good on loan service. The following properties of the willing-
ness to pay parameter immediately follow from the function spec-
ification above:

1. The greater the willingness to pay (c), the lower is the
trigger default level of home value D, i.e., the borrower
is less likely to default.

2. When c =1, the willingness to pay is infinite, and the
default level is D = 0. The borrower never defaults unless
the home value goes to zero.

3. When c = 0, there is no willingness to pay and the default
level is D = L, i.e., the borrower defaults the moment the
home value drops infinitesimally below the loan amount.

Therefore, this function is a natural choice for the borrower’s
default boundary. The parameter c may be a function of macro-
economic variables and borrower specific factors. It completely
specifies the default boundary. Note that c is specific to each bor-
rower and that there is a distribution of willingness to pay (c)
within the borrower population. Willingness to pay is at the heart
of the negative equity and foreclosure debate. As pointed out by
Foote et al. (2008), detecting which homeowners should be offered
loan modification is difficult, for not all negative equity homes
foreclose, and not all borrowers should have their loans modified.
The reduced-form approach here enables lenders to parsimoni-
ously combine a model for optimal principal write-downs with
an econometric model that determines willingness to pay. The
form of the model makes it akin to reduced-form models of default
(Duffie and Singleton (1999)) rather than the class of structural
models of default (Merton (1974)). Another analogy would be to
consider this model of borrower default as similar to that of empir-
ical prepayment models in the mortgage-backed securities litera-
ture—see Boudoukh et al. (1997)—versus rational prepayment
models, as in Stanton (1995).

Instead of the willingness to pay parameter c, it is sometimes
better to think in terms of the borrower’s negative equity limit
(NEL), which we denote E�. The negative equity at default is
(L � D): substituting this into Eq. (2) above, setting h = 0, and
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Fig. 3. Relationship of a borrowers willingness to pay to the negative equity limit
(NEL). The NEL of the loan is the amount of negative equity the borrower will
sustain before deciding to default. All numbers are based on a home value of unity.
The greater the NEL, the higher the willingness to pay.
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re-arranging, we may compute the borrower’s willingness to pay.
Fig. 3 shows the relationship between willingness to pay and the
borrower’s negative equity limit. The two quantities are positively
related to each other, i.e., as c, the willingness to pay increases, the
borrower will be willing to sustain a greater level of negative equi-
ty before deciding to default. More generalized forms of the default
barrier may also be utilized, such as D(L,h;c) = Lexp[� A � c
(1 � h)], where the parameter A modulates the minimum threshold
of negative equity required to trigger default.

Therefore, if we know that a borrower is likely to default
when his negative equity becomes E�, then we can use the rela-
tion in Fig. 3 to infer the parameter c for the willingness to pay.
From a practical standpoint, loan service companies estimate c
by regressing the NEL for various defaulted loans against bor-
rower characteristics and macro-economic factors. Of course
there is asymmetric information between borrower and lender
that injects error in the estimation of c, leading to both, rede-
fault risk (i.e., borrower still defaults after a costly renegotia-
tion), and cure risk (i.e., the lender unnecessarily modifies a
loan that would self-cure), as pointed out in Adelino et al.
(2009). In the final section, we discuss how biasing c downwards
can help manage both risks.

In addition to this parameter for the willingness to pay, the mod-
el requires an estimate of house price growth l, and volatility r, and
an estimate of the fractional value of the home recovered on fore-
closure /. As we will see later, we will also need a parameter that
corrects for the risk-adjusted (i.e., expected change and premium)
house price appreciation or depreciation relative to a benchmark,
denoted k, the price of risk. Therefore, the only parameters in the
model that need to be estimated are {c,/,l,r,k} standing for will-
ingness to pay, foreclosure recovery rate, house value growth rate,
house price volatility, and risk premium, respectively. These are
discussed in detail in Section 5.2. Hence, the model is parsimonious.

The following properties of the default barrier function are
based on the lender’s share in the mortgage appreciation:

1. The greater the lender’s share (h), the higher is the default
level of home value D. The likelihood of default is there-
fore greater.

2. When the lender share h = 0, the default level is Le�c.
3. When h = 1, the default level is D = L. The borrower

defaults the moment there is negative equity. Taking
away all the upside leaves the borrower with no incentive
to stave off default.

We see that D is increasing and convex in h, and decreasing
and convex in c. The parameter h modulates both lender and
borrower benefits from the shared-appreciation structure. From
the lender’s point of view, it offers an opportunity to recover
some of the loss borne when modifying the loan by reducing
its LTV. From the borrower’s viewpoint, the lender is incentiv-
ized to further reduce LTV in comparison to the situation when
no shared appreciation is provided, hence the SAM structure sat-
isfies the participation constraint of the borrower as well. Next,
we derive the value of the loan in closed-form after imposing
the default barrier.

4. A barrier option decomposition of mortgage value

In this section, we show that the value of the loan to the lender
may be expressed in closed-form as a portfolio of options. The bor-
rower defaults whenever the value of the home touches the default
level D(L,h). We assume that the lender (or the entity that buys the
loan from a lender) is interested in maximizing the value of the
loan over some horizon T. For example, a hedge fund that invests
in distressed home loans may have a horizon of one year, over

which they expect to resell the loans, anticipating that these loans
will have appreciated in value by then. Alternately, lenders may
wish to think of the horizon as the time it will take for the housing
market to turn around. Given this horizon T, there are three com-
ponents of mortgage value to the lender.

1. Non-Default Value: When the borrower has not defaulted by
time T, the lender recovers the principal of the loan L. (For
simplicity, we normalize the initial price of the stochastic
home value to H0 = 1; this implies that the loan amount L
is the LTV of the loan.) This component is equivalent to a
‘‘down-and-out cash-or-nothing call’’ option with a down
barrier of D, a strike D, and a payment of L. Under the risk-
neutral measure, we may write this as

Le�rT
Z 1

DðL;hÞ
pðHT jHt > D;8t < TÞ dHT ð3Þ

where p(HTjHt > D, "t < T) is the probability density function
of the terminal home value conditional on no interim default,
i.e., not touching the barrier before T. Note that the condi-
tional probability function contains the parameter D that is
the lower limit of the definite integral in Eq. (3). Hence,
changes in the willingness to pay coefficient c will impact
the default barrier D, as well as the conditional probability
density of no default. As the willingness to pay declines, bar-
rier D rises, and this component of loan value declines. In or-
der to account for interest payments that are being received
and reinvested until the horizon, the equation may also be
applied without discounting, i.e., by excluding the term e�rT.

2. Default Value: If the home value H touches the barrier D, then
default occurs, and the lender receives a fraction / of the
value of the home H = D, i.e., /D. This is akin to the ‘‘rebate’’
on a down-and-out call option. We may write this as

/D
Z T

0
e�rtf ðt; DÞ dt ð4Þ

Here f(t;D) is the first-passage time probability density for
Ht = D. As the willingness to pay declines, the barrier D rises
and the first-passage time becomes shorter, thereby increas-
ing this component of the loan value.

3. Shared Appreciation: If there is no default, then the lender
shares in the appreciation above a strike level K P D, which
might be the value of the loan L (or some other level). This is
akin to holding a ‘‘down-and-out call’’ option with a down
barrier of D and a strike price of K. This option is written as

e�rT
Z 1

K
ðHT � KÞ pðHT jHt > D;8t < TÞ dHT ð5Þ

The lender takes a fraction h of this call option. Here we might
choose K = 1 as one common choice for the appreciation strike, but
the loan could be restructured with any other strike level as well.

4.1. Housing growth rates, non-tradability, and premia

We now discuss the issue of risk premia in the stochastic pro-
cess for home values in Eq. (1) and provide a characterization of
it here. We first note that the fundamental asset-pricing partial dif-
ferential equation (PDE) for any derivative (including a mortgage)
F(H, t) that is a function of the home value H is given by

@F
@H
½l� kr�H þ 1

2
@2F

@H2 r2H2 þ @F
@t
¼ rF ð6Þ

where k is the price per unit risk for housing prices and non-trade-
ability. This risk premium arises on account of housing price risk
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that cannot be diversified. This PDE may be solved subject to the
relevant boundary conditions. In this case these boundary condi-
tions comprise a payment of principal at horizon T on the event
of no-default, a foreclosure amount if the default barrier is brea-
ched, and an appreciation share if the home price appreciates suffi-
ciently to make the appreciation share in-the-money.

For completeness, though not required in the implementation
of the paper, we analyze the situation when the underlying asset
is not continuously traded and dynamic trading of a hedge portfo-
lio is not possible. Garman (1976) has shown that the exact PDE
takes the following form:

@F
@H
½g � bðl� � rÞ�H þ 1

2
@2F

@H2 r2H2 þ @F
@t
¼ rF ð7Þ

where g is the growth rate of the home value, b is the coefficient in a
regression of home value on a benchmark for the housing sector,
and l⁄ is the expected rate of return on the benchmark. Comparing
the coefficients on @F

@H in Eqs. (6) and (7), we see that

g ¼ l; bðl� � rÞ ¼ kr ð8Þ

which offers one approach at eliciting the price of housing risk (k)
from data.

We also define

R ¼ l� kr

This variable R is the risk-adjusted return on home values, and
is distinct from the risk-free rate r. In the next subsection, we pres-
ent the solution to the partial differential Eq. (6) subject to the con-
ditions in Eqs. (3)–(5).

4.2. Solution

Using standard mathematics for barrier options, as in Derman
and Kani (1997) for example, we obtain the value of the mortgage
in closed-form as follows:

LOANVAL � VðH; L;K; r; T;/; h;l; k;r; cÞ

¼ Le�rT N d02
� �

� ðD=HÞ2ðR=r
2Þ�1 � N d02b

� �h i

þ /D ðD=HÞb1 � Nða1Þ þ ðD=HÞb2 � Nða2Þ
h i

þ h½CSAMðH;KÞ � D2ðR=r2Þ�1 � CSAMðD2=H;KÞ� ð9Þ

where

D ¼ L exp½�cð1� hÞ�

d02 ¼
lnðH=DÞ þ ðR� 0:5r2ÞT

r
ffiffiffi
T
p

d02b ¼
lnðD=HÞ þ ðR� 0:5r2ÞT

r
ffiffiffi
T
p

a1 ¼
lnðD=HÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rr2 þ ðR� 0:5r2Þ2

q
� T

r
ffiffiffi
T
p

a2 ¼
lnðD=HÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rr2 þ ðR� 0:5r2Þ2

q
� T

r
ffiffiffi
T
p

b1 ¼
ðR� 0:5r2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rr2 þ ðR� 0:5r2Þ2

q
r2

b2 ¼
ðR� 0:5r2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rr2 þ ðR� 0:5r2Þ2

q
r2

CSAMðx; yÞ ¼ xe�ðr�RÞT N d01
� �

� ye�rT N d01 � r
ffiffiffi
T
p� �

d01 ¼
lnðx=yÞ þ ðRþ 0:5r2ÞT

r
ffiffiffi
T
p

As stated earlier, the first term in Eq. (9) may be applied without
discounting to account for interest received on the loan. This for-
mula may easily be implemented even on a spreadsheet. We pres-
ent numerical examples and analysis of the closed-form model in
Section 5 to understand the different aspects of the optimal loan
modification. Because the loan value is available in closed-form,
it is easy to find the level of LTV (L) that optimizes loan value V.
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Fig. 4. Loan value as LTV is varied for loans with and without appreciation sharing.
The parameters for the plot are as follows: willingness to pay coefficient c = 0.1,
home price volatility r = 0.04, foreclosure fraction / = 0.7, risk-free rate r = 0.02, the
house value growth rate l = 0.04, price of risk k = 0.25, and the horizon of the model
T = 5 years. The appreciation share fraction is h = 0.50 for the case when a SAM is
applied, and h = 0 when there is no share appreciation.
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Fig. 5. Loan value as LTV is varied for loans with SAMs and the foreclosure recovery
rate is varied across {/ = 0.5,/ = 0.7}. Both cases are with appreciation sharing. The
parameters for the plot are as follows: willingness to pay coefficient c = 0.1, home
price volatility r = 0.04, risk-free rate r = 0.02, the house value growth rate l = 0.04,
price of risk k = 0.25, and the horizon of the model T = 5 years. The appreciation
share fraction is h = 0.50.
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5. Implementation

We first examine the optimal LTV for the modified loan by
implementing the model for a set of standard parameters. Our
implementation covers both cases, with shared appreciation in
the new loan structure, and without. The first term of Eq. (9) is
applied without discounting in all examples in this section—this
makes no material qualitative difference to the results. The plot
of the loan value at various modified LTV levels is shown in
Fig. 4. There are some clear results that we see here. First, the
optimal LTV is about 0.98 for loans with shared appreciation,

though it is slightly higher at 1.03 for the no-SAM loan. Given
the appreciation share, it is optimal for the lender to write down
the LTV a little more in the case of a SAM. Second, SAMs are mostly
superior to the modified loans without SAMs—the optimized loan
value is higher for SAMs, especially in the relevant region, where
LTV is less than one.

We note that when the LTV is set too high and the default bar-
rier is much greater than the home value (D > H), it results in
immediate default with foreclosure recovery value, shown in the
flat right tail of the loan value in Fig. 4.

Fig. 5 shows the loan values for shared appreciation mortgages
when the foreclosure recovery percentage is / = {0.5,0.7}. As ex-
pected, the loan value is higher when / is higher. The optimal
LTV is 0.97 when / = 0.5 and 0.98 when / = 0.7.

In Fig. 6 we see that as home price volatility increases, the value
of the loan decreases because the value of the default option to the
borrower increases. For the base case, i.e., when volatility r = 0.04,
the optimal LTV is 0.99. When the volatility increases to r = 0.10,
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Fig. 6. Loan value as LTV is varied for loans with SAMs and housing price volatility
is varied across {r = 0.04,r = 0.10}. Both cases are with appreciation sharing. The
parameters for the plot are as follows: willingness to pay coefficient c = 0.1,
foreclosure percentage / = 0.7, risk-free rate r = 0.02, the house value growth rate
l = 0.04, price of risk k = 0.25, and the horizon of the model T = 1 year. The
appreciation share fraction is h = 0.50.
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Fig. 7. Loan value as LTV is varied for loans with SAMs and housing value growth
rate is varied across {l = �0.04,l = +0.04}. Both cases are with appreciation sharing.
The parameters for the plot are as follows: willingness to pay coefficient c = 0.1,
foreclosure percentage / = 0.7, risk-free rate r = 0.02, housing price volatility
r = 0.04, price of risk k = 0.25, and the horizon of the model T = 1 year. The
appreciation share fraction is h = 0.50.
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Fig. 8. Loan value as LTV is varied for loans with SAMs and willingness to pay is
varied across {c = 0.01,c = 0.10,c = 0.20}. All cases are with appreciation sharing.
The parameters for the plot are as follows: the house value growth rate l = 0.04,
price of risk k = 0.25, foreclosure percentage / = 0.7, risk-free rate r = 0.02, housing
price volatility r = 0.04, and the horizon of the model T = 1 year. The appreciation
share fraction is h = 0.50 in the upper plot and h = 0 in the lower one.
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the optimal LTV drops to 0.92. This shows that as volatility in-
creases a higher principal reduction is needed in order to optimize
loan value. A similar reduction in optimal LTV occurs when consid-
ering different expected growth in home values, l = {�4%,+4%},
shown in Fig. 7. The optimal LTV is 0.93 when growth is negative,
and 0.99 when it is positive—weaker conditions in the housing
market require greater principal forgiveness.

Next, we examine the willingness to pay parameter c. Ceteris
paribus, as the willingness to pay declines, the probability that
the borrower will default increases. This will have three implica-
tions. One, the value of the loan declines as the willingness to
pay falls—see Fig. 8. Two, the difference in loan values as c changes
is greater when LTV is high than when it is low. This is intuitively
expected because the probability of default is greater at higher LTV,
resulting in a bigger change in expected losses of foreclosure for
every unit of willingness to pay. Third, and possibly the most
important, the optimal LTV changes substantially with the willing-
ness to pay. In Fig. 8, for the upper plot, when c = 0.01 and h = 0.5,
the optimal LTV is around 0.95. And optimal LTV at c = {0.1,0.2} is
0.99 and 1.04, respectively. Assessing a borrower’s willingness to
pay matters. In the lower plot, we set h = 0, i.e., no appreciation
sharing, and now there is a bigger difference in optimal loan value
as willingness to pay varies. Further, we see that when willingness
to pay is c = 0.2, the optimal LTV is 1.15. This LTV is very close to
the recommended LTV in loan modifications prescribed by the
Treasury. The model thus allows us to ‘‘imply’’ out the willingness
to pay assumed by regulators.

Fig. 9 shows that the optimal loan value is higher when the appre-
ciation share (h) is substantial, even though an increase in apprecia-
tion share results in a lower willingness to refrain from defaulting on
the loan. At h = 0.7, the optimal LTV for the modified loan falls to 0.96,
whereas the optimal LTV is 0.98 when h = 0.5. In the former case, the
optimized loan is worth 0.954 versus 0.941 in the latter case.

5.1. Varying growth rates

The preceding model is parsimonious, and provides intuitive and
appealing results. However, it does not accommodate home price
growth rates that may change over time. For example, one may

assume that for the next two years home prices will devalue and
after that they will appreciate. Effectively, this means there are
two epochs or regimes in the model, whereas in the preceding version
of the model there was only one. In this section, we extend the single-
epoch model to two epochs, both of any length. The tree approach we
use is described below and is completely general and allows multiple
periods, but we focus on only two periods in this section.

Having two horizons s and T > s accommodates different
growth rates in home values in two consecutive periods. For in-
stance, the model may use a negative growth rate for s = 1 year,
and then a positive growth rate for the remaining period from s
to T = 3 years, i.e., for a second period of length T � s = 2 years. Such
an approach also implicitly incorporates mean-reversion in the
model because the growth rates in each period may be chosen to
be opposite in sign.

The formula in Eq. (9) may be implemented computationally
using a binomial tree instead. Doing so enables the use of different
home price growth rates in the two periods of the extended model.
(It also offers a way to check the single period model as well as a
special case—indeed, the tree we develop reproduces the prices
from the formula in Eq. (9).)

We use a simple Cox et al. (1979) binomial tree—the reader may
refer to the original paper for the technology which is too widely
known to repeat here. The model is adjusted for the price of hous-
ing risk. For parsimony, we present the barebones equations that
will be applied in the model; this will allow a researcher familiar
with the model to apply it immediately. The binomial tree has time
step h and the probability of an up move on the tree is q.

u ¼ expðr
ffiffiffi
h
p
Þ Up move factor

d ¼ expð�r
ffiffiffi
h
p
Þ Down move factor

R ¼ expðrhÞ Risk� neutral drift
d ¼ r � lðtÞ þ kr Adjustment for growth rate

and price of risk

q ¼ Re�dh � d
u� d

Probabilityof an up move
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Fig. 9. Loan value as LTV is varied for loans with SAMs and appreciation is varied
across {h = 0.70,h = 0.50}. The parameters for the plot are as follows: willingness to
pay coefficient c = 0.1, foreclosure percentage / = 0.7, risk-free rate r = 0.02, housing
price volatility r = 0.04, and the horizon of the model T = 5 years. The growth rate in
home values is l = 0.04, and the price of risk k = 0.25.
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Fig. 10. Two-horizon model: Loan value as LTV is varied for loans with and without
appreciation sharing. The parameters for the plot are as follows: willingness to pay
coefficient c = 0.1, home price volatility is r = 0.04, foreclosure recovery fraction /
= 0.7, risk-free rate r = 0.03, the house value growth rate in each period is l1 = �0.05
and l2 = +0.04, price of risk k = 0.25, and the two horizons of the model are s = 1 and
T = 10 years. The appreciation share fraction is h = 0.50 for the case when a SAM is
applied, and h = 0 when there is no share appreciation. The coupon rate on the loan
is 3.3%. The coupon rate on the loan has been set such that at the optimal LTV, the
loan with a SAM prices up close to par.
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The probability q incorporates the effects of the risk premium
for illiquidity of the housing market. Note that l(t) has been writ-
ten as a deterministic function of time, as it is allowed to vary—
accordingly d varies with time as well. The loan is valued by back-
ward recursion, starting at the horizon of the model T, and working
back to each previous period the expected discounted loan value,
eventually reaching time zero, to obtain current loan value. The
terminal values of home prices HT on the tree determine the pay-
offs in the event of no default with and without appreciation shar-
ing. During backward recursion, if the home price level is below
the default barrier D, we foreclose and assume that the value is /
times the defaulted value of the home. We note that the tree is still
recombining despite the fact that the home value growth rate
changes over time, because the (risk-neutral) branching probabili-
ties q vary over time and accommodate the changes in growth
rates. Our main goal here is to allow for different growth views
over the investment horizon. The model is applicable to more than
two periods as well.

An important benefit of the tree approach is that it is very gen-
eral and may be extended in different ways. It is easy to incorpo-
rate coupon payments on the tree each period for as long as the
loan has not defaulted. Because our model is focused only on stra-
tegic default, the spread over the risk free rate used in the coupon
here should be interpreted as compensation for strategic default.
The model may be extended to account for non-strategic default
and prepayment risk, though this is not the goal of the analysis
here. In the ensuing examples, we set the coupon such that it yields
a par value loan exclusive of shared appreciation when the LTV is
set optimally.

To illustrate the application of the model, see Fig. 10. The model
has two periods of one and nine years, respectively, the first with a
negative growth rate (�5%) and the second with positive growth
(+4%). The results are similar to the ones encountered in the single
horizon problem, in that the optimal LTV for a loan with a SAM is
lower than that for a loan without a SAM. The SAM case gives a
higher economic value to the loan at the optimal LTV. The coupon

rate on the loan has been set such that at the optimal LTV, the loan
prices up close to par.

In Fig. 11 we examine whether a period of negative growth fol-
lowed by one of positive growth is better than the reverse situa-
tion, i.e., positive growth followed by negative growth. We see
that optimal loan values are lower when the first period has nega-
tive growth. Therefore, LTV has to be set lower when there is neg-
ative growth initially in house prices.

5.2. Implementation detail and issues

The various aspects of the model we have seen in preceding sec-
tions make the qualitative prescriptions that arise very clear. The
trade-offs between high default at high LTV and writing off too
much principal at low LTV result in a sweet spot for LTV at which
the mark-to-market value of the loan is optimized. In this section,
we discuss various issues that relate to the use of principal reduc-
tion in real-world settings and current practice.

First, we see that the model requires a parsimonious set of
parameters. The main driving parameters of the house price pro-
cess, i.e., the annual mean and standard deviation of the geometric
Brownian motion process may be derived from proxy series such
as the Case-Shiller index. The 20-city index annualized quarterly
return from 1967 to early 2012 has an average mean return of
3% (l) with a standard deviation (r) of 8%. The skewness is mildly
negative and kurtosis is mildly positive. The series is marked by
long up and down trends and not indicative of extreme values,
and is well described by the chosen process. Other parameters such
as the risk free rate are easily obtained from the Treasury bill mar-
kets, and the risk premium for mortgages can be backed out from a
factor model of housing returns. The input values for the loan itself,
i.e., H, L, T are known and entered into the model.

Second, the shared appreciation component requires two user-
specified parameters, the strike level K, that is usually set to the
current value of H, and the fractional share h in the upside over
K. The share h ranges from 20% to 50% but is usually at the lower
end of the range. 12

Third, the model requires recovery rates on default. These are
also known as REO discounts in the literature. These vary from
state to state in an average range of 10–30%,13 but can be extremely
different on a loan-to-loan basis, and can be much higher. It is
important to note that the REO discount is critical in the model when
LTV is high and the probability of default is low, and it is of less con-
sequence when loan principal is written down to sufficiently staunch
the probability of strategic default. From Fig. 5 we see that the opti-
mal LTV is not highly sensitive to the recovery rate (one minus the
REO discount) on foreclosure.

Fourth, the likelihood of foreclosure depends on the default bar-
rier, parameterized by the willingness to pay parameter c. This is
the only latent variable in the model, and it captures the propen-
sity to default and the various frictions related to default, such as
relocation costs, and other borrower characteristics. There are
two approaches to eliciting the willingness to pay parameter.
One, since this is the only unobservable variable in the model, an
initial base value for c may be obtained from the current price of
the loan, i.e., c can be ‘‘implied’’ in the same way implied volatility
is backed out from an option-pricing model. However, it is not al-
ways easy to determine the fair market value of a distressed mort-
gage. Two, an alternate approach is to estimate empirically from
historical defaults the negative equity level at which foreclosures
occur for a borrower with given characteristics pertinent to the
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Fig. 11. Two-horizon model: Loan value as LTV is varied for loans when there are
periods of positive and negative growth in home values. The parameters for the plot
are as follows: willingness to pay coefficient c = 0.1, home price volatility is
r = 0.04, foreclosure recovery fraction / = 0.7, risk-free rate r = 0.03, the house value
growth rate in each period is l1 = �0.05 and l2 = +0.05 (reversed in the second
case), price of risk k = 0.25, and the two horizons of the model are s = 2 and
T = 4 years. The appreciation share fraction is h = 0.50. The coupon rate on the loan
is 4.4%. The coupon rate on the loan has been set such that at the optimal LTV, the
loan for the first up then down scenario prices up close to par.

12 h t t p : / / w w w . h o u s i n g p o l i c y . o r g / t o o l b o x / s t r a t e g y / p o l i c i e s /
shared_equity.html?tierid=97.

13 http://blogs.wsj.com/developments/2012/03/14/will-the-foreclosure-discount-
grow-this-year/.
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loan in question. Knowing the level of negative equity that triggers
strategic default provides the default barrier D, which may then be
used to back out c implicitly using Eq. (2). Data on negative equity
on default across many loans is available to loan servicers like Oc-
wen as well as mortgage data collection firms such as CoreLogic.14

Calibration and parameterization of such models is always an
important practical matter, but this model is reasonably parsimo-
nious. Further, as may be seen from the figures, the prescriptions
are to write down LTV to within a fairly narrow range that extends
from 0.90 to about 1.05 across a wide range of parameters. Because
of a sharper drop in mark-to-market value on the right side of the
optimal LTV point, it is suggested that erring on the side of shading
down LTV a bit will help mitigate costlier errors from underesti-
mating the probability of default. Offsetting this, the gains to
restructuring and forming portfolios of distressed debt are poten-
tially large, as shown in Das and Kim (2012).

Implementation in the market place has been proceeding at an
increasing pace. Recent regulation has recognized the benefits of
principal write-downs with the passing of the HAMP-PRA (effec-
tive October 2010),15 making principal reduction another arm of
the regulations aimed at protecting the housing market, and this
program has now been extended to second liens as well. There has
been recent controversy about HAMP-PRA because the FHFA has
been resisting using principal reductions, arguing that consequent
moral hazard may be disastrous for the markets and that principal
forbearance is a better alternative. 16 However, as we know from
the model and from arguments made in the press, that shared appre-
ciation modifications will alleviate the moral hazard problem.17 Tax
consequences may also complicate principal reductions since the re-
lief is taxable in the eyes of the IRS, though relief has been granted
until end 2012.18

6. Discussion and extensions

Investments in distressed home loans increased as the housing
crisis deepened. Banks are holding more of these loans, and are
attempting to modify these loans in a manner that will optimize
the value of their loan books. Likewise, specialized funds that
buy and modify home loans also write down principal to maximize
the value of their holdings. This paper provides a simple and
closed-form model of loan value that may be used to determine
the optimal LTV at which a loan should be reset in order to maxi-
mize loan portfolio values.

The reduced-form model presented here is parsimonious. It is
solved in closed-form and requires very few parameters: the vola-
tility of home prices (r), expected growth in home value (l), the
price of housing risk (k), the percentage recovery value on foreclo-
sure (/), and the willingness to pay parameter (c). The other
parameters—the risk-free rate, appreciation share, and horizon
are easy for the user to supply. The closed-form model has also
been generalized to an implementation with binomial trees so that
different periodic growth rates, coupons and other loan features
may be analyzed on the tree.

The expected growth and volatility of home prices may be ob-
tained from various real-estate indexes or market forecasts. There

are studies that estimate expected foreclosure recovery rates. The
interesting parameter to estimate is willingness to pay, and given
a corpus of defaulted loans, we may extract this from an examina-
tion of the levels of negative equity at which borrowers chose to
default. Developing econometric models to estimate willingness
to pay is an interesting avenue for further research as this is at
the heart of any analysis of strategic default.

To summarize, the main contributions of this paper are as fol-
lows. First, we develop two models (a closed-form equation and a
tree model) for optimizing loan modifications in the presence of
strategic default. The model also accounts for non-tradability of
the underlying home. Several comparative statics are presented
graphically to show the sensitivity of home values to various loan
parameters. Second, we show that loan modifications with shared
appreciation appear to perform better than loan modifications
without shared appreciation, as it enables the lender to modify
the loan to lower LTVs than without shared appreciation, yet max-
imize the value of the loan via the shared appreciation component.
Third, the model may be used for a range of home price growth sce-
narios, in particular mean-reversion in home prices and different
growth rates for different periods, thereby allowing the modeler
to determine the optimal loan modification under various future
price assumptions in the housing markets. Overall, the paper pro-
vides a simple analysis of how principal forgiveness may be applied
to managing the strategic default aspect of the housing crisis.

The model is parsimonious but future extensions can provide for
parameter uncertainty and adverse selection, related to the willing-
ness to pay c. As pointed out in Adelino et al. (2009), there are both
Type I and II errors in loan modification. There is the risk of redefault,
i.e., the borrower still defaults after costly renegotiation, and there is
cure risk, i.e., a borrower would have ceased being delinquent with-
out modification. Which one of these is more critical? From the
shape of the loan value function in Fig. 8, we see that value drops
off very sharply to the right of optimal LTV and more slowly to the
left of optimal LTV. We also see that to the left of the optimal value,
willingness to pay does not matter. As posited earlier, this suggests
that erring on the side of biasing down the estimate of c is safer and
reduces redefault risk. Of course, if we estimate c too low then the
model may provide an optimal modified loan value that is lower
than what is recovered in foreclosure, leading to no modification,
allowing for a possible cure of the loan. In short, writing down prin-
cipal a little more than needed helps manage both, redefault risk and
cure risk. Aside from this heuristic, extending this reduced-form
model to asymmetric information between the lender and borrower
is a natural extension in future work.
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