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Systemic Risk and International Portfolio Choice

SANJIV RANJAN DAS and RAMAN UPPAL∗

ABSTRACT

Returns on international equities are characterized by jumps; moreover, these jumps
tend to occur at the same time across countries leading to systemic risk. We capture
these stylized facts using a multivariate system of jump-diffusion processes where the
arrival of jumps is simultaneous across assets. We then determine an investor’s opti-
mal portfolio for this model of returns. Systemic risk has two effects: One, it reduces
the gains from diversification and two, it penalizes investors for holding levered posi-
tions. We find that the loss resulting from diminished diversification is small, while
that from holding very highly levered positions is large.

RETURNS ON INTERNATIONAL EQUITIES are characterized by jumps;1 moreover, these
jumps tend to occur at the same time across countries, implying that conditional
correlations between international equity returns tend to be higher in periods
of high market volatility or following large downside moves.2 Our objective in
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1 Evidence on jumps in international equity returns is provided by Jorion (1988), Akgiray and
Booth (1988), Bates (1996), and Bekaert et al. (1998).

2 For example, on July 19, 2002, the Dow fell by 4.6%, the Dax by 5.0%, the Cac by 5.4%, the FTSE
by 4.6%, and the Nikkei by 2.8%. Similarly, world equity markets fell in lockstep on October 27,
1997, when the drop from the 12-month peak was 9.2% in Britain, 35.4% in Hong Kong, 21.3%
in Japan, 2.1% in Australia, 10.7% in Mexico, 27.9% in Brazil, and 9.1% in the United States.
Other events with large correlated price drops include the Debt crisis of 1982, the Mexican crisis
in December 1994, and the Russian crisis in August 1998; see Rigobon (2003) for a complete list of
dates with large market moves. For evidence on changing conditional correlations see, for instance,
Speidell and Sappenfield (1992), Odier and Solnik (1993), Erb, Harvey, and Viskanta (1994), Longin
and Solnik (1995), Karolyi and Stulz (1996), Chakrabarti and Roll (2000), and Ang and Chen (2002).
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this paper is to evaluate the effect on portfolio choice of systemic risk, defined
as the risk from infrequent events that are highly correlated across a large
number of assets.

Our contribution is to provide a mathematical model of security returns that
captures the stylized facts about international equity returns described above.
We do this by modeling security returns as jump-diffusion processes where
jumps across assets are systemic (occur simultaneously), though the size of
each jump is allowed to differ across assets. Next, we derive the optimal portfo-
lio weights for this model of returns. Then, we calibrate the portfolio model to
the U.S. equity index and to five international equity indexes. For robustness,
we consider two sets of international indexes: the first for developed countries
and the second for emerging countries. Systemic risk has two effects: It reduces
the gains from diversification and also penalizes investors for holding levered
positions. We find that the loss resulting from diminished diversification is
small, while that from holding highly levered positions is large. For instance,
the certainty equivalent cost of ignoring systemic risk for a conservative agent
with relative risk aversion of 3 who is investing $1,000 for 1 year is on the or-
der of $0.10 for the developed-country indexes and $3 for the emerging-country
indexes. However, for more aggressive investors who hold heavily levered port-
folios, the cost of ignoring systemic risk is substantial: For example, an investor
with a risk aversion of 1 who ignores systemic risk has a positive probability of
losing all her wealth.

Our work can be distinguished from the literature on portfolio choice with
idiosyncratic jumps in returns, for example, Aase (1984), Jeanblanc-Picque and
Pontier (1990), and Shirakawa (1990). In more recent work, Liu, Longstaff, and
Pan (2003) study a model of portfolio choice with event risk. In contrast to
these theoretical models, our motivation is to evaluate the effect of systemic
jumps on portfolio selection by empirically estimating the parameters of the
returns in our model, and implementing the model based on these estimates.
In contrast to the static model in Chunhachinda et al. (1997), where polynomial
goal programming is used to examine the effect of skewness on portfolio choice
by assuming a utility function defined over the moments of the distribution of
returns, our model is dynamic, with preferences given by a standard constant
relative risk-averse utility function, and in our model the effect of skewness
(and higher moments) arises because of jumps in the returns process rather
than being introduced explicitly through the utility function.3

Our work is also related to Ang and Bekaert (2002), who embed an inter-
national portfolio choice problem in a dynamic model with a regime-switching
data-generating process. Two regimes are considered that correspond to a

3 For early work on how skewness influences portfolio choice, see Samuelson (1970), Tsiang
(1972), and Kane (1982). Kraus and Litzenberger (1976) show the implications for equilibrium
prices of a preference for positive skewness, while Kraus and Litzenberger (1983) derive the suf-
ficient conditions on return distributions to get a three-moment (mean, variance, and skewness)
capital asset pricing model. Harvey and Siddique (2000) provide an empirical test of the effect of
skewness on asset prices.
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normal regime with low correlations and a downturn regime with higher cor-
relations. In their setup, regimes can be persistent, and their paper includes
an analysis of portfolio choice when the short interest rate and earnings yields
predict returns. The framework in Ang and Bekaert, however, does not accom-
modate intermediate consumption, admits only a numerical solution even in the
absence of intermediate consumption, and is difficult to estimate when there
are more than two regimes or three risky assets.

In contrast to Ang and Bekaert, we develop a theoretical framework along
the lines of Merton (1971); because our model nests the well-understood Merton
model as a special case, it allows one to interpret cleanly the effect of systemic
jumps. Also, we provide analytic expressions for the optimal portfolio weights.
Moreover, our model can incorporate intermediate consumption (the solution to
the portfolio problem stays the same), and can be estimated and implemented
for any number of assets. While in the paper we consider only a simple IID en-
vironment where the unconditional correlations between returns are constant
over time, we argue that this is sufficient to show that the effect of systemic
jumps will not be large even in the presence of regime shifts.4 Our framework
can also allow for predictability in returns and for other state variables, just
as they are incorporated in Merton, but because this is tangential to our main
objective, we do not include these features in the model we present.

The rest of the paper is organized as follows. In Section I, we develop a model
of asset returns that captures systemic risk. In Section II, we derive the opti-
mal portfolio weights when asset returns have a systemic-jump component. In
Section III, we describe our data, give the moments for the returns in the pres-
ence of systemic risk, and estimate the parameters of the returns processes.
We then calibrate the portfolio model to the estimated parameters in order to
compare the portfolio weights of an investor who accounts for systemic risk
and an investor who ignores systemic risk. We conclude in Section IV. Proofs
for propositions are presented in the Appendix.

I. Asset Returns with Systemic Risk

In this section, we develop a model of asset prices that allows for systemic
jumps and compare it to a pure-diffusion model without jumps. The two features
of the data that we wish our returns-model to capture are (1) large changes in
asset prices, and (2) a high degree of correlation across these changes. To allow
for large changes in returns, we introduce a jump component in prices; to model
these jumps as being systemic, we assume that this jump is common across all
assets, though the distribution of the jump size is allowed to vary across assets.

We start by describing the standard continuous-time process that is typically
assumed for asset returns:

dSn

Sn
= α̂n dt + σ̂n dzn, n = 1, . . . , N , (1)

4 Das and Uppal (2003) show how to extend the model to allow for persistence in jumps.
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with

Et

[
dSn

Sn

]
= α̂n dt (2)

Et

[(
dSn

Sn

)
×

(
dSm

Sm

)]
= σ̂nm dt = σ̂nσ̂mρ̂nm dt, (3)

where Sn is the price of asset n, N is the total number of risky assets being
considered for the portfolio, and the correlation between the shocks dzn and
dzm is denoted by ρ̂nm dt = E(dzn × dzm). We will denote the N × N matrix of
the covariance terms arising from the diffusion components by Σ̂, with its typ-
ical element being σ̂nm ≡ σ̂nσ̂mρ̂nm. We adopt the convention of denoting vectors
and matrices with boldface characters in order to distinguish them from scalar
quantities; parameters of the pure-diffusion returns process, and other quan-
tities related to the pure-diffusion model, are denoted with a ˆ (carat) over the
variable.

To allow for the possibility of infrequent but large changes in asset returns,5

we extend the specification in equation (1) by introducing a jump component to
the process for returns, as in Merton (1976). In order to capture the systemic
nature of these jumps, we impose two restrictions on the jump-diffusion pro-
cesses: one, the jump is assumed to arrive at the same time across all risky
assets; two, conditional on a jump, the jump size is assumed to be perfectly
correlated across assets; that is, the value of all the assets jumps in the same
direction. Below, we formally describe a returns process for the risky assets
that has these properties.

Introducing a jump component to the process of returns in (1), we have

dSn

Sn
= αn dt + σn dzn + ( J̃n − 1) dQ(λ), n = 1, . . . , N , (4)

where Q is a Poisson process with intensity λ, and ( J̃n − 1) is the random
jump amplitude that determines the percentage change in the asset price if the
Poisson event occurs. Given our desire to model the large changes in prices as
occurring at the same time across the risky assets, we have assumed that the ar-
rival of jumps is coincident across all risky assets; that is, dQn(λn) = dQm(λm) =
dQ(λ), ∀n = {1, . . . , N}, m = {1, . . . , N}.6 We also assume that the diffusion
shock, the Poisson jump, and the random variable J̃n are independent and that
Jn ≡ ln( J̃n) has a normal distribution with mean µn and variance ν2

n, implying
that the distribution of the jump size is asset-specific (below we will assume

5 In contrast to systemic risk, systematic risk refers to correlation between assets and a common
factor, but does not require that the size of this correlation be large or that the correlated changes
be infrequent.

6 The returns process described above is IID; in particular, and in contrast to Ang and Bekaert
(2002), there is no persistence in jumps. Das and Uppal (2003) show how one could extend this
model to allow for persistence in systemic jumps by making the arrival rate of jumps, λ, stochastic.
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that, conditional on a jump, the jump sizes for different assets are perfectly
correlated).

Thus, for the process in (4), the total expected return in equation (5) has
two components: One part comes from the diffusion process, αn and the other,
denoted αJ

n, comes from the jump process:

Et

[
dSn

Sn

]
= αn dt + αJ

n dt. (5)

We also assume that the jump size is perfectly correlated across assets; as we
shall see in Section III, this turns out to be a conservative assumption, and has
the further advantage of reducing the number of parameters to be estimated.
The total covariance between dSn and dSm, given in the equation below,

Et

[(
dSn

Sn

)
×

(
dSm

Sm

)]
= σnm dt + σ J

nm dt, (6)

arises from two sources: The covariance between the diffusion components
of the returns, σnm ≡ σnσmρnm, and the covariance between the jump compo-
nents, σ J

nm. The N × N matrix containing the covariation arising from the jump
terms is denoted by �J, while the N × N matrix of the covariance terms aris-
ing from the diffusion components is denoted by �, with its typical element
being σnm ≡ σnσmρnm. Explicit expressions for αJ

n in (5) and σ J
nm in (6), in terms

of the parameters of the underlying returns processes, {λ, µn, νn}, are given in
equations (26) and (27).

In our experiment, we wish to compare the portfolio of an investor who models
security returns using the pure-diffusion process in (1) with that of an investor
who accounts for systemic risk by using the jump-diffusion process in (4) but
matches the first two moments of returns. Thus, we need to choose the parame-
ters of the jump-diffusion processes in such a way that the first two moments for
this process given in equations (5) and (6) match exactly the first two moments
of the pure-diffusion returns process in equations (2) and (3).7 Even though it
is straightforward to do this, we highlight it in a proposition because this result
is important for understanding our analysis.

PROPOSITION 1: In order for the first and second moments from the jump-
diffusion process to match the corresponding moments from the pure-diffusion
process, we set, for n, m = {1, . . . , N},

αn = α̂n − αJ
n, (7)

σnm = σ̂nm − σ J
nm. (8)

One interpretation of the above compensation of the parameters is that the in-
vestor using the jump-diffusion returns process takes the total expected

7 An important difference between our work and that of Liu et al. (2003) is that while we control
for the magnitude of the first two moments when comparing the portfolio strategy that accounts
for jumps with the one that ignores jumps, they do not.
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return on the asset, α̂n, and the covariance, σ̂nm, and subtracts from them αJ
n and

σ J
nm, respectively, with the understanding that this will be added back through

the jump term, ( J̃n − 1) dQ(λ). In this way, she reduces the expected return
and covariance coming from the diffusion terms in order to offset exactly the
contribution of the jump.

Even though the unconditional expected return and covariance under the
compensated jump-diffusion process will match those from the pure-diffusion
process, the two processes will not lead to identical portfolios. This is because
the jump also introduces skewness and kurtosis into the returns process (see
equations (24) and (25)).8 In the next section, we analyze the difference between
the portfolio of an investor who allows for systemic jumps in returns and an
investor who ignores this effect.

II. Portfolio Selection in the Presence of Systemic Risk

In this section, we formulate and solve the portfolio selection problem when
returns are given by the jump-diffusion process in (4). Given that financial
markets are incomplete in the presence of jumps of random size, we determine
the optimal portfolio weights using stochastic dynamic programming rather
than the martingale pricing approach.

Our modeling choices are driven by the desire to develop the simplest possible
framework in which one can examine the portfolio selection problem in the
presence of systemic risk. Hence, we work with a model that has a constant
investment opportunity set; an extension of this model to the case where the
investment opportunity set is changing over time, via shifts in the likelihood
of systemic jumps, is considered in Das and Uppal (2003). Also, we model the
portfolio problem in continuous time because of the analytical convenience this
affords. Finally, we describe the model in the context of international portfolio
selection, but the model applies to any set of securities with appropriate returns
processes.

A. Optimal Portfolio Weights

We consider a U.S. investor who wishes to maximize the expected utility from

terminal wealth,9 WT, with utility being given by U (WT ) = W 1−γ

T
1 − γ

, where γ > 0,
γ �= 1, so that constant relative risk aversion is equal to γ .10 The investor can
allocate funds across n = {0, 1, . . . , N} assets: a riskless asset denominated in
U.S. dollars (n = 0), a risky U.S. equity index (n = 1), and risky foreign equity
indexes, n = {2, . . . , N}.

8 Jumps are not the only way of introducing skewness and kurtosis into the process for returns—
stochastic volatility would also generate such effects. Of course, jumps have the additional effect
that they constrain portfolio weights in order to prevent wealth from becoming negative.

9 We do not consider intermediate consumption because it has no effect on the optimal weights
in our model.

10 For the case where γ = 1, the utility function is given by U(WT) = ln WT .
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The price process for the riskless asset, S0, is

dS0 = rS0 dt, (9)

where r is the instantaneous riskless rate of interest, which is assumed to be
constant over time. The stochastic process for the price of each equity index (in
dollar terms)11 with a common jump term is as given in equation (4), which is
restated below:

dSn

Sn
= αn dt + σn dzn + ( J̃n − 1) dQ(λ), n = 1, . . . , N , (10)

with αn and σnm defined in equations (7) and (8).
Denoting the proportion of wealth invested in asset n by wn, n = {1, . . . , N},

the investor’s problem at t can be written as

V (Wt , t) ≡ max
{wn}

E

[
W 1−γ

T

1 − γ

]
, (11)

subject to the dynamics of wealth

dWt

Wt
= [w′R + r] dt + w′(σ · dZt) + w′Jt dQ(λ), W0 = 1, (12)

where w is the N × 1 vector of risky-asset portfolio weights, R ≡ {α1 − r, . . . ,
αN − r}′ is the excess-returns vector, σ is the vector of volatilities, dZ is the
vector of diffusion shocks, with the dot product σ · dZt denoting element-by-
element multiplication of σn and dZn, and Jt ≡ [ J̃1 − 1, J̃2 − 1, . . . , J̃ N − 1]′ is
the vector of random jump amplitudes for the N assets at time t. The covariance
matrix of the diffusion component of the joint stochastic process is given by Σ.

Using the standard approach to stochastic dynamic programming and the
appropriate form of Ito’s lemma for jump-diffusion processes, one can obtain
the following Hamilton–Jacobi–Bellman equation

0 = max
{w}

{
∂V (Wt , t)

∂t
+ ∂V (Wt , t)

∂W
Wt[w′R + r] + 1

2
∂2V (Wt , t)

∂W 2
W 2

t w′Σw

+ λE[V (Wt + Wtw′Jt , t) − V (Wt , t)]
}

, (13)

where the terms on the first line are the standard terms when the processes
for returns are continuous, and the term on the second line accounts for jumps
in returns.

11 The dollar return on a foreign equity index includes the return on currency and the return on
the international equity index in local-currency terms. For international equity returns, one could
model separately the equity return in local-currency terms and the return on currency. We do not
do this because it complicates the notation without adding any insights.
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We guess (and verify) that the solution to the value function is of the following
form:

V (Wt , t) = A(t)
W 1−γ

t

1 − γ
. (14)

Expressing the jump term using this guess for the value function (details are in
the proof for the proposition below), and simplifying the resulting differential
equation, we get an equation that is independent of wealth:

0 = max
{w}

{
1

A(t)
dA(t)

dt
+ (1 − γ )[w′R + r] − (1 − γ )γ

2
w′Σw

+ λE
[
(1 + w′Jt)1−γ − 1

]}
. (15)

Differentiating the above with respect to w, one gets the following result.

PROPOSITION 2: The optimal portfolio weights in the presence of systemic risk
are given by the solution to the following system of N nonlinear equations:

0 = R − γΣw + λE
[
Jt(1 + w′Jt)−γ

]
, ∀t. (16)

Note that (16) gives only an implicit equation for the unconditional portfolio
weights, w. Thus, to determine the magnitude of the optimal portfolio weights,
one needs to solve this equation numerically, which we do in Section III.

In contrast to the above solution, an investor who ignores the possibility of
systemic jumps and assumes the standard model in which price processes are
multivariate diffusions without jumps will choose the portfolio weights given
by the familiar Merton (1971) expression below.

COROLLARY 1: The weights chosen by an investor who assumes that returns are
described by the pure-diffusion process in equation (1) are

ŵ = 1
γ

Σ̂
−1

R̂. (17)

The difference between the portfolio of the investor who accounts for systemic
jumps, w, and that of an investor who ignores this feature of the data and
chooses portfolio ŵ can be understood by comparing equation (16) and (17):
The two equations are the same when there are no jumps (λ = 0). Thus, the
difference between w and ŵ arises from the higher moments ignored in (17).12

12 This also shows how our model is related to that of Chunhachinda et al. (1997), who use
polynomial goal programming in a single-period model to examine the effect of skewness on portfolio
choice by assuming a utility function defined over the moments of the distribution of returns. In
contrast, we work with the standard power utility function that is commonly used to examine
optimal portfolio selection and instead modify the returns process to allow for the possibility of
skewness and higher moments.
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B. Certainty Equivalent Cost of Ignoring Systemic Risk

Above, we have compared the optimal portfolio weights for an investor who
accounts for systemic jumps in returns and the investor who ignores this feature
of the data. In this section, we compare the certainty equivalent cost of following
the suboptimal portfolio strategy. The objective of this exercise is to express in
dollar terms the cost of ignoring systemic risk.

In order to quantify the cost of ignoring systemic jumps, we compute the addi-
tional wealth needed to raise the expected utility of terminal wealth under the
suboptimal portfolio strategy to that under the optimal strategy. In this com-
parison, we denote by CEQ the additional wealth that makes lifetime expected
utility under ŵ, the portfolio policy that ignores systemic risk, equal to that
under the optimal policy, w. Using the notation V(Wt, t; wi), where wi = {w, ŵ}
indicates the particular portfolio weights used to compute the value function,
the compensating wealth, CEQ, is computed as follows:

V ((1 + CEQ)Wt , t; ŵ) = V (Wt , t; w). (18)

Then, from equations (14) and (18), we have

A(t; ŵ)
[

1
1 − γ

((1 + CEQ)Wt)1−γ

]
= A(t; w)

[
1

1 − γ
W 1−γ

t

]
, (19)

which implies that

CEQ =
[

A(t; w)
A(t; ŵ)

]1/(1−γ )

− 1, (20)

where, from the proof for Proposition 2,

A(t; wi) ≡ e((1−γ )[w′
iR+r]− 1

2 γ (1−γ )w′
iΣwi+λE[(1+w′

iJt )1−γ −1])(T−t), (21)

with wi = {w, ŵ}.

III. Calibrating the Effect of Systemic Risk

In this section, we evaluate the effect of systemic risk on portfolio choice by
calibrating the jump-diffusion model to returns on the U.S. equity index, and to
five international equity indexes. This section is divided into three subsections.
In the first, we describe the data and explain how we use the method of moments
to estimate the parameters of the returns processes. In the second, we evalu-
ate the effect of systemic risk on portfolio policies using the estimated values
for the parameters of the returns process. In the third subsection, we evaluate
the sensitivity of our results to the choices we have made in undertaking the
calibration exercise.
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A. Description of the Data and Estimation of the Model

The data for the developed countries consist of the month-end U.S. dollar
values of the equity indexes for the period January 1982 to February 1997 for
the United States (U.S.), United Kingdom (U.K.), Switzerland (SW), Germany
(GE), France (FR), and Japan (JP). The data for emerging economies are for
the period January 1980 to December 1998, and consist of the beginning-of-
month value of the equity index for the United States (USA), Argentina (ARG),
Hong Kong (HKG), Mexico (MEX), Singapore (SNG), and Thailand (THA). To
distinguish the two sets of data, we abbreviate the countries in the developed-
economy data set with two characters and denote countries in the emerging-
economy data set with three characters.

Table I reports the descriptive statistics for the continuously compounded
monthly return on index j in U.S. dollars, rjt, which is defined as the ratio of the
log of the index value at time t and its lagged value: r j t = ln

[ S j t

S j ,t−1

]
, where Sjt

is the U.S. dollar value of the index at time t. Examining first the moments for
developed economies, we observe from Panel A of Table I that the excess kurtosis

Table I
Descriptive Statistics for Equity Returns—Univariate

Panel A of this table gives the first four moments of the monthly returns in U.S. dollar terms for the
developed-country indexes and Panel B gives the same information for the U.S. and five emerging
markets. The data for the developed countries are for the period January 1982 to February 1997,
and include 182 observations of month-end values of the equity indexes for the United States (U.S.),
United Kingdom (U.K.), Japan (JP), Germany (GE), Switzerland (SW), and France (FR). The data
for emerging economies consist of 227 observations of the beginning-of-month value of the equity
indexes for the USA, Argentina (ARG), Hong Kong (HKG), Mexico (MEX), Singapore (SNG), and
Thailand (THA) for the period January 1980 to December 1998.

Panel A: Developed Countries

U.S. U.K. JP GE SW FR Avg.

Mean 0.0102 0.0084 0.0080 0.0120 0.0102 0.0113 0.0100
Standard deviation 0.0420 0.0567 0.0697 0.0576 0.0515 0.0611 0.0564

Skewness −1.1648 −0.4623 −0.0508 −0.2308 −0.6382 −0.4325 −0.4966
Significance level 0.0000 0.0115 0.7815 0.2074 0.0004 0.0181

Excess kurtosis 7.2236 1.9212 0.8754 2.9546 5.5405 1.5780 3.3489
Significance level 0.0000 0.0000 0.0180 0.0000 0.0000 0.0000

Panel B: Emerging Countries

USA ARG HKG MEX SNG THA Avg.

Mean 0.0104 0.0040 0.0076 0.0034 0.0065 0.00004 0.0053
Standard deviation 0.0414 0.2153 0.1026 0.1437 0.0772 0.1037 0.1140

Skewness −1.1353 0.1187 −1.4163 −2.0224 −0.7684 −0.6077 −0.9719
Significance level 0.0000 0.4681 0.0000 0.0000 0.0000 0.0002

Excess kurtosis 6.1823 6.2377 6.9388 9.1851 4.8603 3.7800 6.1974
Significance level 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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of returns is substantially greater than that for normal distributions (in the
table, we report kurtosis in excess of 3, which is the kurtosis for the normal
distribution). The excess kurtosis in the data ranges from 0.87 for France to 7.22
for the U.S. For the data on emerging economies, as one would expect, the excess
kurtosis is much greater, ranging from 3.77 for Thailand to 9.18 for Mexico. All
12 kurtosis estimates are significant. There are two possible reasons for the
kurtosis: (1) When the multivariate return series is not stationary, the mixture
of distributions results in kurtosis; and (2), if the returns are characterized by
large shocks, then the outliers inject kurtosis.

The second feature of the data is that the skewness of returns for all the
developed-market indexes is negative, and for the emerging-country indexes
it is more strongly negative, except for Argentina, where it is insignificantly
different from zero. The negative skewness is a well-known feature of equity
index time series over this time period (1982–1997). Within this period, there
were several large negative shocks to the markets contributing to the negative
skewness: for instance, the market crash of October 1987, the outbreak of the
Gulf War in August 1990, the Mexican crisis in December 1994, and the Russian
crisis in August 1998.13

Table II reports the covariances and correlations between the returns on
the international equity indexes. The correlations for the developed countries
range from a low of 0.33 between the United States and Japan, to a high of
0.68 between Germany and Switzerland. The average correlation between the
equity markets for developed countries is 0.51. For the emerging countries, the
correlations range from the very low 0.05 between Hong Kong and Argentina
to 0.55 between Singapore and the United States. The average correlation for
the emerging countries is 0.31, which, as one would expect, is much lower than
that for the developed countries.

For the benchmark case of the pure-diffusion process in equation (1), the
parameters to be estimated are {α̂, Σ̂}, with the moment conditions available
being the ones in equations (2) and (3). From these moment conditions we see
that {α̂, Σ̂} can be estimated directly from the means and the covariances of
the data series.

To derive the unconditional moments of the jump-diffusion returns processes
in (4), we identify the characteristic function by exploiting its relation to the
Kolmogorov backward equation.14 Differentiating the characteristic function
then gives the moments of the returns process. The expressions for the moments
of the continuously compounded returns are the following: for n, m = {1, . . . , N},

mean = t
(
αn − 1

2σ 2
n + λµn

)
, (22)

covariance = t[σnm + λ(µnµm + νnνm)], (23)

13 The negative skewness arises also because volatility tends to be higher when returns are
negative.

14 Details of this derivation are given in Das and Uppal (2003).



2820 The Journal of Finance

Table II
Descriptive Statistics for Equity Returns—Multivariate

Panel A gives the covariances and the correlations (in italics) between U.S. dollar returns for the
developed-country indexes and Panel B gives this for the emerging-country indexes. The data for the
developed countries are for the period January 1982 to February 1997, and include 182 observations
of month-end values of the equity indexes for the United States (U.S.), United Kingdom (U.K.),
Japan (JP), Germany (GE), Switzerland (SW), and France (FR). The data for emerging economies
consist of 227 observations of the beginning-of-month value of the equity indexes for the USA,
Argentina (ARG), Hong Kong (HKG), Mexico (MEX), Singapore (SNG), and Thailand (THA) for the
period January 1980 to December 1998.

Panel A: Developed Countries—Covariances (normal) and Correlations (italics)

U.S. U.K. JP GE SW FR Avg. Correl.

U.S. 0.0018 0.5750 0.3348 0.4274 0.5472 0.5173
U.K. 0.0013 0.0032 0.4468 0.4916 0.5593 0.5507
JP 0.0009 0.0017 0.0049 0.3815 0.4442 0.4765
GE 0.0010 0.0016 0.0015 0.0033 0.6873 0.6593
SW 0.0011 0.0016 0.0015 0.0020 0.0027 0.6161 0.5142
FR 0.0013 0.0019 0.0020 0.0023 0.0019 0.0037

Panel B: Emerging Countries—Covariances (normal) and Correlations (italics)

USA ARG HKG MEX SNG THA Avg. Correl.

USA 0.0017 0.1039 0.4051 0.3586 0.5519 0.3445
ARG 0.0009 0.0464 0.0580 0.2167 0.0842 0.1286
HKG 0.0017 0.0012 0.0105 0.2475 0.5479 0.4347
MEX 0.0021 0.0067 0.0036 0.0206 0.3543 0.2972
SNG 0.0017 0.0014 0.0043 0.0039 0.0060 0.5291 0.3109
THA 0.0014 0.0028 0.0046 0.0044 0.0042 0.0108

coskewness = tλ
[
2µnνnνm + µm

(
µ2

n + ν2
n

)]
variancenvariance1/2

m

, (24)

excess kurtosis = tλ
(
3ν4

n + 6ν2
nµ2

n + µ4
n

)
variance2

n

. (25)

Comparing the mean and covariance for the jump-diffusion processes con-
sidered above with those for the pure-diffusion processes (λ = 0), one gets the
following:

αJ
n = λµn, (26)

σ J
nm = λ (µnµm + νnνm) . (27)

With this compensation in equations (7) and (8), the expected returns, vari-
ances, and covariances will be the same under the jump-diffusion and pure-
diffusion processes.

For the jump-diffusion process, the parameters to be estimated are {λ, α, Σ,
µ, ν}, from the moment conditions in equations (22) to (25). In our experiment
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Table III
Parameter Estimates for the Returns Processes

This table reports estimates of the parameters for the multivariate system of jump-diffusion asset
returns, {λ, µ, ν} obtained by minimizing the square of the difference between the moment condi-
tions in equations (24) and (25) and the moments implied by the data. Panel A gives the estimates
for developed-country return indexes and Panel B gives the estimates for emerging economies. In
addition to the parameter estimates, the table reports the reconstructed moments that are obtained
by substituting the parameters estimated into equations (24) and (25), which are then compared
to the moments of the data.

Panel A: Developed Countries

U.S. U.K. JP GE SW FR Avg.

λ 0.0501 0.0501
µ −0.0660 −0.0797 0.0043 −0.0344 −0.0466 −0.0675 −0.0483
ν 0.0914 0.0792 0.1075 0.1167 0.1185 0.0902 0.1006
Skewness: reconstructed −1.3160 −0.5496 0.0222 −0.3782 −0.7567 −0.4291 −0.5679
Skewness: in data −1.1648 −0.4623 −0.0508 −0.2308 −0.6382 −0.4325 −0.4966
Excess kurtosis: reconstructed 7.2148 1.9182 0.8540 2.9662 5.5474 1.5872 3.3480
Excess kurtosis: in data 7.2236 1.9212 0.8754 2.9546 5.5405 1.5780 3.3489

Panel B: Emerging Countries

USA ARG HKG MEX SNG THA Avg.

λ 0.0138 0.0138
µ −0.1280 0.2292 −0.2295 −0.2631 −0.1576 −0.1107 −0.1099
ν 0.0919 0.7179 0.3001 0.4929 0.2068 0.3009 0.3518
Skewness: reconstructed −1.0434 0.5085 −0.9507 −0.9806 −0.7272 −0.3903 −0.5973
Skewness: in data −1.1353 0.1187 −1.4163 −2.0224 −0.7684 −0.6077 −0.9719
Excess kurtosis: reconstructed 6.1980 6.2009 6.9511 9.1905 4.8729 3.7623 6.1960
Excess kurtosis: in data 6.1823 6.2377 6.9388 9.1851 4.8603 3.7800 6.1974

we wish to set equal the means and covariances of the jump-diffusion pro-
cesses to those from the pure-diffusion process; hence set α = α̂ − λµ and Σ =
Σ̂ − λ(µµ′ + νν ′). Thus, we need to estimate only λ, and the 6 × 1 vectors µ and
ν (a total of 13 parameters) to match the 6 × 1 kurtosis and 6 × 6 coskewness
conditions for a total of 42 moment conditions.15 We choose these 13 parame-
ters to minimize the squared deviation of the 42 moment conditions from their
values implied by the data. Once we have these parameters, we can obtain α

by subtracting λµ from α̂, and Σ by subtracting λ(µµ′ + νν ′) from Σ̂.
Table III reports the parameter estimates obtained using the method of mo-

ments. From Panel A of this table we see that for the developed countries, the
estimated value of λ = 0.0501, and this is significantly different from 0. The
estimated value for λ of 0.0501 indicates that on average the chance of a jump
in any month is about 5%, or one jump is expected every 20 months. Our esti-
mate of λ is lower than that in studies estimating the likelihood of a jump in

15 Note that coskewness between asset n and m is different from that between m and n; thus, the
coskewness matrix contains 6 skewness terms on the diagonal, and 30 unique coskewness terms.
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the returns series of a single index, which is typically on the order of 0.20; the
reason is that in our model λ measures the likelihood of a systemic jump rather
than an idiosyncratic jump. The average expected jump size across countries is
−0.0483, while the volatility of the jump size is 0.1006.

From Panel B of Table III, we see that the estimated value of λ in the data
for emerging markets is 0.0138, lower than that for developed countries. This
is not surprising given that linkages between emerging countries are much
weaker than those for the developed countries considered in our sample. Ob-
serve, however, from the comparison of the parameter estimates in Panel A
for the developed countries to those for emerging markets in Panel B that the
average jump size (µ) is more than double for emerging markets—which re-
flects the higher skewness in this data set. Also, the average volatility of jumps
(ν) is three times higher for emerging markets, and this reflects the higher
kurtosis in this data. Thus, even though systemic jumps are less frequent for
emerging countries than for developed countries, their average (absolute) sizes
and volatilities are much larger. Comparing the relative size of the covariation
coming from systemic jumps, σ J

nm, to overall covariation, σ̂nm, we find that on
average this is 0.37 for developed markets and 0.55 for emerging markets, indi-
cating that systemic jumps contribute more to the overall covariation of returns
in emerging markets than in developed markets.

To measure how well the estimated parameters do at matching the moments
of the data, we use the estimated parameters and the moment conditions in
(24) and (25) to reconstruct the skewness and kurtosis measures.16 Comparing
these reconstructed moments with the estimated moments, we see that the
model does quite well in matching the kurtosis in the data but is less successful
in matching the skewness. Studying the averages reported in the last column
of the table, we observe that the kurtosis is matched almost exactly for both
developed and emerging countries, while the magnitude of skewness from the
model is greater than that in the data for the developed countries (Panel A),
and smaller for emerging countries (Panel B). Because the moments are not
matched exactly, we will evaluate in Section III.C the sensitivity of our results
to these parameter estimates.

B. Portfolio Weights and Certainty-Equivalent Cost

In our calibration exercise, the parameters we use for the returns process
are those reported in Table III. In addition to this, we need to specify the risk-
free rate and the agent’s relative risk aversion. We assume that the monthly
riskless interest rate for the U.S. investor is 0.06/12 = 0.005, which is close
to the average U.S. 1-month riskless interest rate in our data, and we set the
base-case relative risk aversion, γ , equal to 3.0.

16 The means and covariances are matched exactly by construction and so are not reported. The
results on the comparison of coskewness from the model to that in the data are not reported but
are similar to those for skewness.
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With these parameter values, we solve numerically the first-order conditions
in Proposition 2 to obtain the optimal portfolio weights, w, for an investor who
accounts for systemic risk.17 We also compute ŵ, the weights of the investor
who ignores systemic jumps and assumes returns are given by a pure-diffusion
process. In addition to these portfolio weights, we also report the composition of
the portfolio consisting of only risky assets, which can be obtained by dividing
each individual weight by the total investment in risky assets. These weights
are given by w/(w′1) for the systemic-jump case and ŵ/(ŵ′1) for the pure-
diffusion case.

Table IV reports the weights for developed-country indexes in Panel A and
those for the emerging countries in Panel B. Within each panel, the portfolio
weights are given for three different levels of risk aversion: γ = {1, 3, 5}. To
evaluate the effect of systemic risk on diversification, we compare the quantities
w/(w′1) with ŵ/(ŵ′1), which are reported in the last two rows for each set of
results. We observe that the effect of systemic jumps on the composition of the
risky-asset portfolio is not substantial: For instance, in Panel A of Table IV
for the case with risk aversion of 3, the change in all the portfolio weights
is less than 0.03. This is also true for more risk-averse investors; only in the
case of the investor with risk aversion of unity is there some change in the
composition of the risky-asset portfolio, but even in this case the allocation to
the U.S. home asset increases by only 0.023, from 0.770 to 0.793. In the case of
emerging markets in Panel B of Table IV, the effect of systemic risk is bigger:
For the investor with a risk aversion of 3, the portfolio weights change by up to
0.07; for instance, the investment in the U.S. index drops from 1.452 to 1.379
when an investor accounts for systemic risk. The reason for the bigger change
in these portfolio weights is that jumps are much larger in emerging countries
compared to those in developed countries and contribute much more to the
overall covariation in returns.

Table IV also gives the investment in the riskless asset and the total in-
vested across all risky assets. Observe that for developed countries, the total
investment in risky assets (last column) is smaller for the investor who ac-
counts for systemic risk. For example, in Panel A, when relative risk aversion
equals 3, the investment in risky assets is 1.141 for the investor who ignores
systemic risk as opposed to only 1.104 for the investor who accounts for this.
Moreover, this effect is much more pronounced for the aggressive investor with
unit risk aversion who holds a levered portfolio (3.423 versus 2.814) than it
is for the conservative investor with a risk aversion of 5 (0.685 versus 0.678).
Thus, as one would expect, the investor who recognizes the presence of systemic
risk reduces leverage in order to ensure that wealth is positive in the event of
an adverse systemic shock. Of course, because the diffusion investor ignores
systemic risk, her portfolio has too much leverage, and in the event of a large

17 In our numerical work, we use a discretization of the normal distribution with the discrete
points ranging over plus/minus three standard deviations. Because of the finite support assumed
in this approximation, even the portfolio of the investor who accounts for systemic risk can have
levered positions without these positions leading to negative wealth. Of course, ignoring systemic
jumps altogether can lead to negative wealth.
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Table IV
Portfolio Weights

This table gives the portfolio weights for an investor who chooses investments in six equity indexes
and the riskless asset to maximize expected utility of terminal wealth. The weights are reported
for two data sets: in Panel A, for a portfolio diversified across equity indexes of developed countries;
in Panel B, for a portfolio diversified across indexes for emerging countries. In each panel, the first
two rows of weights give (1) the optimal weights, w, for an investor who accounts for systemic
jumps; and (b) the weights ŵ, for an investor who ignores systemic jumps and assumes a pure-
diffusion process for returns. For these two sets of weights, the next two rows of the table give the
composition of the risky-asset portfolio, which is obtained by dividing the weight for each index by
the total investment in risky assets. The riskless interest rate is assumed to be 0.005 per month.

Panel A: Developed Countries

Total in
Risky

Country U.S. U.K. JP GE SW FR Riskless Assets

Relative Risk Aversion = 1

Systemic weights: w 2.231 −1.012 −0.212 1.556 −0.102 0.353 −1.814 2.814
Diffusion weights: ŵ 2.635 −0.977 −0.218 1.625 0.008 0.348 −2.423 3.423
Risky-asset portfolio: w

w′1 0.793 −0.360 −0.075 0.553 −0.036 0.125 0 1
Risky-asset portfolio: ŵ

ŵ′1 0.770 −0.285 −0.064 0.475 0.002 0.102 0 1

Relative Risk Aversion = 3

Systemic weights: w 0.847 −0.336 −0.068 0.543 0.011 0.107 −0.104 1.104
Diffusion weights: ŵ 0.878 −0.326 −0.073 0.542 0.003 0.116 −0.141 1.141
Risky-asset portfolio: w

w′1 0.767 −0.304 −0.061 0.492 0.010 0.097 0 1
Risky-asset portfolio: ŵ

ŵ′1 0.770 −0.285 −0.064 0.475 0.002 0.102 0 1

Relative Risk Aversion = 5

Systemic weights: w 0.518 −0.201 −0.041 0.328 0.010 0.064 0.322 0.678
Diffusion weights: ŵ 0.527 −0.195 −0.044 0.325 0.002 0.070 0.315 0.685
Risky-asset portfolio: w

w′1 0.764 −0.297 −0.060 0.483 0.015 0.094 0 1
Risky-asset portfolio: ŵ

ŵ′1 0.770 −0.285 −0.064 0.475 0.002 0.102 0 1

Panel B: Emerging Countries

Total in
Risky

Country USA ARG HKG MEX SNG THA Riskless Assets

Relative Risk Aversion = 1

Systemic weights: w 4.294 0.120 0.209 −0.267 −0.406 −0.893 −2.056 3.056
Diffusion weights: ŵ 4.563 −0.006 0.156 −0.314 −0.380 −0.876 −2.143 3.143
Risky-asset portfolio: w

w′1 1.405 0.039 0.068 −0.088 −0.133 −0.292 0 1
Risky-asset portfolio: ŵ

ŵ′1 1.452 −0.002 0.050 −0.100 −0.121 −0.279 0 1

Relative Risk Aversion = 3

Systemic: w 1.457 0.039 0.076 −0.085 −0.134 −0.296 −0.056 1.056
Diffusion: ŵ 1.521 −0.002 0.052 −0.105 −0.127 −0.292 −0.048 1.048
Risky-asset portfolio: w

w′1 1.379 0.037 0.072 −0.080 −0.127 −0.281 0 1
Risky-asset portfolio: ŵ

ŵ′1 1.452 −0.002 0.050 −0.100 −0.121 −0.279 0 1

Relative Risk Aversion = 5

Systemic weights: w 0.877 0.024 0.046 −0.051 −0.081 −0.178 0.362 0.638
Diffusion weights: ŵ 0.913 −0.001 0.031 −0.063 −0.076 −0.175 0.371 0.629
Risky-asset portfolio: w

w′1 1.375 0.037 0.072 −0.079 −0.126 −0.279 0 1
Risky-asset portfolio: ŵ

ŵ′1 1.452 −0.002 0.050 −0.100 −0.121 −0.279 0 1
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negative systemic jump she may lose all her wealth. In the case of emerging
markets, reported in Panel B of Table IV, the effect on leverage is much weaker:
While leverage decreases in the case of the investor with a risk aversion of unity,
there is almost no change for the more conservative investors who have a risk
aversion of 3 and 5.

To evaluate the magnitude of the effect on lifetime utility of the portfolio
strategy that accounts for systemic risk relative to the strategy that ignores
this effect, we compute the quantity CEQ (defined in equation (20)), which
measures the additional wealth required at t = 0 to raise the lifetime utility of
the investor following the suboptimal portfolio strategy, ŵ, to the level of the
investor choosing the portfolio w, which accounts for systemic risk. This quan-
tity depends on the time horizon of the investor and we report it in Table V for
horizons of 1 to 5 years and for relative risk aversion also ranging from 1 to 5.

From Panel A of Table V, we see that in the case of developed economies,
and for the base-case relative risk aversion of 3, CEQ is equal to 0.00007 for
a horizon of 1 year, and increases to 0.00033 for a horizon of 5 years. That is,
for an investor with an initial wealth of $1,000, the cost of ignoring systemic
risk is $0.07 if the horizon is 1 year and $0.33 if the horizon is 5 years. In
the case of emerging economies, reported in Panel B of Table V, the CEQ is
bigger: For an initial wealth of $1,000 and relative risk aversion of 3, the cost

Table V
Certainty Equivalent (CEQ) Cost of Ignoring Systemic Risk

This table gives the CEQ for an investor with an initial wealth of $1 who chooses investments in
six equity indexes and the riskless asset to maximize expected utility of terminal wealth. The CEQ
measures the additional initial wealth, per dollar of investment, in order to raise the utility of an
investor who ignores systemic risk to the level of an investor who recognizes this risk. The table
reports the CEQ for investment horizons of 1 to 5 years and for levels of relative risk aversion (γ )
from 1 to 5. The CEQ are reported for two cases: in Panel A, for a portfolio diversified across equity
indexes of developed countries; in Panel B, for a portfolio diversified across indexes for emerging
countries. The riskless interest rate is assumed to be 0.005 per month. The asterisks denote that
the portfolio weights chosen by the investor who ignored systemic risk led to negative wealth.

Investment Horizon

RRA (γ ) 1 year 2 years 3 years 4 years 5 years

Panel A: Developed Countries

1 ∗ ∗ ∗ ∗ ∗
2 0.00034 0.00069 0.00103 0.00138 0.00172
3 0.00007 0.00013 0.00020 0.00026 0.00033
4 0.00002 0.00005 0.00007 0.00009 0.00011
5 0.00001 0.00002 0.00003 0.00005 0.00006

Panel B: Emerging Countries

1 ∗ ∗ ∗ ∗ ∗
2 0.00498 0.00998 0.01501 0.02006 0.02514
3 0.00316 0.00633 0.00951 0.01269 0.01589
4 0.00232 0.00465 0.00698 0.00932 0.01166
5 0.00184 0.00368 0.00552 0.00737 0.00922
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of ignoring systemic risk ranges from $3.16 for a horizon of 1 year to $15.89
for a 5-year horizon. The cost of ignoring systemic risk is larger in the case
of emerging countries because the mean jump size and its variance are much
larger in these markets.

For both data sets, the CEQ decreases as risk aversion increases. The intu-
ition is that as risk aversion increases, the investor holds a smaller proportion
of her wealth in risky assets; hence, the exposure to systemic risk, and its effect
on CEQ, is smaller. On the other hand, as explained in Liu et al. (2003), when
risk aversion is low, the investor would like to hold a levered position in risky
assets, and an investor who ignores systemic risk may lever her portfolio to such
an extent that an adverse systemic shock leads to ruin. The asterisk in the first
row of Panels A and B of Table V indicates that in the case where risk aversion
equals unity, the investor who ignores systemic risk chooses a portfolio with so
much leverage that for large negative systemic jumps, her wealth drops below
zero. Thus, for investors with low risk aversion, the cost of ignoring systemic
risk can be substantial.

C. Verifying the Robustness of the Results

In this subsection, we examine whether the results reported above are sensi-
tive to (1) the choice of data; (2) the assumption about unrestricted borrowing
and short selling; (3) the estimates of expected returns (α̂), which are noto-
riously difficult to estimate precisely; and (4) the estimates for {λ, µ, ν}, the
parameters driving the systemic jump. The main conclusion of this robustness
exercise is that none of these factors materially change the conclusions drawn
from Table IV or the CEQ cost implied by these portfolio weights reported in
Table V. We discuss each robustness check below and the details are provided
in Das and Uppal (2003).

In our analysis, for robustness we have considered two data sets: one for
developed countries and the other for emerging countries. Comparing the pa-
rameter estimates for the returns process for these two sets of data, we see
that systemic jumps are more likely across developed markets than for the
emerging markets considered in our sample, though the expected jump size and
volatility are larger for emerging countries. Our results on portfolio choice are
broadly similar across these two data sets: the effect of systemic risk on port-
folio weights is not large for risk aversion greater than 2, and thus, the initial
wealth required to compensate for systemic risk is also small, especially in the
case of emerging countries.

The portfolios we have examined in Table IV were unconstrained, but in prac-
tice an investor may face constraints on borrowing or short selling risky assets.
When we compute the optimal portfolio in the presence of constraints on bor-
rowing and short sales, we find that, as in the unconstrained case, there is only
a small difference between the optimal portfolio w that accounts for systemic
jumps, and ŵ, the portfolio where this risk is ignored. For both developed and
emerging countries, the difference is smaller in the presence of constraints than
it was for portfolios that were unconstrained.
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Thus, with constraints on short sales and borrowing, the result of which is
to reduce levered portfolio positions, the effect of systemic jumps on portfolio
weights and CEQ is even smaller.

Another concern is that the portfolio weights computed in Table IV could
potentially be sensitive to the estimate of the expected return, leading to large
imbalances in the weights assigned to risky assets. There is a large literature
discussing the problems in estimating expected returns, the extreme portfolios
generated by this, and ways to reduce it.18 To examine the sensitivity of our
results to the estimates of expected returns, we recompute the portfolio weights
by averaging the estimates of expected returns across all assets and using this
average as a proxy for the expected return on all the assets. Thus, all assets
have the same expected return, so that the weights are no longer driven by
differences in expected returns. Again, because reducing differences in expected
returns reduces extreme portfolio positions, the CEQ numbers are even smaller
than those reported in Table V.

Above, we have examined the robustness of our results to the estimates of
expected returns. We now explore the effect of the estimates for the three new
parameters introduced by our jump-diffusion model: λ, which dictates the fre-
quency of jumps, µ, which measures the expected size of jumps, and ν, which
measures the volatility of the jump size. In this analysis, relative risk aversion
is assumed to be 3 and the risk-free rate is equal to 0.005 per month, which
matches the assumptions for the base case considered in Table IV.

In order to make it possible to use graphs so that we can report the weights
for a wide range of parameter values, we consider a situation in which an
investor has to allocate wealth to one risk-free asset and only two risky assets.
Moreover, the two risky assets are assumed to be symmetric, with parameter
values for their returns process being the average of the values estimated for
the six developed-country indexes given in Panel A of Table III. Using these
averages as the base case, in our experiment we evaluate in Figures 1 to 3,
the portfolio weights and CEQ cost for a range of values for λ, µ, and ν. Each
of these figures has two panels: in the first, we report the optimal portfolio
weights of an investor who accounts for systemic jumps (solid line in figure)
and an investor who ignores this (flat dotted line in figure), and in the second
panel we plot the CEQ corresponding to these portfolio weights for investors
with a horizon of 1, 2, and 5 years.

In Figure 1, we vary the jump-intensity parameter from 0 to 0.25, which is five
times its estimated value of 0.05. To gauge whether this range is broad enough,
note that a λ of 0.25 implies that there are about three systemic jumps each
year, and corresponds to skewness and kurtosis that are five times their value
in the data. The figure shows that as λ increases, the difference between the two
portfolio strategies increases. For λ = 0.10, which is double its estimated value,
the difference in portfolio weights is 0.03 and the CEQ for an initial investment

18 An early reference to this problem is given in Jorion (1985) and Dumas and Jacquillat (1990).
Green and Hollifield (1992) provide a good discussion of this problem, and Connor (1997) proposes
a nice solution to it.
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Figure 1. Portfolio weights and CEQ with respect to jump intensity. The top plot of the
figure gives the portfolio of an investor who accounts for systemic jumps (solid line) and an investor
who ignores this and models returns as a pure diffusion (dotted line). The case considered is one in
which there are only two risky assets. The parameters for the returns processes for both assets are
calibrated to the average of the estimates for developed countries, reported in the last column of
Panel A of Table III, with the exception of λ, which is allowed to range from 0 to 0.25, corresponding
to skewness and kurtosis ranging from 0 to 5 times their estimates in the data. The lower plot
shows the corresponding CEQ for these two portfolios, where CEQ measures the percentage of
initial wealth that needs to be given to the investor who ignores systemic risk to make him as well
off as the investor who accounts for systemic risk. We assume that relative risk aversion, γ , is 3
and that the riskless interest rate is 0.005 per month.
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Figure 2. Portfolio weights and CEQ with respect to mean of jump size. The top plot of the
figure gives the portfolio of an investor who accounts for systemic jumps (solid line) and an investor
who ignores this and models returns as a pure diffusion (dotted line). The case considered is one in
which there are only two risky assets. The parameters for the returns processes on both assets are
calibrated to the average of the estimates for developed countries, reported in the last column of
Panel A of Table III, with the exception of µ, which is allowed to range from 0 to −0.15, corresponding
to skewness ranging from 0 to 4.8 times its estimate in the data, and kurtosis ranging from 0 to 7.1
times its estimated value. The lower plot shows the corresponding CEQ for these two portfolios,
where CEQ measures the percentage of initial wealth that needs to be given to the investor who
ignores systemic risk to make him as well off as the investor who accounts for systemic risk. We
assume that relative risk aversion, γ , is 3 and that the riskless interest rate is 0.005 per month.
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Figure 3. Portfolio weights and CEQ with respect to variance of jump size. The top plot
of the figure gives the portfolio of an investor who accounts for systemic jumps (solid line) and an
investor who ignores this and models returns as a pure diffusion (dotted line). The case considered
is one in which there are only two risky assets. The parameters for the returns processes for both
assets are calibrated to the average of the estimates for developed countries, reported in the last
column of Panel A of Table III, with the exception of ν, which is allowed to range from 0 to 0.20,
corresponding to skewness ranging from 0 to 3.8 times its estimate in the data, and kurtosis ranging
from 0 to 11.8 times its estimated value. The lower plot shows the corresponding CEQ for these
two portfolios, where CEQ measures the percentage of initial wealth that needs to be given to the
investor who ignores systemic risk to make him as well off as the investor who accounts for systemic
risk. We assume that relative risk aversion, γ , is 3 and that the riskless interest rate is 0.005 per
month.
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of $1,000 is only $1 for an investor with a horizon of 5 years, and is even smaller
for shorter horizons. For the extreme value of λ = 0.25, the difference in the two
portfolio weights is 0.06; that is, a pure-diffusion investor would invest 0.34 in
each of the risky assets and 0.32 (=1 − 2 × 0.34) in the risk-free asset, while
an investor who accounts for systemic risk would invest only 0.28 in the risky
assets and 0.44 (=1 − 2 × 0.28) in the risk-free asset. The CEQ in this extreme
case for an investor with a horizon of 1 year is $1, and the CEQ for a horizon of
5 years is $5. Thus, we conclude that small deviations from the estimated value
of λ will not have a large effect on our conclusions about portfolio weights and
the corresponding CEQ cost.

Figure 2 considers the effect of µ, the parameter for the expected jump size
that determines the sign for the skewness of returns. The average of this pa-
rameter in the data for developed countries is about −0.05 (Panel A of Table III)
and we allow this to vary from 0 to −0.15, three times its estimated value. The
value of µ = −0.15 implies that skewness is 4.8 times its estimated magni-
tude and that kurtosis is 7.1 times what it is in the data. For µ = −0.10, the
difference in portfolio weights is about 0.03, and for µ = −0.15, we find that
the difference in the portfolio weights is 0.06. The effect on the CEQ is more
sensitive to µ than it was to λ: for the extreme case where µ = −0.15 and the
investor has a horizon of 5 years, CEQ = $6 for an initial investment of $1,000;
for a more reasonable level of µ = −0.10, CEQ = $1.80 for an investor with a
5-year horizon; and is only $0.40 for an investor with a 1-year horizon.

Finally, in Figure 3 we vary the volatility of the jump size, ν, from 0 to 0.20,
which is twice its estimated value and corresponds to 3.8 times the estimated
value of skewness and 11.8 times the estimate of kurtosis. The effect of this
parameter on the portfolio weights and CEQ cost is smaller than that of λ and
µ. For ν = 0.20, the difference in the portfolio weights of systemic and pure-
diffusion investors is about 0.05, and the CEQ is $5 for an investor with a
5-year horizon and $0.90 for an investor with a 1-year horizon.

Based on the above exercise, we conclude that our findings about the effect
of systemic risk on the optimal portfolio composition and on CEQ are robust to
reasonable deviations from the estimated values of the parameters.

IV. Conclusion

Returns on international equities are characterized by jumps occurring at the
same time across countries, leading to return distributions that are fat-tailed
and negatively skewed. We develop a simple and parsimonious model of asset
returns to capture these empirical properties, and then show how an investor
would choose an optimal portfolio when returns have these features. We apply
the proposed method to determine the weights for a portfolio allocated over a
riskless asset, an equity index for the U.S. and five international equity indexes.
We consider two sets of international indexes, the first for developed countries
and the second for emerging countries, and calibrate these data sets to two
models: one that incorporates systemic risk and the other that ignores it.
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The main result from our analysis is that incorporating systemic risk has two
effects: (1) it reduces the gains from diversifying across a range of assets, and
(2) it makes leveraged portfolios much more susceptible to large losses. Upon
calibrating our model to index returns for developed economies and also for
emerging economies, we find that the loss from the reduction in diversification
is not substantial. However, for investors with low risk aversion who desire
levered positions, the cost of ignoring systemic risk is much larger, and in the
case of a highly levered portfolio, there is a positive probability of losing one’s
entire wealth if there is a large negative systemic shock.

Appendix

Proof of Proposition 1: Equating the expressions in (5) and (6) to those for
the pure-diffusion returns process in equations (2) and (3) gives the result.

Q.E.D.

Proof of Proposition 2: Simplifying the jump term in the Bellman equa-
tion (13), using the conjecture that the value function is of the form V (Wt , t) =
A(t) W 1−γ

t
1 − γ

, we get

λE[V (Wt + Wtw′Jt , t) − V (Wt , t)] = λE[V (Wt[1 + w′Jt], t) − V (Wt , t)]

= λ
A(t)W 1−γ

t

1 − γ
E

[
(1 + w′Jt)1−γ − 1

]
= λV (Wt , t)E

[
(1 + w′Jt)1−γ − 1

]
. (A1)

After substituting (A1) into (13), one obtains

0 = max
{w}

{
∂V (Wt , t)

∂t
+ ∂V (Wt , t)

∂W
Wt[w′R + r] + 1

2
∂2V (Wt , t)

∂W 2
W 2

t w′Σw

+ λV (Wt , t)E
[
(1 + w′Jt)1−γ − 1

]}
. (A2)

Substituting the functional form of the value function into (A2) gives equa-
tion (15). Differentiating this equation gives the result in the proposition.

To identify A(t), we start by evaluating (15) at the optimal portfolio weights,
w, which implies:

1
A(t)

dA(t)
dt

= −κ, (A3)

where

κ ≡ (1 − γ )[w′R + r] − 1
2γ (1 − γ )w′Σw + λE

[
(1 + w′Jt)1−γ − 1

]
. (A4)

Integrating then gives

A(t) = ae−κt , (A5)
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where a is the constant of integration. Using the boundary condition that

A(T ) = ae−κT = 1 (A6)

then implies that

a = eκT (A7)

so that

A(t) = eκ(T−t) (A8)

and the value function is

V (Wt , t) = eκ(T−t) W 1−γ
t

1 − γ
(A9)

with κ defined in equation (A4). Q.E.D.
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