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a b s t r a c t

We develop a simple calibration approach to generate return dis-
tributions for multivariate asset distributions and use this tech-
nique to price options on portfolios given the first four co-
moments of the joint distribution of returns. The technique is fast
and captures the impact of covariance, and the co-skewness and
co-kurtosis tensors on the value of these options. Given the tech-
nique works for a portfolio, the same is also applicable to options
on individual securities as a special simpler case.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

Higher-order moments are important considerations in pricing securities and in valuing portfolios
comprised of these securities. To quote Gene Fama2: ‘‘Many of the market tragedies that you see are the
result of extreme events that people take to be unusual but that really aren’t that unusual.”

The Black and Scholes (1973) model assumes that the underlying security return is normally dis-
tributed. That this assumption is empirically rejected is now well established, and extensions to the
model in the form of the class of jump models of Merton (1976) as well as stochastic volatility models
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such as the one by Heston (1993) are widely used. Das and Sundaram (1999) showed that the first four
conditional return moments have specific mappings into jump-diffusion and stochastic volatility
models. That is, these models generate non-zero skewness and excess kurtosis (for single securities)
with precise modulation of their parameters.

If options are written on portfolios then we need to model covariance, co-skewness and co-kurtosis,
and obtain the conditional joint distribution of returns of the portfolio. These portfolio moments de-
pend on the asset weights in the portfolio. The prices of options on this portfolio depend on the risk-
neutral distribution of portfolio returns. We develop a simple method that takes the covariance and
higher-dimensional matrices (tensors) of co-skewness and co-kurtosis as inputs, and produces prices
of options on entire portfolios, correctly embedding the skewness and kurtosis of portfolio returns.

The increasing need for this technology is predicated on the growth of derivatives on baskets of
securities. As securitization has increased, the underlying asset for many derivatives is often a portfo-
lio and not a single security. Tranches of asset pools are derivatives that require slicing up the payoff
profile of the underlying pool. And in many cases the underlying basket’s return is far from being nor-
mally distributed, such as ABS pools, mortgage pools, credit baskets, options on indexes, etc. Our ap-
proach here is therefore especially apt for we price options on portfolios accounting correctly for
higher return co-moments.

The model is computationally fast. It takes a few seconds to compute all the inputs and generate
the prices of portfolio options. Given this, it is easy to calibrate the model to historical data or to prices
of traded securities. And even though the model is aimed at options on portfolios, it may as well be
used to price options on single assets accounting for higher-order moments.

There is a rich literature that has also attempted to model higher-order moments in the pricing of
derivative securities. Starting from the classic models of Merton (1976) (jump-diffusions) and Heston
(1993) (stochastic volatility), we also have implied tree models that calibrate exactly to the implied
volatility surface (see Derman and Kani, 1994; Dupire, 1994; Rubinstein and Mark, 1994). It is possible
to start from a Gaussian return distribution and then include additional terms in it to match higher
moments. Jarrow and Rudd (1982) showed how an Edgeworth series technique might be used to ex-
tend a known probability density function to higher-order moments by including these as additional
terms in the series. In this manner an unknown distribution whose moments are known may be
approximated to a high degree of accuracy by adding as many terms to the series as desired. Rubin-
stein (1998) showed how to take the idea of Edgeworth series and incorporate the model on a tree so
as to enable the pricing of American options with higher-order moments (see also Tian (1993) for an
implementation with the same motivations). This technique, known as Edgeworth trees is simple and
easy to implement. The Edgeworth series approach uses cumulants, and an alternate approach is to
use Gram–Charlier series, where moments are used instead of cumulants (see Johnson et al. (1994)
for a statistical overview, and Backus et al. (1997) for an application).

In this paper, we extend these ideas in two ways. First, we develop fat-tailed distributions for portfolio
returns, not just that of individual securities. Second, rather than use a Gram–Charlier or Edgeworth
expansion, we use an exponential-affine approach to transforming any ‘‘base” distribution into one that
matches exactly the first l moments of the desired return distribution. In the applications below we work
with the first four (l ¼ 4) co-moments of the returns of all assets within a portfolio. Our work in this paper
is also related to the work on modeling joint distributions using copula functions, as described in Sklar
(1959), Sklar (1973), Clayton (1978), Nelsen (1999), Frees and Valdez (1998), and Frey and McNeil
(2003). For applications of copulas with regards to credit portfolios see Embrechts et al. (2003), and
Das and Geng (2004). A very general exposition of Hermite polynomial expansions for multivariate dis-
tributions related to high-dimensional stochastic processes is developed in Ait-Sahalia (2008).

In Section 2 we present the notation used in the paper, and the initial computations for co-skewness
and co-kurtosis. Section 3 provides the main innovation of the paper – the technique for generating the
conditional portfolio return distribution accounting correctly for all the moments. We provide illustra-
tive examples of how the return distribution is modulated for skewness and kurtosis. Section 4 offers op-
tion pricing examples. The first example shows how skewness and kurtosis impact the value of put
options. The second example uses real data and illustrates call option pricing. A third example shows
how options are priced on a portfolio where prices are shown to respond to changing portfolio weights.
Section 5 provides suggestions for further research and extensions of the ideas in this paper.
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2. Notation

The portfolio comprises N assets. The portfolio weights are denoted w ¼ ½w1;w2; . . . ;wN�0. We price
an option VðwÞ of maturity s that is a function of the random return on the portfolio, i.e.

VðwÞ ¼ e�rsE½gðRðwÞÞ� ð1Þ

where RðwÞ is the vector of returns in each state of the world, conditional on choosing a portfolio w.
The payoff function of the derivative security is denoted gðRÞ. The risk free interest rate is r. The expec-
tation Eð�Þ above is taken across all states of the world with respect to the risk-neutral measure. The
state space is generated by the joint returns of the N assets.

2.1. Portfolio inputs

The time series of returns on these assets are represented as rit where i ¼ 1 . . . N and t ¼ 1 . . . T ,
where T is the number of periods of returns in the data.

The inputs to the model comprise the vector of mean returns on these N assets, denoted l ¼
fligi¼1...N ¼ ½l1; . . . ;lN�

0 2 RN . The covariance matrix of these assets is denoted R ¼ frijgi;j¼1...N 2 RN�N .
Both these central moments are calculated in the usual way.

Likewise, we define the non-central co-skewness (S) and co-kurtosis (K) of returns as follows:

S ¼ fSijkgi;j;k¼1...N 2 RN�N�N ð2Þ
K ¼ fKijklgi;j;k;l¼1...N 2 RN�N�N�N ð3Þ

These tensors are easy to compute from the data. We note that

Sijk ¼ E½ri � rj � rk� ð4Þ
Kijkl ¼ E½ri � rj � rk � rl� ð5Þ

These comprise the raw moments from the data.

2.2. Portfolio moments

Given portfolio weights w, the mean (lp) and variance (r2
p) of the portfolio are obtained via the

usual calculation:

m1 ¼ lpðwÞ ¼ w0l; r2
pðwÞ ¼ w0Rw ð6Þ

The non-central second moment is m2 ¼ r2
p þm2

1. The non-central third and fourth moments of the
portfolio are:

m3 ¼
XN

i¼1

XN

j¼1

XN

k¼1

wiwjwkSijk ð7Þ

m4 ¼
XN

i¼1

XN

j¼1

XN

k¼1

XN

l¼1

wiwjwkwlKijkl ð8Þ

The portfolio skewness (Sp) and excess kurtosis (Kp) are then given by the usual expressions:

SpðwÞ ¼
1

rpðwÞ3
½m3 � 3m2m1 þ 2m3

1� ð9Þ

KpðwÞ ¼
1

rpðwÞ4
½m4 � 4m3m1 þ 6m2m2

1 � 3m4
1� � 3 ð10Þ

Note that all four moments are necessarily functions of portfolio weights w 2 RN .
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3. Portfolio distribution with higher moments

Given the moments flpðwÞ;r2
pðwÞ; SpðwÞ;KpðwÞg, conditional on weights w, we develop an algo-

rithm to create the portfolio return distribution. The algorithm uses a ‘‘base” distribution Fð�Þ for
the generation of returns, and this distribution should be chosen such that its support covers an
empirically acceptable range of returns. Distributions such as the normal and Student-T are easily
specified to cover all return ranges given that their support lies on ð�1;þ1Þ. The Beta distribution
may also be used with any chosen support. It allows for varied shapes. The steps in the algorithm
are as follows:

(1) Generate a vector of values u ¼ ½0;Du;2Du; . . . ;1� 2 Rm, where m is sufficiently large so that Du
is sufficiently small.

(2) Transform the vector u 2 Rm into a vector x 2 Rm as follows: x ¼ F�1ðuÞ. This assumes that the
inverse function of the distribution Fð�Þ exists. For the normal distribution this is easily avail-
able.
Important: we highlight the fact that the vector x comprises m equiprobable outcomes. This
helps speed up calculations in the model.

(3) Transform the vector x into a portfolio return vector R 2 Rm as follows:

R ¼ aþ bxecxþdx2

2 Rm ð11Þ

where each outcome of R is equiprobable. The parameters fa; b; c; dg are chosen such that the
mean ðlRÞ, variance (r2

R), skewness ðSRÞ and kurtosis ðKRÞ of the vector R are equal to the port-
folio moments, i.e., flR;r2

R; SR;KRg ¼ flpðwÞ;r2
pðwÞ; SpðwÞ;KpðwÞg. This fit is undertaken numer-

ically. For a detailed treatise on generating non-uniform random variates, see the excellent book
by Devroye (1986).

Since all derivative pricing is undertaken using the risk-neutral probability measure, and the ex-
pected return of all assets under this measure is the risk free rate, we set the mean return to be equal
to r � s.

Whereas the first four moments of the portfolio return are functions of all parameters fa; b; c; dg,
we note that the these parameters primarily modulate the mean, variance, skewness and kurtosis,
respectively.

Our experiments reveal that this fitting exercise takes only a few seconds (even when undertaken
on a spreadsheet). The portfolio return distribution depends on the choice of inversion distribution F.
This allows the financial engineer flexibility in choosing a range of shapes of the portfolio return dis-
tribution while ensuring that the first four moments are preserved. An analogous situation arises in
the use of copula functions for modeling credit portfolios.

Mean=0.1,Sdev=0.20,Skew=−0.5,Kurt=0
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Fig. 1. Distribution shapes when skewness is varied. The mean and standard deviation of returns are chosen to be 10% and 20%,
respectively. Skewness is chosen to take three values: f�0:5; 0;þ0:5g as shown in the three plots from left to right. Excess
kurtosis is zero. The inversion distribution F is chosen to be Gaussian.
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Figs. 1 and 2 show how the distribution shape changes when the method is applied to incorporate
skewness and kurtosis. Fig. 1 shows different distributions when skewness is varied, keeping all other
moments the same. Fig. 2 shows different distributions when kurtosis is varied, keeping all other mo-
ments the same.

Depending on the ‘‘base” inversion distribution Fð�Þ, we may obtain different shapes of the portfolio
return distribution, keeping the first four moments the same. To illustrate this, see Fig. 3. The trans-
formation causes truncation of the T-distribution at lower degrees of freedom to reduce the already
high kurtosis.

4. Option pricing

4.1. A first example

To fix ideas, assume that we wish to price a put option on a portfolio with a current normalized
price of $1. The value of the portfolio at maturity s will be given by 1� eR where R is the continuous
portfolio return over this time period and is generated using Eq. (11). Since our procedure generates an
entire m-dimensional supporting vector of portfolio returns R 2 Rm, where each return is equiproba-
ble, the value of the put option becomes

P ¼ e�rs 1
m

Xm

j¼1

max½0;K � eRj � ð12Þ

where K is the strike price of the option. Illustrative pricing results are shown in Table 1.
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Fig. 2. Distribution shapes when kurtosis is varied. The mean and standard deviation of returns are chosen to be 10% and 20%,
respectively. Excess kurtosis is chosen to take three values: f0;2;3g as shown in the three plots from left to right. Skewness is
zero. The inversion distribution F is chosen to be Gaussian.
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Fig. 3. Distribution shapes when degrees of freedom of the inversion distribution F is varied. The mean and standard deviation
of returns are chosen to be 10% and 20%, respectively. Skewness and kurtosis are zero. The inversion distribution F is chosen to
be Student-T with f10;30g degrees of freedom.
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Even with this simple example, we see interesting results. As skewness and kurtosis change, the
prices of out-of-the-money (OTM) options experience the biggest percentage change. As expected
OTM puts are more valuable as skewness turns negative. Interestingly, as kurtosis increases, OTM puts
become more valuable when skewness is zero or positive, but OTM puts become less valuable if skew-
ness is negative. For ITM puts, as kurtosis increases, put values increase for zero and negative skew-
ness, but decrease if skewness is positive. Hence, kurtosis whittles away one tail to enhance the other
and offsets skewness to some extent. When skewness is zero, increasing kurtosis diminishes the price
of puts in a broad range around the ATM strike, but increases the price of deep OTM and ITM options.

4.2. A second example

We also considered an example using real-world data. We constructed an equally-weighted port-
folio of five securities: the 10-year Treasury bond, the 90-day Treasury bill, the composite S&P index,
and two stocks, Citigroup and Apple. We downloaded historical monthly returns on these five securi-
ties for the period January 2000–December 2007, and used the data to construct the covariance ma-
trix, and the co-skewness and co-kurtosis tensors. From these, we computed the moments of the
portfolio’s monthly return. The mean return is 0.0090, the standard deviation of return is 0.0414,
and the skewness and excess kurtosis are 1.8713 and 0.9830, respectively. We used these moments
to price call options on the unit portfolio at varied strike prices. Results are shown in Table 2.

The entire pricing procedure takes only a few seconds. We see that the deep OTM calls are worth-
less, as the probability of crossing the strike of 1.20 in 1 month is negligible, given that this is a five-
sigma event.

Table 1
Put option prices with higher moments. The maturity of the options is 1 year. The risk free rate is 5%. Strikes are chosen ranging
from 0.7 (OTM) to 1.3 (ITM) times the at-the-money-forward (ATMF) strike price. The ATMF strike is equal to the forward price of
the portfolio. We varied skewness (Sk) to be f�0:5;0;þ0:5g and excess kurtosis (Kt) to be f0;3;6g. The inversion distribution is
Gaussian.

Skewness/kurtosis Multiple of the at-the-money-forward strike

OTM ATM ITM

0.70 0.80 0.90 1.00 1.10 1.20 1.30

Sk ¼ �0:5; Kt ¼ 0 0.0079 0.0215 0.0465 0.0854 0.1392 0.2071 0.2871
Sk ¼ �0:5; Kt ¼ 3 0.0073 0.0188 0.0418 0.0807 0.1372 0.2090 0.2922
Sk ¼ �0:5; Kt ¼ 6 0.0070 0.0178 0.0401 0.0791 0.1364 0.2095 0.2935

Sk ¼ 0; Kt ¼ 0 0.0055 0.0182 0.0442 0.0861 0.1437 0.2147 0.2959
Sk ¼ 0; Kt ¼ 3 0.0059 0.0170 0.0406 0.0814 0.1400 0.2133 0.2968
Sk ¼ 0; Kt ¼ 6 0.0060 0.0157 0.0375 0.0775 0.1369 0.2120 0.2972

Sk ¼ þ0:5; Kt ¼ 0 0.0021 0.0145 0.0430 0.0887 0.1493 0.2217 0.3029
Sk ¼ þ0:5; Kt ¼ 3 0.0044 0.0152 0.0399 0.0828 0.1434 0.2175 0.3010
Sk ¼ þ0:5; Kt ¼ 6 0.0048 0.0151 0.0387 0.0808 0.1413 0.2160 0.3003

Table 2
Option prices using a real-world portfolio. Calls are priced on an equally-weighted portfolio of five securities: the 10-year Treasury
bond, the 90-day Treasury bill, the composite S&P index, and two stocks, Citigroup and Apple. Data is the historical monthly
returns on these five securities for the period January 2000–December 2007. Portfolio statistics are: the mean return is 0.0090, the
standard deviation of monthly return is 0.0414, and the skewness and excess kurtosis are 1.8713 and 0.9830, respectively. The risk
free rate per month is 0.004167 or 5% per year. The option maturity is 1 month. The inversion distribution is Gaussian.

ITM ATM OTM

Strike price 0.70 0.80 0.90 1.00 1.10 1.20 1.30
Call price 0.3038 0.2042 0.1046 0.0180 0.0011 0.0000 0.0000
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4.3. A third example

We now proceed to analyze the impact of co-skewness and co-kurtosis on option prices. To do so,
we use a model with only 2 assets in the portfolio, thereby keeping ideas simple. The assets are the 10-
year Treasury bond and the 90-day Treasury bill. The annualized mean return vector (l) and covari-
ance matrix (R) of returns are computed and are as follows:

l ¼
0:06760987
0:03419100

� �
; R ¼

0:058884101 0:0004640430
0:000464043 0:0003643663

� �
ð13Þ

We need to represent the non-central co-skewness matrix in two slices since it is of dimension
2� 2� 2. These are as follows:

Sij1 ¼
0:004202153 0:0017095510
0:001709551 0:0001378430

� �

Sij2 ¼
0:0017095510 1:378430e� 04
0:0001378430 7:875703e� 05

� �
ð14Þ

We represent the non-central co-kurtosis matrix in four slices since it is of dimension 2� 2� 2� 2.
These are as follows:

Kij11 ¼
0:0132277574 2:926168e� 04
0:0002926168 6:810904e� 05

� �

Kij21 ¼
2:926168e� 04 6:810904e� 05
6:810904e� 05 7:606382e� 06

� �

Kij12 ¼
2:926168e� 04 6:810904e� 05
6:810904e� 05 7:606382e� 06

� �

Kij22 ¼
6:810904e� 05 7:606382e� 06
7:606382e� 06 4:391194e� 06

� �
ð15Þ

Taking these base levels of the moments, we price calls and puts on variously weighted portfolios of
these two fixed-income instruments. The current portfolio value is normalized to $1, and the options
are priced for different ranges of strike prices, from 0.8 to 1.2, as is done in the preceding examples.
The computed portfolio mean, standard deviation, skewness and excess kurtosis are reported in Table
3 which also shows the option pricing results. For calls, we see that at strikes greater than or equal to

Table 3
Option prices as co-moments change with changing portfolio weights. Portfolio weights are w1 and w2 in the 10-year Treasury
bond and 90-day Treasury bill. Calls and puts are priced using data on the historical monthly returns on these two securities for the
period January 2000–December 2007. The risk free rate per month is 0.004167 or 5% per year. The option maturity is 1 month. The
inversion distribution is Gaussian.

w1 w2 Return Moments Strikes

Mean Sdev Skew Kurt 0.8 0.9 1.0 1.1 1.2

Calls
0.1 0.9 0.0031 0.0026 1119.2569 0.9607 0.2242 0.1246 0.0251 0.0000 0.0000
0.3 0.7 0.0037 0.0063 108.6745 1.2490 0.2037 0.1042 0.0046 0.0000 0.0000
0.5 0.5 0.0042 0.0102 32.9040 1.1162 0.2006 0.1010 0.0014 0.0000 0.0000
0.7 0.3 0.0048 0.0142 15.3673 1.0375 0.2040 0.1044 0.0048 0.0000 0.0000
0.9 0.1 0.0054 0.0182 8.8656 0.9888 0.2049 0.1053 0.0071 0.0000 0.0000

Puts
0.1 0.9 0.0031 0.0026 1119.2569 0.9607 0.0000 0.0000 0.0000 0.0745 0.1741
0.3 0.7 0.0037 0.0063 108.6745 1.2490 0.0000 0.0000 0.0000 0.0950 0.1946
0.5 0.5 0.0042 0.0102 32.9040 1.1162 0.0000 0.0000 0.0000 0.0982 0.1978
0.7 0.3 0.0048 0.0142 15.3673 1.0375 0.0000 0.0000 0.0000 0.0948 0.1943
0.9 0.1 0.0054 0.0182 8.8656 0.9888 0.0000 0.0000 0.0014 0.0939 0.1935

128 R. Bhandari, S.R. Das / Finance Research Letters 6 (2009) 122–129



Author's personal copy

1.1, the options have no value since being in the money for those strikes is almost a nine-sigma event.
The same is true for puts at strikes less than or equal to 0.9.

5. Concluding comments

The paper develops a simple approach to pricing options on portfolios accounting correctly for
higher-order moments. There are several avenues for further research. The technique applies to Euro-
pean options and needs to be extended to pricing American type options. Since the approach develops
the conditional distribution of returns, it can be implemented on a grid with smaller time intervals for
the conditional distribution, making it possible to price American style options. Empirical examination
of the model is a useful next step. How well does this simple approach fit the volatility surface for in-
dex options? Finally, the methodology is not restricted to option pricing. One may as well apply it to
optimizing portfolios with higher moments, thereby extending the class of mean-variance models to
one with mean-variance plus skewness and kurtosis.
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