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Abstract

We present a liability directed investment (LDI) rebalancing framework based on ex-
pected shortfall (ES), denoted LDI-ES, to prescribe remedies for an underfunded port-
folio. Investors endowed with some current wealth optimize their target wealth at
the end of N periods, subject to their tolerance for shortfalls from that target wealth.
LDI-ES rebalancing is contrasted with fixed-proportions rebalancing, where portfolio
allocations are rebalanced to ratios, such as 60:40, at the beginning of each of N pe-
riods. We consider critical issues of underfunding, where no portfolio can meet the
shortfall constraint, and we explore the effectiveness of (a) portfolio infusions in resolv-
ing underfunded situations, relative to other measures such as (b) increasing risk, (c)
cutting back on target liabilities/goals, and (d) extending portfolio horizon.
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Behavioral portfolio theory, developed in Shefrin and Statman [2000], describes goal-

driven investors, seeking to maximize expected wealth, yet concerned about the risk of

shortfalls from their targets. Their model is in a single-period setting, calling for the con-

struction of an optimal portfolio that is not rebalanced over time when it becomes non-

optimal. We explore portfolio rebalancing in an LDI-ES framework where investors aim to

maximize expected portfolio value while minimizing expected shortfall, and we analyze the

reconstruction of underfunded portfolios in a multi-period setting.

Consider an optimal initial portfolio composed of some proportion in a risky asset, such

as a stock index, and a risk-free bond. That portfolio provides the highest expected terminal

wealth at the end of N periods, subject to a constraint on the amount of expected shortfall

from a target level of terminal wealth. Think of the target level of terminal wealth as

the minimum amount that an individual investor must have for retirement income or the

minimum amount a pension fund must have to satisfy liabilities.

At the beginning of the second period our investor’s wealth may be higher or lower than

her wealth at the beginning of the initial period, and our investor now faces (N − 1) periods

before the terminal date. Rebalancing at the beginning of the second period consists of

changes in portfolio allocations from the optimal allocation at the beginning of the initial

period to the optimal allocation at the beginning of the second period. We refer to this

static repeated rebalancing method as the LDI-ES rebalancing method. In contrast, in a

fixed proportions (FP) rebalancing method, allocations at the beginning of the second period

are rebalanced to some fixed proportions, such as 60-40, where 60 percent is allocated to the

risky asset and 40 percent to the risk-free one.

There will be times when our investor finds at the beginning of any period that her

wealth declined so much during the previous period she cannot construct any portfolio that

conforms to the desired target terminal wealth and shortfall allowance. Pension plans often

describe these situations in the language of underfunding.1

1Traditional underfunding is defined in terms of the present value of liabilities exceeding the current value
of assets in the pension plan. Whereas this definition depends critically on the discount rate used to present
value liabilities, the definition of underfunding in our LDI-ES framework is endogenous to the optimization
itself, and bypasses the debate around discount rates.
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We consider four ways in which pension funds can remedy underfunding. First, by cash

infusions from their sponsors that increase current wealth. Second, pension funds can also

remedy underfunding by reductions of desired target terminal wealth, i.e., entitlements,

by directly reducing promised benefits to fund beneficiaries. Third, increasing shortfall

tolerance, i.e., taking on more risk. And fourth, postponing the terminal date to give more

time to reach portfolio targets. Individuals in the same circumstances can infuse cash into

their retirement portfolios by saving more and spending less, reducing their desired target

retirement wealth, increasing their shortfall tolerance, or postponing their retirement date.

Comparing these alternate paths to redressing underfunding is the focus of this paper.

Related work includes Binsbergen and Brandt [2009], who show that in a dynamic set-

ting with shortfall constraints, ex-post risk controls offer greater utility gains than ex-ante

measures. A related dynamic optimization literature examines the optimal way to beat a

benchmark or minimize the time to reach a benchmark (see Basak, Shapiro, and Tepla [2006]

and Browne [2000]). These papers deal mostly with optimization, whereas our paper focuses

on rebalancing and underfunding.

For long-term liability matching, it is also recognized that risk in portfolio management

cannot be managed through diversification alone. Shortfall and underfunding are relevant

risks and require a multi-period portfolio construction approach where shortfall risks are

given due consideration and optimization accounting for this metric is imposed, as discussed

in Amenc, Martellini, Goltz, and Milhau [2010]. Also, liabilities are no longer static, and

interest rate and inflation risk also matter. Early papers on portfolio construction for liability

matching include those of Sharpe and Tint [1990] and Martellini and Milhau [2009].

Ang, Chen, and Sundaresan [2013] further develop the model of Sharpe and Tint [1990],

representing the objective function as a natural construction containing an exchange option

between the assets and liabilities. They find that the weight in the risky asset follows a U -

shaped path as we go from being deeply underfunded to fully funded. Their paper, though

related to underfunding, does not address specific alternative remedies, which is the focus of

this paper.
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In the context of expected shortfall, there is also increasing recognition that higher-order

moments also matter and require better methods for estimation, as discussed in Martellini

and Ziemann [2010]. Some of these risks of shortfall may be managed in a static model using

options, as demonstrated in Das and Statman [2013]. Several other papers have explored

the static problem with shortfall constraints or VaR (value-at-risk) constraints, such as Roy

[1952], Levy and Sarnat [1972], Basak and Shapiro [2001], Basak, Shapiro, and Tepla [2006],

and Akcay and Yalcin [2010].

Despite these advances, the literature thus far has not considered multi-period rebalanc-

ing in which underfunding is considered directly. We introduce a novel rebalancing approach,

within which we assess alternative remedies to underfunding, and we compare these to fixed-

proportion rebalancing. In this study we abstract away from the stochastic nature of liabili-

ties2 (and the discount rates applied to value them) in order to focus more sharply on shortfall

risks and the relative effectiveness of various prescriptions in underfunded situations.

Some of our results are intuitive; others are not. Here is a brief summary of the findings

of this paper.

1. Portfolio allocations: Investors with greater shortfall tolerance allocate more to the

risky asset resulting in greater expected terminal wealth.

2. LDI-ES rebalancing versus fixed-proportion rebalancing: We contrast the terminal

wealth outcomes of the LDI-ES scheme with a scheme in which weights are held con-

stant, i.e., rebalancing occurs to a fixed proportion (FP) scheme with the initial weights.

We will see that when the investor has a high cost of shortfall and a stringent shortfall

constraint, he is better off under FP than LDI-ES, but otherwise, he is usually better

off under LDI-ES. Furthermore, the (positive) skewness of terminal wealth with LDI-

ES is much higher than that under the FP scheme, meaning that it is a dominating

strategy for investors with skewness preference.

2Of course, this issue of liabilities is non-trivial. Novy-Marx and Rauh [2011] calculate the present value
of state employee pension liabilities as of June 2009 using discount rates that reflect taxpayer risk with
estimates ranging from $3.2 trillion to $4.4 trillion. Overall, the liabilities are huge, and the exact amount
is subject to contentious debate.
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3. Role of infusions3: First, required infusions tend to get larger as we approach the

portfolio horizon. Intuitively, if the portfolio is off course with many years left to the

horizon, there is time to correct the problem, but when there is little time left, more

drastic remedies are needed and infusions are higher. Second, the distribution of in-

fusions is right-skewed, i.e., there are some large outliers that make the worst case

underfunding scenarios costly to correct. Third, for investors that have high short-

fall risk aversion (i.e., the allowable shortfall is low), expected infusions are naturally

high. As the allowable shortfall is relaxed, the expected infusions increase, since these

investors shift their portfolios to have greater weight on the risky asset. However, for

investors that have high shortfall risk tolerance (i.e., the allowable shortfall is very

high), expected infusions are small, as the investor is willing to live with high lev-

els of underfunding. Therefore, expected infusions follow an inverted u-shape as risk

tolerance increases in the ES sense.

4. Remediation of underfunded portfolios: We also explore three remedial alternatives to

making infusions, such as extending the horizon of the portfolio, taking on more short-

fall risk, or reducing target liabilities/goals. For comparison we look at the mean and

variance of terminal wealth, the probability of shortfall, and ex-post realized average

shortfall, across all remedies. We find that in the mean-variance metric all the four ap-

proaches to dealing with underfunding appear to be quite similar, but when considering

a utility function that depends also on higher-order moments over expected terminal

wealth and expected shortfall, the infusion approach is almost always dominated by

the other three approaches, unless the investor is risk-seeking.4

3When the portfolio is geared to target a specific goal amount, rather than a specific date or a given risk
tolerance, then infusions play a key role as in the SmartNest algorithm of DFA. See “DFA Gives Managed
Accounts a New Dimension,” in Retirement Income Journal, by Kerry Pechter, October 24, 2012. DFA calls
this infusion dependent portfolio targeting “Managed DC”.

4Some countries have debated cutting back on entitlements such as in the United States.
Other countries decided to take on more risk in their social security investments, for ex-
ample Chile. Our analyses suggest that these solutions may be more palatable than rais-
ing taxes to fund social security or diverting resources from other national projects. See
http://www.cato.org/publications/commentary/chiles-social-security-lesson-us, by Jose Pinera,
former Secretary of Social Security in Chile. See also Nuschler [2010].
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Model

Portfolios are invested in some combination of a risk-free bond with a return of rf , and a

risky asset, such as the stock index, whose returns are normally distributed with an expected

return of µ and a standard deviation of σ; i.e., N(µ, σ2). We denote the interval of each

period as h, and the portfolio horizon as T . The number of periods is then N = T/h. Each

period is indexed by j, where j ∈ {1, 2, . . . , N}. Wealth at the beginning of each period is

Wj−1, and the target wealth at the end of the horizon is H.

At the beginning of each period j we invest a proportion wj ∈ [0, 1] in the risky asset, and

(1−wj) in the risk-free asset. The portfolio return, rj, over period j is normally distributed

with mean and variance as follows:

rj ∼ N
[
wjµh+ (1− wj)rfh,w

2
jσ

2h
]

(1)

We can express the single-period portfolio return over period j as:

rj = wj(µh+ σ
√
h · z) + (1− wj)rfh, z ∼ N(0, 1) (2)

Now suppose we maintain this configuration from the start of period j through the end of

period N . Assuming returns are independent and identically distributed, then the multi-

period return distribution can be expressed as follows:

Rj ∼ N
[
(wjµh+ (1− wj)rfh)(N − j + 1), w2

jσ
2h(N − j + 1)

]
≡ N [µj, σ

2
j ] (3)

where (N − j + 1) is the number of periods remaining to the end of the investment horizon

T , and we have written the mean and variance of Rj compactly as µj and σ2
j , respectively.

LDI-ES portfolio construction and rebalancing

Consider a portfolio with wealth Wj−1 at the beginning of period j. Portfolio wealth at the

end of the terminal period N is then described by:

WN = Wj−1e
Rj (4)
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where WN is lognormally distributed since Rj ∼ N [µj, σ
2
j ].

Based on this, an LDI-ES investor can proceed to find the optimal allocation to the risky

asset wj given his target wealth and shortfall tolerance. Specifically, this entails finding

the highest value of wj to maximize the expected value of the portfolio at the horizon, i.e.,

Ej[WN ], subject to the constraint that the expected shortfall below a set target, H, is less

than K.5 Here Ej[·] stands for the expectation at the beginning of period j, and the expected

shortfall constraint of the portfolio for period j is expressed as:

ESj ≡ Ej [H −WN |WN < H] ≤ K (5)

Or, since H is exogenous, we have

ESj = H − Ej [WN |WN < H] , (6)

which leaves us to compute Ej[WN |WN < H], the expectation of a truncated lognormal

variable WN .

Proposition 1: If Rj ∼ N [µj, σ
2
j ], and WN = Wje

Rj , then

Ej[WN |WN < H] = Wj exp
[
µj + σjλ(α) +

1

2
σ2
j [1− δ(α)]

]
(7)

α =
Hj − µj

σj
(8)

Hj = ln(H/Wj) (9)

λ(α) =
−φ(α)

Φ(α)
(10)

δ(α) = λ(α)[λ(α)− α] (11)

where φ(·) is the standard normal density function, and Φ(·) is the standard normal distri-

bution function.

Proof: Because WN is lognormal, the expectation is

Ej[WN |WN < H] = Wj exp
[
Ej(Rj|Rj < Hj) +

1

2
V arj(Rj|Rj < Hj)

]
.

5A solution to the problem where the expected shortfall is managed locally, i.e., only for one a single-period
horizon, not out to maturity, is presented in Schulmerich and Trautmann [2003].
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Since Rj is normally distributed, standard calculations for truncated normal random vari-

ables give us that Ej(Rj|Rj < Hj) = µj + σjλ(α), and V arj(Rj|Rj < H) = σ2
j [1 − δ(α)],

where the expressions for λ(α) and δ(α) are given above. See Greene [2003], chapter 22.

Portfolio Dynamics and Rebalancing

We examine the dynamic path of portfolio wealth over N periods, given an initial wealth

level W0, a target wealth H, and an expected shortfall allowance K. We optimize period by

period, ensuring at each period that we maximize the expected terminal wealth subject to

the expected shortfall allowance.

At the beginning of period j, we maximize Ej[WN ] by finding the optimal proportion, wj,

to be allocated to the stock index, subject to the constraint that Ej[H−WN |WN < H] ≤ K

and that 0 ≤ wj ≤ 1. We increase wj until Ej[H −WN |WN < H] = K; or, equivalently,

until Ej[1−WN/H|WN/H < 1] = K/H. We use the latter ratio to present our optimization

problem in percentage shortfalls rather than nominal shortfalls.

Once we have the optimal wj at the beginning of period j, we draw the random one-

period return of the stock index, which, combined with the risk-free asset determined our

one-period return, ri, which determines the end-of-period portfolio wealth, Wj = Wj−1e
rj .

We continue in this fashion until the end of period N .

No feasible wj exists when wealth at the beginning of period j is insufficient to meet the

target wealth, H, given the expected shortfall allowance, K, and the number of periods left

in the investment horizon, N − j + 1. We consequently compare four methods to restore

feasible solutions: 1) infusing cash into the portfolio, 2) increasing the investment horizon,

3) increasing the expected shortfall allowance, or 4) accepting a lower target wealth.

Throughout our numerical examples, we assume that T , the investment horizon, is 20

years, that h = 1 so rebalancing occurs once a year, and that the total number of periods is

N = T/h = 20. We assume an annual risk-free rate of rf = 0.03, and an expected annual

return on the stock index of µj = 0.07 with a volatility of σi = 0.20. We generate m = 1, 000
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simulated portfolio paths, resulting in a distribution of terminal wealth (WN).

We now proceed to examine the process of LDI-ES rebalancing for a range of target

wealth, H, expected shortfall allowances, K, and the four methods available to ensure feasible

solutions.

LDI-ES portfolio rebalancing

In Exhibit 1 (Panel A), we consider an investor with an initial wealth of W0 = $500, 000 and

a target wealth of H = $1, 000, 000. She sets her shortfall allowance at K = $100, 000 at the

end of the N = 20-year investment horizon. This investor’s optimal initial portfolio consists

of 17.44% in the stock index, with the remaining 82.56% in the risk-free asset.

Exhibit 1: Initial portfolio allocation and subsequent rebalancing for a sample realized return path.
Asset weights are determined by the LDI-ES portfolio allocation and are constrained between zero
and one, inclusive. Here, we consider an investor with a starting wealth equal to 50% of his desired
threshold of $1,000,000 (i.e., Wealth0/H = 0.50), an investment horizon of N = 20 years, and an
allowed expected shortfall of K/H = {10%, 15%, 20%}. The expected return on the risky asset
each period is µj = 0.07, with a standard deviation of σj = 0.20, and the risk-free rate is rf = 0.03
per annum.

j realized Wj−1 Wj−1/H wj∗
return

Panel A. K/H = 10%
1 N/A $500,000 0.5000 0.1744
2 0% $500,000 0.5000 0.1523
3 +10% $550,000 0.5500 0.2018
4 -20% $440,000 0.4400 infeasible
— — — — —

Panel B. K/H = 20%
1 N/A $500,000 0.5000 0.4540
2 0% $500,000 0.5000 0.4439
3 +10% $550,000 0.5500 0.4875
4 -20% $440,000 0.4400 0.2831
5 +10% $484,000 0.4840 0.3698
...

...
...

...
...

12
... $750,000 0.6452 0.7643

...
...

...
...

...

19
... $1,000,000 1.0000 1.0000

Following Exhibit 1, suppose that the realized return during the first period is 0%, such
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that her wealth at the beginning of the second period remains at $500, 000. The optimal

allocation to the stock index at the beginning of the second period is then 15.23%. Portfolio

rebalancing consists of a reduction in the allocations to the stock index from 17.44% to

15.23% and a corresponding increase in the allocation to the risk-free asset.

Now suppose that the realized return during the second period is 10%. The optimal

allocation to the stock index at the beginning of the third period is then 20.18%, and our

investor rebalances her portfolio by increasing the allocation to the stock index from 15.23%

to 20.18% and a corresponding decrease in the allocation to the risk-free asset.

Next, suppose that the realized return during the third period is a 20% loss, which places

our investor in an infeasible region. That is, there is no portfolio with wi ∈ (0, 1) such

that she can reach her $1, 000, 000 target wealth with a $100, 000 shortfall allowance. Our

investor can exit the infeasible region by one of the four methods noted earlier.

In Exhibit 1 (Panel B), we relax the expected shortfall allowance by letting K = $200, 000,

and we repeat the above realized return path. Under this greater shortfall allowance, no

infeasible situation arises and the investor proceeds smoothly to the end of her investment

horizon. We see that as the portfolio increases in value throughout the investment horizon,

the weights in the risky asset increase.

To generalize these observations, in Exhibit 2, we demonstrate how the LDI-ES portfolio

allocations evolve over time based on where the realized beginning-of-period wealth, Wj−1,

falls relative to the desired target H and the allowed expected (percentage) shortfall, K/H.

Thus, for any given return path, these plots provide clear prescriptions for investors’ opti-

mal allocations/rebalancings at each point in time based on their stated goals or liability

directives. We make the following observations based on these plots:

1. Within a given plot (i.e., fixing the investment horizon), we observe that, the optimal

risky-asset allocation, wj, increases with K/H, consistent with the notion that K/H

represents the amount of shortfall risk investors are willing to accept.

2. In comparing allocation choices between the two plots in Exhibit 2, we also observe
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Exhibit 2: Initial portfolio allocations under LDI-ES for varying Wealthj−1/H ratios, where
the allowed expected (percentage) shortfall is K/H = {0.10, 0.15, 0.20, 0.50}. Asset weights are
constrained between zero and one, inclusive. The default setting is an N = {20, 10}-year investment
horizon, with a risk free rate of return of r = 0.03, and an expected return on the risky asset of
µ = 0.07 and standard deviation σ = 0.20. As K/H increases the plots show increasing weights
w∗.



12

that the optimal allocation for a given level of Wealth/H differs based on how much

time is remaining. In general, wj increases with Wealthj−1/H (and reaches 100%) far

more quickly when there is less time remaining in the investment horizon.

3. We observe no feasible values for wj at low levels of Wj−1/H, and this infeasible region

grows for stricter (i.e., lower) values of K/H, since the expected shortfall allowance,

Ej[1−WN/H|WN/H < 1] ≤ K/H, becomes infeasible even at greater Wj−1/H ratios

when K/H is small. The infeasible region begins at values of Wealthj−1/H lower than

the leftmost points of the lines depicting the optimal wj. For instance, under a 20-year

horizon, the minimum feasible Wj−1/H is 0.3893 for a K/H = 0.20 investor, whereas

the minimum feasible Wj−1/H is 0.4684 for a K/H = 0.10 investor.

4. In comparing the infeasible regions across plots in Exhibit 2, we observe that the

infeasible region also grows when the time remaining, N−j+1, decreases. For instance,

for a K/H = 0.20 investor, we see that the minimum feasible Wj−1/H is 0.3893 under

a 20-year horizon, whereas the the minimum feasible Wj−1/H is 0.5484 under a 10-year

horizon.

In Exhibit 3, we present the minimum feasibleWj−1/H for givenK/H and j. For instance,

assuming an investment horizon of N = 20 periods, an investor standing at time j = 12 with

an allowed K/H = 0.15 will find her original goal infeasible if Wj−1/H < 0.6167 (see Panel

B). That is, with only N − j + 1 = 9 years remaining, she cannot achieve an expected

shortfall of just 15%, if her realized beginning-of-period wealth is less than 61.67% of her

desired target, H. We consider this portfolio underfunded.

However, her original goal would still be feasible at this Wealth/H ratio if she had more

time left in her investment horizon (e.g., if she were standing back at j = 1, or equivalently,

if she were willing to increase N ; to see this compare Panels A and B of Exhibit 3), or if she

were willing to allow a greater expected shortfall (e.g., move up to K/H = 0.20, where her

current Wealth/H ratio remains within the feasible range). Alternatively, she could return

to the feasible range by infusing more wealth (thereby increasing Wj−1/H) or by decreasing
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Exhibit 3: Minimum feasible Wealthj−1/H with corresponding LDI-ES portfolio weight at differ-
ent points, j, in time for K/H = {0.10, 0.15, 0.20, 0.50}. The expected return on the risky asset
each period is µj = 0.07, with a standard deviation of σj = 0.20, and the risk-free rate is rf = 0.03
per annum. Total investment horizon is N = 20 years.

K/H Min. feasible corresponding
Wj−1/H wj∗

Panel A. j = 1, N = 20

0.10 0.4684 0.0857
0.15 0.4287 0.1456
0.20 0.3892 0.1987
0.50 0.1617 0.8260

K/H Min. feasible corresponding
Wj−1/H wj∗

Panel B. j = 12, N = 20

0.10 0.6656 0.1143
0.15 0.6167 0.1793
0.20 0.5678 0.2490
0.50 0.2750 0.9982

her target H such that her current wealth is equal to at least 61.67% of her desired threshold

(i.e., W11/H ≥ 0.6167). Thus, underfunding may be resolved by capital infusions, extending

the investment horizon, allowing a higher expected shortfall, or reducing the end-of-horizon

target wealth.

Overall, Exhibits 1, 2, and 3 provide LDI-ES based prescriptions for portfolio allocations

at each point in time based on their stated goals or liability directives. We now proceed to

examine in greater detail remedies for infeasibility (i.e., portfolio underfunding).

Remedies for Underfunded Portfolios

At any given point j in time, an investor may find that her beginning-of-period wealth Wj−1

is insufficient to meet her target H under an expected shortfall allowance of K with only

N − j+ 1 periods remaining. We compare four different solutions to portfolio underfunding:

(a) LDI-ES-I: Infuse more wealth. At each point in time j, find the minimum infusion

required to bring the portfolio wealth at the beginning of the period (Wj−1) back to the

minimum feasible level. These infusions come at a cost, i.e., a charge rate rc. These costs

may be the actual cost of funding or the opportunity cost of the money being allocated

elsewhere. The terminal wealth then is the value of the portfolio less the repayment of the

infusions at cost rc. (b) LDI-ES-N, i.e., increase investment horizon. (c) LDI-ES-K, i.e.,
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allow for greater expected shortfall. (d) LDI-ES-H, i.e., accept a lower terminal wealth

goal.

Exhibit 4: Sample remedies when portfolio is underfunded. Here, we consider an investor standing
at time j = 4 with a beginning-of-period wealth equal to 44% of his desired threshold of $1,000,000
(i.e., Wealthj−1/H = 0.44). The expected return on the risky asset each period is µj = 0.07, with
a standard deviation of σj = 0.20, and the risk-free rate is rf = 0.03 per annum.

Remedy change K H K/H N Wj−1 Wj−1/H wj∗

Panel A. Original K/H = 15%, original N = 20 years

do nothing — $150,000 $1,000,000 15% 20 $440,000 0.4400 infeasible
increase Wj $33,000 $150,000 $1,000,000 15% 20 $473,000 0.4730 0.1465
increase N 3 $150,000 $1,000,000 15% 23 $440,000 0.4400 0.2077
increase K $39,300 $189,300 $1,000,000 18.93% 20 $440,000 0.4400 0.1959
decrease H $55,100 $150,000 $944,900 15.87% 20 $440,000 0.4657 0.1589

Panel B. Original K/H = 10%, original N = 20 years

do nothing — $100,000 $1,000,000 10% 20 $440,000 0.4400 infeasible
increase Wj $75,300 $100,000 $1,000,000 10% 20 $515,300 0.5153 0.0953
increase N 5 $100,000 $1,000,000 10% 25 $440,000 0.4400 0.0762
increase K $89,300 $189,300 $1,000,000 18.93% 20 $440,000 0.4400 0.1959
decrease H $125,500 $100,000 $874,500 11.44% 20 $440,000 0.5031 0.1104

Exhibit 4 (Panel A) illustrates the use of each of these remedies, where we consider an

investor standing at time j = 4 with beginning-of-period wealth equal to 44% of her desired

threshold of $1,000,000 (i.e., Wj−1/H = 0.44) and an (initial) expected shortfall allowance of

K/H = 15% (i.e., a nominal shortfall allowance of K = $150, 000). Under these parameters,

this investor’s portfolio is underfunded, and her goals are currently infeasible. To continue,

this investor could either:

1. Infuse an additional $33,300 into her portfolio, bringing her beginning-of-period wealth

to the minimum required $473,000 to meet her LDI goals. Under this scenario, her

risky-asset allocation will be wj = 0.1465.

2. Increase her investment horizon by ∆N = 3 years, which brings her back into the

feasible realm of meeting her LDI goals (without the use of wealth injections). With

more time in her horizon, the investor can afford to take on additional risk and increase

the weight in the risky asset, i.e., wj = 0.2077.
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3. Increase her expected shortfall allowance by $39,300, which brings her new expected

(percentage) shortfall allowance to K/H = 18.93%. Her risky-asset allocation will be

wj = 0.1959.

4. Decrease her terminal wealth target by $55,100, which brings her current wealth as

a percentage of her threshold up to Wj−1/H = 46.57% and increases her expected

(percentage) shortfall allowance to K/H = 15.87%, and wj = 0.1589.

Exhibit 4 (Panel B) shows the same remedies but for a stricter percentage shortfall allowance

of K/H = 0.10. Here we see that the required remedies are more drastic. The required

infusion increases to $75,300 (from $33,000 when K/H = 0.20). The required extension of

the time horizon is now 5 years, in comparison to the 3 years in Panel A. Alternatively, the

expected shortfall allowance must be relaxed by an additional $50,000 over that in Panel A

to $89,300, or the target H must be be reduced by $125,500, versus just $55,100 under the

higher expected shortfall allowance.

For a general sense of the total infusions required under different expected shortfall

allowances, in Exhibit 5, we present the future value of all expected infusions (FVEI)

required throughout the investment horizon, compounded at an annual infusion cost of

rc = {0.03, 0.07}. That is, for each of K/H = {0.10, 0.15, 0.20, 0.50}, we calculate three

different FVEI, taking the average required infusions: 1) across all m = 1, 000 simulations,

2) for the subset of simulations where terminal wealth is in the bottom 10%, and 3) for the

simulations where terminal wealth is in the top 10%. Terminal wealth is calculated after

deducting infusion costs at rate rc, thereby making the sorting of outcomes into deciles less

sensitive to infusion costs. We make the following observations:

1. The difference between average infusions required in the unlucky paths (i.e., the bottom

10% of outcomes) and average infusions overall is larger than that between the lucky

paths (i.e., the top 10% of outcomes) and average infusions overall. Thus the required

infusion distribution is right-skewed, i.e., outliers are large, meaning the strategy often

needs large infusions, or equivalently, underfunding is fat-tailed.
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Exhibit 5: Future value of expected infusions (FVEI) under LDI-ES, compounded at an infusion
cost of rc = {3%, 7%} per annum. Here, we consider an investor with a starting wealth equal to
50% of his desired threshold (i.e., W0/H = 0.50, with H normalized to 1). The expected return on
the risky asset each period is µj = 0.07, with a standard deviation of σj = 0.20, and the risk-free
rate is rf = 0.03 per annum.

rc = 3%
K/H Expected FVEI [Stdev]

Panel A. Full sample
0.10 0.0368 [0.055]
0.15 0.0405 [0.073]
0.20 0.0449 [0.087]
0.50 0.0019 [0.018]

Panel B. Ending wealth in bottom 10%
0.10 0.1375 [0.070]
0.15 0.1794 [0.099]
0.20 0.2212 [0.118]
0.50 0.0177 [0.054]

Panel C. Ending wealth in top 10%
0.10 0.0055 [0.018]
0.15 0.0032 [0.016]
0.20 0.0007 [0.006]
0.50 0.0000 [0.000]

rc = 7%
K/H Expected FVEI [Stdev]

Panel A. Full sample
0.10 0.0597 [0.093]
0.15 0.0660 [0.122]
0.20 0.0731 [0.146]
0.50 0.0030 [0.028]

Panel B. Ending wealth in bottom 10%
0.10 0.2668 [0.096]
0.15 0.3459 [0.141]
0.20 0.4122 [0.178]
0.50 0.0293 [0.085]

Panel C. Ending wealth in top 10%
0.10 0.0098 [0.034]
0.15 0.0047 [0.029]
0.20 0.0010 [0.008]
0.50 0.0000 [0.000]

2. Expected infusions increase as the shortfall allowance K/H increases, until the shortfall

allowance becomes very high (i.e., a slack shortfall constraint), and then expected

infusions become very low again, because meeting the shortfall allowance is relatively

easy. Thus, we see an inverted u-shape for expected infusions as a function of K/H.

In Exhibit 6, we report analogous statistics on expected increases in investment horizon N .

Think of this as the case where an investor is forced to retire later than she wishes to. For

instance, an investor with an expected shortfall allowance of K/H = 0.10 can expect to

increase her investment horizon by ∆N = 1.48 years (with a standard deviation of 1.92)

to resolve portfolio underfunding without the use of wealth infusions, though an unlucky

K/H = 0.10 investor (captured by the simulations where terminal wealth is in the bottom

10%) is expected to increase her investment horizon by ∆N = 4.72 years (with a standard

deviation of 2.22). On the other hand, an investor with an allowance of K/H = 0.20 can
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Exhibit 6: Expected increases in investment horizon N required following the LDI-ES portfolio
allocation with an allowed expected shortfall of K/H = {0.10, 0.15, 0.20, 0.50}, where asset weights
are constrained between zero and one, inclusive. Here, we consider an investor with a starting
wealth equal to 50% of his desired threshold (i.e., W0/H = 0.50), and an original investment
horizon of N = 20 years. At each point in time j, we calculate the minimum increase in N required
to bring the portfolio back to a feasible range without the use of wealth injections. We then take
the average required changes: 1) across m = 1, 000 simulations, 2) across the simulations where
terminal wealth is in the bottom 10%, and 3) across the simulations where terminal wealth is in
the top 10%. The expected return on the risky asset each period is µj = 0.07, with a standard
deviation of σj = 0.20, and the risk-free rate is rf = 0.03 per annum.

K/H Expected N Mean change [Stdev]

Panel A. Full sample
0.10 21.48 1.48 [1.92]
0.15 21.48 1.48 [2.37]
0.20 21.63 1.63 [2.88]
0.50 20.09 0.09 [0.75]

Panel B. Ending wealth in bottom 10%
0.10 24.72 4.72 [2.22]
0.15 25.72 5.72 [2.96]
0.20 27.27 7.27 [3.46]
0.50 20.81 0.81 [2.22]

Panel C. Ending wealth in top 10%
0.10 20.13 0.13 [0.42]
0.15 20.04 0.04 [0.20]
0.20 20.02 0.02 [0.14]
0.50 20 0 [0]

expect to increase her investment horizon by ∆N = 1.63 years (with a standard deviation of

2.88), and an unlucky K/H = 0.20 investor is expected to increase her investment horizon

by ∆N = 7.27 years (with a standard deviation of 3.46). On the other hand, in the case of

K/H = 0.50, where the investor is willing to accept a large shortfall, the expected increase

in portfolio horizon, even in the worst case bottom decile, is less than a year (∆N = 0.81

years).

In general, we observe that the expected infusions/changes required are generally greater

for a K/H = {0.15, 0.20}-investor than for a K/H = 0.10 investor, suggesting that the

riskier asset allocations undertaken by an investor allowing for greater expected shortfalls

require her to apply a portfolio-underfunding remedy more often. In a similar vein, for
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an investor with a very high expected shortfall allowance (e.g., K/H = 0.50), we observe

relatively negligible expected changes throughout, since his greater tolerance for shortfall

risk enables him to maintain low wealth levels and still remain within reach of his original,

albeit laxer, LDI goals.

Comparison of alternatives

We now compare the terminal WN distribution from following the 60/40 fixed-proportion

strategy, versus using the LDI-ES-I portfolio rebalancing strategy, which takes the requisite

infusions when faced with portfolio underfunding. Note that the FP scheme rebalances to

the fixed 60/40 equity-debt proportion every year, and is a naive scheme with no shortfall

constraint. In calculating each terminal wealth WN , we subtract any infusions taken at prior

points in the path, compounded at an annual infusion cost rc.

One approach to making a comparison across various schemes for an LDI-ES investor is

to convert portfolio outcomes to a single utility number. The LDI-ES investor cares about

maximizing terminal wealth and keeping expected shortfall to a constrained level. Hence,

we assume a utility function of the LDI-ES investor that is equal to E(WT )− c ·ES, where

c is the disutility incurred by each unit of shortfall, and we calculate c0, the break even level

of c that makes the LDI-ES and FP cases equal in utility.6

That is, we want to know whether the net utility of the expected outcome under LDI-ES

investing exceeds that of the expected outcome under FP investing:

E[WT ]LDI−ES − c · ESLDI−ES > E[WT ]FP − c · ESFP (12)

⇐⇒ E[WT ]LDI−ES − E[WT ]FP > c · (ESLDI−ES − ESFP )

Thus, we see that for positive values of (ESLDI−ES − ESFP ), Equation 12 is satisfied if

c < E[WT ]LDI−ES−E[WT ]FP

ESLDI−ES−ESFP
≡ c0. In other words, when ESLDI−ES − ESFP > 0, LDI-ES

6In Ang, Chen, and Sundaresan [2013] the utility function is stated in returns and they also discount
disutility from variance in returns. In contrast, we express utility and shortfall in terms of terminal wealth
but since our calculations are normalized by target H, they are relative outcomes. Furthermore, we do
not include a haircut for variance risk, as LDI-ES investors only care about shortfall, and aim to maximize
wealth otherwise.
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investing is more likely to be the dominant strategy for greater values of c0. On the other

hand, we see that for negative values of (ESLDI−ES −ESFP ), Equation 12 is satisfied when

c > c0. That is, when ESLDI−ES − ESFP < 0, LDI-ES investing is more likely to be the

dominant strategy for lesser values of c0.

The LDI-ES-I case

Exhibit 7 presents the WN distribution parameters based on m = 1, 000 simulations and

annual infusion costs of rc = {0.03, 0.07, 0.14}. As before, we consider an investor who has

N = 20 periods in her investment horizon, a starting wealth equal to 50% of her desired

target, and expected shortfall allowances of K/H = {0.10, 0.15, 0.20, 0.50}.

At rc = 0.03 (Panel B.1) the LDI-ES-I strategy dominates the FP 60/40 scheme when

allowable shortfall is high. For example, if the allowable shortfall is K/H = 0.20, then we

must have c < 13.335 for LDI-ES to be preferred to FP, and this is almost surely the case.

When K/H = 0.50, again we must have c < 6.684 for LDI-ES to be preferred. However,

when shortfall allowance is low, i.e., K/H = 0.10, then the condition is reversed, whereby we

must now have c > 4.800 for LDI-ES to be preferred, i.e., FP is more likely to be preferred

unless, the cost of shortfall is high. A similar conclusion is drawn when K/H = 0.15, since

here, we must have c > 3.244 for LDI-ES to be preferred. Overall, we observe that under a

lower infusion cost, LDI-ES investing is generally preferred to FP investing.

At greater infusion costs, rc = {0.07, 0.14}, greater values of c0 consistently signify a

greater range of investors who prefer LDI-ES-I, since investors who have a penalty cost (i.e.,

a coefficient that corresponds to shortfall risk tolerance) c < c0 prefer LDI-ES-I over FP. If c0

is very low, as is the case for high infusion cosrs, then only investors who are not concerned

with shortfall will use LDI-ES-I.

We also observe from Exhibit 7 that LDI-ES-I has much higher positive skewness than

FP. This arises from truncating the left tail in the former scheme but not in the latter.

However, as Panels B.2 and B.3 of Exhibit 7 show, if the infusion cost is high, then FP is

likely to be preferred by more investors, unless the shortfall allowance is sufficiently high.
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Exhibit 7: Distribution parameters of terminal wealth, WN , from following the LDI-ES portfo-
lio allocations each period versus a 60/40 fixed proportion, where asset weights are constrained
between zero and one, inclusive. At each point in time j, we calculate the minimum infusion re-
quired to top off the portfolio if the realized wealth at the beginning of the period is below the
minimum feasible Wj−1/H. We then subtract out these infusions from the ending wealth at a cost
of rc = {3%, 7%, 14%} per annum. Here, we consider an investor with a starting wealth equal
to 50% of his desired threshold (i.e., W0/H = 0.50, with H normalized to 1). Expected return,
standard deviation, skewness, kurtosis, probability of shortfall, and expected shortfall (given that
the threshold is not met) are estimated based on m = 1, 000 simulations. The expected return on
the risky asset each period is µj = 0.07, with a standard deviation of σj = 0.20, and the risk-free
rate is rf = 0.03 per annum. Assuming a utility function of the LDI-ES investor that is equal to
E(WT ) − c · ES, where c is the risk aversion towards shortfall, we report c0, the break even level
of c that makes the LDI-ES and FP cases equal in utility. Note that c0 is equal to the ratio of
difference in expected WT across the two schemes divided by the difference in ES across LDI-ES
and FP. In the last column we report the range of c relative to c0 where LDI-ES does better than
FP.

Method K/H Mean Stdev Skew Pr(shortfall) ES c0

Panel A. 60/40 FP, no infusions
60/40 FP — 1.7007 0.9372 94.64 20.90% 0.2471

Panel B.1. LDI-ES, with infusion cost of rc = 3% per annum
LDI-ES 0.10 1.2721 0.6158 131.13 42.10% 0.1578 > 4.800
LDI-ES 0.15 1.6222 1.1753 161.37 33.30% 0.2229 > 3.244
LDI-ES 0.20 2.0274 1.8278 188.12 28.90% 0.2716 < 13.335
LDI-ES 0.50 2.8738 3.1995 196.13 27.50% 0.4226 < 6.684

Panel B.2. LDI-ES, with infusion cost of rc = 7% per annum
LDI-ES 0.10 1.2124 0.6575 110.67 45.10% 0.2585 < −42.833
LDI-ES 0.15 1.5561 1.2241 145.18 35.90% 0.3616 < −1.263
LDI-ES 0.20 1.9543 1.8817 174.42 31.30% 0.4484 < 1.260
LDI-ES 0.50 2.8708 3.2019 195.72 27.50% 0.4334 < 6.281

Panel B.3. LDI-ES, with infusion cost of rc = 14% per annum
LDI-ES 0.10 1.0561 0.8179 42.37 49.60% 0.5214 < −2.350
LDI-ES 0.15 1.3820 1.4051 88.39 38.90% 0.7412 < −0.645
LDI-ES 0.20 1.7615 2.0758 126.34 34.30% 0.9223 < 0.090
LDI-ES 0.50 2.8637 3.2088 194.47 27.50% 0.4593 < 5.481
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More generally, these results indicate that low risk-taking investors may be better off with

simple FP rebalancing, whereas investors willing to take on more risk are better off with

LDI-ES rebalancing.

The LDI-ES-N/K/H cases

We also observe that expected terminal wealth and standard deviations of terminal wealth

increase with the expected shortfall allowance, K/H, and we make similar observations in

Exhibit 8, where we compare terminal wealth distributions across the other remedies for

portfolio underfunding.

With regard to the break even values c0 that compare the LDI-ES-N, LDI-ES-K, and

LDI-ES-H schemes with FP rebalancing, we observe that the three LDI-ES schemes are

usually preferred by investors except when shortfall allowance is low (K/H = 0.10). To see

this assume that c = 3 in which case for shortfall allowances in the set {0.15, 0.20, 0.50},

LDI-ES is preferred to FP. That is, we see that in most cases, the values of c0 are such that

a large range of investors would prefer the LDI-ES schemes over the FP one. It is usually

when the utility penalty for shortfall (c) is high and the shortfall constraint K/H is tight,

that FP is preferred to LDI-ES.

In Exhibit 8, we explore the other three (non-infusion) variants of the LDI-ES scheme,

i.e., extending maturity (number of periods N), increasing shortfall allowance K, or lowering

the promised target H. In addition to reporting c0 (which measures investor preference for

LDI-ES over FP), the rightmost column in Exhibit 8 reports c1. For investors with shortfall

aversion coefficient c < c1 the LDI-ES-I scheme is preferred to the other three schemes. We

compare these alternative schemes with LDI-ES-I at an infusion cost of 3%, biasing results

in favor of finding the infusion case to be preferable. We see that LDI-ES-I is never preferred

to the LDI-ES-K or LDI-ES-H schemes, since c1 < 0 in all cases but one, meaning that

only shortfall risk seeking investors would prefer LDI-ES-I. Even in the LDI-ES-N scheme,

the values of c1 are extremely small positive values, suggesting that most investors would

prefer to extend their target horizon rather than provide infusions; it appears that delaying
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Exhibit 8: Terminal wealth WN distribution parameters from following the LDI-ES portfolio allo-
cations, where asset weights are constrained between zero and one, inclusive. Portfolio underfunding
is now resolved by either increasing the investment horizon N (Panel A), increasing the expected
shortfall allowance K (Panel B), or decreasing the desired target wealth H (Panel B). For instance,
at each point in time j, we calculate the minimum decrease in H required to bring an underfunded
portfolio back into the feasible domain. Here, we consider an investor with a starting wealth equal
to 50% of his desired threshold (i.e., W0/H = 0.50, with H normalized to 1). Expected return,
standard deviation, skewness, kurtosis, probability of shortfall, and expected shortfall (given that
the threshold is not met) are estimated based on m = 1, 000 simulations. The expected return on
the risky asset each period is µj = 0.07, with a standard deviation of σj = 0.20, and the risk-free
rate is rf = 0.03 per annum. Assuming a utility function of the LDI-ES investor that is equal to
E(WT ) − c · ES, where c is the risk aversion towards shortfall, we report c1, the break even level
of c that makes the LDI-ES with infusion remedy and alternative remedy cases (∆N , ∆K, and
∆H) equal in utility. Note that c1 is equal to the ratio of difference in expected WT across the two
schemes divided by the difference in ES across LDI-ES (with infusion) and an alternate LDI-ES
scheme. We compare the alternate remedies with the infusion case when the cost of infusion is
rc = 0.03. In the second-last column we report the range of c relative to c0 where LDI-ES-N/K/H
does better than FP. In the last column we report the range of c relative to c1 where LDI-ES-I does
better than LDI-ES-N/K/H.

K/H Mean Stdev Skew Pr(shortfall) ES c0 c1

Panel A. LDI-ES, allowing increases in N
0.10 1.2663 0.6012 140.55 42.20% 0.1377 > 3.971 < 0.289
0.15 1.6111 1.1688 165.36 35.40% 0.1941 > 1.691 < 0.385
0.20 2.0130 1.8262 189.84 31.10% 0.2458 > −240.231 < 0.558
0.50 2.8735 3.1996 196.10 27.50% 0.4235 < 6.649 < −0.333

Panel B. LDI-ES, allowing increases in K
0.10 1.3141 0.6381 123.63 38.60% 0.1542 > 4.161 < −11.667
0.15 1.6538 1.1784 159.20 32.00% 0.2065 > 1.155 < −1.927
0.20 2.0460 1.8272 187.60 28.90% 0.2580 < 31.679 < −1.368
0.50 2.8739 3.1993 196.15 27.50% 0.4220 < 6.708 < −0.167

Panel C. LDI-ES, allowing decreases in H
0.10 1.2764 0.6124 132.90 41.90% 0.1491 > 4.330 < −0.494
0.15 1.6276 1.1704 163.14 33.20% 0.2062 > 1.787 < −0.323
0.20 2.0312 1.8228 189.59 29.10% 0.2500 < 113.966 < −0.176
0.50 2.8739 3.1994 196.14 27.50% 0.4223 < 6.696 < −0.333
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gratification is preferred to paying to avoid postponing it.

At higher infusion costs, the performance of LDI-ES-I would be even worse. A comparison

of the mean and standard deviation of terminal wealth appears to be similar across across

the three alternate remedies when compared to the infusion case. Hence, accounting for

mean and variance, the expected shortfall is worse in the infusion case. Thus, the other

three remedies appear to be superior, and suggest that infusions should only be a last resort

if other approaches are not permissible (for example, when it is not possible to push back

retirement age, or reduce retirement benefits that may be legally stipulated).

Overall, the relationships across schemes is not quantifiably transitive under the c metric.

For example, LDI-ES-I (at infusion cost rc = 0.03) has a range of investors who prefer it

to FP (Exhibit 7). We also see that the other three schemes LDI-ES-N/K/H are preferred

by a wide range of investors to LDI-ES-I (Exhibit 8). These three schemes are also mostly

preferred to FP as well, but by a smaller range of investors than those who prefer these three

schemes over LDI-ES-I.

Concluding Discussion

In this paper, we analyze a rebalancing scheme based on behavioral portfolio theory in-

vestors who manage downside risk while maximizing the terminal wealth in their portfolios

in a multi-period setting. Investors overweight risky assets when their portfolio wealth and

shortfall tolerance are high. We find that unless investors have very stringent shortfall risk

thresholds, LDI-ES rebalancing does better for them than fixed proportion rebalancing. We

considered critical issues of underfunding, where there is no portfolio that can meet the

shortfall constraint, and remedial action is needed. We find that portfolio infusions are not

as effective in resolving underfunded situations as other measures such as increasing risk,

cutting back on target liabilities/goals, and extending portfolio horizon.

There are many extensions and applications that we envisage to follow up on the results

in this paper. We may consider gradual infusions, i.e., rather than making the full required

infusion at the time of underfunding, we inject only partial infusions and live with some
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degree of underfunding. Such an approach may prove optimal especially when the cost of

underfunding rc is high. Another interesting question that arises is whether these remedies

for underfunded portfolios change when we do not have a single target liability on one date

T , but a stream of liabilities to meet on dates T1, T2, . . . , TN . Is it sufficient to treat each

liability on separate dates as a distinct instance of the problem handled here in this paper,

or are these interacting problems that need a different rebalancing approach? While we have

looked at each of the four approaches to handling underfunding, we have assumed they are

“all-or-nothing” strategies, and are implemented in a mutually exclusive manner. Finding

the optimal “mixed-remedy-strategy” is a complicated problem that needs separate analysis.
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