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LETTER FROM THE EDITOR-IN-CHIEF

Arthur M. Berd
Founder and CEO, General Quantitative LLC

Welcome to the first issue of the seventh volume of The Journal of Investment Strate-

gies, in which we present four papers that I believe will be of special interest to active

investors and portfolio managers while also hopefully being of interest to academic

and industry researchers.

In the issue's first paper, "Efficient trading in taxable portfolios", Sanjiv R. Das,

Dennis Yi Ding, Vincent Newell and Daniel N. Ostrov tackle the very important but

relatively underexplored topic of tax-efficient portfolio management. The vast major-

ity of standard portfolio models ignore this effect, and they are strictly speaking only

applicable to nontaxable or tax-deferred investments such as those from tax-exempt

institutions or from individual retirement accounts. As soon as one is dealing with tax-

able portfolios, the nonlinear and path-dependent nature of taxes makes this problem

very nontrivial. Its impact, though, is difficult to overestimate as taxes may account

for a very sizeable portion of returns - especially in the case of active management,

which can generate short-term capital gains - and the difference between the pre- and

after-tax returns could be extremely important.

The authors focus on a specific problem setting related to life-cycle investment

management, ie, the investment strategy that changes the allocation between risky and

low-/no-risk assets as the investor ages and transitions from the accumulation phase

to the decumulation phase of life after retirement. To make the problem tractable, they

assume that the risky asset is a non-dividend-yielding stock index and that the low-

risk asset is cash. Solving the problem via a Monte Carlo simulation and optimization

approach, they are able to retain the full complexity of the US tax code, including

limited capital gains loss deductions, differences between short-term and long-term

capital gains taxes, and the treatment of taxes upon the death of a taxpayer. They

are able to demonstrate the sensitivity of the solutions to various important input

parameters, including capital gains tax rates, the current cost basis, the expected rates

of stock return and interest rates, the volatility of the stock, the level of transaction

costs, and the (very long) time horizon of the strategy. They uncover many interesting

and novel results, including a relatively counterintuitive finding that rising tax rates

make the larger stock allocation more preferred rather than less so.

I believe this paper will find interested readers among the many industry practi-

tioners working in the wealth and retirement management areas. The paper's findings

may have a significant impact on how they approach the practical management of

their portfolios.

www.risk.net/iournals
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Our second paper, "Portfolio concentration and equity market contagion: evidence

on the 'flight to familiarity' across indexing methods" by Lars Kaiser, explores the

intriguing concept of "flight to familiarity" as an explanation for contagion effects in

equity portfolios. The concept helps explain both similarities and differences between

the large number of alternative index weighting schemes that have been discussed in

the literature, and used by practitioners, over the past two decades. Some of the most

prominent alternative schemes, deviating from the market capitalization weights, are

the l/N equal weight approach, the diversity weighted model, the inverse beta model,

the minimum-variance model, the equal risk contribution model and the maximum-

diversification model, to name but a few. The authors explore metrics including abso-

lute and relative holdings overlap, Euclidean distance and the Bray-Curtis dissimilar-

ity measure, and they demonstrate that the holding overlap is not sufficient to explain

the correlations between the portfolios based on different weighting schemes.

Instead, a different regime-dependent pattern emerges, where one can see that in

high-volatility, low-correlation states of the market, portfolios tend to become more

concentrated and more similar, while in low-volatility, high-correlation states they

become less similar (hence, the term "flight to familiarity"). This seems natural and

intuitive and is explained by the fact that in low-risk states of the market the perceived

accuracy of return forecasts is high and portfolio managers are therefore willing to

go further afield to harvest alpha, while in high-risk states the "unfamiliar" assets

are hard to predict and a more concentrated portfolio of assets that are easier to risk

manage therefore makes more sense.

I think readers will benefit from the empirical evidence presented in this paper

to help them understand how best to handle portfolio construction across different

market regimes.

In the third paper in this issue, "Tail protection for long investors: trend convexity at

work", Tung-Lam Dao, Trung-Tu Nguyen, Cyril Deremble, Yves Lemperiere, Jean-

Philippe Bouchaud and Marc Potters explore the importance of trend convexity for

the tail risk management of long market exposure investment strategies. The authors

provide an algorithmic representation of trend-following strategies and demonstrate

that their performance can be largely explained by the difference between the long-

term and short-term variance (measured under an assumption of zero mean) of the

underlying asset returns. The trend is essentially an increase in the long-run variance

because the mean, if it is nonzero, contributes to the price differential, while the short-

term variance remains relatively unchanged because of the \/T scale that enters the

computation.

Furthermore, the paper proves what some (but not all) researchers and practitioners

instinctively know to be tme: that trend-following strategies have strongly positive

convexity and potentially negative alpha, which is entirely intuitive if one under-

stands that these strategies essentially have option-like payoffs. See, for example,

Journal of Investment Strategies 7(1 )

Berd (2010), in which I explained that the trend-following investor essentially bets

on the wings of the prospective returns distribution realizing more than statistically

expected while the middle of the distribution realizes less, which is the same expec-

tation that an investor trading a straddle would have. Unsurprisingly, trend-following

trading strategy dynamically replicates such a payoff. Dao et al's paper demonstrates

this thesis in full detail and quite unambiguously. Furthermore, it goes beyond second-

order (volatility/convexity) exposure and also shows a dependence on the third-order

(skewness) exposure of the strategy, which is highly nontrivial and has a lot to do

with the long-run accumulation of tail risks.

As a corollary to the paper's findings regarding the statistical signatures of the

trending strategies, the authors show that commodity trading advisor strategies pro-

vide a natural hedge for downside tail risk for both traditional and risk-parity-weighted

long-only investment strategies. This is true even in the absence of positive expected

performance. It is even more true, and more attractive from an investor's point of view,

in the light of the well-documented long-term positive performance oftrend-following

strategies. I concur with the authors that having a reasonably large allocation to such

strategies is highly advisable for most investors.

In the issue's fourth and final paper, "Speed and dimensions of trading", Boris Gne-

denko and Igor Yelnik look at another important aspect of trading strategies. While

much attention has been devoted to the risk-based analysis of portfolio composi-

tion, there has been much less focus on the risk-based study of trading and turnover.

However, for any active strategy these are critical issues, and having only a nominal

description of the turnover is clearly an oversight. The authors give a fairly compre-

hensive treatment of this problem and describe an elegant framework for analysis,

deriving metrics such as effective number of trades and effective number of trading

dimensions.

The authors' approach is very compelling: it is certainly natural to think about

turnover and trading costs in the same terms as the current composition of the portfolio.

And for most quantitative portfolio managers the latter is best described in terms of

risk bets, not in terms of asset weights. The turnover of risk bets is therefore also the

proper measure for describing trading activity. It allows us to compare, on a like-for-

like basis, the predicted transaction costs and the projected excess returns within each

effectively independent risk bet. In the process of doing this, the authors naturally

develop the invariant metrics that describe the effective number of these risk bets,

and the effective number of trades within each risk bet. They represent, respectively,

the dimension and the speed of trading; indeed, they represent a very coherent and

clear description of the trading activity in a complex portfolio. I found this paper very

illuminating and I am sure many of our readers will too.

In conclusion, I hope that this issue will prove to be a useful reference for prac-

titioners and will inspire researchers in industry and academia both to pose more

www.risk.net/journals
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probing questions and to look at those questions from nonstandard angles. Our job at

The Journal of Investment Strategies is to promote such diffusion of ideas and a fresh

take on problems.
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ABSTRACT

We determine life-cycle trading strategies for portfolios subject to the US tax sys-

tem. Our method employs Monte Carlo optimization. It accommodates long hori-

zons (between forty and sixty years) and large numbers of trading periods (eg, 480),

while accounting for the full cost basis history of the portfolio's stock holdings, thus

sidestepping the curse of dimensionality. We present many new results that provide

insights into questions about taxable portfolio investing which were previously unex-

plorable. Some of our results challenge current conventional wisdom. For instance,

we establish circumstances where raising the allocation of stock is optimal though

counterintuitive and demonstrate the suboptimality of the 5/25 rebalancing rule, even

as a rule of thumb.

Keywords: taxes; capital losses; portfolio optimization; simulation; path dependence; expected

utility.

1 INTRODUCTION

Death and taxes and childbirth! There's never any convenient time for any of them.

Margaret Mitchell, Gone with the Wind

Taxes make financial problems both more complicated and more interesting. The

optimal portfolio problem is no exception to this general statement. Due to the fact

Corresponding authors: S. R. Das and D. N. Ostrov Print ISSN 2047-12381 Online ISSN 2047-1246
©2017 Infopro Digital Risk (IP) Limited
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that capital losses may be deducted from an investor's ordinary income - which

is taxed at a higher rate than (long-term) capital gains - the US tax code injects

two options into portfolio analysis. First, Constantinides (1983) argues that, ceteris

paribus, when tax rates on losses are the same as (or greater than) rates on gains,

portfolio policies become tilted toward opting to immediately realize any losses, ie,

exercising a "tax put" option. This immediate exercise rule for the tax put option is

easy to implement. Second, Constantinides (1984) points to a more subtle tax-timing

(or "restart") option, where reaping the gains resets the cost basis, and therefore resets

the tax put to be at the money, which allows investors to better exploit the higher rate

for losses. Both of these tax options are important, but it is far more challenging to

determine how to exercise the second option optimally.

We consider a dynamic portfolio problem, where, at each time t, the investor

determines the fraction of their wealth, / € [0,1], that will be placed into a risky

asset, subject to capital gains taxation and capital losses tax deductions. The remaining

fraction (1 — /) is placed into a risk-free asset. (For simplicity, we will refer to the

risky asset as "stock" and the risk-free asset as "cash" for the remainder of this

paper.) Our choice of / is made in a tax-optimized manner, where the complexity

of the US tax code is considered over a large number of potential trading periods

(~ 500). This optimal choice of / depends on the cost basis of the stock holdings in

the portfolio, which, in turn, depends on the path of the stack's price history as well as

the investor's purchasing history. Thus the problem is heavily path dependent and high

dimensional. In particular, the full cost basis of all the stock in the portfolio can be

described by a vector of random, evolving length. Following this method, each stock

purchase still held in the portfolio corresponds to an entry in the vector. Attempting

to keep track of every possibility for the basis can quickly render the equation for

determining the optimal / intractable, as discussed in Ostrov andWong (2011),for

example. Therefore, many papers assume that it is approximately acceptable to use a

weighted-average cost basis encompassing all stock in the portfolio, instead of using

the actual cost basis for each stock purchase. This assumption allows us to replace the

vector describing the full basis with a scalar representing the average cost basis. This

change can make solving a (dynamic programming) Bellman equation to determine

the optimal / tractable.1 Examples of papers that have used the average cost basis

include Dammon et al (2001, 2004), Gallmeyer et al (2006), Tahar et al (2010) and

Dai<?ra/(2015).

' The state space for the dynamic programming problem comprises the current wealth of the investor

and the tax basis. If the weighted-average tax basis is used, then the state space will be two-

dimensional. If the complete tax basis is used, then the dimension of the state space has no definite

upper bound.

Journal of Investment Strategies www.risk.neVjournals
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Dybvig and Koo (1996) implemented a model using the full cost basis, but they
were limited to four periods before the problem became intractable. DeMiguel and

Uppal (2005) subsequently used nonlinear programming, namely the Sparse Nonlin-

ear OFTimizer (SNOPT) algorithm devised by Gill et al (2002). By adding linear

constraints, they were able to extend the use of the model to ten periods. For their

ten-period model, they found that using the full cost basis provided a 1% certainty

equivalent advantage over using the average cost basis, which is robust to various

parametenzations.

In contrast with these previous models, we use a simulation algorithm with opti-

mization that runs very fast. Our algorithm uses a nonUnear optimizer in the language

of R programming that calls a simulation run in compiled C for 50 000 paths of

portfolio wealth and policy. We generally run our algorithm for forty-year portfolio

horizons with quarterly trading, which equates to 160 potential trading periods. How-

ever, we also implement the model for longer horizons, eg, sixty years, or for monthly

trading, ie, 480 periods, which takes marginally longer. Our approach has the advan-

tage of being both simple and flexible. This yields a number of benefits, such as

allowing us to

(1) determine solutions using the full cost basis, even if the basis is large and

complicated;

(2) address a number of complex features of the US tax code that are generally

difficult to accommodate; and

(3) work with any desired stochastic processes to simulate the stock movement

(although, for simplicity, we use a geometric Brownian motion in this paper).

Our model keeps track of the entire tax basis, however, we can also implement a

simplification to accommodate the average basis. This will allow us to compare the

effect of using the average cost basis with that of the full cost basis. This is key for

understanding whether or not it is justified to use the average cost basis approximation

that current dynamic programming approaches (eg, the Bellman equation) implement.

DeMiguel and Uppal (2005) argue that using the average tax basis is reasonable, since,

in their simulations, most stock holdings comprise a single basis. They state that only

4% of holdings comprise additional bases. However, their conclusion is based on a

ten-period model, where there are few periods in which to make new purchases. With

many more periods and more complex tax code features, as in our model, there is

greater potential for the difference in optimality between the full tax basis problem

and the average tax basis problem to increase. Having a large number of periods is

more like a Bellman model, where potential sales and purchases occur in continuous

time or over multiple periods in discrete time.

www.risk.net/iournats Journal of Investment Strategies
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S.R.Das et al Efficient trading in taxable portfolios 5

A comprehensive paper by Dammon et al (1989) examines both the tax put option

and the restart option (see also a review by Dammon and Spatt (2012)). Their paper

shows that the value of these options depends on the pattern of gains, the length of

the portfolio's time horizon (T) and whether, at this horizon, the investor is alive and

liquidates their portfolio or is deceased. (In the case of a deceased investor, taxes will

be lower, since all capital gains are forgiven upon death and the basis is reset.) We will

explore the effect of the investor's status - alive or deceased - at the horizon T and

show how this may lead to substantially different optimal strategies, even when T is

large. A difference between our paper and that ofDammon etal (1989) is that they do

not seek to determine an optimal trading policy. Instead, they examine three trading

rules suggested by Constantinides (1984) and compare the performance of these rules

with a buy-and-hold strategy. For high volatility stocks, they find that the value of

the restart option is lower than that suggested by Constantinides (1984) because such

stocks also tend to have higher capital gains. They conclude that offset rules matter.

Hence, in our model, we account for tax loss offsets and carryforwards exactly as per

the US tax code.

It is well established (see, for example, Davis and Norman (1990), Dai et al (2011)

and Dai et al (2015); or, in the asymptotic case, see Shreve and Soner (1994), Whaley
and Wilmott (1997), Atkinson and Mokkhavesa (2002), Janafiek and Shreve (2004),
Rogers (2004) or Goodman and Ostrov (2010)) that, in the absence of taxes, the opti-
mal trading strategy is to maintain the stock fraction within a specific "no-transaction

region" (also referred to as a "hold region"). When the portfolio's stock fraction is in

the interior of this no-transaction region, there is no trading. Trading only occurs to

rebalance the portfolio so that it does not escape the no-transaction region. The same

logic applies to the optimal strategy for taxable portfolios, but with one tweak: the
optimal strategy, as per Constantinides (1983) and Ostrov andWong (201 1), requires
realizing any capital losses as soon as possible (that is, exercising the tax put option),

no matter where we are in the region, and then rebuying an essentially equivalent

stock or index to avoid wash sale restrictions, as discussed further in Section 2.1.

This process collects the tax advantages of realized losses without rebalancing the

portfolio. As before, we only rebalance to prevent the portfolio from escaping our

region. Because we transact to realize losses in the interior of our region, we refer to

any region using this optimal strategy in the presence of taxes as a "no-rebalancing

region" instead of a "no-transaction region". In the case of a single stock, as explored

in this paper, the region is an interval.

Because our simulation approach works forward in time, whereas Bellman equation

approaches either work backward in time or employ specific models for which the

value function's dependence on time is removed, we are able to obtain new results that

complement those previously obtained by Bellman equation approaches. By working

forward in time, we are not restricted to using either a single cost basis or an average

Journal of Investment Strategies www.risk.net/journals

cost basis. We are not restricted to approximating the tax code for losses, either by

requiring all losses to be immediately claimed or only allowing losses to cancel gains.

We are not encumbered by the "curse of dimensionality", which may impose less

realistic model assumptions, such as an exponential distribution for the investor's time

of death or a restricted class of investor utility function. Nonetheless, our approach

has limitations, and there are certain cases for which the Bellman approach appears

better suited. For example, in Dai et al (2015), the Bellman approach explores cases

where it is better to sell stock even if this triggers short-term capital gains taxes. Our

approach cannot be generalized to determine such cases. However, our algorithm can

be generalized, as we will later show, to allow the values of the lower and upper

bounds of the no-rebalancing interval to depend upon the ratio of stock basis in the

portfolio to current stock price, as in Dai et al (2015).

Working forward in time allows us to derive an optimization algorithm that reveals

many new findings about the optimal no-rebalancing interval for the stock fraction.

Some of our results confirm statements in the current literature, while others contradict

previous claims, but many of our results provide an insight into questions hitherto

unaddressed in the extant literature. The main findings of this paper are as follows.

First, we provide a simulation-based method that quickly generates an optimal

portfolio trading strategy. Our method utilizes the full cost basis history, a complex,

realistic tax model, and many more trading periods (we implemented 480) than have

ever been considered in the literature when using the full cost basis history (Haugh

et al (2016), for instance, consider twenty periods). Our model can be extended in a

number of directions, making it possible to accommodate just about any stochastic

model for stock price evolution and any utility function that is applied to the portfolio
worth at the horizon time, T. Our model can also be applied to multiple stocks;

however, this would require certain assumptions about the geometric nature of the no-

rebalancing region. By contrast, the approach applied by DeMiguel and Uppal (2005)
to the multiple stock question required no a priori knowledge about the geometry of

the no-rebalancing region, though it was computationally limited to seven trading

periods for two stocks and four trading periods for four stocks.

Second, our portfolio rule comprises an optimal no-rebalancing interval for the

stock fraction that can be specified by the interval's center, denoted by /*, and the

interval's width, denoted by A/. We show that optimality is reduced much more

by movement away from the optimal center than movement away from the optimal

width. When the optimal interval width is positive, as opposed to zero, the reduction

in optimality, due to perturbations of the interval width from its optimal value, is

particularly small.

Third, as in Dammon et al (1989), we find that materially different optimal portfolio
choices can be made depending on whether the investor is assumed to continue living

or to expire upon liquidation of the portfolio at the horizon time, T. Moreover, our
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results indicate that this difference in optimal strategy does not vanish as T increases,

even though the tax treatment only varies at time T, suggesting that these strategies

have long memory.

Fourth, counterintuitively, the optimal stock fraction in a taxable portfolio (or, more

specifically, /*, the interval's center, if the interval width A/ > 0) is often higher

than the optimal stock fraction for a portfolio without taxes, rather than lower. This is

the case whether or not the investor is assumed to be alive or dead when the portfolio

is liquidated at time T. Because there are generally more capital gains than capital

losses, it is intuitive to think that taxes should make the stock less desirable. However,

the tax rate used to credit losses is generally significantly higher than the tax rate for

gains, a fact that may often be exploited to make the taxable stock more, not less,

desirable. We analyze when this is the case.

Fifth, our analysis shows that the static band rules commonly used to determine

the no-rebalancing region are generally problematic. The "5/25" rule of thumb, for

example, suggests that for our stock-cash scenario we should use a no-rebalancing

interval with a width of A/ = 0.10, since this corresponds to ±5 percentage points

for the portfolio's stock fraction.2 Our results, however, show that the optimal width

of the no-rebalancing interval can vary dramatically (and often turns out to be zero),

depending on a number of parameters. Specifically, the optimal width increases as

we increase the stack's expected return, the capital gains tax rate, or the size of the

portfolio, and decreases as we increase the risk-free return, the capital losses tax rate,

or the time horizon, T, of the portfolio. The optimal width also increases if the investor

is assumed to expire at time T. (Surprisingly, in our results, the optimal width does

not appear to be influenced by the volatility of the stock, when intuitively one might

expect it to be. See, for example, the trading range in Section 3.2.1.) Further, we

explain why, when we roughly average the effect of all these parameters, it is better

to choose A/ = 0 (that is, to be continually rebalancing) than to choose A/ = 0.10

as suggested by the 5/25 rule of thumb.

Sixth, also counterintuitively, in a case where the investor is assumed to expire at

the portfolio horizon and the tax rate on gains is increasing, more, rather than less,

investment in the stock is generally optimal. This is because the amount ofrebalancing

(along with the associated capital gains) needed to maintain the desired fraction, /,

of the portfolio in stock decreases as / increases from / = 0.5 to / = 1. Indeed, to

maintain /= 1, no rebalancing is needed, so no capital gains are generated.

2 The 5/25 mle of thumb recommends that a portfolio be rebalanced if the actual fraction of the

portfolio in an asset class deviates from the desired fraction by five percentage points (in cases

where the desired fraction is 25% or higher), or if the actual fraction deviates by more than 25%

from the desired fraction (in cases where the desired fraction is less than 25%).
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Seventh, we assessed monthly, quarterly and semiannual trading schemes, and

found that the choice between these three trading frequencies has no material effect

on the optimal allocation strategy. This assessment is novel in comparison with the

extant literature, which does not assess this issue due to limitations in the number of

periods it has been possible to consider.

Eighth, using a large collection of scenarios, mostly with forty-year time horizons,

we find that, on average, using the full cost basis provides only a 0.65% certainty

equivalent advantage over using the average cost basis if the investor is assumed

to be alive at the portfolio horizon time, T. This advantage reduces even further to

0.27% when the investor is assumed to expire at time T. These numbers are a bit

lower than the 1% figure reported by DeMiguel and Uppal, further supporting the

validity of using the average cost basis approximation approach outlined in opti-

mization models, such as the Bellman models that require the approximation for

tractability.

Ninth, as in Dai et al (2015), we allow the no-rebalancing interval's upper and

lower bounds to depend on the ratio of the basis price of the portfolio's stock to the

current stock price. Dai et al (2015) employ the average cost basis price. However,

since we allow for the full cost basis, we select the highest cost basis price in the

portfolio, since that corresponds to the first stock traded. We find that allowing the

no-rebalancing region's bounds to depend on this ratio of the highest cost basis to the

current price yields no discernible certainty equivalent advantage.

Tenth, for completeness and comparison with Leland (2000), we also reoptimize

the taxable portfolio in the presence of proportional transactions costs. We confirm

Leland's result that transaction costs reduce portfolio chum (ie, they increase the

optimal width A/). However, unlike Leland, we do not find that transaction costs

materially reduce the optimal fraction of the portfolio in the stock position. That is,

they do not reduce the optimal /*.

In Section 2, we present our modeling approach, explicitly accounting for various

features of the tax code and for the evolving cost basis of all the stock in the portfolio.

Section 3 follows with numerical simulations of the model. We report and explain

the effect on the optimal trading strategy caused by vatying the values of the stack's

expected return, the cash interest rate, the stack's volatility, the investor's risk aversion,

the tax rate on losses, the tax rate on gains, the initial portfolio worth, the portfolio's

time horizon and the periods between trading opportunities. We then report and explain

the effect on the optimal trading strategy of letting the strategy change halfway to

liquidation (at time T/2), of using the average cost basis in place of the full cost basis,

of allowing the optimal strategy to depend on the ratio of the portfolio's highest cost

basis to the current stock price, and of incorporating transaction costs into the model.

Section 4 concludes.
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2 MODEL

In this section, we present the assumptions behind our model and the details of our

simulation of the model.

2.1 Assumptions and notation

We have two assets in our portfolio model: stock and cash. The return on the stock

is risky; the return on the cash is certain. Our model applies two sets of assumptions:

those for the stock and cash positions, and those for the tax model.

For the stock and cash positions, we make the following assumptions.

(1) We assume the stock evolves via a geometric Brownian motion with a constant

expected return, /A, and a constant volatility, a.

(2) The tax-free continuously compounded interest rate for the cash position, r,

is assumed to be constant. We note that cash positions with constant interest

taxed at a constant rate can be converted to an equivalent tax-free rate, r,

and, of course, periodically compounded interest at a constant rate can also be

converted to a continuously compounded rate,r.

(3) Except where otherwise specified, we assume that stock and cash can be

bought and sold in any quantity, including non-integer amounts, with negligible

transaction costs.

In portfolios subject to tax, the impact of taxes on the optimal strategy is gen-

erally much stronger than the impact of transactions costs. At the same time,

tax codes are generally more complex than models for transactions costs. For

tax-free portfolios like 401 (k)s and Roth individual retirement accounts (IRAs),

where transaction costs take center stage, there is an extensive literature on port-

folio optimization (see Aki an etal 1996;Atkinson and Ingpochai 2006; Bichuch
2012; Goodman and Ostrov 2010; Leland 2000; Liu 2004; Muthuraman and
Kumar 2006).

(4) For simplicity, we do not consider dividends for the stock, although the model
can easily be altered to approximate the effect of dividends by adjusting fji, the

growth rate of the stock.

For the tax model, we make the following assumptions.

(1) As stipulated by the tax code in the United States, we assume a limit of no more

than US$3000 in net losses can be claimed at the end of each year. Net losses in

excess of this amount are carried over to subsequent years. Should the investor

expire when the portfolio is liquidated at time T, all remaining camed-over
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capital losses are lost. We encode all these features into our portfolio simulation

program.

(2) For simplicity, we assume that for all times prior to the portfolio being liqui-

dated, the capital gains tax rate, Tg, is constant and applies to both long- and

short-term gains. According to the US tax system, when the portfolio is liqui-

dated, we employ one of two capital gains rates (rlk! = Tg if the investor is

alive, or Tliq = 0 if the investor is dead) to reflect the fact that capital gains are

forgiven when an investor expires. Similarly, for both short- and long-term cap-

ital losses that are claimed prior to the liquidation of the portfolio, we assume

a constant rate, r\, which corresponds to the marginal income tax rate of the

investor. Our model can be altered to accommodate different rates for short- and

long-term gains and losses. However, optimizing with this short-term/long-term

model poses difficulties, unless one restricts the strategy to something reason-

able but possibly suboptimal, such as assuming that short-term gains will never

be realized.

(3) We allow for wash sale rules, but we make an additional assumption so that they

have no effect. Specifically, we assume the presence of other stocks or stock

indexes in our market with essentially the same value of /A and a. For a loss to

qualify for tax credit, wash sale rules in the US stipulate that the investor must

wait at least thirty-one days before repurchasing a stock that was sold at a loss.

But if the investor sells all of a stock that is at a loss and then immediately buys a

different stock with the same /A and o-, the investor will avoid triggering a wash

sale, while still taking full advantage of the loss for tax purposes. This strategy

of selling and repurchasing lowers the cost basis of any stock with losses. Yet,

because it allows for earlier use of the losses for taxes, it is always superior to

the strategy of buying and holding when transaction costs are negligible (see,

for example, Constantinides 1983; Ostrov andWong 2011).

2.2 Trading strategy

We implement the following trading strategy. For simplicity, we start with a portfolio

that is strictly cash, although initial portfolios containing stock positions with various

cost bases could just as easily be accommodated. We then immediately buy stock

so that the portfolio's stock allocation attains a selected fraction, / , of the total

portfolio's worth.

After each time period of length h years passes in the simulation, we consider three

types of trade. First, we sell and repurchase any stock with a loss, avoiding wash sale
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restrictions as described above, to generate money from these capital losses.3 Second,

if / (the fraction of the portfolio's value in the stock position) is below a selected

lower threshold, / (which is constant over time), we purchase stock until / = /1.

Third, if / is above a selected upper threshold, /" (which is also constant over time),

then the stock with the highest cost basis is sold until / = /". Choosing to sell stock
with the highest cost basis is optimal, since it minimizes capital gains.

At the end of each year, taxes on any net capital gains are paid from the cash

position, and any net losses that can be realized are used to purchase additional stock.

We keep track of the cost basis of all stock purchases. This makes both the problem

and the portfolio value path dependent, ruling out any easy dynamic programming

approach to determining the optimal stock proportions at each point in time for the

portfolio, as explained in the introduction.

Our goal is to determine the three values, /int, / and /", that may optimize

the expected utility of the portfolio at a specified final portfolio liquidation time,

T. Our model can easily accommodate any utility function; however, for our own

simulations, we have chosen power law utility functions (ie, constant relative risk

aversion). Normally, power law utilities lead to results that are independent of the

initial portfolio worth. However, this will not be the case here due to the US$3000

limit on losses that can be claimed per year.

2.3 The algorithm for simulating a single run over T years

For given values of /init, /) and /", our algorithm works via Monte Carlo simulation

over a large number of runs. For each run, we proceed with the following algorithm.

We start by purchasing stock so that our initial cash-only portfolio attains the given

initial stock fraction, /lmt, at t = 0.

We simulate the market over each time period h. From time ( to time ( + h, the

stock price, S, advances via a geometric Brownian motion, so

St+h = St exp ] (/A - y)/z + CT^Z ],

where Z is a standard normal random variable. The cash position, C, advances by

Cf+h = Ct exp(r/z).

As we buy and sell stocks over time, we develop a portfolio with stock positions

purchased at various prices. We keep track of each of these separately to determine

the correct basis for computing gains or losses when we sell the stock. We let J be the

number of different purchase prices (corresponding to the various purchase times) of

3 This assumes that the investor has an income not derived from their investment, so the losses can

be used to lower the tax on the income in a way that is equivalent to generating money from tax

shields.
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the stock. Define Bj, where j = 1,2,..., /, to be these / purchase prices in order of

purchase time, and let Nj be the number of stocks purchased at each of these prices.4

Since we sell and repurchase any stock that has incurred a loss, we guarantee that

Bi < By, ^ • • • $ 57. For the initial stock purchase at t = 0, for example, we have

J = 1, since there is only one stock position; Bi = So is the initial stock price; and

the number of shares bought is Ni = /lmtH/o/'So, where Wo is the initial worth of

the portfolio.

After each time period h has elapsed, we consider our three possible trading actions

in the following order.

(1) Collect any losses: define A: such that A;, ^+1,..., 3 are the only positions with

losses. That is, Bk, Bk+1,..., Bj are the only values of Bj that are greater than

the current stock price, S. We sell all of these positions and then immediately

buy them back, recalling that we are actually buying back other stocks or stock

indexes that have the same [L and a to avoid wash sale restrictions. We subtract

these losses from our current gains, so the new value for the gains, denoted by

G, is
J

G=Gol'l-^Nj(Bj-S).

j=k

Since positions k through J have all been repurchased at the current stock

price, it is now the case that

r old r oldNk = N^la + N^ +•••+ Nfa,

where Bk = S and we reduce J to equal k, since positions k + 1 through 7°ld

no longer exist.

(2) If the current stock fraction, /, is below /1, we buy stock until / = /1. Since

we are buying stock, we must create a new position at the current purchase

price. Hence we increase J by one. For this new / position, we have Bj = S,

and Nj equals the number of stocks needed to ensure that f = f{.

(3) If the current stock fraction, /, is above /", we sell stock, beginning with

position J', then position J — 1, etc, until we have / = /u. We add these gains

to G. They must be gains, because all losses have already been collected by this

stage. If this procedure results in the liquidation of any positions, we reduce

the value of / to reflect this.

4 Should our model be altered to distinguish between short- and long-term gains and losses, the time

of purchase, tj, must also be recorded.
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This trading strategy of buying and selling stock so as to stay just within the interval

[/l, /"] is a standard optimizing strategy when there are either no transaction costs

or proportional transaction costs, as is the case here (see, for example, Davis and

Norman 1990).

At the end of each year, we either pay taxes or collect tax credits, depending on

the sign of G. If G > 0, we have incurred gains; so, we remove Grg from the cash

account and then set G = 0. If G < 0, we have incurred losses that we use to buy

stock. Since we are buying stock, we increase J by one and then set Bj = S, the

current stock price. If the losses, —G, are less than the annual limit of US$3000, they

generate —Gr\ dollars, which purchases Nj == (—Gri)/S shares of stock. We may

then set G = 0. If the losses are more than US$3000, we purchase Nj = 3000Ti/5

shares of stock, and then we set G = Gold + 3000, so the excess losses are carried

over to the next year.

At the end of T years, we liquidate all the stock positions in the portfolio. If we

assume the portfolio owner is alive, capital gains from this liquidation are paid. If we

assume the owner has expired, no capital gains are paid. Any camed-over losses are

lost.

As detailed in the next subsection, we seek to average the utility of the final portfolio

worth over all of our Monte Carlo runs to determine an approximation for the expected

utility. We use the same simulated stock runs for comparing the expected utilities for

different /init, /} and /" combinations. This allows us to converge to the values of

fimt, fl and /" that optimize the expected utility for this fixed set of simulations. We

then use different sets of simulations to check for consistency in the optimal values

determined for /init, /' and /u.

2.4 The expected utility estimator and the optimization program

Working with our model is quite computationally intensive. We generally chose a base

case liquidation time, T, of forty years. Each forty-year run was computed using the

complex algorithm from the previous section. We also needed to average the utility at

liquidation over a high number (up to 50 000) of these runs to estimate the expected

utility of the terminal wealth, E[U(WT)], corresponding to any specific values of

/imt, /' and /". Further, the optimization algorithm requires several calls to this

expected utility estimator for various values of / ', /) and /°.

Given this approach, we required very fast computation from the expected utiUty

estimator as well as an efficient optimizer. We therefore programmed the expected

utility estimator in C programming language. We also compiled and linked it in a way

that made it callable from the R programming language, and therefore suitable for use

with the optimizer in R, a language that is stable, fast and accurate. The optimization
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function in R is constrOptim; we chose this constrained optimizer because we

needed to restrict the values of /irit, /* and /u so that 0 ^ /' ^ /irit ^ /u $ 1.

We applied a power utility function,

U(W) =
w1-

1-a'
(2.1)

to the terminal wealth, although we can easily accommodate any other utility function

in our simulation program. The power law utility, however, is particularly suited to

our model - where /1 and /" are constant with respect to time - because, in the

absence of taxes, Merton (1992) showed that, for the power law utility, the optimal

fraction of the portfolio held as stocks is

'Merton —
^
aa-

which is also constant with respect to time.

Given our choice of the power law utility, our estimate of the expected utility at

time T becomes

M_
E[U(WT)} ^ ^- E -^—a(WT(m))l~av

m=l

where a is the coefficient of relative risk aversion for the investor, m indexes each

simulated mn, M is the total number of runs and WT (m) is the terminal wealth for

run m generated in the simulation.

Optimization is run in two stages. In the first stage, we find the values of /init, /'

and /" that are optimum over a case with only M = 1000 mns. This stage is fast,

since M is small. We then use these three values as starting guesses for the optimum

/init, /1 and /" in the second stage, where we optimize over M = 50000 mns. This

two-step process has the benefits of speed from the first stage and precision from the

second stage. We used standard computing hardware for this simulated optimization

procedure, and each optimization runs in under five minutes. We obtained similar

results when using other sets of 50000 sample paths generated using independent

sets of random numbers.

3 RESULTS AND ANALYSIS

In this section, we present and analyze numerical results obtained from the simulation

model described in Section 2. We begin in Section 3. 1 with a discussion of the optimal

stock fraction range, [/1, /"] (ie, the optimal no-rebalancing interval) for the "base

case , in which we assign the below values to the following nine parameters:
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(1) the stock growth rate, ^ = 7% = 0.07 (per annum);

(2) the risk-free rate, r = 3% = 0.03 (per annum);

(3) the stock volatility, a = 20% = 0.20 (per annum);

(4) the risk-aversion parameter, a = 1.5 in our utility function in (2.1);

(5) the tax rate on losses, TI = 28% = 0.28;

(6) the tax rate on gains, z-g = 15% = 0.15;

(7) the initial portfolio worth, Wo = US$100000;

(8) the time horizon before portfolio liquidation, T = 40 years;

(9) the period between potential trades, h = 0.25 years (ie, quarterly trading and

rebalancing).

We will consider the base case in two scenarios: when the investor expires at

T = 40, so that any remaining capital gains are forgiven, and when the investor is

alive at T == 40, so that taxes on any remaining net capital gains must be paid.

In Section 3.2, we show the sensitivity of this optimal stock fraction range by

varying these nine parameter values, one at a time, from their base case values. Then,

in Section 3.3, we consider the effects of changing the model in four ways:

(1) letting the stock fraction range, [/1, /"], change values at time T/2 = 20

years;

(2) using the average cost basis instead of the full cost basis;

(3) allowing the bounds of the no-rebalancing interval to depend upon the ratio of

the highest cost basis to the current stock price;

(4) incorporating proportional transaction costs when we buy and sell stock.

A no-rebalancing interval can be defined by specifying /' and /" or by specifying

the components

yi + yu
/* = ^—^— (the center (or midpoint) of the interval)

and

A/ == /" - /1 (the width of the interval).

We often prefer to use /* and A/, since it makes more sense to analyze how

changes affect the center and the width of the trading strategy, instead of how they

affect /1 and /u. In our simulations, we found the effect of varying /init to be quite

small. Therefore, we do not discuss or present the optimal values of /lmt, even though

our algorithm determines and uses them.
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For the base case specified above, with a deceased investor at T = 40, our analysis

shows that the optimal trading strategy would be to set/* = 0.764 and A/ = 0.168.

With a living investor at T == 40, the optimal trading strategy is to set / = 0.71 1

and A/ = 0. Note that A/ = 0 means that the investor is best off continually

rebalancing.

The effect of living as opposed to dying on /* and A/ will hold in general, and

not just in the base case, as we will see throughout Section 3.1. When the investor is

alive at time T and must pay capital gains, there are two key effects.

(1) Having to pay capital gains taxes at time T makes the stock less desirable, so

/ gets smaller when the investor is alive at liquidation.

(2) Having to pay capital gains taxes at time T makes having capital gains less

desirable, so A/ also gets smaller.

Further, even though the status of the investor (living or deceased) at time T only

affects the tax treatment at time T, it has a considerable effect on our optimal long-

term investing strategy, especially on the optimal A/, as we see here in the base case

and throughout Section 3.1.

As stated previously, in the absence of taxes, Merton (1992) shows that it is optimal

to keep the stock fraction equal at all times to

'Merton —
^-r

aa2
(3.1)

which, for our base case, corresponds to ,/Merton = j • Note, however, that this Merton

stock fraction is smaller than either /* = 0.764 or /* = 0.711. Though it may seem

counterintuitive, the optimal stock fraction in the taxable accounts is higher here than

in the account with no taxes.

Why? Since T\, the refund tax rate for capital losses, is higher than Tg, the tax rate for

capital gains, the advantage of culling capital losses from stock in a taxable account

can, on average, outweigh the disadvantage of paying capital gains taxes. This is the

case here. We emphasize that only the stock positions require different tax treatments.

The cash positions, both in our algorithm and in the Merton expression (3.1), use the

same tax-free rate, r = 0.03. That is, we are not choosing a higher stock fraction in

the taxable portfolio because it is better to keep the cash position shielded from taxes,

as investors are often advised when considering a taxable account versus a 401(k) or

Roth account.

Though our algorithm determines the optimal / * and A/ , it can easily be simplified

to determine the loss incurred by an investor should they employ a suboptimal /*
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and/or A/. We quantify this loss using the certainty equivalent, C, which is defined

by

£/(C) = E[U(WT)},

where WT is the portfolio worth at time T. Further, the investor has no preference

between starting at t == 0 with Ce~rT dollars that must be invested as cash at the

risk-free rate r until time T (leading to C dollars at; = T) or starting at t = 0 with

WQ dollars invested in our stock and cash portfolio until time T (leading to a random

variable for the value of WT).

To quantify the disadvantage of using a suboptimal strategy rather than the optimal

one, we employ Csubopt/Copi < 1, the ratio of certainty equivalents under these two

strategies, to define c, the certainty equivalent difference, via the following equation:

l+c=
Csubopt U-l(E^[U(W)})

Copt - U-l(E^[U(W)}) •

Since U(W) == (Wl — oi}/(\ — a), this can be reexpressed as

EM[U(W)]\I/(I-CI)

Eopt[U(W)} )
-1^0. (3.2)

Note that the optimal strategy corresponds to c = 0, and c becomes progressively

negative as the strategy becomes more suboptimal.

Figure 1 shows the effect on c when we deviate from the optimal strategy. For

parts (a) and (c), we fix A/ at its optimal value and let / vary. For parts (b) and
(d), we fix / at its optimal value and let A/ vary. Noting the scale on the vertical

axis, we see that the sensitivity of c to suboptimal values of / is far larger than

its sensitivity to suboptimal values of A/. That is, it is much more important for

investors to determine their optimal portfolio stock fraction (or, more precisely, the

center of their optimal no-rebalancing interval) than it is to determine the precise

optimal width of this interval.

Should the investor get the precise value of the optimal / wrong, however, there

is also considerable forgiveness built in, due to the fact that - at least in the base cases

for the investor dying (Figure l(a)) or living (Figure l(c)) - the optimal /* is on the

interior of the domain / 6 [0,1]. Because of this and the smoothness of the graphs,

the derivative of c is zero at the optimum value of /*. This leads to a small loss in the

certainty equivalent difference for even moderate deviations from the optimal /*. In

the two base cases shown in Figure 1, for example, we see no more than a 1% loss

in the certainty equivalent difference over forty years, until the value chosen for /*

differs from the optimal /* value by around ten percentage points.
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FIGURE 1 The loss to the investor, measured as the certainty equivalent difference,
resulting from employing a suboptimal strategy for the base case.
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In parts (a) and (b), the investor expires during liquidation of the portfolio, whereas in parts (c) and (d) the investor
is still alive at this time. Parts (a) and (c) examine the effect of using a suboptimal /*, showing it to be stronger than
the effect of using a suboptimal A/, as depicted in parts (b) and (d).

The same effect occurs for A/ in the base case with a deceased investor (Fig-

ure l(b)). Because the optimal A/ is an interior value in the domain of possible A/

values, the derivative of c must be zero at the optimal A/. Thus we see little sensitiv-

ity to moderate deviations from this value. This is not the case, however, in the base

case when the investor is still alive (Figure l(d)). Since the optimal A/ is zero, the

endpoint of the domain of possible A/ values, the derivative of c need not be zero at

the optimal A/. This means the sensitivity of c to deviations from A/ = 0 will, in

general, be greater, as is the case here.

There is considerable debate about whether taxable portfolios should be rebalanced

continually (only selling stock with long-term capital gains, of course) or only when
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the portfolio deviates too much from its optimal stock fraction, as in the 5/25 mle of

thumb discussed in the introduction. In this paper, we will present numerous examples

in which it is optimal to rebalance continually (ie, the optimal A/ = 0) and almost

equally numerous examples where it is optimal to rebalance only when the portfolio

deviates too much (ie, the optimal A/ > 0). It might therefore be assumed that this

paper suggests that either mle of thumb is equally valid. However, this is not the case.

If the optimal A/ is not too large, the observation in the previous paragraph tells us

that, as a mle of thumb, it is better to continually rebalance, because the loss incurred

by wrongly choosing A/ = 0 when the optimal A/ is a small positive value will

generally be less than the loss caused by wrongly choosing a small positive value for

A/ when the optimal A/ = 0. That said, using the wrong mle of thumb is unlikely to

have significant consequences. After all, as we can see in parts (b) and (d) of Figure 1,

a wide range of suboptimal A/ may be used in the base case where the loss over

forty years in the certainly equivalent difference remains under 1%.

3.2 The effect of varying parameters on the optimal strategy

In the remainder of Section 3, /* and A/ will denote the /* and A/ of the optimal
no-rebalancing interval.

In the figures of this subsection, the parameters being varied are displayed on the

horizontal axes, while stock fractions, /, are displayed on the vertical axes. Recall

that stock positions are constrained to be long only, so / € [0,1]. Three curves are

shown on the graphs, which represent the upper boundary, /" (red Une), the lower

boundary, /' (blue line), and the midpoint between /" and fl, f* (green line). It is

reasonable to think that / and the average value of / over time are almost equal,

since, for example, they are equal to leading order as the interval width A/ = /" — /

gets small in the related continuous time scenario considered in Goodman and Ostrov

(2010). We will sometimes refer to / as the average stock fraction for this reason

and, of course, because /* is the average of the two values /" and /*.

In many of the figures, we will see how changes to our parameter values will cause

A/ to become bigger or smaller, often to the point of causing a transition between

A/ being positive and being zero. These changes in the size of A/ are determined

by shifting balances among a number of opposing factors.

Two factors may push A/ to be bigger.

(1) The bigger A/, the more useful deferring capital gains becomes, even when

the tax on gains must be paid at time T due to the investor being alive.

(2) If the investor is deceased at time T, then A/ will be even bigger to make it

more likely that larger amounts of capital gains will be forgiven at time T.

FIGURE 2 Distribution of the number of levels in the tax basis on average in one life cycle.

2500
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A histogram of the average basis levels for each path, across 50000 paths. We assume the standard US$3000
annual limit for claiming losses and that all parameter values, except the varying parameter, take their base case
values.

In opposition to these effects are the factors that push A/ to be smaller.

(1) The smaller A/, the more useful claiming capital losses becomes, since x\ > Tg

according to current US tax law. That is, the smaller A/, the more we can take

advantage of the two tax options discussed in Constantinides (1983, 1984).

(2) The smaller A/, the more control we have in keeping the portfolio at or near

the stock fraction that optimizes the investor's expected utility.

In this subsection, we demonstrate and then explain how / and A/ are affected

by altering our model parameters, one at a time, from their base case values. We

present results for variations in each parameter using two graphs per figure: (a), on

the left, will correspond to the case where the investor is assumed to expire at the

portfolio horizon time T and (b), on the right, will correspond to the case where they

are assumed to be alive.

First, we keep track of the number of levels in the tax basis of a simulated path.

Earlier papers by DeMiguel and Uppal (2005) and Dai et al (2015) argue that there is
rarely more than one level in the basis. We find otherwise, with an average of between

nine and ten levels in the basis over its life cycle. The distribution of basis levels across

the 50 000 simulated paths is shown in Figure 2. This is for the optimal strategy under

base case parameters.
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FIGURE 3 Variation in the optimal stock fraction range, caused by a varying expected
stock growth rate, /z.
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(a) Investor deceased at portfolio horizon, (b) Investor alive at portfolio horizon. In this figure, and those below, it is
optimal to rebalancs just enough so that the portfolio stock fraction stays between the blue curve, /1, and the red
curve, /". The green curve, /*, represents the center (ie, the midpoint) of this interval. We assume the standard
US$3000 annual limit for claiming losses and that all parameter values, except the varying parameter, take their
base case values.

3.2.1 Varying the stock and cash growth rates, ju, and r

The stock growth rate, /t. Critical to any long-run portfolio strategy are the assumed

average growth rates of the portfolio's financial instruments. Financial planning tools

make assumptions about these as a critical part of their processes. Here, we first

examine the effect of changing the expected stock growth rate, ^, over the values

0.06,0.07,0.08,..., 0.12 per annum, while holding all other parameters at their base

case values (given above).

In Figure 3, we see, as expected, that the optimal average stock fraction, / (rep-

resented by the green line), increases as /z increases, until the point when the investor

is best off placing the entire portfolio in stocks, ie, / = 1. Once this happens, of

course, the optimal stock fraction interval, [/1, /"] (represented by the blue and red

lines), collapses to point /! = /" = 1, so that there is no cash. We also note, as

expected from our discussion at the beginning of Section 3.1, that both /* and A/

are smaller in Figure 3(b), where the investor is alive at the portfolio's liquidation

time T = 40. Finally, we note that the values seen in Figure 3, cases (a) and (b), for

the base case, ^ = 0.07, correspond to the numerical values given in Section 3.1.

The risk-free rate, r. Essentially, increasing r, the cash interest rate (ie, the risk-

free growth rate) has the opposite effect upon the optimal policy to increasing p..

We examine this effect in Figure 4, as we change the interest rate, r, over the values

0.01, 0.02,..., 0.06 per annum. Again, note that the base case value in Figure 4,

r = 0.03, corresponds, as it must, to the results shown in Figure 3 at the base case

value, IJL = 0.07.
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FIGURE 4 Optimal stock fraction range when varying the risk-free rate, r.
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(a) Investor deceased at portfolio horizon, (b) Investor alive at portfolio horizon.

FIGURE 5 Optimal stock fraction range when varying the stock growth rate, /z, while
keeping the excess return, /x - r, constant.
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(a) Investor deceased at portfolio horizon. (b) Investor alive at portfolio horizon.

The stock growth rate, IJL, and the risk-free rate, r, while holding fn - r constant.

As a related analysis, we also examine the effect of increasing the stock growth rate,

p,, to the values 0.04, 0.05, 0.06,... ,0.16 per annum, while equally increasing the

risk-free rate, so as to keep the equity risk premium constant at /z — r = 0.04.

Recall that in the absence of taxes, it is optimal to keep the stock fraction equal

to /Merton = (P- — r)/acr2 at all times. If we change fi while keeping the equity risk

premium, fi—r, constant, /Merton does not change. That is, so long as ^ — r = 0.04,

the optimal Merton strategy stays unchanged from the base case, namely /* = |

and A/ = 0.

But what happens to the optimal strategy in the presence of taxes? In Figure 5, we

let ju, vary while holding the equity risk premium constant at [i — r = 0.04. We see

that as /A increases, /* decreases slightly and A/ increases.
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Because /x — r remains constant, both fz and r increase equally in value, but the

effect of tax law on the stock is quite different from its effect on the cash. As p.

increases, there are fewer stock losses and more stock gains, which means fewer

opportunities to take advantage of the tax break created by culling losses due to x\

being greater than Tg. Because culling losses is less advantageous, the stock becomes

less useful relative to the cash, and so / decreases as /A (and r) increase.

As the probability of loss decreases, the ability of a small A/ to reap losses dimin-

ishes. At the same time, since there are more gains, the advantage of deferring paying

tax on these gains increases. Both of these effects push A/ to increase as ^ (and r)

increase.

3.2.2 Varying risk and risk aversion, a and a

The stock volatility, a. Portfolio risk is a function of the volatility of the stock, o- . We

examine the effect of changing the stock risk, a, over the values 0.15,0.20,0.25 and

0.30. Not surprisingly, we see in Figure 6 that the optimal average stock fraction, /*,

decreases as risk increases, starting from an all-stock position when CT is very low.

The effect of a on A/, however, is surprisingly small. As is always the case when

the investor is alive at time T, we observe smaller values for /* and for A/. Indeed,

A/ shrinks to zero when the investor is alive.

The risk-aversion parameter, a. We also looked at changing the risk-aversion param-

eter, a, over the values 0.7, 1.1, 1.5,..., 3.9. The results of changing a, as seen in

Figure 7, are similar to the results of increasing a, and they can be explained by a

similar line of reasoning.

3.2.3 Varying tax rates, x\ and rg

Since the US tax code has different rates for capital losses (ri) and capital gains (Tg),

we examine the impact of varying each rate separately.

The tax rate on losses, TI. We study the effect of changing the tax rate on capi-

tal losses, TI, over the values of the marginal tax rate in the current US tax code:

0.1, 0.15, 0.25, 0.28, 0.33, 0.35 and 0.396. From a tax point of view, losses may;

be seen as beneficial; the higher T), the greater the tax shielding experienced by the

investor. As a consequence, in Figure 8, we see that the optimal average stock frac-

tion, / , increases with TI, since the additional tax shielding mitigates the risk of \

holding stocks - the downside to increasing x\ - thereby making the stock more

desirable.

As expected, A/ decreases as T) increases, since the investor optimally rebalances

more often as the benefits of taking losses increase.

FIGURE 6 Optimal stock fraction range when varying the stock volatility, a.
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(a) Investor deceased at portfolio horizon, (b) Investor alive at portfolio horizon.

FIGURE 7 Optimal stock fraction range when varying the risk aversion coefficient, a.
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(a) Investor deceased at portfolio horizon, (b) Investor alive at portfolio horizon.

FIGURE 8 Optimal stock fraction range when varying the tax rate on losses, T|.
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(a) Investor deceased at portfolio horizon, (b) Investor alive at portfolio horizon. Note that, since the differences
between our experimental n values are not uniform, neither are the points on the horizontal axes.
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FIGURE 9 Optimal stock fraction range when varying the tax rate on gains, rg.
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(a) Investor deceased at portfolio horizon, (b) Investor alivs at portfolio horizon. Note that, since the differences
between our experimental Tg values are not uniform, neither are the points on the horizontal axes.

The tax rate on gains, Tg. We examined the effect of changing the capital gains tax

rate, Tg, over the values 0, 0.1, 0.15, 0.20,0.25, 0.28 and 0.30. Given our analysis for

TI, it seems intuitive to expect the stock to become less desirable as Tg increases, so

our desired stock fraction, / *, should decrease. Yet a glance at the plot in Figure 9(a)

shows that this intuition is wrong!

Why should / * increase? To provide some simple intuition, consider the case where

the stock fraction / = 1. Whether the stock goes up or down in worth, / continues

to equal one. Thus there is never a need to realize capital gains, whatever the increase

in tax rate, Tg, until liquidation time T. Therefore, in the case where the investor is

•deceased and capital gains are forgiven at time T, this highest possible value of /

is clearly more desirable than, say, / = 0.9 or / = 0.8, where capital gains will

occur every time period h. Further, the desirability of this higher / increases as Tg

increases.

We can quantify and expand this intuition with a simple calculation over a year's

time horizon. Let / be the fraction of the portfolio we want in stock, /z be the annual

return on the stock and r be the annual return on the cash. Assume we have a portfolio

worth US$1 at t == 0, so we have / dollars of stock and (1 - /) dollars in cash. By

t = 1, we have (1 + iz)f dollars of stock and (1 + r)(l - /) dollars in cash. Adding
these gives a total portfolio worth of (1 + r) + (/z-r)/ dollars at t = 1. Assume

we choose A/ = 0. We then need to rebalance so that the stock fraction is / again.

This means we want to have ((1 + r) + (/z - r)f)f dollars of stock; to attain this,

we must sell

[(1 + /^)/] - [((1 + r) + (pi- r)f)f] = (^ - r)/(l - /)

dollars of stock as capital gains. This capital gains function, (fi — r)/(l — /), is

parabolic in /. It equals zero at /= 0, increases to its maximum value at / = \
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and then decreases back to zero at / = 1. Thus, we may establish that, in a region

where f > \, increasing / actually lowers capital gains.

This calculation corresponds to the case in which the investor expires at the portfolio

liquidation time, T, and so capital gains taxes are not paid at liquidation. When the

investor is alive and capital gains taxes must be paid at liquidation, there are two

opposing effects to be balanced: the higher deferral of capital gains that using a higher

/ provides (as explained in the previous paragraph) and the higher capital gains taxes

that must be paid at liquidation when a higher / is used. We see in Figure 9(b) that / *

slightly decreases as Tg increases, so, in this case, the latter effect clearly outweighs

the former.

We also see in the plot on the right that A/ increases as Tg increases. This is to

be expected, since the higher Tg is, the less advantageous it is to realize gains in

order to reset the cost basis and, thereby, increase the likelihood of reaping the losses,

which initially have a higher rate than the gains. Once Tg surpasses x\ = 0.28, the

situation is flipped, and capital gains become more destructive than capital losses are

advantageous. This makes rebalancing progressively less desirable as Tg increases,

causing A/ to increase further.

3.2.4 Varying the initial portfolio worth, Wo

Our power law utility function, outlined in (2.1), has the property of constant relative

risk aversion. In the absence of taxes, this implies that the optimal stock fraction is

independent of the portfolio size, as reflected by the absence of WQ in the Merton

expression given in (3.1).

If tax policy were strictly dictated by proportional factors such as Tg and T\, then

we would also expect the optimal policy with taxes to be independent of WQ (see, for

example, Dammon etal 2001). However, the US$3000 limit on annual claimed losses

is a constant factor rather than a proportional one. Therefore, the optimal strategy will

indeed be affected by Wo.

We see this effect in Figure 10. We study the effect of changing the initial size of

the portfolio. Wo, over the values (in US$): 10 000, 20 000, 50 000,100 000, 200 000,

500 000,1 000 000, 2 000 000 and 5 000 000. As Wo increases, there is a mild decline in

/ due to the fact that more and more losses must be carried over to subsequent years,

making the stock less valuable. With a small portfolio, keeping A/ smaller corre-

spends, in general, to more collectable losses: a desirable outcome, since the US$3000

limit rarely interferes. As the portfolio becomes larger, however, the US$3000 limit

on losses is more easily reached, and the advantage of keeping A/ small is dimin-

ished. When this happens, the tax deferral provided by a larger A/ becomes a more

dominant factor, and therefore A/ grows as WQ increases, as shown in Figure 10.
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FIGURE 10 Optimal stock fraction range when varying the initial wealth, WQ.

1.0—-—-—(a)_
0.8

f0-61
0.4 :- - -- - ---..——-——-

0.2|

-& r?) r$S r& r& r& .r^ c^

^\^<<0<0<^^^^^^^^
Initial portfolio value {Wy)

(b)
1.0 - - - -• - - - - - --^——-— - -——

0.8

f°-6 ~^~

0.4 — ------ --—-^-^--——

0.2 I

-000-000.000 -000-000.000 ^°^0^w\<o<o<oy^y
Initial portfolio value (Wo)

(a) Investor deceased at portfolio horizon, (b) Investor alive at portfolio horizon. Note that, since the differences
between our experimental Tg values are not uniform, neither are the points on the horizontal axes. In fact, the values
of Wo have been chosen so that the horizontal axes are close to logarithmic.

FIGURE 11 Optimal stock fraction range when varying the portfolio horizon, T (in years).
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(a) Investor deceased at portfolio horizon, (b) Investor alive at portfolio horizon.

3.2.5 Varying the time horizon before portfolio liquidation, T

Next, we examine the effect of the portfolio horizon, T, on the optimal strategy by

changing T (measured in years) over the values 5, 10, 15,... ,60.

First, we consider Figure 1 l(a) for the case where the investor expires at time T.

As T initially begins to increase, we see /1, /" - and therefore /* - increasing

too. This is no surprise since the growth of T means the advantages of deferring

capital gains taxes and of having capital gains forgiven at liquidation also increase,

which makes the stack's worth relative to the cash increase. By T = 15, /u = 1

and the advantages of having capital gains forgiven at liquidation now completely

outweigh both the incentive to position the portfolio at its optimal stock fraction and

the incentive to sell stock so that more losses can be generated for tax credits.
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However, by T = 40, this no longer holds, and we see /" decrease. There are two

effects behind this.

(1) When we use an interval of the form [/1, I], we do not sell stock. In this case,

because [L > r, the longer the time horizon, the more likely the stock fraction

/ is to drift into the high end of the [/1,1] interval. The closer the stock
fraction drifts toward one, the farther it drifts from its optimal fraction, and so

the portfolio becomes exposed to too much risk unless we reduce /".

(2) If /" = 1, we do not sell stock over long time horizons. Thus, in cases where

the stock does well, the portfolio does particularly well, due, in part, to the

significant forgiveness of particularly big gains at time T when the investor

expires. However, in cases where the stock does not do well overall, the portfolio

will do even worse, since stock is not sold when it reaches an /" < 1. Such early

sales could potentially generate losses over a long time horizon, cushioning the

damage caused by bad returns. This greater "wealth disparity" over longer time

horizons is penalized by the concavity of the utility function, eventually forcing

/u to decrease as T increases.

In the case where the investor does not expire at liquidation time T, we see in

Figure ll(b) that /* is a constant just above 0.7 and A/ = 0. The fact that A/ is

reduced when the investor does not expire at time T is, of course, expected. Because

it is reduced to A/ = 0, the advantages of deferring taxes are not capitalized upon

and so /* becomes independent of T, as in the Merton case when A/ = 0. In this

instance, /Merton = j regardless of the value of T.

3.2.6 Varying the period between potential trading, h

We study the effect of changing the time period, h, between potential trades within

the portfolio (ie, culling losses and/or rebalancing) over the values 1/12 = 0.8333

(monthly), 1/4 = 0.25 (quarterly) and 1/2 = 0.5 (semiannually).
In Figure 12(b), we see that increasing h appears to have no real effect on /* and

only slightly increases A/ in the case of Figure 12(a), where the investor expires at

time T = 40.

Why is there a slight increase in A/ in this case? One of the advantages of a

smaller A/ is that it increases the likelihood of capital gains and capital losses,

which is desirable since x\ > Tg. When we increase h, however, this advantage is

reduced, since it becomes more likely that the losses will be canceled by gains before

they can be realized. With the advantage of a smaller A/ reduced, the factors that push

A/ to expand become more dominant, and so A/ increases a little as h increases.

From a practical standpoint, however, it is more important to note that this increase

in A/ is small. That is, over the reasonable range of h values considered here, the
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FIGURE 12 Optimal stock fraction range when varying the potential trading interval, h.
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(a) Investor deceased at portfolio horizon, (b) Investor alive at portfolio horizon. Note that, since the differences
between our experimental Tg values are not uniform, neither are the points on the horizontal axes.

frequency of potential trading is not a particularly important factor in the choice of

optimal strategy.

3.3 The effect of changing the model on the optimal strategy

In this subsection, we consider the effect of changing the model in four ways:

(1) Letting the optimal stock fraction range, [/1, /"], change values when the
portfolio is halfway to liquidation (ie, at T/ 2 = 20 years), instead of remaining
constant.

(2) Using the average cost basis instead of the full cost basis to provide a quantitative

measure of the suboptimality generated by using the average cost basis.

(3) Letting /' and /" each depend on the ratio of the highest cost basis in the

portfolio to the current stock price to quantify any advantage this may generate.

(4) Incorporating transaction costs when we buy and sell stock to understand their

effect on the optimal stock fraction range, [/1, /"], in the presence of taxes.

3.3.1 The effect of a time-dependent no-rebalancing region

We study the effect of allowing /* and /u to change values when we transition from

the initial twenty years, during which there is a long time until liquidation, to the final

twenty years, during which there is a short time until liquidation.

We must now optimize over five variables instead of three: /lnlt (the initial stock

fraction), /1-0-20 and /u-°-20 (the values of /' and /u in the initial twenty years), |

and /1.2"-40 ^ ,".20-40 ^he values of /' and /" in the final twenty years). As a j
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FIGURE 13 Optimal stock fraction range for the first and second halves of the portfolio
horizon when varying the tax rate on gains, Tg.
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(a) Investor deceased at portfolio horizon, (b) Investor alive at portfolio horizon. The entire horizon of the portfolio
is forty years. For the first twenty years, stock fractions are shown in bold lines; for the last twenty years they are
shown in dashed lines. As before, the upper bound on the stock fraction is shown by a red line, the lower bound is
shown by a blue line and the average of these two bounds, /*, is given by a green line.

typical example of our results, in Figure 13 we show the values of /1'0-2°, y"'0-20,

y-1,20-40 ^d ,",20-40 ^ ^e context of changing Tg.

Unsurprisingly, when the investor expires at liquidation time T, the ability to change

stock proportions makes a significant difference, as shown in Figure 13(a). Specif-

ically, since capital gains are forgiven at time T, the stock becomes more valuable

in the final twenty years, so y*'20-40 > y*,o-20 ^ create more forgivable capital

gains, we also see that A/20-40 > A/a-20.

Equally unsurprisingly, we find that when the investor is alive at time T, the ability to

change stock proportions makes little difference, so/l>ft-2° w f '•20-40 and /u'°-20 %;

/U120~40, as shown in Figure 13(b). The only difference over time is at the portfolio

horizon, when liquidation is required and the associated capital gains tax hits. This

required liquidation diminishes the advantage of having stock, because it restricts our

ability to defer capital gains taxes. Thus, f*'20-40, the optimal stock proportion held

when we are closer to liquidation, dips a little from f*'°-20^ the optimal proportion

when we are further from liquidation.

3.3.2 The effect of the average cost basis versus the full cost basis

As discussed in the introduction, this paper's simulation approach allows us to use

the entire cost basis, resulting in a comprehensive solution to the problem of portfolio

optimization with taxes. Preceding works have attempted to account for the full tax

basis but have been limited to very few allowable trading times. Therefore, they are

unsuitable for modeling the entire long-horizon life cycle of an investor. Instead, for

computational convenience in multiperiod optimization, most past works have used
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FIGURE 14 Optimal stock fraction range when the algorithm uses the average cost basis
rather than the full cost basis, when varying the initial wealth, WQ.
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(a) Investor deceased, average cost basis, (b) Investor alive, average cost basis. Note that, since the differences
between our experimental Tg values are not uniform, neither are the points on the horizontal axes. The values of Wo
have been chosen so that the horizontal axis is close to logarithmic.

the average tax basis instead of the full tax basis. Using the average tax basis keeps

the state space small, allowing a numerical solution of the dynamic programming

problem. Of course, using the average cost basis, which is allowed in US tax law for

mutual funds, is guaranteed to be suboptimal compared with using the full cost basis.

But how suboptimal is using the average cost basis?

Our large-scale algorithm enables us to directly compare the effect of using the

full cost basis with the average cost basis for the long-horizon problem. To make this

comparison, we reran each of the scenarios used to generate Figures 3 to 10 (with the

exception of Figure 5), using the average cost basis instead of the full cost basis. This

allows us to compare, for example, the graphs in Figure 10, using the full cost basis,

with the graphs in Figure 14, using the average cost basis. The observed changes

between these figures (where Wo is varied) are quite similar to those observed when

other parameters are varied.

Across all scenarios, we found that using the average cost basis had very little effect

on / but tended to increase A/. The average increase in A/ was 6.0 percentage

points for cases of both living and deceased investors at time T; the maximum increase

in A/ was 16.8 percentage points when the investor was alive at time T, and 18.6

percentage points when the investor expired at time T. The increase in A/ can be

explained by the fact that using the average cost basis makes losses in the portfolio

less likely to occur, thereby reducing the advantage of keeping A/ small.

Our main concern in switching to the average cost basis, however, is not the change

in the optimal policy. It is the loss to the investor created by this switch. To quantify

this loss, we again use the certainty equivalent difference, which for our current

c =
(E^[U(W)}\i/d-")

-1. (3.3)
\E^[U(W)]j

Applying (3.3) across each of our scenarios, we found that when the investor expires

at time T, the average certainty equivalent difference, c, was only —0.27%, with a

maximum certainty equivalent difference of —1.12%. When the investor is alive at

time T, the average difference increases to —0.65%, with a maximum difference of

—1.73%. For comparison, if we quantify the loss resulting from living at time T (with

no gains forgiven) versus expiring at time T (with all gains forgiven) over the same

set of scenarios (using the full cost basis for both), the cost equivalent difference

. ( E^[U(W)]^/(l-a)
c = [E^[U(W)])

averages —9.97% with a maximum difference of —23.6%.

The data in the above paragraph alone gives considerable justification for past

works that have employed the average cost basis to determine trading strategies in

taxable portfolios, since the loss generated by using the average cost basis in place

of the full cost basis is clearly not that great. Yet the case for justifying these average

cost basis models is even stronger: these models will generate optimal values for /

and A/ for the average cost basis. Yet, in practice, these values would always be used

with the full cost basis strategy. So, how much of the value of c in (3.3) is due to the

/* and A/ from the average cost basis model being suboptimal when an investor

uses the full cost basis (as they would in practice)? How much is due to the effect

of an investor actually using the average cost basis method rather than the full cost

basis?

Consider the base case again. If the investor expires at T = 40, then, for the full

cost basis optimization, we have that f = 0.764 and A/ = 0.168, while for the

average cost basis optimization we have that / = 0.770 and A/ = 0.228, which,

using (3.3), corresponds to c = —0.0019. But recall from Section 3.1 that small

changes to /* and large changes to A/, as we have here, usually have little impact

on the certainty equivalent difference. In fact, if we compute

rEUU(W)}\=(
i/a-o')

= [Ew[U(W)})
where E^ means using the full cost basis with the values / = 0.770 and A/ =

0.228 that came from the average cost basis optimization, we get c = -0.0003. That

is, the actual loss incurred by using the optimal strategy for the average cost basis

model is much smaller than indicated above; specifically, it is only c/c = 3/19 of

the loss indicated above, as long as the full cost basis is employed for actual trading,

as it would be by any investor interested in minimizing taxes.
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The base case where the investor is alive at T = 40 shows less dramatic results.

In this case, for the full cost basis optimization, we have that / = 0.711 and

A/ = 0, while for the average cost basis optimization we have that /* = 0.701 and

A/ == 0.127, which corresponds with c = -0.0090 and c = -0.0060. Therefore,

c/c = 2/3, where before it was only 3/19. The higher value for c/c is a result of
the optimal A/ being zero for the full cost basis optimization, which - as seen in \

Figure l(b) and (d), and explained in Section 3.1 - leads to a higher sensitivity to

changes in A/.

3.3.3 The effect of allowing the no-rebalancing region to vary with the
cost basis to current stock price ratio

Papers such as Dai et al (2015) allow /' and /" to depend on Aavg, the ratio of the

average cost basis to the current stock price, fiavg/5. Dai et al (2015) give examples

in which optimizing the no-rebalancing interval (and specifically its dependence on

&avg) leads to strategies that produce certainty equivalent advantages of between 0.84%

and 5.20% over the strategy of deferring all short-term gains and realizing all losses

and long-term gains. They do not consider the question explored here: the certainty

equivalent advantage created by allowing the no-rebalancing region to depend on the

aforementioned ratio of the cost basis to the stock price (as opposed to not allowing

such dependence).

Since our algorithm allows for the full cost basis, it makes little sense for us to

employ &avg. Instead, we define b = Bj/S, where, as before, Bj corresponds to the

highest cost basis of the stock in the portfolio, which is the first stock that should be

traded. We then define

/ = max[0, ci - C2 * max[0, 1 - A]],

/u = min[l, os + C4 * max[0, 1 - b]],

where we restrict all four c, values to be positive as well as 0 ^ ci < £3 $ 1. This

model keeps 0 ^ /' $ /" ^ 1. It also allows A/ to grow as b grows, creating

the potentially desirable effect of discouraging the sale of stock as the capital gains-

related implications of selling stock increase. Unlike that ofDai et al (2015), our model

restricts /1 and /" to being linear functions of b. Thus, the optimal dependence of

/ and /" on b is only approximated here. In our new model, we optimize over five

variables - fmn, ci, C2, £3 and £4 - in place of optimizing our normal three variables,

fmit, f and /". Since the subcase cz = 04 = 0 in our five-variable optimization

yields our normal three-variable optimization, we are guaranteed that the five-variable

optimization will be superior to our normal three-variable optimization.

We considered the base cases for both deceased and living investors at the portfolio

horizon T. We found that using the five-variable optimization versus the three-van able

optimization made no discernible difference. Specifically, in both cases, the certainty

equivalent difference between allowing (linear) dependence of fl and /u on b versus

not allowing such dependence on b was less than a basis point over the course of

T = 40 years, which is the limit of our model's ability to discern certainty equivalent

differences. This evidence suggests that it is not necessary to use models where the

boundaries of the no-rebalancing region, /1 and /u, depend on b, the ratio of the

(highest) cost basis to the current stock price.

3.3.4 The effect of incorporating transaction costs

Finally, we investigate the effect of incorporating transaction costs into our model.

This issue was also explored in Leland (2000), who found that transaction costs reduce

optimal portfolio chum by 50%. He also found that capital gains taxes lead to lower

investment in stock. Yet we find that this is not always the case.

Assume that, for the current time t, the current number of shares of stock in the

portfolio is N{, the current stock price is S{, the current worth of the portfolio's cash

position is C( and the number of shares to be transacted at time t is n. Let e denote

the proportion of the worth of a trade lost to transaction costs. Based on Domowitz

et al (2001) and Pollin and Heintz (2011), we assume transaction costs range from 0

to 50bps of the value of the transaction, ie, we consider the e values 0 (our base case),

0.0005, 0.0010,..., 0.0050. These proportional transaction costs can be incurred at

the following four points in the simulation.

(1) When any stock has a capital loss, we sell it and buy back the same value

of an equivalent stock. Thus, our cash balance must be reduced by 2(nSfe),

a value that corresponds to the transaction costs incurred in both selling and

repurchasing the stock. We note that, while it is always optimal to sell and

buy back stock with a capital loss when there are no transaction costs, this is

no longer guaranteed to be the optimal strategy when transaction costs apply.

However, for the small transaction costs considered here, the investor will,

generally, still be better off selling and buying back stock with a capital loss.

So we continue to implement this strategy in our transaction cost model.

(2) When the stock fraction falls below /1, we buy stock so that the new stock

fraction equals / after transaction costs. This must satisfy the equation

,, _ (M + n)St
(Nt+n)St+Cf-nSt-nSte'

which, after rearrangement, leads to the following expression for the number

of shares that will be bought:

MWl-l)+C(/1
n =

St{fle+\)
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Using the subscript ((+) to denote values just after rebalancing at time t, we

then update the total number of shares of stock

and the cash balance

N(,+) = Nt + n

C(t+) ^Ct-nSt-nSie.

(3) When the stock fraction rises above /", we sell stock so that the new stock

fraction equals /" after transaction costs. This must satisfy the equation

r=
(Nf-n)St

(Nt - n)Si +Ct+ nSt - nSie'

n ==

which, after rearrangement, leads to the following expression for the number

of shares that will be sold:

NtSt(r-i)+Ctfa

S,(f-e-l)

We then update the total number of shares of stock

N(t+) = Ni-n

and the cash balance

G((+) =Ct+nSt-nSte.

(4) Finally, at the end of the year, if there are capital losses, then the tax break

generated by these losses is used to buy additional shares. This additional

number of shares (after transaction costs) will be

Timin[3000,max(0,-G)]
"=S^l+e) '

since US$3000 is the annual limit allowed for taking tax losses and G, as before,

represents the realized gains in the portfolio. Therefore, shares are only bought

when G < 0, ie, when there are losses.

As expected, we see from Figure 15 that rebalancing occurs less often as transaction

costs increase. That is, A/ increases as e increases. What is more surprising is that

the optimal average stock fraction, /*, is essentially unaffected by e, at least over the

range of values for e considered here.

Considerable attention has been devoted to understanding the asymptotic effect of

small proportional transaction costs in portfolios that are not subject to taxes: see, for]

I
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FIGURE 15 Optimal stock fraction range when varying transactions costs (in bps).
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(a) Investor deceased at portfolio horizon, (b) Investor alive at portfolio horizon. These costs are stated in terms of
the percentage of the value of each transaction lost to costs.

example, Atkinson and Mokkhavesa (2002), Goodman and Ostrov (2010), Janacek

and Shreve (2004), Rogers (2004), Shreve and Soner (1994) and Whaley and Wilmott

(1997), all of whom conclude that the order of growth of A/ is given by A/ ~
(9(el/3) when e is small. What happens to this asymptotic expression in portfolios

subject to taxes? The expression has no relevance to the case in Figure 15(a), where

the investor expires at time T, since, in this case, A/ ^ 0 when e = 0. Figure 15(b),

in which the investor is alive at time T, has more potential to be connected to the

asymptotic expression, since A/ = 0 when e = 0, and A/ grows as e grows.

However, even in this case, it is clear from Figure 15(b) that A/ does not grow by

order e1/3, so the asymptotic formula for cases without taxes is not relevant to cases

with taxes.

4 CONCLUSIONS

In this paper, we have modeled the optimal trading strategy for a taxable portfolio

with a stock position and a cash position. In this model, we consider the effects of

the US tax system, including keeping track of the cost basis of stocks whenever they

are bought and sold, utilizing the tax benefits from stocks with losses as well as the

annual US$3000 limit on claimable losses and the practice of carrying over losses

above this limit. We develop a large-scale simulated optimization program that offers

facile computation on standard hardware, extending the number of trading periods into

the hundreds (~ 500), whereas earlier models managed many fewer (~ 20 periods).

For our model, we have determined the optimal static interval [/1, /u] within which

to maintain /, the fraction of the portfolio invested in stock. When the portfolio is

inside this interval, it is optimal to trade only to reap capital losses, and not to rebalance.

When the portfolio strays outside this interval, it is optimal to rebalance the portfolio
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back to the nearest endpoint, / or /u. We note that a generalization of the static

interval is feasible by making /' and /u functions of a state variable such as the tax

basis.

Our experiments to determine this optimal interval provide a number of insights

concerning the best strategies for investors to pursue in their taxable portfolios. A

number of our conclusions differ from conventional wisdom and the intuition of

many investors.

• The optimal value of /, the fraction of the portfolio in stock, is often higher

for taxable accounts than for tax-free accounts, such as the Roth IRA (as also

noted in Dammon et al 2004).

This is the case even if the cash position is not taxed and if we assume that the

investor is alive at liquidation, meaning that taxes on all capital gains must be

paid. This is explained by the fact that T], the refund tax rate for capital losses, is

equal to the marginal income tax rate and higher than Tg, the (long-term) tax rate

for capital gains. Therefore, the benefit of culling capital losses from stock can,

on average, outweigh the disadvantage of paying capital gains taxes, making

the stock more useful in the taxable portfolio than in the tax-free portfolio. For

example, in Section 3.1, we considered a base case where the investor is alive

at the time of liquidation. We found that the optimal value of / = / = /"

was about four percentage points higher than the value of /Merton, the optimal

constant stock fraction in a tax-free portfolio.

• If the capital gains tax rate increases, then /, the fraction of the portfolio in

stock, should be raised, not lowered.

In the previous section, we substantiate this both experimentally and with an

intuitive explanation. This conclusion assumes that the portfolio is designed to

be given to a beneficiary, so that gains are forgiven upon the investor's death.

It also assumes that the stock position is larger than the cash position.

• The 5/25 rule for rebalancing taxable portfolios is less than ideal, even as a rule

of thumb.

The "5" part of the 5/25 rule corresponds to an interval width. A/ = /"-/ =

2 x 0.05 = 0.10. That is, it recommends using an interval for the stock fraction

with a width of ten percentage points. (The "25" part of the rule is irrelevant

for our stock-cash model if /*, the center of the optimal interval, is between

0.20 and 0.80.)

However, we find that there are common circumstances in which the optimal

A/ = 0, and almost equally common circumstances in which the optimal

A/ > 0. Moreover, because the effect of using a suboptimal A/ will generally

be more harmful when the optimal A/ = 0 than when the optimal A/ > 0

(for reasons explained in Section 3.1), our analysis suggests that, for a rule of

thumb, it makes more sense to adopt A/ = 0. In other words, it is preferable to

adopt a strategy of continual rebalancing, provided transaction costs are small.

• The optimal interval - in which the stock fraction, /, should not be rebalanced

- is not improved by allowing it to get bigger as the stock price increases further

from its purchase price.

It is intuitive to think that, since the capital gains taxes incurred by selling stock

increase as the difference between the stock price and the cost basis grows, it

should be optimal to let A/ increase as this difference grows, so as to avoid

these progressively costly sales. However, as we saw in Section 3, allowing /)

and /" to linearly depend on b, the ratio of the highest basis price to the current

stock price, leads to no discernible certainty equivalent advantage, suggesting

that the attention paid to the dependence of the optimal /1 and /" on b in

previous papers (see Dai et al 2015) is likely unnecessary.

Overall, our model shows that the optimal width of the stock fraction interval,

A/ = /" — /!, reacts in the following ways.

• It significantly increases when the stack's expected return, jU,, increases or

the risk-free interest rate, r, decreases; when the tax rate for capital gains, Tg,

increases or the tax rate for capital losses, TI, decreases; when the initial portfolio

size, Wo, increases; or when the lifetime of the portfolio, T, decreases.

• It slightly increases when the time interval between potential transactions,

h, increases or when the utility function risk-aversion parameter, a, in (2.1)

decreases.

• It is essentially unaffected when the stack's volatility, a, changes.

Further, our model demonstrates that the optimal portfolio stock fraction, or, more

specifically, the optimal center, /* = (/ + /")/2, of the stock fraction interval

reacts as follows.

• It significantly increases when p, increases or when r, a or a decrease.

• It slightly increases when T] increases; when Wo decreases; when Tg increases,

assuming the investor expires at time T; or when z-g decreases, assuming the

investor is alive at time T.

• It is essentially unaffected when h changes, or, in the case where the investor

is alive at time T, when T changes.
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• It increases when T initially increases in the case where the investor expires

at time T. However, as T increases further, it levels off, then slowly decreases

and finally levels off again.

Finally, our model provides a number of other insights about optimal investing in

taxable portfolios.

• Using a suboptimal value for / * is generally far more detrimental to the investor

than using a suboptimal value for A/.

• The optimal strategy is almost completely unaffected by the timescale of our

considered trading actions: whether monthly, quarterly or semiannual.

• When the optimal stock fraction interval, [/ , /"], is allowed to depend on

time, we see far more dynamic behavior for this interval when the investor

is deceased at time T than when the investor is alive. Unsurprisingly, when

the investor expires at time T, both /* and A/ increase over time. When the

investor is alive at time T, f* decreases slightly over time, while A/ stays

more or less constant.

• While using the full cost basis history as opposed to the average cost basis

has a significant effect on the optimal stock fraction interval, [/1, /u], it has

surprisingly little effect on the outcome for the investor, generally leading to a

certainty equivalent difference of less than 1% over forty years. This justifies

the use of the average cost basis approximation, employed out of necessity by

many previous papers in the form of Bellman equation approaches as a means

of investigating optimal taxable portfolio strategies.

• As the magnitude of proportional transaction costs increases, the width of the

optimal stock fraction interval. A/, also increases. However, the center, /*,

for this interval remains surprisingly constant.

There are a number of ways in which this research may be extended to generalize

the setting outlined in this paper, by capitalizing on our ability to solve an optimiza-

tion problem over simulated portfolios with one risk-free and one risky asset, while

tracking the full tax basis. First, we may extend this simulation approach to the case

of multiple risky assets, in which it may be able to clarify the geometry of the optimal

no-rebalancing region. Second, the model may be extended to account for the differ- |

ence in tax treatment between short- and long-term capital gains. Third, the optimal

evolution of the shape of the rebalancing region over time can be further explored.

We leave these interesting avenues open for further research.
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