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1. Introduction

The pricing of American options on stocks was
rendered computable by the work of Cox et al. (1979)
(CRR) and the ensuing work of Jarrow and Rudd
(1983). They developed a convergent option pricing
scheme in a Black–Merton–Scholes world (Black and
Scholes 1973, Merton 1973) on a discrete-time lattice.
In this setting stock prices ½SðtÞ� are assumed to follow
a geometric Brownian motion, i.e.

dSðtÞ ¼ �ðtÞSðtÞdtþ �ðtÞSðtÞdZðtÞ , Sð0Þ � S0: ð1Þ

The drift of the stock is a deterministic function �(t)
and the variance coefficient �(t) is also deterministic.
dZðtÞ represents a standard Wiener increment:
dZ � N½0, dt�.

The CRR solution discretely approximates the
stochastic process above on a binomial tree, using a
time interval D. This scheme has at least two desirable
properties. First, the binomial approximation to the
Ito process in equation (1) renders the required terminal
distribution when the discrete interval D becomes
small. Second, the use of the geometric Brownian motion
for stocks when �(t) is constant results in a recombining
tree, making computation possible in polynomial time.
Without recombination, the problem would require
exponential time. Therefore the CRR model, which
assumes �(t) to be constant, is the simplest model avail-
able for pricing American equity options. At the other

end of the spectrum is the case when �(t) is fully
stochastic, and has been solved for European options
using Fourier transform methods by Heston (1993).
However, the Fourier inversion is often computationally
difficult and the model does not permit solutions
for American options. In this paper, we are able to
bridge these models at different ends of the volatility
spectrum, by developing a computationally efficient
algorithm that (a) has a polynomial Oðkn2kÞ run time,
(b) can price options on stochastic volatility, (c) allows
for the pricing of American options and (d) converges
rapidly, thus offering one facile solution to this class
of problems.

To see why recombination is achieved in the basic
CRR model, examination of the integral solution for
equation (1) is instructive. With constant coefficients,
we have in time interval D:

Sðtþ�Þ ¼ SðtÞ exp ��
V

2

� �
�þ ��

ffiffiffiffi
�

p
� �

, � � Nð0, 1Þ,

ð2Þ

where VðtÞ ¼ �2
ðtÞ. On the binomial tree, the normal

distribution for � is approximated by allowing it to
take values in the set f�1, þ 1g. In the CRR model
we have

Sðtþ�Þ ¼ SðtÞ exp ��
ffiffiffiffi
�

pn o
, � � Nð0, 1Þ: ð3Þ

It is easily verified that after two periods (i.e. 2�), the
stock price Sðtþ 2�Þ would be the same if the shock �
were first positive and then negative, or vice versa,
i.e. Sðtþ 2�Þ ¼ SðtÞ exp �� ðV=2Þð Þ�½ �. Therefore, after
n periods, the number of terminal nodes would only*Corresponding author. Email: srdas@scu.edu
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be ðnþ 1Þ and not 2n as would be the case with a non-
recombining scheme for the lattice. This feature of the
binomial tree approach of CRR is usually unavailable
when extensions of the Black–Merton–Scholes (BMS)
model are undertaken. Notice that when �(t) is not con-
stant, the argument outlined in the previous paragraph
fails and recombination of the tree is lost.

A lattice approach such as ours allows dynamic
programming implementation and hence admits the
pricing of American options. We analyse the case when
volatility follows a Markov-switching process. So far,
there are some approaches to dealing with the problem.
For one, Brigo et al. (2004) develop a simple formula
for option prices when stock prices are modelled as a
mixture of lognormals. Longstaff and Schwartz (2001)
provide a simulation model in which American options
may be valued quite easily; their approach would be
applicable to the problem we address in this paper. The
lattice model in this paper provides one method to price
such options in polynomial time. It also admits the pri-
cing of American options, where optimal stopping deci-
sions are required.

A recent set of papers has adopted a new approach
now known as the ‘normal mixture diffusion’ (NMD)
model. Excellent expositions of this approach may be
obtained in Alexander (2004), Mercurio (2002), Brigo
and Mercurio (2002) and Brigo et al. (2004). In the
NMD class of models, volatility is extended from the
Black–Scholes setting to being random, i.e. drawn from
a distribution of possible values but not going so far as
to make volatility follow a stochastic process as in the
model of Hull and White (1987) or Heston (1993).
Tractable versions are obtained by limiting these values
to a finite set occurring with mixing probability. This
model readily develops a short-term smile. Further, as
in Alexander (2004), by allowing the mixing probabilities
to be stochastic, the model also admits a long-term smile.
Our paper is closest in spirit to these models. We allow
volatility to obey a special type of stochastic process,
a regime-switching one. This is actually similar to the
NMD model with stochastic probability, except in our
model, the switching probabilities are state dependent
and are different depending on which volatility regime
the system is presently occupying. Hence, we may think
of the model of this paper as one that intersects the realm
of stochastic volatility and NMD models.

Extending the CRR algorithm to the case of switching
volatility means that the recombination feature may be

lost. No more does an up-move in � followed by a down-
move result in the same stock price as a down-move,
then up-move in �. This is because the volatility multiply-

ing through the � value varies at each point in time.
In this paper, we develop an algorithm that resides on
a complex, though recombining tree, resulting in a poly-

nomial time algorithm for pricing options with Markov-
switching volatility for even a large number of volatility

states k.
In order to represent the joint process of fS,Vg over

a time interval [0,T] would require a lattice in kþ 1
dimensions (not counting the time dimension t). For

example, if k¼ 2, and each dimension were approximated
using a binomial scheme, the entire state-space in S and V
would require four branches emanating from each node
on the tree (for (i) S up, V up, (ii) S up, V down, (iii) S
down, V up, (iv) S down, V down). If this were not
recombining, then the number of terminal nodes for n
steps on the tree would be 4n and the computing effort
would grow exponentially in n.

This paper develops a computable approach to this
class of problems. To the extent that the volatility stays
within the same state the binomial process is still recom-
bining. Also, a certain extent of recombination occurs
in the BMS model, as a number of up and down moves
in the same state will cancel each other out. Hence,
Markov switching in volatility does offer a certain
degree of recombination. Indeed, we show that the recom-
bination attained is sufficient, even in the worst case,
to deliver a polynomial algorithm instead of an expo-
nential one. We will prove that the run time will be
Oðkn2kÞ, where k is the number of states in the volatility
Markov chain.

There are many benefits to our computational method.
First, we add to the available pricing algorithms for
American options with stochastic volatility. In a recent
paper, Duan et al. (1998) develop a model for option
pricing with regime switches in the equity price. We pro-
vide a model for switching volatility, thereby offering
a new lattice scheme for option pricing with stochastic
volatility of a particular form. As the number of states
increases, the switching model approaches stochastic
volatility over a continuous state space. Second, stochas-
tic volatility models are empirically justified (see Bates
1996), yet apart from the Heston (1993) closed form solu-
tion for a particular SV model, very few efficient pricing
methods exist. The first paper in this class of models is
that of Hilliard and Schwartz (1996). They show how
to create a lattice for mean-reverting stochastic volatility
when pricing equity options. Brigo and Mercurio (2002)
present a model with a mixture of lognormal diffusions,
interpreted as an approach to introducing stochastic
volatility via switching processes. Bollen (1998) develops
a pentanomial lattice similar in spirit to the model in
this paper. He eschews a quadrinomial model such as
ours since recombination is not attained as in our
scheme. In addition, we are able to prove the polynomial
complexity of our model. Leisen (2000) is able to show
that a sequence of discrete-time models converges to
the stochastic volatility case. Finally, our methods may
be extended to jump-diffusions as well, by merging our
Markov chain method with the techniques developed
in the paper by Amin (1993). Finally, since there are
several methods available for estimation of Markov
chain systems (see Hamilton 1990), our model is easy to
implement.

2. The Markov-switching framework

The stock price process in equation (1) will in general
have a volatility process defined by k states. We denote
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these states Vj, j ¼ 1 . . . k. The transition matrix for
volatility switches (from state i to state j) is fpijg, i, j ¼
1 . . . k. Each probability may be written in functional
form and then estimated. In general, we may write

pij ¼ fðx,�;�Þ, i 6¼ j,

pij ¼ 1�
P
j6¼i

fðx,�;� Þ, i ¼ j,

where x is a vector of state variables and � is a vector
of parameters for the probability function. These param-
eters are determined by estimation. As an illustrative
example, we may employ the one-parameter logit
function pij ¼ expð�ijÞ=½1þ expð�ijÞ�. Or if we need
the transition probabilities to be correlated with the
stock price ðSÞ we may estimate a model where pij ¼
expð�ij þ �ijSÞ=½1þ expð�ij þ �ijSÞ�. In order to keep the
exposition simple, without loss of generality, we restrict
attention to a two-state model.

2.1. A two-state model

To fix ideas we explore a simplified version of the
regime-switching volatility model in a two-state setting
for volatility. Using the notation from the previous
section, we write

ffiffiffiffiffiffiffiffiffi
VðtÞ

p
¼ �ðtÞ ¼

�H (the high volatility state),

�L (the low volatility state):

(
ð4Þ

The transitions from one state to the other are driven by
a transition probability matrix Pð�Þ which is a function
of the time interval between realizations of (S,V).
We write the matrix as

Pð�Þ ¼
pH 1� pH

1� pL pL

" #
:

Of course, the transition probability matrix estimated
for a given D may be transformed for time intervals
other than D using the generator matrix for the
Markov chain, denoted G. As usual, exp G�ð Þ ¼ Pð�Þ.
For small D, Pð�Þ ¼ Iþ G�, where I is the identity
matrix. In general, Pð�Þ ¼ Iþ

P1

n¼1 �
nGn=n!. The two-

state Markov chain is representative of reality because
stock volatility usually tends to stay at normal values
for periods of time punctuated by moments of high var-
iance. Furthermore, there is ample evidence of volatility
persistence (see the ARCH and GARCH literature),
which is also possible in the Markov-switching frame-
work.

By increasing the number of states in the Markov
chain, and choosing the transition matrix appropriately,
we obtain a sequence of models that get closer to a
stochastic volatility model, that is, if this is desired at
all. Usually, a two- or three-state volatility process does
quite well in capturing the essence of the pricing problem
faced in the financial markets.

Equations (1), (2) and (4) may be discretized for
embedding on the bivariate (S,V)-lattice. The equations
are as follows:

Sðtþ�Þ ¼ SðtÞ exp ��
�ðtÞ2

2

 !
�� �ðtÞ

ffiffiffiffi
�

p
( )

,

�ðtÞ ¼
�H,

�L:

(

If the volatility remained purely in one state or the other,
we would obtain two binomial trees, one for the high
volatility situation, �H, and the other for the low volatility
situation, �L.

The discretization provided here to the stochastic dif-
ferential equation (1) is known as the Jarrow and Rudd
(1983) version of the CRR model. The basic CRR model
posits a different discretization, which is as follows:

Sðtþ�Þ ¼ SðtÞ exp ��ðtÞ
ffiffiffiffi
�

pn o
,

�ðtÞ ¼
�H,

�L:

(

Any version of the model is acceptable. Both forms
converge to the continuous-time limit of the process.
In the numerical experiments we provide, the CRR
version of the model is used, as in some cases, we are
able to achieve a further improvement in complexity.
The complexity level Oðkn2kÞ (derived later) is an upper
bound over all forms of lattice implementation for
the model.

Since volatility is stochastic and switches between
low and high states, our numerical algorithm needs to
account for this behaviour. The intuitive idea is as
follows. First, we generate a recombining stock price
lattice for each possible volatility state. In our setting,
this would result in two separate lattices. Since these are
recombining, the number of nodes would be minimal,
ensuring economical computational effort. Second, since
volatility levels switch between low and high states, our
numerical procedure would intuitively entail jumping
from one lattice to the other when volatility switches.
Therefore, proceeding with a more detailed explanation
of the algorithm, we first discuss the most important
property of the joint process for (S,V): the martingale
property.

2.2. No-arbitrage requirements

The results of Harrison and Kreps (1979) and
Harrison and Pliska (1981) state that prices of contingent
claims are determined by discounting the payoffs from
the security at the risk free rate of interest ðrÞ and deter-
mining their expected value. This expected value must
be taken with respect to a probability measure Q, under
which the prices of discounted assets are martingales.
Therefore, over time interval D, under the measure Q:

SðtÞ ¼ expð�r�ÞE
Q
t ½Sðtþ�Þ�: ð5Þ
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Furthermore, under the well-known results of BMS,
discounting is undertaken using the risk-less discount
rate r, rather than the true return rate �. In order to
ensure that equation (5) holds we define the measure Q
of the binomial process as follows:

Sðtþ�Þ ¼
SðtÞu, w/prob q,

SðtÞd, w/prob ð1� qÞ,

(

q ¼
expðr�Þ � d

u� d
,

u ¼ exp þ�ðtÞ
ffiffiffiffi
�

pn o
,

d ¼ exp ��ðtÞ
ffiffiffiffi
�

pn o
:

Note that � is replaced by r. It can be verified that
the martingale condition (5) holds in this setting. The pro-
bability q � 1=2 and in the continuous-time limit, q ¼ 1=2.

In a bivariate system with stochastic volatility, the
joint system moves ½SðtÞ, �ðtÞ� forward, and one possible
representation is a double-binomial model. This is
described as follows.

Sðtþ�Þ

�ðtþ�Þ

" #
¼

SðtÞ uj

�H

" #

SðtÞ uj

�L

" #

SðtÞ dj

�H

" #

SðtÞ dj

�L

" #

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

with prob

qpj

qð1�pjÞ

ð1�qÞpj

ð1�qÞð1�pjÞ

0
BBBBB@

1
CCCCCA, j¼fH,Lg:

ð6Þ

In this system, it can be checked that discounted stock
prices are a martingale and satisfy equation (5). Recall
that pj is the probability of remaining in state j.

2.3. Path-independence and recombination
in the two-state model

There is a simple way to see that the tree recombines
and does not explode, thereby enabling polynomial
complexity in the model. Consider two possible paths:
an up-move in the high volatility state followed by a
down-move in the low volatility state, and a down-move
in the low volatility state followed by an up-move in the
high volatility state. In the first case, the resulting stock
price will be SuHdL, and in the second case it will be
SdLuH. Since the moves are simply multiplicative, these
re-factor to the same stock price, SuHdL. Hence, the
sequence of up and down moves in each state is not
relevant, just the number of each type of the four
moves. This gives the stock price after n periods on the
tree, the normalized form being

S ðuHÞ
n1 ðdHÞ

n2 ðuLÞ
n3 ðdLÞ

n4 , n1 þ n2 þ n3 þ n4 ¼ n:

All paths with the same nj, j ¼ 1, 2, 3, 4, will end in the
same place, which results in recombination (albeit of
complex form) in the model.

2.4. Generalization to k states

The 2-state model described above is easily extended
to k>2 states. Note that the probability q depends
only on the current volatility state. The change in S(t)
populates a binomial state space, and the change in
volatility populates a k-nomial space. The product space
of ½SðtÞ, �ðtÞ� therefore results in ð2kÞ branches from
each node. The probabilities pij, given current volatility
state i, are read off the transition matrix Pð�Þ.
The transition matrix is determined from the generator
matrix Gð�Þ.

3. Algorithm complexity

In this section, we show that the run time of the algorithm
is order Oðkn2kÞ where n is the number of periods on the
lattice, and k is the number of states in the volatility
Markov chain. Note that � ¼ T=n, where T is the matur-
ity of the derivative security lattice. We build up our
results in a series of steps.

Proposition 1: The number of distinct underlying prices
at period n is nþ2k�1

2k�1

� �
.

Proof: Due to recombination, after n steps, the stock
price can be expressed as

S ðu1Þ
U1 ðd1Þ

D1 ðu2Þ
U2 ðd2Þ

D2 . . . ðukÞ
Uk ðdkÞ

Dk ,

Xk
i¼1

Ui þDi ¼ n,

where uk and dk are the up and down moves for
volatility state k, and Uk and Dk are the total number
of times those moves were taken. The number of distinct
prices is in a one-to-one correspondence with nþ2k�1

2k�1

� �
,

the number of ways to choose 2k� 1 distinct values out
of the range 1, 2, . . . , nþ 2k� 1. The n unchosen
numbers represent the up and down moves. The number
of elements before the first one chosen is the number of
up moves in the first volatility level, the number of
elements between the first and second ones chosen is
the number of down moves in the first volatility level,
the number of elements between the second and third
is the number up moves in the second state, and so on,
with the number of down moves in the ultimate
state being the number of elements past the last one cho-
sen. In the two-state example, S ðuHÞ

5
ðdHÞ

3
ðuLÞ

0
ðd2Þ

1

would correspond to choosing 6, 10 and 11 from
1, . . . , 12. Every recombinant path has precisely one
representation, and every set of choices represents
a valid path. œ

Proposition 2: The total number of nodes in the tree
is nþ2k

2k

� �
.
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Proof: Using Proposition 1 for each level we simply
carry out a summation across all levels, i.e.

Xn
i¼0

iþ 2k� 1

2k� 1

� �
¼

2k� 1

2k� 1

� �
þ
Xn
i¼1

iþ 2k� 1

2k� 1

� �

¼
2k

2k

� �
þ
Xn
i¼1

iþ 2k� 1

2k� 1

� �

¼
2kþ 1

2k

� �
þ
Xn
i¼2

iþ 2k� 1

2k� 1

� �

¼
2kþ 2

2k

� �
þ
Xn
i¼3

iþ 2k� 1

2k� 1

� �

. .
.

¼
nþ 2k

2k

� �
,

which provides the result. œ

Proposition 3: The complexity for the algorithm
is Oðkn2kÞ.

Proof: Every node in the tree has at most 2k outgoing
edges, representing the up and down moves for each of
the k volatility levels. For every node in the tree but those
in the last level, we have to cross all 2k edges. Thus, our
running time is 2k nþ2k

2k

� �
þ nþ2k�1

2k�1

� �
which is Oðkn2kÞ. œ

4. Numerical results

This section explores the algorithm numerically. Option
prices are computed using the approximation model. We
examine the speed of the algorithm. We increase the num-
ber of time periods in the model and determine whether
the model suffers serious degradation in performance.
Before proceeding with numerical exercises, we describe
the computer implementation of the model.

4.1. Program design

We solve our lattice in a bottom-up fashion. We begin by
creating all of the leaf-nodes of the lattice, and deter-
mining their values. We concurrently compute the
moments, and the American/European put/call values.
We then iterate over each level of the lattice, and for
each node, we push the probability-weighted values to
the parent nodes. When we arrive at the root, we have
solutions for all possible initial volatilities.

We used three main data structures in the program.
We had: a list of all of the nodes in the active level;
a tree of the parent nodes; and a list of the parent
nodes, which replaced the active list as we switched levels.
We used the natural ordering to order the tree. As we
iterated over the active node list, we would first check
if the node should be exercised (for American options).
Then we checked if each of its potential parent nodes
had already been encountered as the parent of a previous
node. If not, we would create it. Finally, we pushed the
probability mass backward.

While testing the implementation, we found that it
was more important to use a simple binary tree, created
in a balanced fashion, than it was to use a balancing tree
structure. This was achieved by permuting the terminal
level before we began our computation. Still, the searches
dominate the running time, and we expect that hashing
the level could improve the running time.

Beyond the efficiency of this approach, other advan-
tages are that we can compute the moments of the
distribution, allowing us to test and fit our volatilities to
real values. This approach also allows concurrent com-
putation of multiple strike prices and gives solutions for
all possible initial volatilities.

4.2. Comparing option prices

We price call and put options. We verified the accuracy
using simulation. As an additional metric, we computed
the price of puts using put–call parity, and then compared
the prices to the value of puts computed directly.
This gives another check on the algorithm and we
find that the results match, as should be expected. Once
again, we obtain values for a range of maturities,
T ¼ f0:25, 0:50, 0:75, 1:00g and employ the same param-
eterization as in the previous section. We define the
Markov chain to be (on the left, and the corresponding
generator matrix on the right)

0:7 0:3

0:2 0:8

� 	
,

�0:415888 0:415888

0:277259 �0:277259

� 	
:

We also employ a range of moneyness: strike prices
are set to be at the money forward, i.e. K ¼ S0e

rT as
well as �10% of this value, i.e. K ¼ 0:9 S0e

rT and
K ¼ 1:1 S0e

rT. Results are presented in table 1. In each
cell, we report the value of calls and puts. Since the option
values tend to oscillate depending on the number of steps
in the tree being odd or even, we computed option values
for n and nþ 1 steps and then averaged these values. The
value of the options also depends critically on whether we
start from the high volatility state or the low volatility
one. Hence, we report values from both states.

There are several features of the model that we notice
from the the first cut numerical analysis. First, the rate at
which the lattice model converges to the simulation is
rapid and comes from the benefit of the polynomial run
time derived earlier. Second, it is checked that put–call
parity holds exactly. Third, the initial volatility state mat-
ters in the pricing because the volatility in the model is

Algorithm 1 Valuing Options With Stochastic Volatility
Create terminal nodes
for all Levels ‘ ¼ n, . . . , 1 do

for all Active nodes v in level ‘ do
Exercise, as appropriate
for all Incoming edge e of v do

if w ¼ sourceðeÞ is new then
Create w
Add w to active list for level ‘� 1
Push values from v to w weighted by e
Deactivate v
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persistent, i.e. transition probabilities are low, and there is
a high probability of remaining with the initial volatility
regime. Note that this differentiates the model from nor-
mal mixture models, where persistence is not imposed
since each step in the model allows a draw from the
mixture of distributions. Finally, our lattice approach
enables the pricing of American options just as easily as
European ones. In table 2 we show how different the
prices of American and European puts are.

4.3. Convergence and speed

We let the number of periods (n) on the lattice increase.
Retaining the parameters from the previous section, we
examine option values as n becomes very large in order to
assess when convergence occurs to a stable value. This
analysis will also identify the nature of convergence, i.e.
oscillatory versus monotonic. We plot the values of
put options only in figure 1. It is clear that oscillatory
convergence is achieved.

Correspondingly, we also plot the runtime taken as n
becomes large in figure 2. The run time is clearly growing
slowly, as expected from the polynomial run time result.
We note, however, that as computers become even faster
over time, the run times may become even better than
portrayed here.

4.4. Varying the parameters

In order to understand the impact of parameters on
option prices, we use the model to examine the effect of
various facets of the model. There are two aspects of the
Markov-switching model that bear investigation.
These are (i) the difference in volatilities in the different
regimes (note that in the limiting case constant volatility,

we may set all Vj ¼ Vi, 8i, j), and (ii) variations in the
degree of persistence in a state, embedded in the transition
matrix.

To keep matters simple, we examine the case
where there are only two volatility levels. In this simplest
case, the impact of varying volatility levels and regime
persistence should be easy to infer. We price options
for T¼ 1. Three different sets of volatility levels are
chosen: ðVL,VHÞ ¼ fð0:052, 0:252Þ, ð0:102, 0:202Þ, ð0:1252,
0:1752Þg. Initial volatility is chosen to be either VL or
VH. Finally, the level of persistence of each volatility
state is set to three different levels via a choice of

Table 1. Call and put prices from the algorithm. The maturity
for the option is T ¼ f0:25; 0:50; 0:75; 1:00g years, the interest
rate is r ¼ 0:05. The initial stock price is S0 ¼ 100: The high
volatility is �H ¼ 0:40 and the low volatility is �L ¼ 0:10: The
transition matrix used had the probability of remaining in the
high regime (H) as 70% and remaining in the low regime (L)
as 80%. The value of the call and put are reported for initial
states high (H) and low (L), respectively. Each option value
is based on the average of two computations with n and

nþ 1 steps, where n ¼ 25:

Maturity (yr) Strike Call (H) Call (L) Put (H) Put (L)

0.25 91.13 13.451 10.144 3.451 0.144
0.25 101.26 7.777 2.229 7.777 2.229
0.25 111.38 4.124 0.193 14.124 10.193
0.50 92.28 15.954 10.616 5.954 0.616
0.50 102.53 10.703 3.442 10.703 3.442
0.50 112.78 6.929 0.781 16.929 10.781
0.75 93.44 17.768 11.251 7.768 1.251
0.75 103.82 12.779 4.537 12.779 4.537
0.75 114.20 8.975 1.532 18.975 11.532
1.00 94.61 19.289 11.970 9.289 1.970
1.00 105.13 14.413 5.579 14.413 5.579
1.00 115.64 10.642 2.359 20.642 12.359

Table 2. European and American put prices from the algorithm.
The maturity for the option is T ¼ f0:25; 0:50; 0:75; 1:00g years,
the interest rate is r ¼ 0:05. The initial stock price is S0 ¼ 100.
The high volatility is �H ¼ 0:40 and the low volatility is
�L ¼ 0:10. The transition matrix used had the probability of
remaining in the high regime (H) as 70% and remaining in the
low regime (L) as 80%. The value of the call and put are
reported for initial states high (H) and low (L), respectively.
Each option value is based on the average of two computations

with n and nþ 1 steps, where n ¼ 25.

European American

Maturity (yr) Strike Put (H) Put (L) Put(H) Put(L)

0.25 91.13 3.451 0.144 7.260 0.266
0.25 101.26 7.777 2.229 14.728 3.107
0.25 111.38 14.124 10.193 23.948 12.369
0.50 92.28 5.954 0.616 12.146 1.073
0.50 102.53 10.703 3.442 20.183 5.044
0.50 112.78 16.929 10.781 29.520 14.175
0.75 93.44 7.768 1.251 15.826 2.154
0.75 103.82 12.779 4.537 24.184 6.876
0.75 114.20 18.975 11.532 33.642 15.924
1.00 94.61 9.289 1.970 18.808 3.381
1.00 105.13 14.413 5.579 27.467 8.661
1.00 115.64 20.642 12.359 37.019 17.708
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Figure 1. Plot of put values for varying time step. Prices are
expressed in per dollar terms. The maturity for the option is
T¼ 1 yr, the interest rate is r¼ 0.10. The initial stock price is
S0¼ 100. The high volatility is �H ¼ 0:20 and the low volatility
is �L ¼ 0:10. The transition matrix used had the probability
of remaining in the high regime (H) as 70% and remaining in
the low regime (L) as 80%. The value of the call and put are
reported for initial states high (H) and low (L), respectively.
The strike price is at the money forward.

100 Feature



transition matrix probabilities: ð�L, �HÞ ¼ fð0:9, 0:9Þ,
ð0:8, 0:8Þ, ð0:7, 0:7Þ, ð0:6, 0:6Þg. The risk-free rate is 10%.
The strike price chosen is at the money forward,
i.e. K ¼ S0e

rT. The number of time steps in the tree is
n¼ 100. The results are presented in table 3. We report
prices of call options only.

There are many interesting features of option prices
which may be seen from the numerical experiments.

(a) If the initial volatility state is low, then option prices
increase as the rate of transitions goes up (inferred
from the lower values of �j, j ¼ fH,Lg). This occurs
because the stock can migrate more easily to the high
volatility state. On the other hand, when the initial
volatility state is high, the converse occurs, and
option prices fall with more transitioning, as migra-
tion to the low volatility state becomes more likely.

(b) The change in option prices as the transition rate
increases is a function of the disparity between the
high and low volatility levels. As the disparity
decreases, intuitively, the change in option prices
falls, as the switch in the level of volatility is corre-
spondingly smaller.

(c) The further apart the high and low volatility levels
are, it means that the volatility of volatility is higher,
which should lead to higher average option prices.
This can be checked on the table by averaging the
option prices in high and low initial volatility col-
umns. As we go down the table, volatility disparity
declines, and so does the average option price, hold-
ing the transition rates constant for comparison
across volatility disparities.

5. Option smiles in the switching model

In this section, we investigate the volatility smiles gener-
ated by this model. We also look at the ease with which
the model may be calibrated using numerical examples.
The parameters used in this exercise are: initial stock price

$100, the number of steps in the model are n¼ 25 and the
risk-free rate is 5%. The high and low volatility levels are
50% and 20%.

We varied the transition probabilities between the
states and priced call options with both initial high
volatility or low volatility states. Options were priced
for a range of strikes, ranging from 70% of the
at-the-money forward strike to 130% of the ATMF
strike. Maturity was varied by a quarter year at a time
to a maximum maturity of one year. The option
prices were then used to back out Black–Scholes
implied volatilities which are displayed in figures 3–5.
Each figure has 2 plots; the one plot shows the
smile when the system is initially in the high volatility
state. The other plot corresponds to the initial volatility
state being low.

First, notice that the smile is shallow when the system
starts out in the high volatility state. On the other hand,
there is a substantial smile if the system starts in the low
volatility state. In figure 3, we can see this effect. In this
figure, the probability of remaining in each state is
70%; figure 4 shows the case when the probability of
remaining in each state is 51%. In the low volatility
state, there is a possibility of a spike in volatility which
leads to the exaggeration of the smile; this effect is ruled
out in the high state. The mild smile in the high state
comes purely from the slight tail fatness from the mixture
of distributions.

Second, the slope of the term structure of implied
volatilities (TSIV) is upward in the case of the initial
volatility state being low. The TSIV is downward sloping
when the initial volatility is high. This is intuitive, as given
more time to run, the influence of the opposite state
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Figure 2. The natural logarithm of the runtime as a function of
steps. The run time is measured in CPU seconds.

Table 3. European call option prices for varying parameters.
In this table we vary the levels of the volatility states, and
also the rates at which volatility transitions occur from one
state to another. Maturity T ¼ 1. Three different sets of
volatility levels are chosen: ðVL,VHÞ ¼ fð0:052, 0:252Þ,
ð0:102, 0:202Þ, ð0:1252, 0:1752Þg. Initial volatility V0 is chosen to
be either VL or VH. The level of persistence of each volatility
state is set to four different levels via a choice of transition
matrix probabilities: ð�L, �HÞ ¼ fð0:9, 0:9Þ, ð0:8, 0:8Þ, ð0:7, 0:7Þ,
ð0:6, 0:6Þg. The risk-free rate is 10%. Initial stock price is $100
and the strike price chosen is at the money forward,
i.e. K ¼ S0e

rT: The number of time steps in the tree is n ¼ 25.
Option prices are the average of computations on two trees of

n and nþ 1 steps.

ðVL,VHÞ ð�L, �HÞ V0 ¼ VL V0 ¼ VH

ð0:052, 0:252Þ (0.9, 0.9) 9.624 2.345
(0.8, 0.8) 9.296 2.906
(0.7, 0.7) 8.927 3.554
(0.6, 0.6) 8.479 4.373

ð0:102, 0:202Þ (0.9, 0.9) 7.790 4.134
(0.8, 0.8) 7.595 4.384
(0.7, 0.7) 7.375 4.670
(0.6, 0.6) 7.105 5.028

ð0:1252, 0:1752Þ (0.9, 0.9) 6.851 5.036
(0.8, 0.8) 6.748 5.154
(0.7, 0.7) 6.633 5.289
(0.6, 0.6) 6.490 5.457
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becomes more prevalent, and hence, volatility drifts
upward in expectation with time if it starts in the low
state; conversely for the high state.

Third, the smile becomes asymmetric at short maturi-
ties when the transition probabilities between states are
not balanced. In figure 5 this may be seen for the shortest
maturity of 0.25 years where there is an appreciable skew
for the initial low volatility case.

Fourth, the level of the smile depends on both the
initial state and the persistence of the states. From a
comparison of figures 3 and 4 we can see that the
steepness of the smile is lower in the former when the

initial state is low. This is because there is higher persis-
tence (70%) in the former figure as compared to the latter
figure (51% persistence). Likewise, the smile level is
higher when the initial state is high and persistence is
high.

5.1. Fitting the skew

In this section we examine a shortcoming of this class of
models and propose and implement a solution. Preceding
numerical examples of the model generated smiles centred
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Figure 3. Option smiles. We plot smiles for four maturities: f0:25, 0:50, 0:75, 1:00g years. The smiles are plotted for a range of
strikes from 0.7 times the ATM forward strike to 1.3 times. The one-year transition probabilities are pH ¼ 0:7 and pL ¼ 0:7. These
are the probabilities of remaining within the specified regime, H or L. The right plot is the smile if the initial volatility regime is H,
and the left plot is the smile when the volatility regime is L. Parameters: initial stock price $100, the number of steps in the model are
n¼ 25 and the risk-free rate is 5%. The high and low volatility levels are 50% and 20%.
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Figure 4. Option smiles. We plot smiles for four maturities: f0:25, 0:50, 0:75, 1:00g years. The smiles are plotted for a range of
strikes from 0.7 times the ATM forward strike to 1.3 times. The one-year transition probabilities are pH ¼ 0:51 and pL ¼ 0:51.
These are the probabilities of remaining within the specified regime, H or L. The left plot is the smile if the initial volatility regime is
H, and the right plot is the smile when the volatility regime is L. Parameters: initial stock price $100, the number of steps in the
model are n¼ 25 and the risk-free rate is 5%. The high and low volatility levels are 50% and 20%.
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at-the-money, and this had been pointed out in previous
work by Brigo et al. (2004). In our model, there is a
tendency towards this, though this is not always the
case, as we can see in the following example, where we
calibrate the model to option on the S&P500 index. We
chose this index for its well-known implied volatility
skew.

We fitted the model to S&P500 options on
22 November 2005. Figure 6 shows the results of the

calibration, both in terms of option prices and implied
volatility. The fit to option prices is quite good, and
the implied volatility skew fits well, except for
out-of-the-money options where the model is not good
at fitting the skew. This is a feature of the model, in
that it generates smiles more easily than skews, and
hence may be better calibrated to the FX options market
as in Brigo et al. (2004); symmetry follows from the fact
that the volatility state does not depend on the stock
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Figure 5. Option smiles. We plot smiles for four maturities: f0:25, 0:50, 0:75, 1:00g years. The smiles are plotted for a range of
strikes from 0.7 times the ATM forward strike to 1.3 times. The one-year transition probabilities are pH ¼ 0:5 and pL ¼ 0:9. These
are the probabilities of remaining within the specified regime, H or L. The left plot is the smile if the initial volatility regime is H, and
the right plot is the smile when the volatility regime is L. Parameters: initial stock price $100, the number of steps in the model are
n¼ 25 and the risk-free rate is 5%. The high and low volatility levels are 50% and 20%.
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Figure 6. Calibrating S&P500 option prices. We accessed the options data for SPX on 22 November 2005, and
downloaded the prices for calls maturing on 20 January 2006. The index value is 1261.23. The Libor rate for the same maturity
is approximated to be 4.2%. We fitted the model to the cross-section of all calls that exceeded $0.05 in value. Only 4 parameters
need fitting, values are: f�H ¼ 0:3759, �L ¼ 0:0101, �H ¼ 0:5214, �L ¼ 0:9417g. The transition probabilities are for 1/15 of a year.
After fitting we regenerated option prices from the model and plotted them against the prices in the market. The left plot shows the
calibration to the market prices when the initial volatility state is low (the best fit), and the right plot shows the same fit in terms
of implied volatility. The actual implied volatilities are plotted as dots, and the smiles are shown as third-order polynomial fits to the
dots. We used call options since puts are priced by put–call parity. Options less than 0.5% of the value of the index are dropped from
the analysis.
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price. The model may be extended to making volatility
negatively correlated with the stock price, in which case
skews will become easier to generate. However, this will
result in a loss of the recombination feature of the tree
and make computation more difficult. Extension to addi-
tional diffusion mixtures and a skew adjustment may be
undertaken as in the work of Brigo et al. (2004). The ideas
in this paper offer the lattice complement to simple
versions of their work, allowing for the valuing of
American-style options on mixture lattices.

Brigo et al. (2004) proposed an extended version of
the mixture class of models with asymmetric volatility,
which generates skews. Here we show that we can also
achieve this result by making an adjustment in the transi-
tion probabilities and not in volatility, as suggested in
Brigo et al. (2004). Our idea is to have one applicable
transition matrix when stock prices are high and another
one when stock prices are low. This is a new approach to
generating skews, not proposed earlier. This is done by
allowing the transition matrix to be state-dependent,
where it favours remaining in the high volatility state
when the stock price on the lattice is below its starting
value (the ‘low’ stock state), and favours remaining in
the low volatility state when the stock price is above its
initial price (the ‘high’ stock state). Hence, we have two
additional parameters in the model, and in total we need
to fit four transition probabilities: f�highH , �highL , �lowH , �lowL g

where the superscripts depend on whether the stock is
above or below its initial value. The advantage of
this approach over that of Brigo et al. (2004) is that the
lattice is still recombining, which we cannot achieve if
we make an adjustment in volatilities. Whether this pro-
vides better fitting than the model of Brigo et al. (2004) is
an open empirical question, and would require a larger
empirical effort than in this paper. Figure 7 shows the
smile when the transition matrix is dependent on ‘high’
and ‘low’ states.

Thus, having shown that this facile modification to
the model accommodates the skew, we may now refit

the model to the options on the S&P500. The implied
volatility plot for this fit is presented in figure 8, which
may be compared with the inferior fit of the model in
figure 6. Further, we imposed the following condition
on the fitting procedure:

�highH ¼ �lowL , �lowH ¼ �highL :

Hence, the number of parameters to be fit remains
exactly four as before. Despite this, we achieve an extre-
mely good fit, and now there is a skew (smirk) instead of
a smile.

6. Concluding comments

We provide a polynomial time lattice algorithm for
pricing options with Markov-switching volatility. This
parsimonious model bridges the computational gap
between constant volatility models of Cox et al. (1979),
which are easy to compute, and fully stochastic volatility
models (e.g. Heston 1993), which are hard to compute
and do not handle American options. By increasing the
number of states in the Markov chain, we can move from
the former class of models to the latter. It complements
the literature on trees with stochastic volatility (see
e.g. Bollen 1998) as well as the normal mixture diffusion
class of models (see e.g. Alexander (2004), Mercurio
(2002), Brigo and Mercurio (2002) and Brigo et al.
(2004)). By making an adjustment to transition probabil-
ities, we are able to implement skew models whereas the
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Figure 7. Calibrating an option skew. In this plot, we show
the option smile from an extended model in which switching
probabilities depend on the level of the stock price. We use
the following parameters for the transition matrices:
f�highH ¼ 0:75, �highL ¼ 0:9, �lowH ¼ 0:9, �lowL ¼ 0:75g. The other
parameters are: S¼ 100, �H ¼ 0:6, �L ¼ 0:2, rf ¼ 0:05 and
T¼ 0.5.
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Figure 8. Calibrating an option skew to the S&P500
market. We accessed the options data for SPX on
22 November 2005, and downloaded the prices for calls matur-
ing on 20 January 2006. The index value is 1261.23.
The Libor rate for the same maturity is approximated to be
4.2%. We fitted the model to the cross-section of all calls
that exceeded $0.05 in value. Only 4 parameters need fitting,
and the fitted values are: �H ¼ 0:1498, �L ¼ 0:0462,
�highH ¼ �lowL ¼ 0:5214, �highL ¼ �lowH ¼ 0:9417. The transition
probabilities are for 1/15 of a year. The actual implied volati-
lities are plotted as dots, and the smiles are shown as third-order
polynomial fits to the dots. We used call options since puts
are priced by put–call parity.
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standard class of mixture models tends to have smiles
with lowest implied volatilities at the money. The algo-
rithm is Oðkn2kÞ, where k is the number of states volatility
can take and n is the number of periods on the lattice.
We show that the model runs very fast and also converges
to the exact price when n becomes large, without a
substantial increase in run time. The model has been
implemented differently in subsequent work by Balsara
(2004) using a finite-difference approach, and binomial
trees by Florescu and Viens (2004).
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