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1
The Art of Data Science

— “All models are wrong, but some are useful.”
George E. P. Box and N.R. Draper in “Empirical Model Building and
Response Surfaces,” John Wiley & Sons, New York, 1987.

So you want to be a “data scientist”? There is no widely accepted
definition of who a data scientist is.1 Several books now attempt to 1 The term “data scientist” was coined

by D.J. Patil. He was the Chief Scientist
for LinkedIn. In 2011 Forbes placed him
second in their Data Scientist List, just
behind Larry Page of Google.

define what data science is and who a data scientist may be, see Patil
(2011), Patil (2012), and Loukides (2012). This book’s viewpoint is that
a data scientist is someone who asks unique, interesting questions of
data based on formal or informal theory, to generate rigorous and useful
insights.2 It is likely to be an individual with multi-disciplinary train- 2 To quote Georg Cantor - “In mathe-

matics the art of proposing a question
must be held of higher value than
solving it.”

ing in computer science, business, economics, statistics, and armed with
the necessary quantity of domain knowledge relevant to the question at
hand. The potential of the field is enormous for just a few well-trained
data scientists armed with big data have the potential to transform orga-
nizations and societies. In the narrower domain of business life, the role
of the data scientist is to generate applicable business intelligence.

Among all the new buzzwords in business – and there are many –
“Big Data” is one of the most often heard. The burgeoning social web,
and the growing role of the internet as the primary information channel
of business, has generated more data than we might imagine. Users up-
load an hour of video data to YouTube every second.3 87% of the U.S. 3 Mayer-Schönberger and Cukier (2013),

p8. They report that USC’s Martin
Hilbert calculated that more than 300

exabytes of data storage was being used
in 2007, an exabyte being one billion
gigabytes, i.e., 1018 bytes, and 260 of
binary usage.

population has heard of Twitter, and 7% use it.4 Forty-nine percent of

4 In contrast, 88% of the population has
heard of Facebook, and 41% use it. See
www.convinceandconvert.com/

7-surprising-statistics-about

-twitter-in-america/. Half of
Twitter users are white, and of the
remaining half, half are black.

Twitter users follow some brand or the other, hence the reach is enor-
mous, and, as of 2014, there are more then 500 million tweets a day. But
data is not information, and until we add analytics, it is just noise. And
more, bigger, data may mean more noise and does not mean better data.

In many cases, less is more, and we need models as well. That is what
this book is about, it’s about theories and models, with or without data,
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big or small. It’s about analytics and applications, and a scientific ap-
proach to using data based on well-founded theory and sound business
judgment. This book is about the science and art of data analytics.

Data science is transforming business. Companies are using medical
data and claims data to offer incentivized health programs to employ-
ees. Caesar’s Entertainment Corp. analyzed data for 65,000 employees
and found substantial cost savings. Zynga Inc, famous for its game Far-
mville, accumulates 25 terabytes of data every day and analyzes it to
make choices about new game features. UPS installed sensors to collect
data on speed and location of its vans, which combined with GPS infor-
mation, reduced fuel usage in 2011 by 8.4 million gallons, and shaved
85 million miles off its routes.5 McKinsey argues that a successful data 5 “How Big Data is Changing the Whole

Equation for Business,” Wall Street
Journal March 8, 2013.analytics plan contains three elements: interlinked data inputs, analytics

models, and decision-support tools.6 In a seminal paper, Halevy, Norvig 6 “Big Data: What’s Your Plan?” McKin-
sey Quarterly, March 2013.and Pereira (2009), argue that even simple theories and models, with big

data, have the potential to do better than complex models with less data.
In a recent talk7 well-regarded data scientist Hilary Mason empha- 7 At the h2o world conference in the Bay

Area, on 11th November 2015.sized that the creation of “data products” requires three components:
data (of course) plus technical expertise (machine-learning) plus people
and process (talent). Google Maps is a great example of a data product
that epitomizes all these three qualities. She mentioned three skills that
good data scientists need to cultivate: (a) in math and stats, (b) coding,
(c) communication. I would add that preceding all these is the ability to
ask relevant questions, the answers to which unlock value for compa-
nies, consumers, and society. Everything in data analytics begins with a
clear problem statement, and needs to be judged with clear metrics.

Being a data scientist is inherently interdisciplinary. Good questions
come from many disciplines, and the best answers are likely to come
from people who are interested in multiple fields, or at least from teams
that co-mingle varied skill sets. Josh Wills of Cloudera stated it well -
“A data scientist is a person who is better at statistics than any software
engineer and better at software engineering than any statistician.” In
contrast, complementing data scientists are business analytics people,
who are more familiar with business models and paradigms and can ask
good questions of the data.
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1.1 Volume, Velocity, Variety

There are several "V"s of big data: three of these are volume, velocity,
variety.8 Big data exceeds the storage capacity of conventional databases. 8 This nomenclature was originated by

the Gartner group in 2001, and has been
in place more than a decade.This is it’s volume aspect. The scale of data generation is mind-boggling.

Google’s Eric Schmidt pointed out that until 2003, all of human kind had
generated just 5 exabytes of data (an exabyte is 10006 bytes or a billion-
billion bytes). Today we generate 5 exabytes of data every two days.
The main reason for this is the explosion of “interaction” data, a new
phenomenon in contrast to mere “transaction” data. Interaction data
comes from recording activities in our day-to-day ever more digital lives,
such as browser activity, geo-location data, RFID data, sensors, personal
digital recorders such as the fitbit and phones, satellites, etc. We now live
in the “internet of things” (or iOT), and it’s producing a wild quantity of
data, all of which we seem to have an endless need to analyze. In some
quarters it is better to speak of 4 Vs of big data, as shown in Figure 1.1.

Figure 1.1: The Four Vs of Big Data.

A good data scientist will be adept at managing volume not just tech-
nically in a database sense, but by building algorithms to make intelli-
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gent use of the size of the data as efficiently as possible. Things change
when you have gargantuan data because almost all correlations become
significant, and one might be tempted to draw spurious conclusions
about causality. For many modern business applications today extraction
of correlation is sufficient, but good data science involves techniques that
extract causality from these correlations as well.

In many cases, detecting correlations is useful as is. For example, con-
sider the classic case of Google Flu Trends, see Figure 1.2. The figure
shows the high correlation between flu incidence and searches about
“flu” on Google, see Ginsberg et. al. (2009). Obviously searches on the
key word “flu” do not result in the flu itself! Of course, the incidence of
searches on this key word is influenced by flu outbreaks. The interesting
point here is that even though searches about flu do not cause flu, they
correlate with it, and may at times even be predictive of it, simply because
searches lead the actual reported levels of flu, as those may occur concur-
rently but take time to be reported. And whereas searches may be pre-
dictive, the cause of searches is the flu itself, one variable feeding on the
other, in a repeat cycle.9 Hence, prediction is a major outcome of corre- 9 Interwoven time series such as these

may be modeled using Vector Auto-
Regressions, a technique we will en-
counter later in this book.

lation, and has led to the recent buzz around the subfield of “predictive
analytics.” There are entire conventions devoted to this facet of corre-
lation, such as the wildly popular PAW (Predictive Analytics World).10 10 May be a futile collection of people,

with non-working crystal balls, as
William Gibson said - “The future is not
google-able.”

Pattern recognition is in, passe causality is out.

Figure 1.2: Google Flu Trends. The
figure shows the high correlation
between flu incidence and searches
about “flu” on Google. The orange
line is actual US flu activity, and
the blue line is the Google Flu
Trends estimate.

Data velocity is accelerating. Streams of tweets, Facebook entries, fi-
nancial information, etc., are being generated by more users at an ever
increasing pace. Whereas velocity increases data volume, often exponen-
tially, it might shorten the window of data retention or application. For
example, high-frequency trading relies on micro-second information and
streams of data, but the relevance of the data rapidly decays.
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Finally, data variety is much greater than ever before. Models that
relied on just a handful of variables can now avail of hundreds of vari-
ables, as computing power has increased. The scale of change in volume,
velocity, and variety of the data that is now available calls for new econo-
metrics, and a range of tools for even single questions. This book aims to
introduce the reader to a variety of modeling concepts and econometric
techniques that are essential for a well-rounded data scientist.

Data science is more than the mere analysis of large data sets. It is
also about the creation of data. The field of “text-mining” expands avail-
able data enormously, since there is so much more text being generated
than numbers. The creation of data from varied sources, and its quantifi-
cation into information is known as “datafication.”

1.2 Machine Learning

Data science is also more than “machine learning,” which is about how
systems learn from data. Systems may be trained on data to make deci-
sions, and training is a continuous process, where the system updates its
learning and (hopefully) improves its decision-making ability with more
data. A spam filter is a good example of machine learning. As we feed
it more data it keeps changing its decision rules, using a Bayesian filter,
thereby remaining ahead of the spammers. It is this ability to adaptively
learn that prevents spammers from gaming the filter, as highlighted in
Paul Graham’s interesting essay titled “A Plan for Spam”.11 Credit card 11 http://www.paulgraham.com/spam.html.

approvals are also based on neural-nets, another popular machine learn-
ing technique. However, machine-learning techniques favor data over
judgment, and good data science requires a healthy mix of both. Judg-
ment is needed to accurately contextualize the setting for analysis and
to construct effective models. A case in point is Vinny Bruzzese, known
as the “mad scientist of Hollywood” who uses machine learning to pre-
dict movie revenues.12 He asserts that mere machine learning would be 12 “Solving Equation of a Hit Film

Script, With Data,” New York Times, May
5, 2013.insufficient to generate accurate predictions. He complements machine

learning with judgment generated from interviews with screenwriters,
surveys, etc., “to hear and understand the creative vision, so our analysis
can be contextualized.”

Machine intelligence is re-emerging as the new incarnation of AI (a
field that many feel has not lived up to its promise). Machine learning
promises and has delivered on many questions of interest, and is also
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proving to be quite a game-changer, as we will see later on in this chap-
ter, and also as discussed in many preceding examples. What makes it
so appealing? Hilary Mason suggests four characteristics of machine in-
telligence that make it interesting: (i) It is usually based on a theoretical
breakthrough and is therefore well grounded in science. (ii) It changes
the existing economic paradigm. (iii) The result is commoditization (e.g.
Hadoop), and (iv) it makes available new data that leads to further data
science.

1.3 Supervised and Unsupervised Learning

Systems may learn in two broad ways, through “supervised” and “unsu-
pervised” learning. In supervised learning, a system produces decisions
(outputs) based on input data. Both spam filters and automated credit
card approval systems are examples of this type of learning. So is lin-
ear discriminant analysis (LDA). The system is given a historical data
sample of inputs and known outputs, and it “learns” the relationship
between the two using machine learning techniques, of which there are
several. Judgment is needed to decide which technique is most appropri-
ate for the task at hand.

Unsupervised learning is a process of reorganizing and enhancing the
inputs in order to place structure on unlabeled data. A good example is
cluster analysis, which takes a collection of entities, each with a number
of attributes, and partitions the entity space into sets or groups based on
closeness of the attributes of all entities. What this does is reorganizes
the data, but it also enhances the data through a process of labeling the
data with additional tags (in this case a cluster number/name). Factor
analysis is also an unsupervised learning technique. The origin of this
terminology is unclear, but it presumably arises from the fact that there
is no clear objective function that is maximized or minimized in unsu-
pervised learning, so that no “supervision” to reach an optimal is called
for. However, this is not necessarily true in general, and we will see ex-
amples of unsupervised learning (such as community detection in the
social web) where the outcome depends on measurable objective criteria.

1.4 Predictions and Forecasts

Data science is about making predictions and forecasts. There is a dif-
ference between the two. The statistician-economist Paul Saffo has sug-



the art of data science 31

gested that predictions aim to identify one outcome, whereas forecasts
encompass a range of outcomes. To say that “it will rain tomorrow” is
to make a prediction, but to say that “the chance of rain is 40%” (im-
plying that the chance of no rain is 60%) is to make a forecast, as it lays
out the range of possible outcomes with probabilities. We make weather
forecasts, not predictions. Predictions are statements of great certainty,
whereas forecasts exemplify the range of uncertainty. In the context of
these definitions, the term predictive analytics is a misnomer for it’s goal
is to make forecasts, not mere predictions.

1.5 Innovation and Experimentation

Data science is about new ideas and approaches. It merges new concepts
with fresh algorithms. Take for example the A/B test, which is nothing
but the online implementation of a real-time focus group. Different sub-
sets of users are exposed to A and B stimuli respectively, and responses
are measured and analyzed. It is widely used for web site design. This
approach has been in place for more than a decade, and in 2011 Google
ran more than 7,000 A/B tests. Facebook, Amazon, Netflix, and sev-
eral others firms use A/B testing widely.13 The social web has become 13 “The A/B Test: Inside the Technology

that’s Changing the Rules of Business,”
by Brian Christian, Wired, April 2012.a teeming ecosystem for running social science experiments. The poten-

tial to learn about human behavior using innovative methods is much
greater now than ever before.

1.6 The Dark Side

1.6.1 Big Errors

The good data scientist will take care to not over-reach in drawing con-
clusions from big data. Because there are so many variables available,
and plentiful observations, correlations are often statistically significant,
but devoid of basis. In the immortal words of the bard, empirical results
from big data may be - “A tale told by an idiot, full of sound and fury,
signifying nothing.” 14 One must be careful not to read too much in the 14 William Shakespeare in Macbeth, Act

V, Scene V.data. More data does not guarantee less noise, and signal extraction may
be no easier than with less data.

Adding more columns (variables in the cross section) to the data set,
but not more rows (time dimension) is also fraught with danger. As
the number of variables increases, more characteristics are likely to be
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related statistically. Over fitting models in-sample is much more likely
with big data, leading to poor performance out-of-sample.

Researchers have also to be careful to explore the data fully, and not
terminate their research the moment a viable result, especially one that
the researcher is looking for, is attained. With big data, the chances of
stopping at a suboptimal, or worse, intuitively appealing albeit wrong
result become very high. It is like asking a question to a class of stu-
dents. In a very large college class, the chance that someone will provide
a plausible yet off-base answer quickly is very high, which often short
circuits the opportunity for others in class to think more deeply about
the question and provide a much better answer.

Nassim Taleb15 describes these issues elegantly - “I am not saying 15 “Beware the Big Errors of Big Data”
Wired, February 2013.there is no information in big data. There is plenty of information. The

problem – the central issue – is that the needle comes in an increasingly
larger haystack.” The fact is, one is not always looking for needles or
Taleb’s black swans, and there are plenty of normal phenomena about
which robust forecasts are made possible by the presence of big data.

1.6.2 Privacy

The emergence of big data coincides with a gigantic erosion of privacy.
Human kind has always been torn between the need for social interac-
tion, and the urge for solitude and privacy. One trades off against the
other. Technology has simply sharpened the divide and made the slope
of this trade off steeper. It has provided tools of social interaction that
steal privacy much faster than in the days before the social web.

Rumors and gossip are now old world. They required bilateral trans-
mission. The social web provides multilateral revelation, where privacy
no longer capitulates a battle at a time, but the entire war is lost at one
go. And data science is the tool that enables firms, governments, indi-
viduals, benefactors and predators, et al, en masse, to feed on privacy’s
carcass. The cartoon in Figure 1.3 parodies the kind of information spe-
cialization that comes with the loss of privacy!

The loss of privacy is manifested in the practice of human profiling
through data science. Our web presence increases entropically as we
move more of our life’s interactions to the web, be they financial, emo-
tional, organizational, or merely social. And as we live more and more
of our lives in this new social melieu, data mining and analytics enables
companies to construct very accurate profiles of who we are, often better
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Figure 1.3: Profiling can convert
mass media into personal media.

than what we might do ourselves. We are moving from "know thyself" to
knowing everything about almost everyone.

If you have a Facebook or Twitter presence, rest assured you have
been profiled. For instance, let’s say you tweeted that you were taking
your dog for a walk. Profiling software now increments your profile
with an additional tag - pet owner. An hour later you tweet that you are
returning home to cook dinner for your kids. You profile is now further
tagged as a parent. As you might imagine, even a small Twitter presence
ends up being dramatically revealing about who you are. Information
that you provide on Facebook and Twitter, your credit card spending
pattern, and your blog, allows the creation of a profile that is accurate
and comprehensive, and probably more objective than the subjective
and biased opinion that you have of yourself. A machine knows thyself
better. And you are the product! (See Figure 1.4.)

Humankind leaves an incredible trail of “digital exhaust” comprising
phone calls, emails, tweets, GPS information, etc., that companies use for
profiling. It is said that 1/3 of people have a digital identity before being
born, initiated with the first sonogram from a routine hospital visit by
an expectant mother. The half life of non-digital identity, or the average
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Figure 1.4: If it’s free, you may be
the product.

age of digital birth is six months, and within two years 92% of the US
population has a digital identity.16 Those of us who claim to be safe from 16 See “The Human Face of Big Data” by

Rick Smolan and Jennifer Erwitt.revealing their privacy by avoiding all forms of social media are simply
profiled as agents with a “low digital presence.” It might be interesting
to ask such people whether they would like to reside in a profile bucket
that is more likely to attract government interest than a profile bucket
with more average digital presence. In this age of profiling, the best
way to remain inconspicuous is not to hide, but to remain as average as
possible, so as to be mostly lost within a large herd.

Privacy is intricately and intrinsically connected to security and effi-
ciency. The increase in transacting on the web, and the confluence of pro-
filing, has led to massive identity theft. Just as in the old days, when a
thief picked your lock and entered your home, most of your possessions
were at risk. It is the same with electronic break ins, except that there are
many more doors to break in from and so many more windows through
which an intruder can unearth revealing information. And unlike a thief
who breaks into your home, a hacker can reside in your electronic abode
for quite some time without being detected, an invisible parasite slowly
doing damage. While you are blind, you are being robbed blind. And
unlike stealing your worldly possessions, stealing your very persona and
identity is the cruelest cut of them all.
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An increase in efficiency in the web ecosystem comes too at some
retrenchment of privacy. Who does not shop on the internet? Each trans-
action resides in a separate web account. These add up at an astonishing
pace. I have no idea of the exact number of web accounts in my name,
but I am pretty sure it is over a hundred, many of them used maybe just
once. I have unconsciously, yet quite willingly, marked my territory all
over the e-commerce landscape. I rationalize away this loss of privacy in
the name of efficiency, which undoubtedly exists. Every now and then I
am reminded of this loss of privacy as my plane touches down in New
York city, and like clockwork, within an hour or two, I receive a discount
coupon in my email from Barnes & Noble bookstores. You see, whenever
I am in Manhattan, I frequent the B&N store on the upper west side, and
my credit card company and/or Google knows this, as well as my air
travel schedule, since I buy both tickets and books on the same card and
in the same browser. So when I want to buy books at a store discount,
I fly to New York. That’s how rational I am, or how rational my profile
says I am! Humor aside, such profiling seems scary, though the thought
quickly passes. I like the dopamine rush I get from my discount coupon
and I love buying books.17 17 I also like writing books, but I am

much better at buying them, and some
what less better at reading them!Profiling implies a partitioning of the social space into targeted groups,

so that focused attention may be paid to specific groups, or various
groups may be treated differently through price discrimination. If my
profile shows me to be an affluent person who likes fine wine (both
facts untrue in my case, but hope springs eternal), then internet sales
pitches (via Groupon, Living Social, etc.) will be priced higher to me by
an online retailer than to someone whose profile indicates a low spend.
Profiling enables retailers to maximize revenues by eating away the con-
sumer’s surplus by better setting of prices to each buyer’s individual
willingness to pay. This is depicted in Figure 1.5.

In Figure 1.5 the demand curve is represented by the line segment
ABC representing price-quantity combinations (more is demanded at
lower prices). In a competitive market without price segmentation, let’s
assume that the equilibrium price is P and equilibrium quantity is Q
as shown by the point B on the demand curve. (The upward sloping
supply curve is not shown but it must intersect the demand curve at
point B, of course.) Total revenue to the seller is the area OPBQ, i.e.,
P×Q.

Now assume that the seller is able to profile buyers so that price dis-
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Figure 1.5: Extracting consumer’s
surplus through profiling.

crimination is possible. Based on buyers’ profiles, the seller will offer
each buyer the price he is willing to pay on the demand curve, thereby
picking off each price in the segment AB. This enables the seller to cap-
ture the additional region ABP, which is the area of consumer’s surplus,
i.e., the difference between the price that buyers pay versus the price
they were actually willing to pay. The seller may also choose to offer
some consumers lower prices in the region BC of the demand curve so
as to bring in additional buyers whose threshold price lies below the
competitive market price P. Thus, profiling helps sellers capture con-
sumer’s surplus and eat into the region of missed sales. Targeting brings
benefits to sellers and they actively pursue it. The benefits outweigh the
costs of profiling, and the practice is widespread as a result. Profiling
also makes price segmentation fine-tuned, and rather than break buy-
ers into a few segments, usually two, each profile becomes a separate
segment, and the granularity of price segmentation is modulated by the
number of profiling groups the seller chooses to model.

Of course, there is an insidious aspect to profiling, which has existed
for quite some time, such as targeting conducted by tax authorities. I
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don’t believe we will take kindly to insurance companies profiling us
any more than they already do. Profiling is also undertaken to snare ter-
rorists. However, there is a danger in excessive profiling. A very specific
profile for a terrorist makes it easier for their ilk to game detection as
follows. Send several possible suicide bombers through airport security
and see who is repeatedly pulled aside for screening and who is not.
Repeating this exercise enables a terrorist cell to learn which candidates
do not fall into the profile. They may then use them for the execution of
a terror act, as they are unlikely to be picked up for special screening.
The antidote? Randomization of people picked for special screening in
searches at airports, which makes it hard for a terrorist to always assume
no likelihood of detection through screening.18 18 See

http://acfnewsource.org.s60463.

gridserver.com/science/random

security.html, also aired on KRON-
TV, San Francisco, 2/3/2003.

Automated invasions of privacy naturally lead to a human response,
not always rational or predictable. This is articulated in Campbell’s Law:
“The more any quantitative social indicator (or even some qualitative
indicator) is used for social decision-making, the more subject it will
be to corruption pressures and the more apt it will be to distort and
corrupt the social processes it is intended to monitor.” 19 We are in for 19 See: http://en.wikipedia.org/wiki/

Campbell’s law.an interesting period of interaction between man and machine, where
the battle for privacy will take center stage.

1.7 Theories, Models, Intuition, Causality, Prediction, Corre-
lation

My view of data science is one where theories are implemented using
data, some of it big data. This is embodied in an inference stack com-
prising (in sequence): theories, models, intuition, causality, prediction,
and correlation. The first three constructs in this chain are from Emanuel
Derman’s wonderful book on the pitfalls of models.20 20 “Models. Behaving. Badly.” Emanuel

Derman, Free Press, New York, 2011.Theories are statements of how the world should be or is, and are
derived from axioms that are assumptions about the world, or precedent
theories. Models are implementations of theory, and in data science are
often algorithms based on theories that are run on data. The results of
running a model lead to intuition, i.e., a deeper understanding of the
world based on theory, model, and data. Whereas there are schools of
thought that suggest data is all we need, and theory is obsolete, this
author disagrees. Still the unreasonable proven effectiveness of big data
cannot be denied. Chris Anderson argues in his Wired magazine article



38 data science: theories, models, algorithms, and analytics

thus:”21 21 “The End of Theory: The Data Deluge
Makes the Scientific Method Obsolete.”
Wired, v16(7), 23rd June, 2008.Sensors everywhere. Infinite storage. Clouds of processors. Our

ability to capture, warehouse, and understand massive amounts
of data is changing science, medicine, business, and technology.
As our collection of facts and figures grows, so will the oppor-
tunity to find answers to fundamental questions. Because in the
era of big data, more isn’t just more. More is different.

In contrast, the academic Thomas Davenport writes in his foreword
to Seigel (2013) that models are key, and should not be increasingly es-
chewed with increasing data:

But the point of predictive analytics is not the relative size or
unruliness of your data, but what you do with it. I have found
that “big data often means small math,” and many big data
practitioners are content just to use their data to create some
appealing visual analytics. That’s not nearly as valuable as
creating a predictive model.

Once we have established intuition for the results of a model, it re-
mains to be seen whether the relationships we observe are causal, pre-
dictive, or merely correlational. Theory may be causal and tested as
such. Granger (1969) causality is often stated in mathematical form
for two stationary22 time series of data as follows. X is said to Granger 22 A series is stationary if the probability

distribution from which the observa-
tions are drawn is the same at all points
in time.

cause Y if in the following equation system,

Y(t) = a1 + b1Y(t− 1) + c1X(t− 1) + e1

X(t) = a2 + b2Y(t− 1) + c2X(t− 1) + e2

the coefficient c1 is significant and b2 is not significant. Hence, X causes
Y, but not vice versa. Causality is a hard property to establish, even with
theoretical foundation, as the causal effect has to be well-entrenched in
the data.

We have to be careful to impose judgment as much as possible since
statistical relationships may not always be what they seem. A variable
may satisfy the Granger causality regressions above but may not be
causal. For example, we earlier encountered the flu example in Google
Trends. If we denote searches for flu as X, and the outbreak of flu as
Y, we may see a Granger cause relation between flu and searches for
it. This does not mean that searching for flu causes flu, yet searches are
predictive of flu. This is the essential difference between prediction and
causality.
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And then there is correlation, at the end of the data science inference
chain. Contemporaneous movement between two variables is quanti-
fied using correlation. In many cases, we uncover correlation, but no
prediction or causality. Correlation has great value to firms attempting
to tease out beneficial information from big data. And even though it is
a linear relationship between variables, it lays the groundwork for un-
covering nonlinear relationships, which are becoming easier to detect
with more data. The surprising parable about Walmart finding that pur-
chases of beer and diapers seem to be highly correlated resulted in these
two somewhat oddly-paired items being displayed on the same aisle in
supermarkets.23 Unearthing correlations of sales items across the popu- 23 http://www.theregister.co.uk/

2006/08/15/beer diapers/.lation quickly lead to different business models aimed at exploiting these
correlations, such as my book buying inducement from Barnes & Noble,
where my “fly and buy” predilection is easily exploited. Correlation is
often all we need, eschewing human cravings for causality. As Mayer-
Schönberger and Cukier (2013) so aptly put it, we are satisfied “... not
knowing why but only what.”

In the data scientist mode of thought, relationships are multifaceted
correlations amongst people. Facebook, Twitter, and many other plat-
forms are datafying human relationships using graph theory, exploiting
the social web in an attempt to understand better how people relate to
each other, with the goal of profiting from it. We use correlations on
networks to mine the social graph, understanding better how different
social structures may be exploited. We answer questions such as where
to seed a new marketing campaign, which members of a network are
more important than the others, how quickly will information spread on
the network, i.e., how strong is the “network effect”?

Data science is about the quantization and understanding of human
behavior, the holy grail of social science. In the following chapters we
will explore a wide range of theories, techniques, data, and applications
of a multi-faceted paradigm. We will also review the new technologies
developed for big data and data science, such as distributed computing
using the Dean and Ghemawat (2004) MapReduce paradigm developed
at Google,24 and implemented as the open source project Hadoop at Ya- 24 http://research.google.com/

archive/mapreduce.htmlhoo!.25 When data gets super sized, it is better to move algorithms to the
25 http://hadoop.apache.org/

data than the other way around. Just as big data has inverted database
paradigms, so is big data changing the nature of inference in the study
of human behavior. Ultimately, data science is a way of thinking, for
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social scientists, using computer science.



2
The Very Beginning: Got Math?

Business analytics requires the use of various quantitative tools, from
algebra and calculus, to statistics and econometrics, with implementa-
tions in various programming languages and software. It calls for tech-
nical expertise as well as good judgment, and the ability to ask insightful
questions and to deploy data towards answering the questions.

The presence of the web as the primary platform for business and
marketing has spawned huge quantities of data, driving firms to attempt
to exploit vast stores of information in honing their competitive edge. As
a consequence, firms in Silicon Valley (and elsewhere) are hiring a new
breed of employee known as “data scientist” whose role is to analyze
“Big Data” using tools such as the ones you will learn in this course.

This chapter will review some of the mathematics, statistics, linear al-
gebra, and calculus you might have not used in many years. It is more
fun than it looks. We will also learn to use some mathematical packages
along the way. We’ll revisit some standard calculations and analyses that
you will have encountered in previous courses you might have taken.
You will refresh some old concepts, learn new ones, and become techni-
cally adept with the tools of the trade.

2.1 Exponentials, Logarithms, and Compounding

It is fitting to begin with the fundamental mathematical constant, “e =

2.718281828...”, which is also the function “exp(·)”. We often write this
function as ex, where x can be a real or complex variable. It shows up
in many places, especially in Finance, where it is used for continuous
compounding and discounting of money at a given interest rate r over
some time horizon t.

Given y = ex, a fixed change in x results in the same continuous
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percentage change in y. This is because ln(y) = x, where ln(·) is the
natural logarithm function, and is the inverse function of the exponential
function. Recall also that the first derivative of this function is dy

dx = ex,
i.e., the function itself.

The constant e is defined as the limit of a specific function:

e = lim
n→∞

(
1 +

1
n

)n

Exponential compounding is the limit of successively shorter intervals
over discrete compounding. Given a horizon t divided into n inter-
vals per year, one dollar compounded from time zero to time t years
over these n intervals at per annum rate r may be written as

(
1 + r

n
)nt.

Continuous-compounding is the limit of this equation when the number
of periods n goes to infinity:

lim
n→∞

(
1 +

r
n

)nt
= lim

n→∞

[(
1 +

1
n/r

)n/r
]tr

= ert

This is the forward value of one dollar. Present value is just the reverse.
Therefore, the price today of a dollar received t years from today is P =

e−rt. The yield of a bond is:

r = −1
t

ln(P)

In bond mathematics, the negative of the percentage price sensitivity
of a bond to changes in interest rates is known as “Duration”:

−dP
dr

1
P
= −

(
−te−rt 1

P

)
= tP

1
P
= t.

The derivative dP
dr is the price sensitivity of the bond to changes in inter-

est rates, and is negative. Further dividing this by P gives the percentage
price sensitivity. The minus sign in front of the definition of duration is
applied to convert the negative number to a positive one.

The “Convexity” of a bond is its percentage price sensitivity relative to
the second derivative, i.e.,

d2P
dr2

1
P
= t2P

1
P
= t2.

Because the second derivative is positive, we know that the bond pricing
function is convex.
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2.2 Normal Distribution

This distribution is the workhorse of many models in the social sciences,
and is assumed to generate much of the data that comprises the Big Data
universe. Interestingly, most phenomena (variables) in the real world
are not normally distributed. They tend to be “power law” distributed,
i.e., many observations of low value, and very few of high value. The
probability distribution declines from left to right and does not have the
characteristic hump shape of the normal distribution. An example of
data that is distributed thus is income distribution (many people with
low income, very few with high income). Other examples are word fre-
quencies in languages, population sizes of cities, number of connections
of people in a social network, etc.

Still, we do need to learn about the normal distribution because it is
important in statistics, and the central limit theorem does govern much
of the data we look at. Examples of approximately normally distributed
data are stock returns, and human heights.

If x ∼ N(µ, σ2), that is, x is normally distributed with mean µ and
variance σ2, then the probability “density” function for x is:

f (x) =
1√

2πσ2
exp

[
−1

2
(x− µ)2

σ2

]
The cumulative probability is given by the “distribution” function

F(x) =
∫ x

−∞
f (u)du

and
F(x) = 1− F(−x)

because the normal distribution is symmetric. We often also use the
notation N(·) or Φ(·) instead of F(·).

The “standard normal” distribution is: x ∼ N(0, 1). For the standard
normal distribution: F(0) = 1

2 . The normal distribution has continuous
support, i.e., a range of values of x that goes continuously from −∞ to
+∞.

2.3 Poisson Distribution

The Poisson is also known as the rare-event distribution. Its density
function is:

f (n; λ) =
e−λλn

n!
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where there is only one parameter, i.e., the mean λ. The density function
is over discrete values of n, the number of occurrences given the mean
number of outcomes λ. The mean and variance of the Poisson distribu-
tion are both λ. The Poisson is a discrete-support distribution, with a
range of values n = {0, 1, 2, . . .}.

2.4 Moments of a continuous random variable

The following formulae are useful to review because any analysis of data
begins with descriptive statistics, and the following statistical “moments”
are computed in order to get a first handle on the data. Given a random
variable x with probability density function f (x), then the following are
the first four moments.

Mean (first moment or average) = E(x) =
∫

x f (x)dx

In like fashion, powers of the variable result in higher (n-th order) mo-
ments. These are “non-central” moments, i.e., they are moments of the
raw random variable x, not its deviation from its mean, i.e., [x− E(x)].

nth moment = E(xn) =
∫

xn f (x)dx

Central moments are moments of de-meaned random variables. The
second central moment is the variance:

Variance = Var(x) = E[x− E(x)]2 = E(x2)− [E(x)]2

The standard deviation is the square-root of the variance, i.e., σ =√
Var(x). The third central moment, normalized by the standard de-

viation to a suitable power is the skewness:

Skewness =
E[x− E(x)]3

Var(x)3/2

The absolute value of skewness relates to the degree of asymmetry in
the probability density. If more extreme values occur to the left than the
right, the distribution is left-skewed. And vice-versa, the distribution is
right-skewed.

Correspondingly, the fourth central, normalized moment is kurtosis.

Kurtosis =
E[x− E(x)]4

[Var(x)]2
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Kurtosis in the normal distribution has value 3. We define “Excess Kur-
tosis” to be Kurtosis minus 3. When a probability distribution has posi-
tive excess kurtosis we call it “leptokurtic”. Such distributions have fatter
tails (either or both sides) than a normal distribution.

2.5 Combining random variables

Since we often have to deal with composites of random variables, i.e.,
more than one random variable, we review here some simple rules for
moments of combinations of random variables. There are several other
expressions for the same equations, but we examine just a few here, as
these are the ones we will use more frequently.

First, we see that means are additive and scalable, i.e.,

E(ax + by) = aE(x) + bE(y)

where x, y are random variables, and a, b are scalar constants. The vari-
ance of scaled, summed random variables is as follows:

Var(ax + by) = a2Var(x) + b2Var(y) + 2abCov(x, y) (2.1)

And the covariance and correlation between two random variables is

Cov(x, y) = E(xy)− E(x)E(y)

Corr(x, y) =
Cov(x, y)√

Var(x)Var(y)

Students of finance will be well-versed with these expressions. They are
facile and easy to implement.

2.6 Vector Algebra

We will be using linear algebra in many of the models that we explore
in this book. Linear algebra requires the manipulation of vectors and
matrices. We will also use vector calculus. Vector algebra and calculus
are very powerful methods for tackling problems that involve solutions
in spaces of several variables, i.e., in high dimension. The parsimony of
using vector notation will become apparent as we proceed. This intro-
duction is very light and meant for the reader who is mostly uninitiated
in linear algebra.

Rather than work with an abstract exposition, it is better to introduce
ideas using an example. We’ll examine the use of vectors in the context
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of stock portfolios. We define the returns for each stock in a portfolio as:

R =


R1

R2

:
:

RN


This is a random vector, because each return Ri, i = 1, 2, . . . , N comes
from its own distribution, and the returns of all these stocks are corre-
lated. This random vector’s probability is represented as a joint or mul-
tivariate probability distribution. Note that we use a bold font to denote
the vector R.

We also define a Unit vector:

1 =


1
1
:
:
1


The use of this unit vector will become apparent shortly, but it will be
used in myriad ways and is a useful analytical object.

A portfolio vector is defined as a set of portfolio weights, i.e., the frac-
tion of the portfolio that is invested in each stock:

w =


w1

w2

:
:

wN


The total of portfolio weights must add up to 1.

N

∑
i=1

wi = 1, w′1 = 1

Pay special attention to the line above. In it, there are two ways in which
to describe the sum of portfolio weights. The first one uses summation
notation, and the second one uses a simple vector algebraic statement,
i.e., that the transpose of w, denoted w′ times the unit vector 1 equals 1.1 1 Often, the notation for transpose is

to superscript T, and in this case we
would write this as w>. We may use
either notation in the rest of the book.

The two elements on the left-hand-side of the equation are vectors, and
the 1 on the right hand side is a scalar. The dimension of w′ is (1× N)
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and the dimension of 1 is (N × 1). And a (1× N) vector multiplied by a
(N × 1) results in a (1× 1) vector, i.e., a scalar.

We may also invest in a risk free asset (denoted as asset zero, i = 0),
with return R0 = r f . In this case, the total portfolio weights including
that of the risk free asset must sum to 1, and the weight w0 is:

w0 = 1−
N

∑
i=1

wi = 1−w>1

Now we can use vector notation to compute statistics and quantities of
the portfolio. The portfolio return is

Rp =
N

∑
i=1

wiRi = w′R

Again, note that the left-hand-side quantity is a scalar, and the two right-
hand-side quantities are vectors. Since R is a random vector, Rp is a
random (scalar, i.e., not a vector, of dimension 1 × 1) variable. Such a
product is called a scalar product of two vectors. In order for the calcula-
tion to work, the two vectors or matrices must be “conformable” i.e., the
inner dimensions of the matrices must be the same. In this case we are
multiplying w′ of dimension 1× N with R of dimension N × 1 and since
the two “inside” dimensions are both n, the calculation is proper as the
matrices are conformable. The result of the calculation will take the size
of the “outer” dimensions, i.e., in this case 1× 1. Now, suppose

R ∼ MVN[µ; Σ]

That is, returns are multivariate normally distributed with mean vector
E[R] = µ = [µ1, µ2, . . . , µN ]

′ ∈ RN and covariance matrix Σ ∈ RN×N . The
notation RN stands for a “real-valued matrix of dimension N.” If it’s just
N, then it means a vector of dimension N. If it’s written as N ×M, then
it’s a matrix of that dimension, i.e., N rows and M columns.

We can write the portfolio’s mean return as:

E[w′R] = w′E[R] = w′µ =
N

∑
i=1

wiµi

The portfolio’s return variance is

Var(Rp) = Var(w′R) = w′Σw

Showing why this is true is left as an exercise to the reader. Take a case
where N = 2 and write out the expression for the variance of the port-
folio using equation 2.1. Then also undertake the same calculation using
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the variance formula w′Σw and see the equivalence. Also note carefully
that this expression works because Σ is a symmetric matrix. The multi-
variate normal density function is:

f (R) =
1

2πN/2
√
|Σ|

exp
[
−1

2
(R− µ)′Σ−1(R− µ)

]
Now, we take a look at some simple applications expressed in terms of
vector notation.

2.7 Statistical Regression

Consider a multivariate regression where a stock’s returns Ri are re-
gressed on several market factors Rk.

Rit =
k

∑
j=0

βijRjt + eit, ∀i.

where t = {1, 2, . . . , T} (i.e., there are T items in the time series), and
there are k independent variables, and usually k = 0 is for the intercept.
We could write this also as

Rit = β0 +
k

∑
j=1

βijRjt + eit, ∀i.

Compactly, using vector notation, the same regression may be written as:

Ri = Rkβi + ei

where Ri, ei ∈ RT, Rk ∈ RT×(k+1), and βi ∈ Rk+1. If there is an intercept
in the regression then the first column of Rk is 1, the unit vector. Without
providing a derivation, you should know that each regression coefficient
is:

βik =
Cov(Ri, Rk)

Var(Rk)

In vector form, all coefficients may be calculated at once:

βi = (R′kRk)
−1(R′kRi)

where the superscript (−1) stands for the inverse of the matrix (R′kRk)

which is of dimension (k + 1) × (k + 1). Convince yourself that the
dimension of the expression (R′kRi) is (k + 1)× 1, i.e., it is a vector. This
results in the vector βi ∈ R(k+1). This result comes from minimizing the
summed squared mean residual error in the regression i.e.,

min
βi

e′iei

This will be examined in full detail later in this book.
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2.8 Diversification

It is useful to examine the power of using vector algebra with an ap-
plication. Here we use vector and summation math to understand how
diversification in stock portfolios works. Diversification occurs when
we increase the number of non-perfectly correlated stocks in a portfolio,
thereby reducing portfolio variance. In order to compute the variance of
the portfolio we need to use the portfolio weights w and the covariance
matrix of stock returns R, denoted Σ. We first write down the formula
for a portfolio’s return variance:

Var(w′R) = w′Σw =
n

∑
i=1

w2
i σ2

i +
n

∑
i=1

n

∑
j=1,i 6=j

wiwjσij

Readers are strongly encouraged to implement this by hand for n = 2 to
convince themselves that the vector form of the expression for variance
w′Σw is the same thing as the long form on the right-hand side of the
equation above. If returns are independent, then the formula collapses
to:

Var(w′R) = w′Σw =
n

∑
i=1

w2
i σ2

i

If returns are dependent, and equal amounts are invested in each asset
(wi = 1/n, ∀i):

Var(w′R) =
1
n

n

∑
i=1

σ2
i

n
+

n− 1
n

n

∑
i=1

n

∑
j=1,i 6=j

σij

n(n− 1)

=
1
n

σ̄i
2 +

n− 1
n

σ̄ij

=
1
n

σ̄i
2 +

(
1− 1

n

)
σ̄ij

The first term is the average variance, denoted σ̄1
2 divided by n, and

the second is the average covariance, denoted σ̄ij multiplied by factor
(n− 1)/n. As n→ ∞,

Var(w′R) = σ̄ij.

This produces the remarkable result that in a well diversified portfolio,
the variances of each stock’s return does not matter at all for portfolio
risk! Further the risk of the portfolio, i.e., its variance, is nothing but the
average of off-diagonal terms in the covariance matrix.
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Diversification exercise

Implement the math above using R to compute the standard deviation
of a portfolio of n identical securities with variance 0.04, and pairwise
covariances equal to 0.01. Keep increasing n and report the value of the
standard deviation. What do you see? Why would this be easier to do in
R versus Excel?

Matrix algebra exercise

The following brief notes will introduce you to everything you need to
know about the vocabulary of vectors and matrices in a "DIY" (do-it-
yourself) mode. Define

w = [w1 w2]
′ =

[
w1

w2

]

I =

[
1 0
0 1

]

Σ =

[
σ2

1 σ12

σ12 σ2
2

]
Do the following exercises in long hand:

• Show that
I w = w.

• Show that the dimensions make sense at all steps of your calculations.

• Show that
w′ Σ w = w2

1σ2
1 + 2w1w2σ12 + w2

2σ2
2 .

2.9 Matrix Calculus

It is simple to undertake calculus when working with matrices. Cal-
culations using matrices are mere functions of many variables. These
functions are amenable to applying calculus, just as you would do in
multivariate calculus. However, using vectors and matrices makes things
simpler in fact, because we end up taking derivatives of these multivari-
ate functions in one fell swoop rather than one-by-one for each variable.
An example will make this clear. Suppose

w =

[
w1

w2

]
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and

B =

[
3
4

]
Let f (w) = w′B. This is a function of two variables w1, w2. If we write
out f (w) in long form, we get 3w1 + 4w2. The derivative of f (w) with
respect to w1 is ∂ f

∂w1
= 3. The derivative of f (w) with respect to w2 is

∂ f
∂w2

= 4. Compare these answers to vector B. What do you see? What is
d f
dw ? It’s B.

The insight here is that if we simply treat the vectors as regular scalars
and conduct calculus accordingly, we will end up with vector deriva-
tives. Hence, the derivative of w′B with respect to w is just B. Of course,
w′B is an entire function and B is a vector. But the beauty of this is that
we can take all derivatives of function w′B at one time!

These ideas can also be extended to higher-order matrix functions.
Suppose

A =

[
3 2
2 4

]
and

w =

[
w1

w2

]
Let f (w) = w′Aw. If we write out f (w) in long form, we get

w′Aw = 3w2
1 + 4w2

2 + 2(2)w1w2

Take the derivative of f (w) with respect to w1, and this is

d f
dw1

= 6w1 + 4w2

Take the derivative of f (w) with respect to w2, and this is

d f
dw2

= 8w2 + 4w1

Now, we write out the following calculation in long form:

2 A w = 2

[
3 2
2 4

] [
w1

w2

]
=

[
6w1 + 4w2

8w2 + 4w1

]

What do you notice about this solution when compared to the previous
two answers? It is nothing but d f

dw . Since w ∈ R2, i.e., is of dimension 2,
the derivative d f

dw will also be of that dimension.
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To see how this corresponds to scalar calculus, think of the function
f (w) = w′Aw as simply Aw2, where w is scalar. The derivative of this
function with respect to w would be 2Aw. And, this is the same as what
we get when we look at a function of vectors, but with the caveat below.

Note: This computation only works out because A is symmetric. What
should the expression be for the derivative of this vector function if A is
not symmetric but is a square matrix? It turns out that this is

∂ f
∂w

= A′w + Aw 6= 2Aw

Let’s try this and see. Suppose

A =

[
3 2
1 4

]

You can check that the following is all true:

w′Aw = 3w2
1 + 4w2

2 + 3w1w2

∂ f
∂w1

= 6w1 + 3w2

∂ f
∂w2

= 3w1 + 8w2

and

A′w + Aw =

[
6w1 + 3w2

3w1 + 8w2

]
which is correct, but note that the formula for symmetric A is not!

2Aw =

[
6w1 + 4w2

2w1 + 8w2

]

2.10 Matrix Equations

Here we examine how matrices may be used to represent large systems
of equations easily and also solve them. Using the values of matrices A,
B and w from the previous section, we write out the following in long
form:

Aw = B

That is, we have [
3 2
2 4

] [
w1

w2

]
=

[
3
4

]
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Do you get 2 equations? If so, write them out. Find the solution values
w1 and w2 by hand. And then we may compute the solution for w by
“dividing” B by A. This is not regular division because A and B are
matrices. Instead we need to multiply the inverse of A (which is its “re-
ciprocal”) by B.

The inverse of A is

A−1 =

[
0.500 −0.250
−0.250 0.375

]

Now compute by hand:

A−1B =

[
0.50
0.75

]

which should be the same as your solution by hand. Literally, this is all
the matrix algebra and calculus you will need for most of the work we
will do.

More exercises

Try the following questions for practice.

• What is the value of
A−1AB

Is this vector or scalar?

• What is the final dimension of

(w′B)(AAA−1B)





3
Open Source: Modeling in R

In this chapter, we develop some expertise in using the R statistical pack-
age. There are many tutorials available now on the web. See the manuals
on the R web site www.r-project.org. There is also a great book that I
personally find very high quality, titled “The Art of R Programming” by
Norman Matloff. Another useful book is “Machine Learning for Hack-
ers” by Drew Conway and John Myles White.

I assume you have downloaded and installed R by now. If not you can
get it from the R project page:

www.r-project.org

Or, you can get a commercial version, offered free to academics and
students by Revolution Analytics (the company is to R what RedHat is to
Linux). See

www.revolutionanalytics.com

For a useful interface when using R, install RStudio, see www.rstudio.com,
but install R first. Let’s get started with some basic programming in R.

3.1 System Commands

If you want to directly access the system you can issue system com-
mands as follows:

system ( "<command>" )

For example

system ( " l s − l t | grep Das " )

will list all directory entries that contain my last name in reverse chrono-
logical order. Here I am using a unix command, so this will not work on
a Windoze machine, but it will certainly work on a Mac or Linux box.
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However, you are hardly going to be issuing commands at the system
level, so you are unlikely to use the system command very much.

3.2 Loading Data

To get started, we need to grab some data. Go to Yahoo! Finance and
download some historical data in an Excel spreadsheet, re-sort it into
chronological order, then save it as a CSV file. Read the file into R as
follows:

> data = read . csv ( " goog . csv " , header=TRUE) # Read in t h e d a t a
> n = dim ( data ) [ 1 ]
> n
[ 1 ] 1671

> data = data [ n : 1 , ]

The last command reverses the sequence of the data if required. We
can download stock data using the quantmod package. Note: to install
a package you can use the drop down menus on Windows and Mac
operating systems, and use a package installer on Linux. Or issue the
following command:

i n s t a l l . packages ( " quantmod " )

Now we move on to using this package.

> l i b r a r y ( quantmod )
Loading required package : x t s
Loading required package : zoo
> getSymbols ( c ( "YHOO" , "AAPL" , "CSCO" , "IBM" ) )
[ 1 ] "YHOO" "AAPL" "CSCO" "IBM"
> yhoo = YHOO[ ’ 2007−01−03::2015−01−07 ’ ]
> aapl = AAPL[ ’ 2007−01−03::2015−01−07 ’ ]
> csco = CSCO[ ’ 2007−01−03::2015−01−07 ’ ]
> ibm = IBM[ ’ 2007−01−03::2015−01−07 ’ ]

Or we can also directly create columns of stock data as follows.

> yhoo = as . matrix (YHOO[ , 6 ] )
> aapl = as . matrix (AAPL[ , 6 ] )
> csco = as . matrix (CSCO[ , 6 ] )
> ibm = as . matrix ( IBM [ , 6 ] )
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We now go ahead and concatenate columns of data into one stock data
set.

> s tkdata = cbind ( yhoo , aapl , csco , ibm )
> dim ( s tkdata )
[ 1 ] 2018 4

Now, compute daily returns. This time, we do log returns in continuous-
time. The mean returns are:

> n = length ( s tkdata [ , 1 ] )
> n
[ 1 ] 2018

> r e t s = log ( s tkdata [ 2 : n , ] / s tkdata [ 1 : ( n−1 ) , ] )
> colMeans ( r e t s )
YHOO. Adjusted AAPL. Adjusted CSCO. Adjusted IBM . Adjusted

3 .175185 e−04 1 .116251 e−03 4 .106314 e−05 3 .038824 e−04

We can also compute the covariance matrix and correlation matrix:

> cv = cov ( r e t s )
> print ( cv , 2 )

YHOO. Adjusted AAPL. Adjusted CSCO. Adjusted IBM . Adjusted
YHOO. Adjusted 0 .00067 0 .00020 0 .00022 0 .00015

AAPL. Adjusted 0 .00020 0 .00048 0 .00021 0 .00015

CSCO. Adjusted 0 .00022 0 .00021 0 .00041 0 .00017

IBM . Adjusted 0 .00015 0 .00015 0 .00017 0 .00021

> cr = cor ( r e t s )
> print ( cr , 4 )

YHOO. Adjusted AAPL. Adjusted CSCO. Adjusted IBM . Adjusted
YHOO. Adjusted 1 .0000 0 .3577 0 .4170 0 .3900

AAPL. Adjusted 0 .3577 1 .0000 0 .4872 0 .4867

CSCO. Adjusted 0 .4170 0 .4872 1 .0000 0 .5842

IBM . Adjusted 0 .3900 0 .4867 0 .5842 1 .0000

Notice the print command that allows you to choose the number of sig-
nificant digits.

For more flexibility and better handling of data files in various for-
mats, you may also refer to the readr package. It has many useful func-
tions.
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3.3 Matrices

Q. What do you get if you cross a mountain-climber with a mosquito?
A. Can’t be done. You’ll be crossing a scaler with a vector.

We will use matrices extensively in modeling, and here we examine
the basic commands needed to create and manipulate matrices in R. We
create a 4× 3 matrix with random numbers as follows:

> x = matrix ( rnorm ( 1 2 ) , 4 , 3 )
> x

[ , 1 ] [ , 2 ] [ , 3 ]
[ 1 , ] 0 .0625034 0 .9256896 2 .3989183

[ 2 , ] −0 .5371860 −0 .7497727 −0 .0857688

[ 3 , ] −1 .0416409 1 .6175885 3 .3755593

[ 4 , ] 0 .3244804 0 .1228325 −1 .6494255

Transposing the matrix, notice that the dimensions are reversed:

> print ( t ( x ) , 3 )
[ , 1 ] [ , 2 ] [ , 3 ] [ , 4 ]

[ 1 , ] 0 .0625 −0.5372 −1.04 0 . 324

[ 2 , ] 0 .9257 −0.7498 1 . 6 2 0 . 123

[ 3 , ] 2 .3989 −0.0858 3 . 3 8 −1.649

Of course, it is easy to multiply matrices as long as they conform. By
“conform” we mean that when multiplying one matrix by another, the
number of columns of the matrix on the left must be equal to the num-
ber of rows of the matrix on the right. The resultant matrix that holds
the answer of this computation will have the number of rows of the ma-
trix on the left, and the number of columns of the matrix on the right.
See the examples below:

> print ( t ( x ) %*% x , 3 )
[ , 1 ] [ , 2 ] [ , 3 ]

[ 1 , ] 1 . 4 8 −1.18 −3.86

[ 2 , ] −1.18 4 . 0 5 7 . 5 4

[ 3 , ] −3.86 7 . 5 4 19 .88

>
> print ( x %*% t ( x ) , 3 )

[ , 1 ] [ , 2 ] [ , 3 ] [ , 4 ]
[ 1 , ] 6 .616 −0.933 9 . 530 −3.823
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[ 2 , ] −0.933 0 .858 −0.943 −0.125

[ 3 , ] 9 .530 −0.943 15 .096 −5.707

[ 4 , ] −3.823 −0.125 −5.707 2 . 841

Taking the inverse of the covariance matrix:

> cv_ inv = solve ( cv )
> print ( cv_ inv , 3 )

goog aapl csco ibm
goog 3809 −1395 −1058 −491

aapl −1395 3062 −615 −1139

csco −1058 −615 3971 −2346

ibm −491 −1139 −2346 7198

Check that the inverse is really so!

> print ( cv_ inv %*% cv , 3 )
goog aapl csco ibm

goog 1 . 0 0 e+00 8 . 3 3 e−17 −1.53e−16 2 . 7 8 e−17

aapl −2.22e−16 1 . 0 0 e+00 −3.33e−16 −5.55e−17

csco 2 . 2 2 e−16 0 . 0 0 e+00 1 . 0 0 e+00 2 . 2 2 e−16

ibm −2.22e−16 −2.22e−16 −2.22e−16 1 . 0 0 e+00

It is, the result of multiplying the inverse matrix by the matrix itself re-
sults in the identity matrix. A covariance matrix should be positive defi-
nite. Why? What happens if it is not? Checking for this property is easy.

> l i b r a r y ( corpcor )
> i s . p o s i t i v e . d e f i n i t e ( cv )
[ 1 ] TRUE
> i s . p o s i t i v e . d e f i n i t e ( x )
Error in eigen (m, only . values = TRUE) :

non−square matrix in ’ eigen ’
> i s . p o s i t i v e . d e f i n i t e ( x %*% t ( x ) )
[ 1 ] FALSE

What happens if you compute pairwise covariances from differing
lengths of data for each pair?

3.4 Descriptive Statistics

Let’s revisit the same data and compute various descriptive statistics.
Read a CSV data file into R as follows:
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> data = read . csv ( " goog . csv " , header=TRUE) # Read in t h e d a t a
> n = dim ( data ) [ 1 ]
> n
[ 1 ] 1671

> data = data [ n : 1 , ]
> dim ( data )
[ 1 ] 1671 7

> s = data [ , 7 ]

So we now have the stock data in place, and we can compute daily
returns, and then convert those returns into annualized returns.

> r e t s = log ( s [ 2 : n ] / s [ 1 : ( n−1 ) ] )
> r e t s _ annual = r e t s * 252

> print ( c (mean ( r e t s ) , mean ( r e t s _ annual ) ) )
[ 1 ] 0 .001044538 0 .263223585

Compute the daily and annualized standard deviation of returns.

> r _sd = sd ( r e t s )
> r _sd_ annual = r _sd * sqr t ( 2 5 2 )
> print ( c ( r _sd , r _sd_ annual ) )
[ 1 ] 0 .02266823 0 .35984704

> #What i f we t a k e t h e s t d e v o f
annualized re turns ?

> print ( sd ( r e t s * 2 5 2 ) )
[ 1 ] 5 .712395

> #Huh?
>
> print ( sd ( r e t s * 2 5 2 ) ) / 252

[ 1 ] 5 .712395

[ 1 ] 0 .02266823

> print ( sd ( r e t s * 2 5 2 ) ) / sqr t ( 2 5 2 )
[ 1 ] 5 .712395

[ 1 ] 0 .3598470

Notice the interesting use of the print function here. The variance is
easy as well.

> # V a r i a n c e
> r _ var = var ( r e t s )
> r _ var _ annual = var ( r e t s ) * 252

> print ( c ( r _var , r _ var _ annual ) )
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[ 1 ] 0 .0005138488 0 .1294898953

3.5 Higher-Order Moments

Skewness and kurtosis are key moments that arise in all return distri-
butions. We need a different library in R for these. We use the moments

library.

Skewness =
E[(X− µ)3]

σ3

Skewness means one tail is fatter than the other (asymmetry). Fatter
right (left) tail implies positive (negative) skewness.

Kurtosis =
E[(X− µ)4]

σ4

Kurtosis means both tails are fatter than with a normal distribution.

> l i b r a r y ( moments )
> skewness ( r e t s )
[ 1 ] 0 .4874792

> k u r t o s i s ( r e t s )
[ 1 ] 9 .955916

For the normal distribution, skewness is zero, and kurtosis is 3. Kurtosis
minus three is denoted “excess kurtosis”.

> skewness ( rnorm ( 1 0 0 0 0 0 0 ) )
[ 1 ] −0 .00063502

> k u r t o s i s ( rnorm ( 1 0 0 0 0 0 0 ) )
[ 1 ] 3 .005863

What is the skewness and kurtosis of the stock index (S&P500)?

3.6 Quick Introduction to Brownian Motions with R

The law of motion for stocks is often based on a geometric Brownian
motion, i.e.,

dS(t) = µS(t) dt + σS(t) dB(t), S(0) = S0.

This is a “stochastic” differential equation (SDE), because it describes
random movement of the stock S(t). The coefficient µ determines the
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drift of the process, and σ determines its volatility. Randomness is in-
jected by Brownian motion B(t). This is more general than a deter-
ministic differential equation that is only a function of time, as with
a bank account, whose accretion is based on the differential equation
dy(t) = ry(t)dt, where r is the risk-free rate of interest.

The solution to a SDE is not a deterministic function but a random
function. In this case, the solution for time interval h is known to be

S(t + h) = S(t) exp
[(

µ− 1
2

σ2
)

h + σB(h)
]

The presence of B(h) ∼ N(0, h) in the solution makes the function ran-
dom. We may also write B(h) as the random variable ε

√
(h) ∼ N(0, h),

where ε ∼ N(0, 1). The presence of the exponential return makes the
stock price lognormal. (Note: if r.v. x is normal, then ex is lognormal.)

Re-arranging, the stock return is

R(t + h) = ln
(

S(t + h)
S(t)

)
∼ N

[(
µ− 1

2
σ2
)

h, σ2h
]

Using properties of the lognormal distribution, the conditional mean of
the stock price becomes

E[S(t + h)|S(t)] = S(t) · eµh

The following R code computes the annualized volatility σ.

> h = 1 / 252

> sigma = sd ( r e t s ) / sqr t ( h )
> sigma
[ 1 ] 0 .3598470

The parameter µ is also easily estimated as

> mu = mean ( r e t s ) / h+0 .5 * sigma^2

> mu
[ 1 ] 0 .3279685

So the additional term 1
2 σ2 does matter substantially.

3.7 Estimation using maximum-likelihood

MLE estimation requires finding the parameters {µ, σ} that maximize
the likelihood of seeing the empirical sequence of returns R(t). A prob-
ability function is required, and we have one above for R(t), which is
i.i.d.
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First, a quick recap of the normal distribution. If x ∼ N(µ, σ2), then

density function: f (x) =
1√

2πσ2
exp

[
−1

2
(x− µ)2

σ2

]
N(x) = 1− N(−x)

F(x) =
∫ x

−∞
f (u)du

The standard normal distribution is x ∼ N(0, 1). For the standard nor-
mal distribution: F(0) = 1

2 .
The probability density of R(t) is normal with the following equation:

f [R(t)] =
1√

2πσ2h
· exp

[
−1

2
· (R(t)− α)2

σ2h

]
where α =

(
µ− 1

2 σ2
)

h. For periods t = 1, 2, . . . , T the likelihood of the
entire series is

T

∏
t=1

f [R(t)]

It is easier (computationally) to maximize

max
µ,σ
L ≡

T

∑
t=1

ln f [R(t)]

known as the log-likelihood. This is easily done in R. First we create the
log-likelihood function

> LL = function ( params , r e t s ) {
+ alpha = params [ 1 ] ; s igsq = params [ 2 ]
+ l o g f = −log ( sqr t (2 * pi * s igsq ) )

− ( r e t s−alpha )^2 / (2 * s igsq )
+ LL = −sum( l o g f )
+ }

Note that

ln f [R(t)] = − ln
√

2πσ2h− [R(t)− α]2

2σ2h
We have used variable sigsq in function LL for σ2h.

We then go ahead and do the MLE using the nlm (non-linear mini-
mization) package in R. It uses a Newton-type algorithm.

> # c r e a t e s t a r t i n g g u e s s f o r p a r a m e t e r s
> params = c ( 0 . 0 0 1 , 0 . 0 0 1 )
> re s = nlm ( LL , params , r e t s )



64 data science: theories, models, algorithms, and analytics

> re s
$minimum
[ 1 ] −3954.813

$ es t imate
[ 1 ] 0 .0010441526 0 .0005130404

$ gradient
[ 1 ] 0 .3728092 −3 .2397043

$code
[ 1 ] 2

$ i t e r a t i o n s
[ 1 ] 12

We now pick off the results and manipulate them to get the annualized
parameters {µ, σ}.
> alpha = re s $ es t imate [ 1 ]
> s igsq = re s $ es t imate [ 2 ]
> sigma = sqr t ( s igsq / h )
> sigma
[ 1 ] 0 .3595639

> mu = alpha / h + 0 . 5 * sigma^2

> mu
[ 1 ] 0 .3277695

We see that the estimated parameters are close to that derived earlier.

3.8 GARCH/ARCH Models

GARCH stands for “Generalized Auto- Regressive Conditional Het-
eroskedasticity”. Rob Engle invented ARCH (for which he got the Nobel
prize) and this was extended by Tim Bollerslev to GARCH.

ARCH models are based on the idea that volatility tends to cluster,
i.e., volatility for period t, is auto-correlated with volatility from period
(t − 1), or more preceding periods. If we had a time series of stock re-
turns following a random walk, we might model it as follows

rt = µ + et, et ∼ N(0, σ2
t )

If the variance were stationary then σ2
t would be constant. But under

ARCH it is auto-correlated with previous variances. Hence, we have

σ2
t = β0 +

p

∑
j=1

β1jσ
2
t−j +

q

∑
k=1

β2ke2
t−k
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So current variance (σ2
t ) depends on past squared shocks (e2

t−k) and past
variances (σ2

t−j). The number of lags of past variance is p, and that of
lagged shocks is q. The model is thus known as a GARCH(p, q) model.
For the model to be stationary, the sum of all the β terms should be less
than 1.

In GARCH, stock returns are conditionally normal, and independent,
but not identically distributed because the variance changes over time.
Since at every time t, we know the conditional distribution of returns,
because σt is based on past σt−j and past shocks et−k, we can estimate
the parameters {β0, β1j, β2k}, ∀j, k, of the model using MLE. The good
news is that this comes canned in R, so all we need to do is use the
tseries package.

> l i b r a r y ( t s e r i e s )
> re s = garch ( r e t s , order=c ( 1 , 1 ) )
> summary ( re s )
Call :
garch ( x = r e t s , order = c ( 1 , 1 ) )
Model :
GARCH( 1 , 1 )
Residuals :

Min 1Q Median 3Q Max
−5.54354 −0.45479 0 .03512 0 .57051 7 .40088

C o e f f i c i e n t ( s ) :
Est imate Std . Error t value Pr(>| t |)

a0 5 .568 e−06 8 . 803 e−07 6 .326 2 . 5 2 e−10 * * *
a1 4 .294 e−02 4 . 622 e−03 9 .289 < 2e−16 * * *
b1 9 . 458 e−01 5 . 405 e−03 174 .979 < 2e−16 * * *
−−−
S i g n i f . codes : 0 [ * * * ] 0 . 001 [ * * ] 0 . 0 1 [ * ] 0 . 0 5 [ . ] 0 . 1 [ ]

Diagnost ic Tes t s : Jarque Bera Test
data : Res iduals
X−squared = 3 0 0 7 . 3 1 1 , df = 2 ,
p−value < 2 . 2 e−16

Box−Ljung t e s t
data : Squared . Residuals
X−squared = 0 . 5 3 0 5 , df = 1 , p−value = 0 .4664

Notice how strikingly high the t-statistics are. What is volatility related
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to mostly? Is the model stationary?

3.9 Introduction to Monte Carlo

It is easy to simulate a path of stock prices using a discrete form of the
solution to the Geometric Brownian motion SDE. This is the equation of
motion for the stock price, which randomly moves the stock price from
its previous value S(t) to the value h years ahead, S(t + h).

S(t + h) = S(t) exp
[(

µ− 1
2

σ2
)

h + σ · e
√

h
]

Note that we replaced B(h) with e
√

h, where e ∼ N(0, 1). Both B(h)
and e

√
h have mean zero and variance h. Knowing S(t), we can simulate

S(t + h) by drawing e from a standard normal distribution. Here is the R
code to run the entire simulation.

> n = 252

> s0 = 100

> mu = 0 . 1 0

> s i g = 0 . 2 0

> s = matrix ( 0 , 1 , n+1)
> h=1 / n
>
> s [ 1 ] = s0

> for ( j in 2 : ( n + 1 ) ) {
+ s [ j ]= s [ j −1]* exp ( (mu−s i g ^2 / 2 ) *h

+ s i g *rnorm ( 1 ) * sqr t ( h ) )
+ }
> s [ 1 : 5 ]
[ 1 ] 100 .00000 99 .54793 96 .98941

98 .65440 98 .76989

> s [ ( n−4) :n ]
[ 1 ] 87 .01616 86 .37163 84 .92783

84 .17420 86 .16617

> plot ( t ( s ) , type=" l " )

This program generates the plot shown in Figure 3.1.
The same logic may be used to generate multiple paths of stock prices,

in a vectorized way as follows. In the following example we generate
3 paths. Because of the vectorization, the run time does not increase
linearly with the number of paths, and in fact, hardly increases at all.
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Figure 3.1: Single stock path plot
simulated from a Brownian motion.

> s = matrix ( 0 , 3 , n+1)
> s [ , 1 ] = s0

> for ( j in seq ( 2 , ( n + 1 ) ) ) {
+ s [ , j ]= s [ , j −1]* exp ( (mu−s i g ^2 / 2 ) *h

+ s i g * matrix ( rnorm ( 3 ) , 3 , 1 ) * sqr t ( h ) )
+ }
> plot ( t ( s ) [ , 1 ] , ylim=c ( ymin , ymax ) , type=" l " )
> l i n e s ( t ( s ) [ , 2 ] , col=" red " , l t y =2)
> l i n e s ( t ( s ) [ , 3 ] , col=" blue " , l t y =3)

The plot is shown in Figure 3.2. The plot code shows how to change the
style of the path and its color.

If you generate many more paths, how can you find the probability
of the stock ending up below a defined price? Can you do this directly
from the discrete version of the Geometric Brownian motion process
above?
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Figure 3.2: Multiple stock path plot
simulated from a Brownian motion.

Bivariate random variables

To convert two independent random variables (e1, e2) ∼ N(0, 1) into two
correlated random variables (x1, x2) with correlation ρ, use the following
transformations.

x1 = e1, x2 = ρ · e1 +
√

1− ρ2 · e2

We can now generate 10,000 pairs of correlated random variates using
the following R code.

> e = matrix ( rnorm ( 2 0 0 0 0 ) , 1 0 0 0 0 , 2 )
> cor ( e )

[ , 1 ] [ , 2 ]
[ 1 , ] 1 .000000000 0 .007620184

[ 2 , ] 0 .007620184 1 .000000000

> cor ( e [ , 1 ] , e [ , 2 ] )
[ 1 ] 0 .007620184

> rho = 0 . 6

> x1 = e [ , 1 ]
> x2 = rho * e [ , 1 ] + sqr t (1−rho ^2) * e [ , 2 ]
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> cor ( x1 , x2 )
[ 1 ] 0 .5981845

It is useful to check algebraically that E[xi] = 0, i = 1, 2, Var[xi] = 1, i =
1, 2. Also check that Cov[x1, x2] = ρ = Corr[x1, x2]. We can numerically
check this using the following:

> mean ( x1 )
[ 1 ] −0 .006522788

> mean ( x2 )
[ 1 ] −0 .00585042

> var ( x1 )
[ 1 ] 0 .9842857

> var ( x2 )
[ 1 ] 1 .010802

> cov ( x1 , x2 )
[ 1 ] 0 .5966626

Multivariate random variables

These are generated using Cholesky decomposition which is a ma-
trix operation that represents a covariance matrix as a product of two
matrices. We may write a covariance matrix in decomposed form, i.e.,
Σ = L L′, where L is a lower triangular matrix. Alternatively we might
have an upper triangular decomposition, where U = L′. Think of each
component of the decomposition as a square-root of the covariance ma-
trix.

The Cholesky decomposition is very useful in generating correlated
random numbers from a distribution with mean vector µ and covari-
ance matrix Σ. Suppose we have a scalar random variable e ∼ (0, 1).
To transform this variate into x ∼ (µ, σ2), we generate e and then set
x = µ + σe. If instead of a scalar random variable, we have a vec-
tor random variables (independent of each other) given by a vector
e = [e1, e2, . . . , en]> ∼ (0, I), then we may transform this into a vector
of correlated random variables x = [x1, x2, . . . , xn]> ∼ (µ, Σ) by comput-
ing:

x = µ + Le

This is implemented using the following code.

> # O r i g i n a l m at r i x
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> cv
[ , 1 ] [ , 2 ] [ , 3 ]

[ 1 , ] 0 . 0 1 0 . 0 0 0 . 0 0

[ 2 , ] 0 . 0 0 0 . 0 4 0 . 0 2

[ 3 , ] 0 . 0 0 0 . 0 2 0 . 1 6

> # Let ’ s enhance i t
> cv [ 1 , 2 ] = 0 . 0 0 5

> cv [ 2 , 1 ] = 0 . 0 0 5

> cv [ 1 , 3 ] = 0 . 0 0 5

> cv [ 3 , 1 ] = 0 . 0 0 5

> cv
[ , 1 ] [ , 2 ] [ , 3 ]

[ 1 , ] 0 . 010 0 .005 0 . 005

[ 2 , ] 0 . 005 0 .040 0 . 020

[ 3 , ] 0 . 005 0 .020 0 . 160

> L = t ( chol ( cv ) )
> L

[ , 1 ] [ , 2 ] [ , 3 ]
[ 1 , ] 0 . 1 0 0 .00000000 0 .0000000

[ 2 , ] 0 . 0 5 0 .19364917 0 .0000000

[ 3 , ] 0 . 0 5 0 .09036961 0 .3864367

> e=matrix ( randn (3 * 1 0 0 0 0 ) , 1 0 0 0 0 , 3 )
> x = t ( L %*% t ( e ) )
> dim ( x )
[ 1 ] 10000 3

> cov ( x )
[ , 1 ] [ , 2 ] [ , 3 ]

[ 1 , ] 0 .009872214 0 .004597322 0 .004521752

[ 2 , ] 0 .004597322 0 .040085503 0 .019114981

[ 3 , ] 0 .004521752 0 .019114981 0 .156378078

>

In the last calculation, we confirmed that the simulated data has the
same covariance matrix as the one that we generated correlated random
variables from.
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3.10 Portfolio Computations in R

Let’s enter a sample mean vector and covariance matrix and then using
some sample weights, we will perform some basic matrix computations
for portfolios to illustrate the use of R.

> mu = matrix ( c ( 0 . 0 1 , 0 . 0 5 , 0 . 1 5 ) , 3 , 1 )
> cv = matrix ( c ( 0 . 0 1 , 0 , 0 , 0 , 0 . 0 4 , 0 . 0 2 ,

0 , 0 . 0 2 , 0 . 1 6 ) , 3 , 3 )
> mu

[ , 1 ]
[ 1 , ] 0 . 0 1

[ 2 , ] 0 . 0 5

[ 3 , ] 0 . 1 5

> cv
[ , 1 ] [ , 2 ] [ , 3 ]

[ 1 , ] 0 . 0 1 0 . 0 0 0 . 0 0

[ 2 , ] 0 . 0 0 0 . 0 4 0 . 0 2

[ 3 , ] 0 . 0 0 0 . 0 2 0 . 1 6

> w = matrix ( c ( 0 . 3 , 0 . 3 , 0 . 4 ) )
> w

[ , 1 ]
[ 1 , ] 0 . 3

[ 2 , ] 0 . 3

[ 3 , ] 0 . 4

> muP = t (w) %*% mu
> muP

[ , 1 ]
[ 1 , ] 0 . 078

> stdP = sqr t ( t (w) %*% cv %*% w)
> stdP

[ , 1 ]
[ 1 , ] 0 .1868154

We thus generated the expected return and risk of the portfolio, i.e., the
values 0.078 and 0.187, respectively.

We are interested in the risk of a portfolio, often measured by its
variance. As we had seen in the previous chapter, as we increase n, the
number of securities in the portfolio, the variance keeps dropping, and
asymptotes to a level equal to the average covariance of all the assets. It
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is interesting to see what happens as n increases through a very simple
function in R that returns the standard deviation of the portfolio.

> s i g p o r t = function ( n , s i g _ i2 , s i g _ i j ) {
+ cv = matrix ( s i g _ i j , n , n )
+ diag ( cv ) = s i g _ i 2

+ w = matrix (1 / n , n , 1 )
+ r e s u l t = sqr t ( t (w) %*% cv %*% w)
+ }
>
> n = seq ( 5 , 1 0 0 , 5 )
> n

[ 1 ] 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

[ 1 8 ] 90 95 100

> r i s k _n = NULL
> for ( nn in n ) {
+ r i s k _n = c ( r i s k _n , s i g p o r t ( nn , 0 . 0 4 , 0 . 0 1 ) )
+ }
> r i s k _n

[ 1 ] 0 .1264911 0 .1140175 0 .1095445

0 .1072381 0 .1058301 0 .1048809

[ 7 ] 0 .1041976 0 .1036822 0 .1032796

0 .1029563 0 .1026911 0 .1024695

[ 1 3 ] 0 .1022817 0 .1021204 0 .1019804

0 .1018577 0 .1017494 0 .1016530

[ 1 9 ] 0 .1015667 0 .1014889

>

We can plot this to see the classic systematic risk plot. This is shown in
Figure 3.3.

> plot ( n , r i s k _n , type=" l " ,
ylab=" P o r t f o l i o Std Dev" )

3.11 Finding the Optimal Portfolio

We will review the notation one more time. Assume that the risk free
asset has return r f . And we have n risky assets, with mean returns
µi, i = 1...n. We need to invest in optimal weights wi in each asset. Let
w = [w1, . . . , wn]′ be a column vector of portfolio weights. We define
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Figure 3.3: Systematic risk as the
number of stocks in the portfolio
increases.

µ = [µ1, . . . , µn]′ be the column vector of mean returns on each asset, and
1 = [1, . . . , 1]′ be a column vector of ones. Hence, the expected return on
the portfolio will be

E(Rp) = (1− w′1)r f + w′µ

The variance of return on the portfolio will be

Var(Rp) = w′Σw

where Σ is the covariance matrix of returns on the portfolio. The objec-
tive function is a trade-off between return and risk, with β modulating
the balance between risk and return:

U(Rp) = r f + w′(µ− r f 1)− β

2
w′Σw

The f.o.c. becomes a system of equations now (not a single equation),
since we differentiate by an entire vector w:

dU
dw′

= µ− r f 1− βΣw = 0
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where the RHS is a vector of zeros of dimension n. Solving we have

w =
1
β

Σ−1(µ− r f 1)

Therefore, allocation to the risky assets

• Increases when the relative return to it (µ− r f 1) increases.

• Decreases when risk aversion increases.

• Decreases when riskiness of the assets increases as proxied for by Σ.

> n=3

> cv
[ , 1 ] [ , 2 ] [ , 3 ]

[ 1 , ] 0 . 0 1 0 . 0 0 0 . 0 0

[ 2 , ] 0 . 0 0 0 . 0 4 0 . 0 2

[ 3 , ] 0 . 0 0 0 . 0 2 0 . 1 6

> mu
[ , 1 ]

[ 1 , ] 0 . 0 1

[ 2 , ] 0 . 0 5

[ 3 , ] 0 . 1 5

> r f =0 .005

> beta = 4

> wuns = matrix ( 1 , n , 1 )
> wuns

[ , 1 ]
[ 1 , ] 1

[ 2 , ] 1

[ 3 , ] 1

> w = (1 / beta ) * ( solve ( cv ) %*% (mu−r f *wuns ) )
> w

[ , 1 ]
[ 1 , ] 0 .1250000

[ 2 , ] 0 .1791667

[ 3 , ] 0 .2041667

> w_ in _ r f = 1−sum(w)
> w_ in _ r f
[ 1 ] 0 .4916667

What if we reduced beta?
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> beta = 3

> w = (1 / beta ) * ( solve ( cv ) %*% (mu−r f *wuns ) ) ;
> w

[ , 1 ]
[ 1 , ] 0 .1666667

[ 2 , ] 0 .2388889

[ 3 , ] 0 .2722222

> beta = 2

> w = (1 / beta ) * ( solve ( cv ) %*% (mu−r f *wuns ) ) ;
> w

[ , 1 ]
[ 1 , ] 0 .2500000

[ 2 , ] 0 .3583333

[ 3 , ] 0 .4083333

Notice that the weights in stocks scales linearly with β. The relative
proportions of the stocks themselves remains constant. Hence, β modu-
lates the proportions invested in a risk-free asset and a stock portfolio,
in which stock proportions remain same. It is as if the stock versus bond
decision can be taken separately from the decision about the composi-
tion of the stock portfolio. This is known as the “two-fund separation”
property, i.e., first determine the proportions in the bond fund vs stock
fund and the allocation within each fund can be handled subsequently.

3.12 Root Solving

Finding roots of nonlinear equations is often required, and R has several
packages for this purpose. Here we examine a few examples.

Suppose we are given the function

(x2 + y2 − 1)3 − x2y3 = 0

and for various values of y we wish to solve for the values of x. The
function we use is called fn and the use of the function is shown below.

l i b r a r y ( rootSolve )

fn = function ( x , y ) {
r e s u l t = ( x^2+y^2−1)^3 − x^2*y^3

}
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yy = 1

s o l = mult i root ( f =fn , s t a r t =1 , maxiter =10000 , r t o l =0 .000001 ,
a t o l =0 .0000001 , c t o l =0 .00001 , y=yy )

print ( s o l )

check = fn ( s o l $ root , yy )
print ( check )

At the end we check that the equation has been solved. Here is the code
run:

> source ( " fn . R" )
$ root
[ 1 ] 1

$ f . root
[ 1 ] 0

$ i t e r
[ 1 ] 1

$ estim . p r e c i s
[ 1 ] 0

[ 1 ] 0

Here is another example, where we solve a single unknown using the
unroot.all function.

l i b r a r y ( rootSolve )
fn = function ( x ) {

r e s u l t = 0 .065 * ( x* (1−x ) ) ^ 0 . 5 − 0 . 0 5 + 0 . 0 5 *x
}
s o l = uniroot . a l l ( f =fn , c ( 0 , 1 ) )
print ( s o l )

The function searches for a solution (root) in the range [0, 1]. The answer
is given as:

[ 1 ] 1 .0000000 0 .3717627
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3.13 Regression

In a multivariate linear regression, we have

Y = X · β + e

where Y ∈ Rt×1, X ∈ Rt×n, and β ∈ Rn×1, and the regression solution is
simply equal to β = (X′X)−1(X′Y) ∈ Rn×1.

To get this result we minimize the sum of squared errors.

min
β

e′e = (Y− X · β)′(Y− X · β)

= Y′(Y− X · β)− (Xβ)′ · (Y− X · β)
= Y′Y−Y′Xβ− (β′X′)Y + β′X′Xβ

= Y′Y−Y′Xβ−Y′Xβ + β′X′Xβ

= Y′Y− 2Y′Xβ + β′X′Xβ

Note that this expression is a scalar. Differentiating w.r.t. β′ gives the
following f.o.c:

−2X′Y + 2X′Xβ = 0

=⇒
β = (X′X)−1(X′Y)

There is another useful expression for each individual βi =
Cov(Xi ,Y)

Var(Xi)
. You

should compute this and check that each coefficient in the regression is
indeed equal to the βi from this calculation.
Example: Let’s do a regression and see whether AAPL, CSCO, and IBM
can explain the returns of YHOO. This uses the data we had down-
loaded earlier.

> dim ( r e t s )
[ 1 ] 2017 4

> Y = as . matrix ( r e t s [ , 1 ] )
> X = as . matrix ( r e t s [ , 2 : 4 ] )
> n = length (Y)
> X = cbind ( matrix ( 1 , n , 1 ) , X)
> b = solve ( t (X) %*% X) %*% ( t (X) %*% Y)
> b

[ , 1 ]
3 .139183 e−06

AAPL. Adjusted 1 .854781 e−01
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CSCO. Adjusted 3 .069011 e−01

IBM . Adjusted 3 .117553 e−01

But of course, R has this regression stuff canned, and you do not need to
hassle with the Matrix (though the movie is highly recommended).

> X = as . matrix ( r e t s [ , 2 : 4 ] )
> re s = lm (Y~X)
> summary ( re s )

Call :
lm ( formula = Y ~ X)

Residuals :
Min 1Q Median 3Q Max

−0.18333 −0.01051 −0.00044 0 .00980 0 .38288

C o e f f i c i e n t s :
Est imate Std . Error t value Pr(>| t |)

( I n t e r c e p t ) 3 . 139 e−06 5 . 091 e−04 0 .006 0 . 995

XAAPL. Adjusted 1 . 855 e−01 2 . 780 e−02 6 .671 3 . 2 8 e−11 * * *
XCSCO. Adjusted 3 . 069 e−01 3 . 244 e−02 9 .462 < 2e−16 * * *
XIBM . Adjusted 3 . 118 e−01 4 . 517 e−02 6 .902 6 . 8 2 e−12 * * *
−−−
S i g n i f . codes : 0 ï £ ¡ * * * ï £ ¡ 0 .001 ï £ ¡ * * ï £ ¡ 0 . 0 1 ï £ ¡ * ï £ ¡ 0 . 0 5 ï £ ¡ . ï £ ¡ 0 . 1 ï £ ¡ ï £ ¡ 1

Residual standard e r r o r : 0 .02283 on 2013 degrees of freedom
Mult iple R−squared : 0 . 2 2 3 6 , Adjusted R−squared : 0 .2224

F−s t a t i s t i c : 193 . 2 on 3 and 2013 DF, p−value : < 2 . 2 e−16

For visuals, do see the abline() function as well.
Here is a simple regression run on some data from the 2005-06 NCAA

basketball season for the March madness stats. The data is stored in a
space-delimited file called ncaa.txt. We use the metric of performance
to be the number of games played, with more successful teams playing
more playoff games, and then try to see what variables explain it best.
We apply a simple linear regression that uses the R command lm, which
stands for “linear model.”

> ncaa = read . table ( " ncaa . t x t " , header=TRUE)
> y = ncaa [ 3 ]
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> y = as . matrix ( y )
> x = ncaa [ 4 : 1 4 ]
> x = as . matrix ( x )
> fm = lm ( y~x )
> re s = summary ( fm )
> re s

Call :
lm ( formula = y ~ x )

Residuals :
Min 1Q Median 3Q Max

−1.5075 −0.5527 −0.2454 0 .6705 2 .2344

C o e f f i c i e n t s :
Est imate Std . Error t value Pr(>| t |)

( I n t e r c e p t ) −10 .194804 2 .892203 −3.525 0 .000893 * * *
xPTS −0.010442 0 .025276 −0.413 0 .681218

xREB 0 .105048 0 .036951 2 . 843 0 .006375 * *
xAST −0.060798 0 .091102 −0.667 0 .507492

xTO −0.034545 0 .071393 −0.484 0 .630513

xA . T 1 .325402 1 .110184 1 . 194 0 .237951

xSTL 0 .181015 0 .068999 2 . 623 0 .011397 *
xBLK 0 .007185 0 .075054 0 . 096 0 .924106

xPF −0.031705 0 .044469 −0.713 0 .479050

xFG 13 .823190 3 .981191 3 . 472 0 .001048 * *
xFT 2 .694716 1 .118595 2 . 409 0 .019573 *
xX3P 2 .526831 1 .754038 1 . 441 0 .155698

−−−
S i g n i f . codes : 0 * * * 0 . 001 * * 0 . 0 1 * 0 . 0 5 . 0 . 1

Residual standard e r r o r : 0 .9619 on 52 degrees of freedom
Mult iple R−Squared : 0 . 5 4 1 8 , Adjusted R−squared : 0 .4448

F−s t a t i s t i c : 5 .589 on 11 and 52 DF, p−value : 7 . 889 e−06

We note that the command lm returns an “object” with name res. This
object contains various details about the regression result, and can then
be called by other functions that will format and present various ver-
sions of the result. For example, using the following command gives a
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nicely formatted version of the regression output, and you should try to
use it when presenting regression results.

An alternative approach using data frames is:

> ncaa _ data _frame = data . frame ( y=as . matrix ( ncaa [ 3 ] ) ,
x=as . matrix ( ncaa [ 4 : 1 4 ] ) )

> fm = lm ( y~x , data=ncaa_ data _frame )
> summary ( fm )

(The output is not shown here in order to not repeat what we saw in the
previous regression.) Data frames are also objects. Here, objects are used
in the same way as the term is used in object-oriented programming
(OOP), and in a similar fashion, R supports OOP as well.

Direct regression implementing the matrix form is as follows (we had
derived this earlier):

> wuns = matrix ( 1 , 6 4 , 1 )
> z = cbind ( wuns , x )
> b = inv ( t ( z ) %*% z ) %*% ( t ( z ) %*% y )
> b

GMS
−10 .194803524

PTS −0 .010441929

REB 0 .105047705

AST −0 .060798192

TO −0 .034544881

A. T 1 .325402061

STL 0 .181014759

BLK 0 .007184622

PF −0 .031705212

FG 13 .823189660

FT 2 .694716234

X3P 2 .526830872

Note that this is exactly the same result as we had before, but it gave us
a chance to look at some of the commands needed to work with matrices
in R.
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3.14 Heteroskedasticity

Simple linear regression assumes that the standard error of the residuals
is the same for all observations. Many regressions suffer from the failure
of this condition. The word for this is “heteroskedastic” errors. “Hetero”
means different, and “skedastic” means dependent on type.

We can first test for the presence of heteroskedasticity using a stan-
dard Breusch-Pagan test available in R. This resides in the lmtest pack-
age which is loaded in before running the test.

> ncaa = read . table ( " ncaa . t x t " , header=TRUE)
> y = as . matrix ( ncaa [ 3 ] )
> x = as . matrix ( ncaa [ 4 : 1 4 ] )
> r e s u l t = lm ( y~x )
> l i b r a r y ( lmtes t )
Loading required package : zoo
> b p t e s t ( r e s u l t )

s tudent ized Breusch−Pagan t e s t

data : r e s u l t
BP = 1 5 . 5 3 7 8 , df = 11 , p−value = 0 .1592

We can see that there is very little evidence of heteroskedasticity in the
standard errors as the p-value is not small. However, lets go ahead and
correct the t-statistics for heteroskedasticity as follows, using the hccm

function. The “hccm” stands for heteroskedasticity corrected covariance
matrix.

> wuns = matrix ( 1 , 6 4 , 1 )
> z = cbind ( wuns , x )
> b = solve ( t ( z ) %*% z ) %*% ( t ( z ) %*% y )
> r e s u l t = lm ( y~x )
> l i b r a r y ( car )
> vb = hccm ( r e s u l t )
> stdb = sqr t ( diag ( vb ) )
> t s t a t s = b / stdb
> t s t a t s

GMS
−2 .68006069

PTS −0 .38212818
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REB 2 .38342637

AST −0 .40848721

TO −0 .28709450

A. T 0 .65632053

STL 2 .13627108

BLK 0 .09548606

PF −0 .68036944

FG 3 .52193532

FT 2 .35677255

X3P 1 .23897636

Here we used the hccm function to generate the new covariance matrix
vb of the coefficients, and then we obtained the standard errors as the
square root of the diagonal of the covariance matrix. Armed with these
revised standard errors, we then recomputed the t-statistics by divid-
ing the coefficients by the new standard errors. Compare these to the
t-statistics in the original model

summary ( r e s u l t )
C o e f f i c i e n t s :

Est imate Std . Error t value Pr(>| t |)
( I n t e r c e p t ) −10 .194804 2 .892203 −3.525 0 .000893 * * *
xPTS −0.010442 0 .025276 −0.413 0 .681218

xREB 0 .105048 0 .036951 2 . 843 0 .006375 * *
xAST −0.060798 0 .091102 −0.667 0 .507492

xTO −0.034545 0 .071393 −0.484 0 .630513

xA . T 1 .325402 1 .110184 1 . 194 0 .237951

xSTL 0 .181015 0 .068999 2 . 623 0 .011397 *
xBLK 0 .007185 0 .075054 0 . 096 0 .924106

xPF −0.031705 0 .044469 −0.713 0 .479050

xFG 13 .823190 3 .981191 3 . 472 0 .001048 * *
xFT 2 .694716 1 .118595 2 . 409 0 .019573 *
xX3P 2 .526831 1 .754038 1 . 441 0 .155698

It is apparent that when corrected for heteroskedasticity, the t-statistics in
the regression are lower, and also render some of the previously signifi-
cant coefficients insignificant.
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3.15 Auto-regressive models

When data is autocorrelated, i.e., has dependence in time, not accounting
for it results in unnecessarily high statistical significance. Intuitively, this
is because observations are treated as independent when actually they
are correlated in time, and therefore, the true number of observations is
effectively less.

In efficient markets, the correlation of returns from one period to the
next should be close to zero. We use the returns stored in the variable
rets (based on Google stock) from much earlier in this chapter.

> n = length ( r e t s )
> n
[ 1 ] 1670

> cor ( r e t s [ 1 : ( n−1 ) ] , r e t s [ 2 : n ] )
[ 1 ] 0 .007215026

This is for immediately consecutive periods, known as first-order auto-
correlation. We may examine this across many staggered periods. For
this R has some neat library functions in the package car.

> l i b r a r y ( car )
> durbin . watson ( r e t s , max . lag =10)

[ 1 ] 1 .974723 2 .016951 1 .984078 1 .932000

1 .950987 2 .101559 1 .977719 1 .838635

2 .052832 1 .967741

> re s = lm ( r e t s [ 2 : n ] ~ r e t s [ 1 : ( n−1 ) ] )
> durbin . watson ( res , max . lag =10)

lag Autocorre la t ion D−W S t a t i s t i c p−value
1 −0 .0006436855 2 .001125 0 . 938

2 −0 .0109757002 2 .018298 0 . 724

3 −0 .0002853870 1 .996723 0 . 982

4 0 .0252586312 1 .945238 0 . 276

5 0 .0188824874 1 .957564 0 . 402

6 −0 .0555810090 2 .104550 0 . 020

7 0 .0020507562 1 .989158 0 . 926

8 0 .0746953706 1 .843219 0 . 004 #
9 −0 .0375308940 2 .067304 0 . 136

10 0 .0085641680 1 .974756 0 . 772

A l t e r n a t i v e hypothesis : rho [ lag ] ! = 0
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There is no evidence of auto-correlation when the DW statistic is close to
2. If the DW-statistic is greater than 2 it indicates negative autocorrela-
tion, and if it is less than 2, it indicates positive autocorrelation.

In the data there only seems to be statistical significance at the eighth
lag. We may regress leading values on lags to see if the coefficient is
significant.

> summary ( re s )

Call :
lm ( formula = r e t s [ 2 : n ] ~ r e t s [ 1 : ( n − 1 ) ] )

Residuals :
Min 1Q Median 3Q Max

−0 .1242520 −0 .0102479 −0 .0002719 0 .0106435 0 .1813465

C o e f f i c i e n t s :
Est imate Std . Error t value Pr(>| t |)

( I n t e r c e p t ) 0 .0009919 0 .0005539 1 . 791 0 .0735 .
r e t s [ 1 : ( n − 1 ) ] 0 .0071913 0 .0244114 0 . 295 0 .7683

−−−
S i g n i f . codes : 0 [ * * * ] 0 . 001 [ * * ] 0 . 0 1 [ * ] 0 . 0 5 [ . ] 0 . 1 [ ]

Residual std e r r o r : 0 .02261 on 1667 degrees of freedom
Mult iple R−squared : 5 . 206 e−05 ,
Adjusted R−squared : −0 .0005478

F−s t a t i s t i c : 0 .08678 on 1 and 1667 DF, p−value : 0 .7683

As another example, let’s load in the file markowitzdata.txt and run
tests on it. This file contains data on five tech sector stocks and also the
Fama-French data. The names function shows the headers of each col-
umn as shown below.

> md = read . table ( " markowitzdata . t x t " , header=TRUE)
> names (md)

[ 1 ] "X .DATE" "SUNW" "MSFT" "IBM" "CSCO" "AMZN" " mktrf "
[ 8 ] "smb" " hml" " r f "

> y = as . matrix (md[ 2 ] )
> x = as . matrix (md[ 7 : 9 ] )
> r f = as . matrix (md[ 1 0 ] )
> y = y−r f
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> l i b r a r y ( car )
> r e s u l t s = lm ( y ~ x )
> durbin . watson ( r e s u l t s , max . lag =6)

lag Autocorre la t ion D−W S t a t i s t i c p−value
1 −0 .07231926 2 .144549 0 . 002

2 −0 .04595240 2 .079356 0 . 146

3 0 .02958136 1 .926791 0 . 162

4 −0 .01608143 2 .017980 0 . 632

5 −0 .02360625 2 .032176 0 . 432

6 −0 .01874952 2 .021745 0 . 536

A l t e r n a t i v e hypothesis : rho [ lag ] ! = 0

The car package is used. We see that there is one lag auto-correlation
(note the small p-value for lag 1), but not more than that; markets are
very efficient. Lets look at the regression before and after correction for
autocorrelation:

> summary ( r e s u l t s )

Call :
lm ( formula = y ~ x )

Residuals :
Min 1Q Median 3Q Max

−0 .2136760 −0 .0143564 −0 .0007332 0 .0144619 0 .1910892

C o e f f i c i e n t s :
Est imate Std . Error t value Pr(>| t |)

( I n t e r c e p t ) −0.000197 0 .000785 −0.251 0 .8019

xmktrf 1 .657968 0 .085816 19 .320 <2e−16 * * *
xsmb 0 .299735 0 .146973 2 .039 0 .0416 *
xhml −1.544633 0 .176049 −8.774 <2e−16 * * *
−−−
S i g n i f . codes : 0 [ * * * ] 0 . 001 [ * * ] 0 . 0 1 [ * ] 0 . 0 5 [ . ] 0 . 1 [ ]

Residual standard e r r o r : 0 .03028 on 1503 degrees of freedom
Mult iple R−Squared : 0 . 3 6 3 6 , Adjusted R−squared : 0 .3623

F−s t a t i s t i c : 286 . 3 on 3 and 1503 DF, p−value : < 2 . 2 e−16

Lets correct the t-stats for autocorrelation using the Newey-West cor-
rection. This correction is part of the car package. The steps undertaken
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here are similar in mechanics to the ones we encountered when correct-
ing for heteroskedasticity.

> re s = lm ( y~x )
> b = re s $ c o e f f i c i e n t s
> b

( I n t e r c e p t ) xmktrf xsmb xhml
−0 .0001970164 1 .6579682191 0 .2997353765 −1 .5446330690

> vb = NeweyWest ( res , lag =1)
> stdb = sqr t ( diag ( vb ) )
> t s t a t s = b / stdb
> t s t a t s
( I n t e r c e p t ) xmktrf xsmb xhml
−0 .2633665 15 .5779184 1 .8300340 −6 .1036120

Compare these to the stats we had earlier. Notice how they have come
down after correction for AR. Note that there are several steps needed to
correct for autocorrelation, and it might have been nice to roll one’s own
function for this. (I leave this as an exercise for you.)

For fun, lets look at the autocorrelation in stock market indexes,
shown in Table 3.1. The following graphic is taken from the book “A
Non-Random Walk Down Wall Street” by Andrew Lo and Craig Mackin-
lay. Is the autocorrelation higher for equally-weighted or value-weighted
indexes? Why?

3.16 Vector Auto-Regression

Also known as VAR (not the same thing as Value-at-Risk, denoted VaR).
VAR is useful for estimating systems where there are simultaneous re-
gression equations, and the variables influence each other. So in a VAR,
each variable in a system is assumed to depend on lagged values of itself
and the other variables. The number of lags may be chosen by the econo-
metrician based on what is the expected decay in time-dependence of the
variables in the VAR.

In the following example, we examine the inter-relatedness of returns
of the following three tickers: SUNW, MSFT, IBM. For vector autoregres-
sions (VARs), we run the following R commands:

> md = read . table ( " markowitzdata . t x t " , header=TRUE)
> y = as . matrix (md[ 2 : 4 ] )
> l i b r a r y ( s t a t s )
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Table 3.1: Autocorrelation in daily,
weekly, and monthly stock index
returns. From Lo-Mackinlay, “A
Non-Random Walk Down Wall
Street”.
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> var6 = ar ( y , a i c =TRUE, order =6)
> var6 $ order
[ 1 ] 1

> var6 $ ar
, , SUNW

SUNW MSFT IBM
1 −0 .00985635 0 .02224093 0 .002072782

, , MSFT

SUNW MSFT IBM
1 0 .008658304 −0 .1369503 0 .0306552

, , IBM

SUNW MSFT IBM
1 −0 .04517035 0 .0975497 −0 .01283037

The “order” of the VAR is how many lags are significant. In this exam-
ple, the order is 1. Hence, when the “ar” command is given, it shows
the coefficients on the lagged values of the three value to just one lag.
For example, for SUNW, the lagged coefficients are -0.0098, 0.0222, and
0.0021, respectively for SUNW, MSFT, IBM. The Akaike Information Cri-
terion (AIC) tells us which lag is significant, and we see below that this
is lag 1.

> var6 $ a i c
0 1 2 3 4 5 6

23 .950676 0 .000000 2 .762663 5 .284709 5 .164238 10 .065300 8 .924513

Since the VAR was run for all six lags, the “partialacf” attribute of the
output shows the coefficients of all lags.

> var6 $ p a r t i a l a c f
, , SUNW

SUNW MSFT IBM
1 −0 .00985635 0 .022240931 0 .002072782

2 −0 .07857841 −0 .019721982 −0 .006210487

3 0 .03382375 0 .003658121 0 .032990758
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4 0 .02259522 0 .030023132 0 .020925226

5 −0 .03944162 −0 .030654949 −0 .012384084

6 −0 .03109748 −0 .021612632 −0 .003164879

, , MSFT

SUNW MSFT IBM
1 0 .008658304 −0 .13695027 0 .030655201

2 −0 .053224374 −0 .02396291 −0 .047058278

3 0 .080632420 0 .03720952 −0 .004353203

4 −0 .038171317 −0 .07573402 −0 .004913021

5 0 .002727220 0 .05886752 0 .050568308

6 0 .242148823 0 .03534206 0 .062799122

, , IBM

SUNW MSFT IBM
1 −0 .04517035 0 .097549700 −0 .01283037

2 0 .05436993 0 .021189756 0 .05430338

3 −0 .08990973 −0 .077140955 −0 .03979962

4 0 .06651063 0 .056250866 0 .05200459

5 0 .03117548 −0 .056192843 −0 .06080490

6 −0 .13131366 −0 .003776726 −0 .01502191

Interestingly we see that each of the tickers has a negative relation to
its lagged value, but a positive correlation with the lagged values of the
other two stocks. Hence, there is positive cross autocorrelation amongst
these tech stocks. We can also run a model with three lags:

> ar ( y , method=" o l s " , order =3)

Call :
ar ( x = y , order . max = 3 , method = " o l s " )

$ ar
, , 1

SUNW MSFT IBM
SUNW 0 .01407 −0 .0006952 −0.036839

MSFT 0 .02693 −0 .1440645 0 .100557
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IBM 0 .01330 0 .0211160 −0.009662

, , 2

SUNW MSFT IBM
SUNW −0.082017 −0.04079 0 .04812

MSFT −0.020668 −0.01722 0 .01761

IBM −0.006717 −0.04790 0 .05537

, , 3

SUNW MSFT IBM
SUNW 0 .035412 0 .081961 −0.09139

MSFT 0 .003999 0 .037252 −0.07719

IBM 0 .033571 −0.003906 −0.04031

$x . i n t e r c e p t
SUNW MSFT IBM

−9.623e−05 −7.366e−05 −6.257e−05

$ var . pred
SUNW MSFT IBM

SUNW 0 .0013593 0 .0003007 0 .0002842

MSFT 0 .0003007 0 .0003511 0 .0001888

IBM 0 .0002842 0 .0001888 0 .0002881

We examine cross autocorrelation found across all stocks by Lo and
Mackinlay in their book “A Non-Random Walk Down Wall Street” – see
Table 3.2. There is strong contemporaneous correlation amongst stocks
shows in the top tableau but in the one below that, the cross one-lag
autocorrelation is also positive and strong. From two lags on the rela-
tionship is weaker.

3.17 Logit

When the LHS variable in a regression is categorical and binary, i.e.,
takes the value 1 or 0, then a logit regression is more apt. For the NCAA
data, take the top 32 teams and make their dependent variable 1, and
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Table 3.2: Cross autocorrelations
in US stocks. From Lo-Macklinlay,
“A Non-Random Walk Down Wall
Street.”



92 data science: theories, models, algorithms, and analytics

that of the bottom 32 teams zero. Hence, we split the data into the teams
above average and the teams that are below average. Our goal is to fit a
regression model that returns a team’s probability of being above aver-
age. This is the same as the team’s predicted percentile ranking.

> y1 = 1 : 3 2

> y1 = y1 * 0+1

> y1

[ 1 ] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

> y2 = y1 * 0

> y2

[ 1 ] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

> y = c ( y1 , y2 )
> y

[ 1 ] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

[ 3 4 ] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

We use the function glm (generalized linear model) for this task. Run-
ning the model is pretty easy as follows:

> h = glm ( y~x , family=binomial ( l ink=" l o g i t " ) )
> logLik ( h )
’ log Lik . ’ −21.44779 ( df =12)
> summary ( h )

Call :
glm ( formula = y ~ x , family = binomial ( l ink = " l o g i t " ) )

Deviance Residuals :
Min 1Q Median 3Q Max

−1.80174 −0.40502 −0.00238 0 .37584 2 .31767

C o e f f i c i e n t s :
Est imate Std . Error z value Pr(>|z |)

( I n t e r c e p t ) −45.83315 14 .97564 −3.061 0 .00221 * *
xPTS −0.06127 0 .09549 −0.642 0 .52108

xREB 0 .49037 0 .18089 2 .711 0 .00671 * *
xAST 0 .16422 0 .26804 0 .613 0 .54010

xTO −0.38405 0 .23434 −1.639 0 .10124

xA . T 1 .56351 3 .17091 0 .493 0 .62196

xSTL 0 .78360 0 .32605 2 .403 0 .01625 *



open source: modeling in r 93

xBLK 0 .07867 0 .23482 0 .335 0 .73761

xPF 0 .02602 0 .13644 0 .191 0 .84874

xFG 46 .21374 17 .33685 2 .666 0 .00768 * *
xFT 10 .72992 4 .47729 2 .397 0 .01655 *
xX3P 5 .41985 5 .77966 0 .938 0 .34838

−−−
S i g n i f . codes : 0 [ * * * ] 0 . 001 [ * * ] 0 . 0 1 [ * ] 0 . 0 5 [ . ] 0 . 1 [ ]

( Dispersion parameter for binomial family taken to be 1 )

Null deviance : 88 .723 on 63 degrees of freedom
Residual deviance : 42 .896 on 52 degrees of freedom
AIC : 66 .896

Number of F i sher Scoring i t e r a t i o n s : 6

Thus, we see that the best variables that separate upper-half teams from
lower-half teams are the number of rebounds and the field goal per-
centage. To a lesser extent, field goal percentage and steals also provide
some explanatory power. The logit regression is specified as follows:

z =
ey

1 + ey

y = b0 + b1x1 + b2x2 + . . . + bkxk

The original data z = {0, 1}. The range of values of y is (−∞,+∞). And
as required, the fitted z ∈ (0, 1). The variables x are the RHS variables.
The fitting is done using MLE.

Suppose we ran this with a simple linear regression:

> h = lm ( y~x )
> summary ( h )

Call :
lm ( formula = y ~ x )

Residuals :
Min 1Q Median 3Q Max

−0.65982 −0.26830 0 .03183 0 .24712 0 .83049

C o e f f i c i e n t s :
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Est imate Std . Error t value Pr(>| t |)
( I n t e r c e p t ) −4.114185 1 .174308 −3.503 0 .000953 * * *
xPTS −0.005569 0 .010263 −0.543 0 .589709

xREB 0 .046922 0 .015003 3 .128 0 .002886 * *
xAST 0 .015391 0 .036990 0 .416 0 .679055

xTO −0.046479 0 .028988 −1.603 0 .114905

xA . T 0 .103216 0 .450763 0 .229 0 .819782

xSTL 0 .063309 0 .028015 2 .260 0 .028050 *
xBLK 0 .023088 0 .030474 0 .758 0 .452082

xPF 0 .011492 0 .018056 0 .636 0 .527253

xFG 4 .842722 1 .616465 2 .996 0 .004186 * *
xFT 1 .162177 0 .454178 2 .559 0 .013452 *
xX3P 0 .476283 0 .712184 0 .669 0 .506604

−−−
S i g n i f . codes : 0 [ * * * ] 0 . 001 [ * * ] 0 . 0 1 [ * ] 0 . 0 5 [ . ] 0 . 1 [ ]

Residual standard e r r o r : 0 .3905 on 52 degrees of freedom
Mult iple R−Squared : 0 . 5 0 4 3 , Adjusted R−squared : 0 .3995

F−s t a t i s t i c : 4 . 8 1 on 11 and 52 DF, p−value : 4 . 514 e−05

We get the same variables again showing up as significant.

3.18 Probit

We can redo the same using a probit instead. A probit is identical in
spirit to the logit regression, except that the function that is used is

z = Φ(y)

y = b0 + b1x1 + b2x2 + . . . + bkxk

where Φ(·) is the cumulative normal probability function. It is imple-
mented in R as follows.

> h = glm ( y~x , family=binomial ( l ink=" p r o b i t " ) )
> logLik ( h )
’ log Lik . ’ −21.27924 ( df =12)
> summary ( h )

Call :
glm ( formula = y ~ x , family = binomial ( l ink = " p r o b i t " ) )
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Deviance Residuals :
Min 1Q Median 3Q Max

−1 .7635295 −0 .4121216 −0 .0003102 0 .3499560 2 .2456825

C o e f f i c i e n t s :
Est imate Std . Error z value Pr(>|z |)

( I n t e r c e p t ) −26.28219 8 .09608 −3.246 0 .00117 * *
xPTS −0.03463 0 .05385 −0.643 0 .52020

xREB 0 .28493 0 .09939 2 .867 0 .00415 * *
xAST 0 .10894 0 .15735 0 .692 0 .48874

xTO −0.23742 0 .13642 −1.740 0 .08180 .
xA . T 0 .71485 1 .86701 0 .383 0 .70181

xSTL 0 .45963 0 .18414 2 .496 0 .01256 *
xBLK 0 .03029 0 .13631 0 .222 0 .82415

xPF 0 .01041 0 .07907 0 .132 0 .89529

xFG 26 .58461 9 .38711 2 .832 0 .00463 * *
xFT 6 .28278 2 .51452 2 .499 0 .01247 *
xX3P 3 .15824 3 .37841 0 .935 0 .34988

−−−
S i g n i f . codes : 0 [ * * * ] 0 . 001 [ * * ] 0 . 0 1 [ * ] 0 . 0 5 [ . ] 0 . 1 [ ]

( Dispersion parameter for binomial family taken to be 1 )

Null deviance : 88 .723 on 63 degrees of freedom
Residual deviance : 42 .558 on 52 degrees of freedom
AIC : 66 .558

Number of F i sher Scoring i t e r a t i o n s : 8

The results confirm those obtained from the linear regression and logit
regression.

3.19 Solving Non-Linear Equations

Earlier we examined root finding. Here we develop it further. We have
also not done much with user-generated functions. Here is a neat model
in R to solve for the implied volatility in the Black-Merton-Scholes class
of models. First, we code up the Black-Scholes (1973) model; this is the
function bms73 below. Then we write a user-defined function that solves
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for the implied volatility from a given call or put option price. The pack-
age minpack.lm is used for the equation solving, and the function call is
nls.lm.

The following program listing may be saved in a file called rbc.R and
then called from the command line. The function impvol uses the bms73

function and solves for the implied volatility.

# Black−Merton−S c h o l e s 1973
bms73 = function ( s ig , S , K, T , r , q , cp , optpr i ce ) {

d1 = ( log ( S /K) + ( r−q+0 .5 * s i g ^2) *T ) / ( s i g * sqr t ( T ) )
d2 = d1 − s i g * sqr t ( T )
i f ( cp==1) {

optval = S* exp(−q*T ) *pnorm ( d1)−K* exp(− r *T ) *pnorm ( d2 )
}

e lse {
optval = −S* exp(−q*T ) *pnorm(−d1 )+K* exp(− r *T ) *pnorm(−d2 )

}
# I f o p t i o n p r i c e i s s u p p l i e d we want t h e i m p l i e d vo l , e l s e o p t p r i c e
bs = optval − optpr i ce

}

# Func t i on t o r e t u r n Imp Vol with s t a r t i n g g u e s s s i g 0
impvol = function ( s ig0 , S , K, T , r , q , cp , optpr i ce ) {

s o l = n l s . lm ( par=sig0 , fn=bms73 , S=S ,K=K, T=T , r=r , q=q ,
cp=cp , optpr i ce=optpr i ce )

}

The calls to this model are as follows:

> l i b r a r y ( minpack . lm )
> source ( " rbc . R" )
> re s = impvol ( 0 . 2 , 4 0 , 4 0 , 1 , 0 . 0 3 , 0 , 0 , 4 )
> re s $par
[ 1 ] 0 .2915223

We note that the function impvol was written such that the argument
that we needed to solve for, sig0, the implied volatility, was the first
argument in the function. However, the expression par=sig0 does in-
form the solver which argument is being searched for in order to satisfy
the non-linear equation for implied volatility. Note also that the func-
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tion bms73 returns the difference between the model price and observed
price, not the model price alone. This is necessary as the solver tries to
set this value to zero by finding the implied volatility.

Lets check if we put this volatility back into the bms function that we
get back the option price of 4. Voila!

> print ( bms73 ( r es $par [ 1 ] , 4 0 , 4 0 , 1 , 0 . 0 3 , 0 , 0 , 0 ) )
[ 1 ] 4

3.20 Web-Enabling R Functions

When building a user-friendly system it may be useful to run R pro-
grams from a web page as interface. This is quite easy to implement and
the following is a simple example of how this is done. This is an extract
of my blog post at

http://sanjivdas.wordpress.com/2010/11/07/

web-enabling-r-functions-with-cgi-on-a-mac-os-x-desktop/

This is just an example based on the “Rcgi” package from David Firth,
and for full details of using R with CGI, see

http://www.omegahat.org/CGIwithR/.
You can install the package as follows:

i n s t a l l . packages ( " CGIwithR " , repos = " ht tp : / /www. omegahat . org /R" , type=" source " )

The following is the Windows equivalent:1 1 Thanks Alice Yehjin Jun.

# 1 ) C r e a t e f o l d "www" in " Documents " , c r e a t e " cg i−b in " in "www" , p l a c e f i l e s in " cg i−b i n "
# 2 ) Open command prompt . Run t h e f o l l o w i n g
i c a c l s "C:\ Users\UserName\Documents\www\cgi−bin \. R p r o f i l e " / grant Users : ( CI ) ( OI ) F
i c a c l s "C:\ Users\UserName\Documents\www\cgi−bin\R . c g i " / grant Users : ( CI ) ( OI ) F

Download the document on using R with CGI. It’s titled “CGIwithR:
Facilities for Processing Web Forms with R”.

Of course, if you don’t have R at all, then download R and install it
from http://www.r-project.org/. Then use the R package manager to
install the Rcgi package.

You need two program files to get everything working. (a) The html
file that is the web form for input data. (b) The R file, with special tags
for use with the CGIwithR package.

Our example will be simple, i.e., a calculator to work out the monthly
payment on a standard fixed rate mortgage. The three inputs are the
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loan principal, annual loan rate, and the number of remaining months to
maturity.

But first, let’s create the html file for the web page that will take these
three input values. We call it “mortgage calc.html”. The code is all
standard, for those familiar with html, and even if you are not used to
html, the code is self-explanatory. See Figure 3.4.

Figure 3.4: HTML code for the Rcgi
application.

Notice that line 06 will be the one referencing the R program that does
the calculation. The three inputs are accepted in lines 08-10. Line 12

sends the inputs to the R program.
Next, we look at the R program, suitably modified to include html

tags. We name it "mortgage calc.R". See Figure 3.5.
We can see that all html calls in the R program are made using the

“tag()” construct. Lines 22–35 take in the three inputs from the html
form. Lines 43–44 do the calculations and line 45 prints the result. The
“cat()” function prints its arguments to the web browser page.

Okay, we have seen how the two programs (html, R) are written and
these templates may be used with changes as needed. We also need
to pay attention to setting up the R environment to make sure that the
function is served up by the system. The following steps are needed:

Make sure that your Mac is allowing connections to its web server. Go
to System Preferences and choose Sharing. In this window enable Web
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Sharing by ticking the box next to it.
Place the html file “mortgage calc.html” in the directory that serves up

web pages. On a Mac, there is already a web directory for this called
“Sites”. It’s a good idea to open a separate subdirectory called (say)
“Rcgi” below this one for the R related programs and put the html file
there.

The R program “mortgage calc.R” must go in the directory that has
been assigned for CGI executables. On a Mac, the default for this direc-
tory is “/Library/WebServer/CGI-Executables” and is usually refer-
enced by the alias “cgi-bin” (stands for cgi binaries). Drop the R pro-
gram into this directory. Two more important files are created when you
install the Rcgi package. The CGIwithR installation creates two files: (a)
A hidden file called .Rprofile; (b) A file called R.cgi. Place both these
files in the directory: /Library/WebServer/CGI-Executables

If you cannot find the .Rprofile file then create it directly by opening
a text editor and adding two lines to the file:

# ! / usr / b i n /R
l i b r a r y ( CGIwithR , warn . c o n f l i c t s =FALSE)

Now, open the R.cgi file and make sure that the line pointing to the R
executable in the file is showing

R_DEFAULT= / usr / bin /R

The file may actually have it as “#!/usr/local/bin/R” which is for
Linux platforms, but the usual Mac install has the executable in “#!
/usr/bin/R” so make sure this is done.

Make both files executable as follows:
chmod a+rx .Rprofile

chmod a+rx R.cgi

Finally, make the ∼/Sites/Rcgi/ directory write accessible:
chmod a+wx ∼/Sites/Rcgi
Just being patient and following all the steps makes sure it all works

well. Having done it once, it’s easy to repeat and create several func-
tions. You can try this example out on my web server at the following
link.

The inputs are as follows: Loan principal (enter a dollar amount).
Annual loan rate (enter it in decimals, e.g., six percent is entered as 0.06).
Remaining maturity in months (enter 300 if the remaining maturity is 25

years).
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Recently the open source project Shiny has become a popular ap-
proach to creating R-enabled web pages. See http://shiny.rstudio.com/.
This creates dynamic web pages with sliders and buttons and is a power-
ful tool for representing analytics and visualizations.
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Figure 3.5: R code for the Rcgi
application.





4
MoRe: Data Handling and Other Useful Things

In this chapter, we will revisit some of the topics considered in the pre-
vious chapters, and demonstrate alternate programming approaches in
R. There are some extremely powerful packages in R that allow sql-like
operations on data sets, making for advanced data handling. One of the
most time-consuming activities in data analytics is cleaning and arrang-
ing data, and here we will show examples of many tools available for
that purpose.

Let’s assume we have a good working knowledge of R by now. Here
we revisit some more packages, functions, and data structures.

4.1 Data Extraction of stocks using quantmod

We have seen the package already in the previous chapter. Now, we
proceed to use it to get some initial data.

l i b r a r y ( quantmod )
t i c k e r s = c ( "AAPL" , "YHOO" , "IBM" , "CSCO" , "C" , "GSPC" )
getSymbols ( t i c k e r s )

[ 1 ] "AAPL" "YHOO" "IBM" "CSCO" "C" "GSPC"

Print the length of each stock series. Are they all the same? Here we
need to extract the ticker symbol without quotes.

for ( t in t i c k e r s ) {
a = get ( noquote ( t ) ) [ , 1 ]
print ( c ( t , length ( a ) ) )

}

[ 1 ] "AAPL" " 2229 "
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[ 1 ] "YHOO" " 2229 "
[ 1 ] "IBM" " 2229 "
[ 1 ] "CSCO" " 2229 "
[ 1 ] "C" " 2229 "
[ 1 ] "GSPC" " 2222 "

We see that they are not all the same. The stock series are all the same
length but the S&P index is shorter by 7 days.

Convert closing adjusted prices of all stocks into individual data.frames.
First, we create a list of data.frames. This will also illustrate how useful
lists are because we store data.frames in lists. Notice how we also add
a new column to each data.frame so that the dates column may later be
used as an index to join the individual stock data.frames into one com-
posite data.frame.

df = l i s t ( )
j = 0

for ( t in t i c k e r s ) {
j = j + 1

a = noquote ( t )
b = data . frame ( get ( a ) [ , 6 ] )
b$ dt = row . names ( b )
df [ [ j ] ] = b

}

Second, we combine all the stocks adjusted closing prices into a single
data.frame using a join, excluding all dates for which all stocks do not
have data. The main function used here is *merge* which could be an
intersect join or a union join. The default is the intersect join.

s tock _ table = df [ [ 1 ] ]
for ( j in 2 : length ( df ) ) {

s tock _ table = merge ( s tock _ table , df [ [ j ] ] , by=" dt " )
}
dim ( s tock _ table )

[ 1 ] 2222 7

Note that the stock table contains the number of rows of the stock index,
which had fewer observations than the individual stocks. So since this is
an intersect join, some rows have been dropped.

Plot all stocks in a single data.frame using ggplot2, which is more
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advanced than the basic plot function. We use the basic plot function
first.

par ( mfrow=c ( 3 , 2 ) ) # S e t t h e p l o t a r e a t o s i x p l o t s
for ( j in 1 : length ( t i c k e r s ) ) {

plot ( as . Date ( s tock _ table [ , 1 ] ) , s tock _ table [ , j +1 ] , type=" l " ,
ylab= t i c k e r s [ j ] , x lab=" date " )

}
par ( mfrow=c ( 1 , 1 ) ) # S e t t h e p l o t f i g u r e b a c k t o a s i n g l e p l o t

The plot is shown in Figure 4.1.

Figure 4.1: Plots of the six stock
series extracted from the web.

Convert the data into returns. These are continuously compounded
returns, or log returns.

n = length ( s tock _ table [ , 1 ] )
r e t s = stock _ table [ , 2 : ( length ( t i c k e r s ) + 1 ) ]
for ( j in 1 : length ( t i c k e r s ) ) {
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r e t s [ 2 : n , j ] = d i f f ( log ( r e t s [ , j ] ) )
}
r e t s $ dt = stock _ table $ dt
r e t s = r e t s [ 2 : n , ] # l o s e t h e f i r s t row when c o n v e r t i n g t o r e t u r n s
head ( r e t s )

AAPL. Adjusted YHOO. Adjusted IBM . Adjusted CSCO. Adjusted C . Adjusted
2 0 .021952927 0 .047282882 0 .010635139 0 .0259847196 −0 .0034448850

3 −0 .007146655 0 .032609594 −0 .009094215 0 .0003513139 −0 .0052808346

4 0 .004926130 0 .006467863 0 .015077743 0 .0056042225 0 .0050992429

5 0 .079799667 −0 .012252406 0 .011760691 −0 .0056042225 −0 .0087575599

6 0 .046745828 0 .039806285 −0 .011861828 0 .0073491452 −0 .0080957651

7 −0 .012448245 0 .017271586 −0 .002429865 0 .0003486195 0 .0007387328

GSPC . Adjusted dt
2 −0 .0003791652 2007−01−04

3 0 .0000000000 2007−01−05

4 0 .0093169957 2007−01−08

5 −0 .0127420077 2007−01−09

6 0 .0000000000 2007−01−10

7 0 .0053254100 2007−01−11

The data.frame of returns can be used to present the descriptive statis-
tics of returns.

summary ( r e t s )

AAPL. Adjusted YHOO. Adjusted IBM . Adjusted
Min . :−0 .197470 Min . :−0 .2340251 Min . :−0 .0864191

1 s t Qu. : −0 .009000 1 s t Qu. :−0 .0113101 1 s t Qu. :−0 .0065172

Median : 0 .001192 Median : 0 .0002238 Median : 0 .0003044

Mean : 0 .001074 Mean : 0 .0001302 Mean : 0 .0002388

3rd Qu . : 0 .012242 3rd Qu . : 0 .0118051 3rd Qu . : 0 .0076578

Max . : 0 .130194 Max . : 0 .3918166 Max . : 0 .1089889

CSCO. Adjusted C . Adjusted GSPC . Adjusted
Min . :−0 .1768648 Min . :−0 .4946962 Min . :−0 .1542679

1 s t Qu. :−0 .0082048 1 s t Qu. :−0 .0127716 1 s t Qu. :−0 .0044266

Median : 0 .0003513 Median :−0 .0002122 Median : 0 .0000000

Mean : 0 .0000663 Mean :−0 .0009834 Mean : 0 .0001072

3rd Qu . : 0 .0092129 3rd Qu . : 0 .0120002 3rd Qu . : 0 .0049999

Max . : 0 .1479929 Max . : 0 .4563162 Max . : 0 .1967146
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dt
Length :2221

Class : c h a r a c t e r
Mode : c h a r a c t e r

Now we compute the correlation matrix of returns.

cor ( r e t s [ , 1 : length ( t i c k e r s ) ] )

AAPL. Adjusted YHOO. Adjusted IBM . Adjusted CSCO. Adjusted
AAPL. Adjusted 1 .0000000 0 .3529739 0 .4887079 0 .4903812

YHOO. Adjusted 0 .3529739 1 .0000000 0 .3817138 0 .4132464

IBM . Adjusted 0 .4887079 0 .3817138 1 .0000000 0 .5792123

CSCO. Adjusted 0 .4903812 0 .4132464 0 .5792123 1 .0000000

C . Adjusted 0 .3739598 0 .3362138 0 .4322276 0 .4648106

GSPC . Adjusted 0 .2252352 0 .1686898 0 .2052341 0 .2363631

C . Adjusted GSPC . Adjusted
AAPL. Adjusted 0 .3739598 0 .2252352

YHOO. Adjusted 0 .3362138 0 .1686898

IBM . Adjusted 0 .4322276 0 .2052341

CSCO. Adjusted 0 .4648106 0 .2363631

C . Adjusted 1 .0000000 0 .3367560

GSPC . Adjusted 0 .3367560 1 .0000000

Show the correlogram for the six return series. This is a useful way to
visualize the relationship between all variables in the data set. See Figure
4.2.

l i b r a r y ( corrgram )
corrgram ( r e t s [ , 1 : length ( t i c k e r s ) ] , order=TRUE, lower . panel=panel . e l l i p s e ,

upper . panel=panel . pts , t e x t . panel=panel . t x t )

To see the relation between the stocks and the index, run a regression
of each of the five stocks on the index returns.

betas = NULL
for ( j in 1 : ( length ( t i c k e r s )−1)) {

r es = lm ( r e t s [ , j ] ~ r e t s [ , 6 ] )
be tas [ j ] = re s $ c o e f f i c i e n t s [ 2 ]

}
print ( be tas )

[ 1 ] 0 .2912491 0 .2576751 0 .1780251 0 .2803140 0 .8254747
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Figure 4.2: Plots of the correlation
matrix of six stock series extracted
from the web.

The βs indicate the level of systematic risk for each stock. We notice that
all the betas are positive, and highly significant. But they are not close
to unity, in fact all are lower. This is evidence of misspecification that
may arise from the fact that the stocks are in the tech sector and better
explanatory power would come from an index that was more relevant to
the technology sector.

In order to assess whether in the cross-section, there is a relation be-
tween average returns and the systematic risk or β of a stock, run a re-
gression of the five average returns on the five betas from the regression.

betas = matrix ( be tas )
avgrets = colMeans ( r e t s [ , 1 : ( length ( t i c k e r s ) −1 ) ] )
r es = lm ( avgre ts~betas )
summary ( r es )
plot ( betas , avgre ts )
abline ( res , col=" red " )

See Figure 4.3. We see indeed, that there is an unexpected negative re-
lation between β and the return levels. This may be on account of the
particular small sample we used for illustration here, however, we note
that the CAPM (Capital Asset Pricing Model) dictate that we see a posi-
tive relation between stock returns and a firm’s systematic risk level.



more: data handling and other useful things 109

Figure 4.3: Regression of stock
average returns against systematic
risk (β).

4.2 Using the merge function

Data frames a very much like spreadsheets or tables, but they are also
a lot like databases. Some sort of happy medium. If you want to join
two dataframes, it is the same a joining two databases. For this R has the
merge function. It is best illustrated with an example.

Suppose we have a list of ticker symbols and we want to generate
a dataframe with more details on these tickers, especially their sector
and the full name of the company. Let’s look at the input list of tickers.
Suppose I have them in a file called tickers.csv where the delimiter is
the colon sign. We read this in as follows.

t i c k e r s = read . table ( " t i c k e r s . csv " , header=FALSE , sep=" : " )

The line of code reads in the file and this gives us two columns of
data. We can look at the top of the file (first 6 rows).

> head ( t i c k e r s )
V1 V2

1 NasdaqGS ACOR
2 NasdaqGS AKAM
3 NYSE ARE
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4 NasdaqGS AMZN
5 NasdaqGS AAPL
6 NasdaqGS AREX

Note that the ticker symbols relate to stocks from different exchanges,
in this case Nasdaq and NYSE. The file may also contain AMEX listed
stocks.

The second line of code below counts the number of input tickers, and
the third line of code renames the columns of the dataframe. We need
to call the column of ticker symbols as “Symbol” because we will see
that the dataframe with which we will merge this one also has a column
with the same name. This column becomes the index on which the two
dataframes are matched and joined.

> n = dim ( t i c k e r s ) [ 1 ]
> n
[ 1 ] 98

> names ( t i c k e r s ) = c ( " Exchange " , " Symbol " )
> head ( t i c k e r s )

Exchange Symbol
1 NasdaqGS ACOR
2 NasdaqGS AKAM
3 NYSE ARE
4 NasdaqGS AMZN
5 NasdaqGS AAPL
6 NasdaqGS AREX

Next, we read in lists of all stocks on Nasdaq, NYSE, and AMEX as
follows:

l i b r a r y ( quantmod )
nasdaq_names = stockSymbols ( exchange="NASDAQ" )
nyse_names = stockSymbols ( exchange="NYSE" )
amex_names = stockSymbols ( exchange="AMEX" )

We can look at the top of the Nasdaq file.

> head ( nasdaq_names )
Symbol Name L a s t S a l e MarketCap IPOyear

1 AAAP Advanced A c c e l e r a t o r Appl ica t ions S .A. 25 .20 $ 972 .09M 2015

2 AAL American A i r l i n e s Group , Inc . 42 .20 $ 2 6 . 6B NA
3 AAME A t l a n t i c American Corporation 4 . 6 9 $ 96 .37M NA
4 AAOI Applied Optoe lec t ronics , Inc . 17 .96 $ 302 .36M 2013

5 AAON AAON, Inc . 24 .13 $ 1 . 3 1B NA
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6 AAPC A t l a n t i c A l l i a n c e Par tnership Corp . 10 .16 $ 105 .54M 2015

S e c t o r Industry Exchange
1 Health Care Major Pharmaceuticals NASDAQ
2 Transporta t ion Air F r e i g h t / Delivery S e r v i c e s NASDAQ
3 Finance L i f e Insurance NASDAQ
4 Technology Semiconductors NASDAQ
5 Capi ta l Goods I n d u s t r i a l Machinery / Components NASDAQ
6 Finance Business S e r v i c e s NASDAQ

Next we merge all three dataframes for each of the exchanges into one
data frame.

co_names = rbind ( nyse_names , nasdaq_names , amex_names )

To see how many rows are there in this merged file, we check dimen-
sions.

> dim ( co_names )
[ 1 ] 6801 8

Finally, use the merge function to combine the ticker symbols file with
the exchanges data to extend the tickers file to include the information
from the exchanges file.

> r e s u l t = merge ( t i c k e r s , co_names , by=" Symbol " )
> head ( r e s u l t )

Symbol Exchange . x Name L a s t S a l e
1 AAPL NasdaqGS Apple Inc . 119 .30

2 ACOR NasdaqGS Acorda Therapeutics , Inc . 37 .40

3 AKAM NasdaqGS Akamai Technologies , Inc . 56 .92

4 AMZN NasdaqGS Amazon . com , Inc . 668 .45

5 ARE NYSE Alexandria Real E s t a t e Equi t ies , Inc . 91 .10

6 AREX NasdaqGS Approach Resources Inc . 2 . 2 4

MarketCap IPOyear S e c t o r
1 $ 665 .14B 1980 Technology
2 $ 1 . 6 1B 2006 Health Care
3 $ 10 . 13B 1999 Miscel laneous
4 $ 313 .34B 1997 Consumer S e r v i c e s
5 $ 6 . 6 B NA Consumer S e r v i c e s
6 $ 90 . 65M 2007 Energy

Industry Exchange . y
1 Computer Manufacturing NASDAQ
2 Biotechnology : B i o l o g i c a l Products (No Diagnost ic Substances ) NASDAQ
3 Business S e r v i c e s NASDAQ
4 Catalog / S p e c i a l t y D i s t r i b u t i o n NASDAQ
5 Real E s t a t e Investment Trusts NYSE
6 Oil & Gas Production NASDAQ

Now suppose we want to find the CEOs of these 98 companies. There
is no one file with compay CEO listings freely available for download.
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However, sites like Google Finance have a page for each stock and men-
tion the CEOs name on the page. By writing R code to scrape the data
off these pages one by one, we can extract these CEO names and aug-
ment the tickers dataframe. The code for this is simple in R.

l i b r a r y ( s t r i n g r )

#READ IN THE LIST OF TICKERS
t i c k e r s = read . table ( " t i c k e r s . csv " , header=FALSE , sep=" : " )
n = dim ( t i c k e r s ) [ 1 ]
names ( t i c k e r s ) = c ( " Exchange " , " Symbol " )
t i c k e r s $ ceo = NA

#PULL CEO NAMES FROM GOOGLE FINANCE
for ( j in 1 : n ) {

url = paste ( " h t tps : / /www. google . com / f inance ?q=" , t i c k e r s [ j , 2 ] , sep=" " )
t e x t = readLines ( url )
idx = grep ( " Chief Execut ive " , t e x t )
i f ( length ( idx ) >0 ) {

t i c k e r s [ j , 3 ] = s t r _ s p l i t ( t e x t [ idx −2] , ">" ) [ [ 1 ] ] [ 2 ]
}
e lse {

t i c k e r s [ j , 3 ] = NA
}
print ( t i c k e r s [ j , ] )

}

#WRITE CEO_NAMES TO CSV
write . table ( t i c k e r s , f i l e =" ceo _names . csv " ,

row . names=FALSE , sep=" , " )

The code uses the stringr package so that string handling is simpli-
fied. After extracting the page, we search for the line in which the words
“Chief Executive” show up, and we note that the name of the CEO ap-
pears two lines before in the html page. A sample web page for Apple
Inc is shown in Figure 4.4.

The final dataframe with CEO names is shown here (the top 6 lines):

> head ( t i c k e r s )
Exchange Symbol ceo

1 NasdaqGS ACOR Ron Cohen M.D.
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Figure 4.4: Google Finance: the
AAPL web page showing the URL
which is needed to download the
page.
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2 NasdaqGS AKAM F . Thomson Leighton
3 NYSE ARE J o e l S . Marcus J .D. , CPA
4 NasdaqGS AMZN J e f f r e y P . Bezos
5 NasdaqGS AAPL Timothy D. Cook
6 NasdaqGS AREX J . Ross Craf t

4.3 Using the apply class of functions

Sometimes we need to apply a function to many cases, and these case
parameters may be supplied in a vector, matrix, or list. This is analogous
to looping through a set of values to repeat evaluations of a function
using different sets of parameters. We illustrate here by computing the
mean returns of all stocks in our sample using the apply function. The
first argument of the function is the data.frame to which it is being ap-
plied, the second argument is either 1 (by rows) or 2 (by columns). The
third argument is the function being evaluated.

apply ( r e t s [ , 1 : ( length ( t i c k e r s ) −1 ) ] ,2 ,mean )

AAPL. Adjusted YHOO. Adjusted IBM . Adjusted CSCO. Adjusted C . Adjusted
1 .073902 e−03 1 .302309 e−04 2 .388207 e−04 6 .629946 e−05 −9.833602e−04

We see that the function returns the column means of the data set.
The variants of the function pertain to what the loop is being applied to.
The lapply is a function applied to a list, and sapply is for matrices and
vectors. Likewise, mapply uses multiple arguments.

To cross check, we can simply use the colMeans function:

colMeans ( r e t s [ , 1 : ( length ( t i c k e r s ) −1 ) ] )

AAPL. Adjusted YHOO. Adjusted IBM . Adjusted CSCO. Adjusted C . Adjusted
1 .073902 e−03 1 .302309 e−04 2 .388207 e−04 6 .629946 e−05 −9.833602e−04

As we see, this result is verified.

4.4 Getting interest rate data from FRED

In finance, data on interest rates is widely used. An authoritative source
of data on interest rates is FRED (Federal Reserve Economic Data), main-
tained by the St. Louis Federal Reserve Bank, and is warehoused at the
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following web site: https://research.stlouisfed.org/fred2/. Let’s as-
sume that we want to download the data using R from FRED directly. To
do this we need to write some custom code. There used to be a package
for this but since the web site changed, it has been updated but does not
work properly. Still, see that it is easy to roll your own code quite easily
in R.

#FUNCTION TO READ IN CSV FILES FROM FRED
# Enter S e r i e s I D as a t e x t s t r i n g
readFRED = function ( Ser ies ID ) {

url = paste ( " h t tps : / / research . s t l o u i s f e d . org / f red2 / s e r i e s / " , Ser iesID ,
" / downloaddata / " , Ser iesID , " . csv " , sep=" " )
data = readLines ( url )
n = length ( data )
data = data [ 2 : n ]
n = length ( data )
df = matrix ( 0 , n , 2 ) # t o p l i n e i s h e a d e r
for ( j in 1 : n ) {

tmp = s t r s p l i t ( data [ j ] , " , " )
df [ j , 1 ] = tmp [ [ 1 ] ] [ 1 ]
df [ j , 2 ] = tmp [ [ 1 ] ] [ 2 ]

}
r a t e = as . numeric ( df [ , 2 ] )
idx = which ( ra te >0)
idx = s e t d i f f ( seq ( 1 , n ) , idx )
r a t e [ idx ] = −99

date = df [ , 1 ]
df = data . frame ( date , r a t e )
names ( df ) [ 2 ] = Ser ies ID
r e s u l t = df

}

Now, we provide a list of economic time series and download data
accordingly using the function above. Note that we also join these indi-
vidual series using the data as index. We download constant maturity
interest rates (yields) starting from a maturity of one month (DGS1MO)
to a maturity of thirty years (DGS30).

#EXTRACT TERM STRUCTURE DATA FOR ALL RATES FROM 1 MO t o 30 YRS FROM FRED
id _ l i s t = c ( "DGS1MO" , "DGS3MO" , "DGS6MO" , "DGS1" , "DGS2" , "DGS3" , "DGS5" , "DGS7" ,
"DGS10" , "DGS20" , "DGS30" )
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k = 0

for ( id in id _ l i s t ) {
out = readFRED ( id )
i f ( k>0) { r a t e s = merge ( ra tes , out , " date " , a l l =TRUE) }
e lse { r a t e s = out }
k = k + 1

}

> head ( r a t e s )

date DGS1MO DGS3MO DGS6MO DGS1 DGS2 DGS3 DGS5 DGS7 DGS10 DGS20 DGS30

1 2001−07−31 3 . 6 7 3 . 5 4 3 . 4 7 3 . 5 3 3 . 7 9 4 . 0 6 4 . 5 7 4 . 8 6 5 . 0 7 5 . 6 1

5 . 5 1

2 2001−08−01 3 . 6 5 3 . 5 3 3 . 4 7 3 . 5 6 3 . 8 3 4 . 0 9 4 . 6 2 4 . 9 0 5 . 1 1 5 . 6 3

5 . 5 3

3 2001−08−02 3 . 6 5 3 . 5 3 3 . 4 6 3 . 5 7 3 . 8 9 4 . 1 7 4 . 6 9 4 . 9 7 5 . 1 7 5 . 6 8

5 . 5 7

4 2001−08−03 3 . 6 3 3 . 5 2 3 . 4 7 3 . 5 7 3 . 9 1 4 . 2 2 4 . 7 2 4 . 9 9 5 . 2 0 5 . 7 0

5 . 5 9

5 2001−08−06 3 . 6 2 3 . 5 2 3 . 4 7 3 . 5 6 3 . 8 8 4 . 1 7 4 . 7 1 4 . 9 9 5 . 1 9 5 . 7 0

5 . 5 9

6 2001−08−07 3 . 6 3 3 . 5 2 3 . 4 7 3 . 5 6 3 . 9 0 4 . 1 9 4 . 7 2 5 . 0 0 5 . 2 0 5 . 7 1

5 . 6 0

Having done this, we now have a data.frame called rates containing
all the time series we are interested in. We now convert the dates into
numeric strings and sort the data.frame by date.

#CONVERT ALL DATES TO NUMERIC AND SORT BY DATE
dates = r a t e s [ , 1 ]
l i b r a r y ( s t r i n g r )
dates = as . numeric ( s t r _ replace _ a l l ( dates , "−" , " " ) )
r es = s o r t ( dates , index . return=TRUE)
for ( j in 1 : dim ( r a t e s ) [ 2 ] ) {

r a t e s [ , j ] = r a t e s [ re s $ ix , j ]
}

> head ( r a t e s )
date DGS1MO DGS3MO DGS6MO DGS1 DGS2 DGS3 DGS5 DGS7 DGS10 DGS20 DGS30

1 1962−01−02 NA NA NA 3 . 2 2 NA 3 . 7 0 3 . 8 8 NA 4 . 0 6 NA



more: data handling and other useful things 117

NA
2 1962−01−03 NA NA NA 3 . 2 4 NA 3 . 7 0 3 . 8 7 NA 4 . 0 3 NA
NA
3 1962−01−04 NA NA NA 3 . 2 4 NA 3 . 6 9 3 . 8 6 NA 3 . 9 9 NA
NA
4 1962−01−05 NA NA NA 3 . 2 6 NA 3 . 7 1 3 . 8 9 NA 4 . 0 2 NA
NA
5 1962−01−08 NA NA NA 3 . 3 1 NA 3 . 7 1 3 . 9 1 NA 4 . 0 3 NA
NA
6 1962−01−09 NA NA NA 3 . 3 2 NA 3 . 7 4 3 . 9 3 NA 4 . 0 5 NA
NA

Note that there are missing values, denoted by NA. Also there are rows
with "-99" values and we can clean those out too but they represent peri-
ods when there was no yield available of that maturity, so we leave this
in.

#REMOVE THE NA ROWS
idx = which ( rowSums ( i s . na ( r a t e s ) ) = = 0 )
r a t e s 2 = r a t e s [ idx , ]
print ( head ( r a t e s 2 ) )

date DGS1MO DGS3MO DGS6MO DGS1 DGS2 DGS3 DGS5 DGS7 DGS10 DGS20 DGS30

10326 2001−07−31 3 . 6 7 3 . 5 4 3 . 4 7 3 . 5 3 3 . 7 9 4 . 0 6 4 . 5 7 4 . 8 6 5 . 0 7 5 . 6 1

5 . 5 1

10327 2001−08−01 3 . 6 5 3 . 5 3 3 . 4 7 3 . 5 6 3 . 8 3 4 . 0 9 4 . 6 2 4 . 9 0 5 . 1 1 5 . 6 3

5 . 5 3

10328 2001−08−02 3 . 6 5 3 . 5 3 3 . 4 6 3 . 5 7 3 . 8 9 4 . 1 7 4 . 6 9 4 . 9 7 5 . 1 7 5 . 6 8

5 . 5 7

10329 2001−08−03 3 . 6 3 3 . 5 2 3 . 4 7 3 . 5 7 3 . 9 1 4 . 2 2 4 . 7 2 4 . 9 9 5 . 2 0 5 . 7 0

5 . 5 9

10330 2001−08−06 3 . 6 2 3 . 5 2 3 . 4 7 3 . 5 6 3 . 8 8 4 . 1 7 4 . 7 1 4 . 9 9 5 . 1 9 5 . 7 0

5 . 5 9

10331 2001−08−07 3 . 6 3 3 . 5 2 3 . 4 7 3 . 5 6 3 . 9 0 4 . 1 9 4 . 7 2 5 . 0 0 5 . 2 0 5 . 7 1

5 . 6 0

4.5 Cross-Sectional Data (an example)

A great resource for data sets in corporate finance is on Aswath Damodaran’s
web site, see:
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http://people.stern.nyu.edu/adamodar/New_Home_Page/data.html

Financial statement data sets are available at:
http://www.sec.gov/dera/data/financial-statement-data-sets.html

And another comprehensive data source:
http://fisher.osu.edu/fin/fdf/osudata.htm

Open government data: https://www.data.gov/finance/
Let’s read in the list of failed banks:

http://www.fdic.gov/bank/individual/failed/banklist.csv

# download . f i l e ( u r l =" h t t p : / /www. f d i c . gov / bank / i n d i v i d u a l / f a i l e d /
b a n k l i s t . csv " , d e s t f i l e =" f a i l e d _banks . csv " )

(This does not work, and has been an issue for a while.)
You can also read in the data using readLines but then further work is
required to clean it up, but it works well in downloading the data.

data = readLines ( " h t tps : / /www. f d i c . gov / bank / ind iv idua l / f a i l e d / b a n k l i s t . csv " )
head ( data )

[ 1 ] " Bank Name, City , ST , CERT, Acquiring I n s t i t u t i o n , Closing Date , Updated Date "
[ 2 ] "Hometown National Bank , Longview ,WA, 3 5 1 5 6 , Twin City Bank,2−Oct−15,15−Oct−15"
[ 3 ] " The Bank of Georgia , Peachtree City ,GA, 3 5 2 5 9 , F i d e l i t y Bank,2−Oct−15,15−Oct−15"
[ 4 ] " Premier Bank , Denver ,CO,34112 ,\ " United F i d e l i t y Bank , f sb\" ,10− Ju l −15,28− Ju l−15"
[ 5 ] " Edgebrook Bank , Chicago , IL , 5 7 7 7 2 , Republic Bank of Chicago ,8−May−15,23− Ju l−15"
[ 6 ] " Doral Bank , San Juan , PR, 3 2 1 0 2 , Banco Popular de Puerto Rico ,27−Feb−15,13−May−15"

It may be simpler to just download the data and read it in from the
csv file:

data = read . csv ( " b a n k l i s t . csv " , header=TRUE)
print ( names ( data ) )

[ 1 ] " Bank .Name" " City " " ST "
[ 4 ] "CERT" " Acquiring . I n s t i t u t i o n " " Closing . Date "
[ 7 ] " Updated . Date "

This gives a data.frame which is easy to work with. We will illustrate
some interesting ways in which to manipulate this data. Suppose we
want to get subtotals of how many banks failed by state. First add a
column of ones to the data.frame.

print ( head ( data ) )
data $count = 1

print ( head ( data ) )

Bank .Name City ST
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1 Hometown National Bank Longview WA
2 The Bank of Georgia Peachtree City GA
3 Premier Bank Denver CO
4 Edgebrook Bank Chicago IL
5 Doral Bank San Juan PR
6 Capi to l City Bank & Trust Company Atlanta GA

CERT Acquiring . I n s t i t u t i o n Closing . Date
1 35156 Twin City Bank 2−Oct−15

2 35259 F i d e l i t y Bank 2−Oct−15

3 34112 United F i d e l i t y Bank , f sb 10− Ju l−15

4 57772 Republic Bank of Chicago 8−May−15

5 32102 Banco Popular de Puerto Rico 27−Feb−15

6 33938 F i r s t−C i t i z e n s Bank & Trust Company 13−Feb−15

Updated . Date count
1 15−Oct−15 1

2 15−Oct−15 1

3 28− Ju l−15 1

4 23− Ju l−15 1

5 13−May−15 1

6 21−Apr−15 1

It’s good to check that there is no missing data.

any ( i s . na ( data ) )
[ 1 ] FALSE

Now we sort the data by state to see how many there are.

r es = s o r t ( as . matrix ( data $ST ) , index . return=TRUE)
print ( data [ r es $ ix , ] )
print ( s o r t ( unique ( data $ST ) ) )

[ 1 ] AL AR AZ CA CO CT FL GA HI IA ID IL IN KS KY LA MA MD
[ 1 9 ] MI MN MO MS NC NE NH NJ NM NV NY OH OK OR PA PR SC SD
[ 3 7 ] TN TX UT VA WA WI WV WY
44 Levels : AL AR AZ CA CO CT FL GA HI IA ID IL IN . . . WY

print ( length ( unique ( data $ST ) ) )

[ 1 ] 44

We can directly use the aggregate function to get subtotals by state.
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head ( aggregate ( count ~ ST , data , sum ) , 1 0 )

ST count
1 AL 7

2 AR 3

3 AZ 16

4 CA 41

5 CO 10

6 CT 2

7 FL 75

8 GA 92

9 HI 1

10 IA 2

And another example, subtotal by acquiring bank. Note how we take the
subtotals into another data.frame, which is then sorted and returned in
order using the index of the sort.

acq = aggregate ( count~Acquiring . I n s t i t u t i o n , data , sum)
idx = s o r t ( as . matrix ( acq$count ) , decreas ing=TRUE, index . return=TRUE) $ i x
head ( acq [ idx , ] , 1 5 )

Acquiring . I n s t i t u t i o n count
170 No Acquirer 31

224 S t a t e Bank and Trust Company 12

10 Ameris Bank 10

262 U. S . Bank N.A. 9

67 Community & Southern Bank 8

28 Bank of the Ozarks 7

47 Centennial Bank 7

112 F i r s t−C i t i z e n s Bank & Trust Company 7

228 Stearns Bank , N.A. 7

49 CenterS ta te Bank of Flor ida , N.A. 6

50 Centra l Bank 6

154 MB F i n a n c i a l Bank , N.A. 6

205 Republic Bank of Chicago 6

54 CertusBank , National Assoc ia t ion 5

64 Columbia S t a t e Bank 5



more: data handling and other useful things 121

4.6 Handling dates with lubridate

Suppose we want to take the preceding data.frame of failed banks and
aggregate the data by year, or month, etc. In this case, it us useful to use
a dates package. Another useful tool developed by Hadley Wickham is
the lubridate package.

head ( data )

Bank .Name City ST CERT
1 Hometown National Bank Longview WA 35156

2 The Bank of Georgia Peachtree City GA 35259

3 Premier Bank Denver CO 34112

4 Edgebrook Bank Chicago IL 57772

5 Doral Bank San Juan PR 32102

6 Capi to l City Bank & Trust Company Atlanta GA 33938

Acquiring . I n s t i t u t i o n Closing . Date Updated . Date count
1 Twin City Bank 2−Oct−15 15−Oct−15 1

2 F i d e l i t y Bank 2−Oct−15 15−Oct−15 1

3 United F i d e l i t y Bank , f sb 10− Ju l−15 28− Ju l−15 1

4 Republic Bank of Chicago 8−May−15 23− Ju l−15 1

5 Banco Popular de Puerto Rico 27−Feb−15 13−May−15 1

6 F i r s t−C i t i z e n s Bank & Trust Company 13−Feb−15 21−Apr−15 1

Cdate Cyear
1 2015−10−02 2015

2 2015−10−02 2015

3 2015−07−10 2015

4 2015−05−08 2015

5 2015−02−27 2015

6 2015−02−13 2015

l i b r a r y ( l u b r i d a t e )
data $Cdate = dmy( data $ Closing . Date )
data $Cyear = year ( data $Cdate )
fd = aggregate ( count~Cyear , data , sum)
print ( fd )

Cyear count
1 2000 2
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2 2001 4

3 2002 11

4 2003 3

5 2004 4

6 2007 3

7 2008 25

8 2009 140

9 2010 157

10 2011 92

11 2012 51

12 2013 24

13 2014 18

14 2015 8

plot ( count~Cyear , data=fd , type=" l " , lwd=3 , col=" red " xlab=" Year " )
grid ( lwd=3)

See the results in Figure 4.5.

Figure 4.5: Failed bank totals by
year.

Let’s do the same thing by month to see if there is seasonality

data $Cmonth = month ( data $Cdate )
fd = aggregate ( count~Cmonth , data , sum)
print ( fd )
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Cmonth count
1 1 49

2 2 44

3 3 38

4 4 57

5 5 40

6 6 36

7 7 74

8 8 40

9 9 37

10 10 58

11 11 35

12 12 34

plot ( count~Cmonth , data=fd , type=" l " , lwd=3 , col=" green " ) ; grid ( lwd=3)

There does not appear to be any seasonality. What about day?

data $Cday = day ( data $Cdate )
fd = aggregate ( count~Cday , data , sum)
print ( fd )

Cday count
1 1 8

2 2 20

3 3 3

4 4 21

5 5 15

6 6 13

7 7 20

8 8 14

9 9 10

10 10 14

11 11 17

12 12 10

13 13 14

14 14 20

15 15 20

16 16 22

17 17 23
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18 18 21

19 19 29

20 20 27

21 21 17

22 22 18

23 23 30

24 24 19

25 25 13

26 26 15

27 27 18

28 28 18

29 29 15

30 30 30

31 31 8

plot ( count~Cday , data=fd , type=" l " , lwd=3 , col=" blue " ) ; grid ( lwd=3)

Definitely, counts are lower at the start and end of the month!

4.7 Using the data.table package

This is an incredibly useful package that was written by Matt Dowle.
It essentially allows your data.frame to operate as a database. It en-
ables very fast handling of massive quantities of data, and much of
this technology is now embedded in the IP of the company called h2o:

http://h2o.ai/

We start with some freely downloadable crime data statistics for Cal-
ifornia. We placed the data in a csv file which is then easy to read in to
R.

data = read . csv ( "CA_Crimes_Data_ 2004−2013 . csv " , header=TRUE)

It is easy to convert this into a data.table.

l i b r a r y ( data . table )
D_T = as . data . table ( data )

Let’s see how it works, noting that the syntax is similar to that for
data.frames as much as possible. We print only a part of the names list.
And do not go through each and everyone.

print ( dim (D_T ) )
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[ 1 ] 7301 69

print ( names (D_T ) )

[ 1 ] " Year " " County " "NCICCode"
[ 4 ] " Vio lent _sum" " Homicide_sum" " ForRape_sum"
[ 7 ] " Robbery_sum" " AggAssault_sum" " Property _sum"

[ 1 0 ] " Burglary _sum" " Vehic leThef t _sum" " LTtota l _sum"
. . . .

head (D_T )

A nice feature of the data.table is that it can be indexed, i.e., resorted
on the fly by making any column in the database the key. Once that is
done, then it becomes easy to compute subtotals, and generate plots
from these subtotals as well.

setkey (D_T , Year )

crime = 6

r es = D_T [ ,sum( ForRape_sum ) , by=Year ]
print ( r es )

Year V1

1 : 2004 9598

2 : 2005 9345

3 : 2006 9213

4 : 2007 9047

5 : 2008 8906

6 : 2009 8698

7 : 2010 8325

8 : 2011 7678

9 : 2012 7828

1 0 : 2013 7459

c l a s s ( r es )

[ 1 ] " data . t a b l e " " data . frame "
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See that the type of output is also of the type data.table, and includes the
class data.frame also.

Next, we plot the results from the data.table in the same way as we
would for a data.frame. See Figure 4.6.

plot ( re s $Year , re s $V1 , type=" b " , lwd=3 , col=" blue " ,
x lab=" Year " , ylab=" Forced Rape " )

Figure 4.6: Rape totals by year.

Repeat the process looking at crime (Rape) totals by county.

setkey (D_T , County )
r es = D_T [ ,sum( ForRape_sum ) , by=County ]
print ( r es )
setnames ( res , "V1" , " Rapes " )

County_Rapes = as . data . table ( re s ) # Th i s i s not r e a l l y n e ed ed
setkey ( County_Rapes , Rapes )
County_Rapes

County Rapes
1 : S i e r r a County 2

2 : Alpine County 15

3 : T r i n i t y County 28

4 : Mariposa County 46
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5 : Inyo County 52

6 : Glenn County 56

7 : Colusa County 60

8 : Mono County 61

9 : Modoc County 64

1 0 : Lassen County 96

1 1 : Plumas County 115

1 2 : S iskiyou County 143

1 3 : Calaveras County 148

1 4 : San Benito County 151

1 5 : Amador County 153

1 6 : Tuolumne County 160

1 7 : Tehama County 165

1 8 : Nevada County 214

1 9 : Del Norte County 236

2 0 : Lake County 262

2 1 : Imper ia l County 263

2 2 : S u t t e r County 274

2 3 : Yuba County 277

2 4 : Mendocino County 328

2 5 : El Dorado County 351

2 6 : Napa County 354

2 7 : Kings County 356

2 8 : Madera County 408

2 9 : Marin County 452

3 0 : Humboldt County 495

3 1 : P l a c e r County 611

3 2 : Yolo County 729

3 3 : Merced County 738

3 4 : Santa Cruz County 865

3 5 : San Luis Obispo County 900

3 6 : Butte County 930

3 7 : Monterey County 1062

3 8 : Shasta County 1089

3 9 : Tulare County 1114

4 0 : Ventura County 1146

4 1 : Solano County 1150

4 2 : S t a n i s l a u s County 1348
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4 3 : Santa Barbara County 1352

4 4 : San Mateo County 1381

4 5 : San Franc isco County 1498

4 6 : Sonoma County 1558

4 7 : San Joaquin County 1612

4 8 : Contra Costa County 1848

4 9 : Kern County 1935

5 0 : Fresno County 1960

5 1 : Santa Clara County 3832

5 2 : Sacramento County 4084

5 3 : R ivers ide County 4321

5 4 : Orange County 4509

5 5 : San Bernardino County 4900

5 6 : Alameda County 4979

5 7 : San Diego County 7378

5 8 : Los Angeles County 21483

Now, we can go ahead and plot it using a different kind of plot, a
horizontal barplot.

par ( l a s =2) # makes l a b e l h o r i z o n t a l
# par ( mar=c ( 3 , 4 , 2 , 1 ) ) # i n c r e a s e y−a x i s margins
barplot ( County_Rapes$Rapes , names . arg=County_Rapes$County ,
hor iz=TRUE, cex . names = 0 . 4 , col =8)

4.8 Another data set: Bay Area Bike Share data

We show some other features using a different data set, the bike infor-
mation on Silicon Valley routes for the Bike Share program. This is a
much larger data set.

t r i p s = read . csv ( " 201408 _ t r i p _ data . csv " , header=TRUE)
print ( names ( t r i p s ) )

[ 1 ] " Trip . ID " " Duration " " S t a r t . Date "
[ 4 ] " S t a r t . S t a t i o n " " S t a r t . Terminal " "End . Date "
[ 7 ] "End . S t a t i o n " "End . Terminal " " Bike . . "

[ 1 0 ] " Subscr iber . Type " " Zip . Code"

Next we print some descriptive statistics.

print ( length ( t r i p s $ Trip . ID ) )
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Figure 4.7: Rape totals by county.

[ 1 ] 171792

print (summary ( t r i p s $ Duration / 6 0 ) )

Min . 1 s t Qu. Median Mean 3rd Qu. Max .
1 . 000 5 . 750 8 . 617 18 .880 12 .680 11940 .000

print (mean ( t r i p s $ Duration / 60 , tr im = 0 . 0 1 ) )

[ 1 ] 13 .10277

Now, we quickly check how many start and end stations there are.

s t a r t _ s tn = unique ( t r i p s $ S t a r t . Terminal )
print ( s o r t ( s t a r t _ s tn ) )

[ 1 ] 2 3 4 5 6 7 8 9 10 11 12 13 14 16 21 22 23 24 25 26 27 28

[ 2 3 ] 29 30 31 32 33 34 35 36 37 38 39 41 42 45 46 47 48 49 50 51 54 55

[ 4 5 ] 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
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[ 6 7 ] 80 82 83 84

print ( length ( s t a r t _ s tn ) )
[ 1 ] 70

end_ s tn = unique ( t r i p s $End . Terminal )
print ( s o r t ( end_ s tn ) )

[ 1 ] 2 3 4 5 6 7 8 9 10 11 12 13 14 16 21 22 23 24 25 26 27 28

[ 2 3 ] 29 30 31 32 33 34 35 36 37 38 39 41 42 45 46 47 48 49 50 51 54 55

[ 4 5 ] 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

[ 6 7 ] 80 82 83 84

print ( length ( end_ s tn ) )
[ 1 ] 70

As we can see, there are quite a few stations in the bike share program
where riders can pick up and drop off bikes. The trip duration informa-
tion is stored in seconds, so has been converted to minutes in the code
above.

4.9 Using the plyr package family

This package by Hadley Wickham is useful for applying functions to
tables of data, i.e., data.frames. Since we may want to write custom
functions, this is a highly useful package. R users often select either
the data.table or the plyr class of packages for handling data.frames
as databases. The latest incarnation is the dplyr package, which focuses
only on data.frames.

require ( plyr )
l i b r a r y ( dplyr )

One of the useful things you can use is the filter function, to subset
the rows of the dataset you might want to select for further analysis.

r es = f i l t e r ( t r i p s , S t a r t . Terminal ==50 ,End . Terminal ==51)
head ( re s )

Trip . ID Duration S t a r t . Date
1 432024 3954 8 / 30 / 2014 14 :46
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2 432022 4120 8 / 30 / 2014 14 :44

3 431895 1196 8 / 30 / 2014 12 :04

4 431891 1249 8 / 30 / 2014 12 :03

5 430408 145 8 / 29 / 2014 9 : 0 8

6 429148 862 8 / 28 / 2014 13 :47

S t a r t . S t a t i o n S t a r t . Terminal End . Date
1 Harry Bridges Plaza ( Ferry Building ) 50 8 / 30 / 2014 15 : 52

2 Harry Bridges Plaza ( Ferry Building ) 50 8 / 30 / 2014 15 : 52

3 Harry Bridges Plaza ( Ferry Building ) 50 8 / 30 / 2014 12 : 24

4 Harry Bridges Plaza ( Ferry Building ) 50 8 / 30 / 2014 12 : 23

5 Harry Bridges Plaza ( Ferry Building ) 50 8 / 29 / 2014 9 : 1 1

6 Harry Bridges Plaza ( Ferry Building ) 50 8 / 28 / 2014 14 : 02

End . S t a t i o n End . Terminal Bike . . Subscr iber . Type Zip . Code
1 Embarcadero a t Folsom 51 306 Customer 94952

2 Embarcadero a t Folsom 51 659 Customer 94952

3 Embarcadero a t Folsom 51 556 Customer 11238

4 Embarcadero a t Folsom 51 621 Customer 11238

5 Embarcadero a t Folsom 51 400 Subscr iber 94070

6 Embarcadero a t Folsom 51 589 Subscr iber 94107

The arrange function is useful for sorting by any number of columns
as needed. Here we sort by the start and end stations.

t r i p s _ sor ted = arrange ( t r i p s , S t a r t . S ta t ion , End . S t a t i o n )
head ( t r i p s _ sor ted )

Trip . ID Duration S t a r t . Date S t a r t . S t a t i o n S t a r t . Terminal
1 426408 120 8 / 27 / 2014 7 : 4 0 2nd at Folsom 62

2 411496 21183 8 / 16 / 2014 13 :36 2nd at Folsom 62

3 396676 3707 8 / 6 / 2014 11 :38 2nd at Folsom 62

4 385761 123 7 / 29 / 2014 19 :52 2nd at Folsom 62

5 364633 6395 7 / 15 / 2014 13 :39 2nd at Folsom 62

6 362776 9433 7 / 14 / 2014 13 :36 2nd at Folsom 62

End . Date End . S t a t i o n End . Terminal Bike . . Subscr iber . Type
1 8 / 27 / 2014 7 : 4 2 2nd at Folsom 62 527 Subscr iber
2 8 / 16 / 2014 19 :29 2nd at Folsom 62 508 Customer
3 8 / 6 / 2014 12 :40 2nd at Folsom 62 109 Customer
4 7 / 29 / 2014 19 :55 2nd at Folsom 62 421 Subscr iber
5 7 / 15 / 2014 15 :26 2nd at Folsom 62 448 Customer
6 7 / 14 / 2014 16 :13 2nd at Folsom 62 454 Customer
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Zip . Code
1 94107

2 94105

3 31200

4 94107

5 2184

6 2184

The sort can also be done in reverse order as follows.

t r i p s _ sor ted = arrange ( t r i p s , desc ( S t a r t . S t a t i o n ) , End . S t a t i o n )
head ( t r i p s _ sor ted )

Trip . ID Duration S t a r t . Date
1 416755 285 8 / 20 / 2014 11 :37

2 411270 257 8 / 16 / 2014 7 : 0 3

3 410269 286 8 / 15 / 2014 10 :34

4 405273 382 8 / 12 / 2014 14 :27

5 398372 401 8 / 7 / 2014 10 :10

6 393012 317 8 / 4 / 2014 10 :59

S t a r t . S t a t i o n S t a r t . Terminal
1 Yerba Buena Center of the Arts (3 rd @ Howard) 68

2 Yerba Buena Center of the Arts (3 rd @ Howard) 68

3 Yerba Buena Center of the Arts (3 rd @ Howard) 68

4 Yerba Buena Center of the Arts (3 rd @ Howard) 68

5 Yerba Buena Center of the Arts (3 rd @ Howard) 68

6 Yerba Buena Center of the Arts (3 rd @ Howard) 68

End . Date End . S t a t i o n End . Terminal Bike . . Subscr iber . Type
1 8 / 20 / 2014 11 :42 2nd at Folsom 62 383 Customer
2 8 / 16 / 2014 7 : 0 7 2nd at Folsom 62 614 Subscr iber
3 8 / 15 / 2014 10 :38 2nd at Folsom 62 545 Subscr iber
4 8 / 12 / 2014 14 :34 2nd at Folsom 62 344 Customer
5 8 / 7 / 2014 10 :16 2nd at Folsom 62 597 Subscr iber
6 8 / 4 / 2014 11 :04 2nd at Folsom 62 367 Subscr iber

Zip . Code
1 95060

2 94107

3 94127

4 94110

5 94127
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6 94127

Data.table also offers a fantastic way to do descriptive statistics! First,
group the data by start point, and then produce statistics by this group,
choosing to count the number of trips starting from each station and the
average duration of each trip.

b y S t a r t S t a t i o n = group_by ( t r i p s , S t a r t . S t a t i o n )
r es = summarise ( b y S t a r t S t a t i o n , count=n ( ) , time=mean ( Duration ) / 60 )
print ( r es )

Source : l o c a l data frame [70 x 3 ]

S t a r t . S t a t i o n count time
( f c t r ) ( i n t ) ( dbl )

1 2nd at Folsom 4165 9 .32088

2 2nd at South Park 4569 11 .60195

3 2nd at Townsend 6824 15 .14786

4 5 th a t Howard 3183 14 .23254

5 Adobe on Almaden 360 10 .06120

6 Arena Green / SAP Center 510 43 .82833

7 Beale a t Market 4293 15 .74702

8 Broadway at Main 22 54 .82121

9 Broadway St a t B a t t e r y St 2433 15 .31862

10 C a l i f o r n i a Ave C a l t r a i n S t a t i o n 329 51 .30709

. . . . . . . . . . .





5
Being Mean with Variance: Markowitz Optimization

In this chapter, we will explore the mathematics of the famous portfolio
optimization result, known as the Markowitz mean-variance problem.
The solution to this problem is still being used widely in practice. We are
interested in portfolios of n assets, which have a mean return which we
denote as E(rp), and a variance, denoted Var(rp).

Let w ∈ Rn be the portfolio weights. What this means is that we allo-
cate each $1 into various assets, such that the total of the weights sums
up to 1. Note that we do not preclude short-selling, so that it is possible
for weights to be negative as well.

5.1 Quadratic (Markowitz) Problem

The optimization problem is defined as follows. We wish to find the
portfolio that delivers the minimum variance (risk) while achieving a
pre-specified level of expected (mean) return.

min
w

1
2

w′Σ w

subject to

w′ µ = E(rp)

w′ 1 = 1

Note that we have a 1
2 in front of the variance term above, which is for

mathematical neatness as will become clear shortly. The minimized solu-
tion is not affected by scaling the objective function by a constant.

The first constraint forces the expected return of the portfolio to a
specified mean return, denoted E(rp), and the second constraint requires
that the portfolio weights add up to 1, also known as the “fully invested”
constraint. It is convenient that the constraints are equality constraints.
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This is a Lagrangian problem, and requires that we embed the con-
straints into the objective function using Lagragian multipliers {λ1, λ2}.
This results in the following minimization problem:

min
w ,λ1,λ2

L =
1
2

w′Σ w + λ1[E(rp)− w′µ] + λ2[1− w′1 ]

To minimize this function, we take derivatives with respect to w, λ1, and
λ2, to arrive at the first order conditions:

∂L
∂w

= Σ w− λ1µ− λ21 = 0 (∗)

∂L
∂λ1

= E(rp)− w′µ = 0

∂L
∂λ2

= 1− w′1 = 0

The first equation above, denoted (*), is a system of n equations, because
the derivative is taken with respect to every element of the vector w.
Hence, we have a total of (n + 2) first-order conditions. From (*)

w = Σ−1(λ1µ + λ21)

= λ1Σ−1µ + λ2Σ−11 (∗∗)

Premultiply (**) by µ′:

µ′w = λ1 µ′Σ−1µ︸ ︷︷ ︸
B

+λ2 µ′Σ−11︸ ︷︷ ︸
A

= E(rp)

Also premultiply (**) by 1′:

1′w = λ1 1′Σ−1µ︸ ︷︷ ︸
A

+λ2 1′Σ−11︸ ︷︷ ︸
C

= 1

Solve for λ1, λ2

λ1 =
CE(rp)− A

D

λ2 =
B− AE(rp)

D

where D = BC− A2

Note the following:

• Since Σ is positive definite, Σ−1 is also positive definite: B > 0, C > 0.
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• Given solutions for λ1, λ2, we solve for w.

w =
1
D

[BΣ−11− AΣ−1µ]︸ ︷︷ ︸
g

+
1
D

[CΣ−1µ− AΣ−11 ]︸ ︷︷ ︸
h

·E(rp)

This is the expression for the optimal portfolio weights that minimize
the variance for given expected return E(rp). We see that the vectors g,
h are fixed once we are given the inputs to the problem, i.e., µ and Σ.

• We can vary E(rp) to get a set of frontier (efficient or optimal) portfo-
lios w.

w = g + h E(rp)

i f E(rp) = 0, w = g

i f E(rp) = 1, w = g + h

Note that

w = g + h E(rp) = [1− E(rp)] g + E(rp)[ g + h ]

Hence these 2 portfolios g, g + h “generate” the entire frontier.

5.1.1 Solution in R

We create a function to return the optimal portfolio weights.

markowitz = function (mu, cv , Er ) {
n = length (mu)
wuns = matrix ( 1 , n , 1 )
A = t (wuns) %*% solve ( cv ) %*% mu
B = t (mu) %*% solve ( cv ) %*% mu
C = t (wuns) %*% solve ( cv ) %*% wuns
D = B*C − A^2

lam = (C* Er−A) /D
gam = ( B−A* Er ) /D
wts = lam [ 1 ] * ( solve ( cv ) %*% mu) + gam[ 1 ] * ( solve ( cv ) %*% wuns)
g = ( B [ 1 ] * ( solve ( cv ) %*% wuns) − A[ 1 ] * ( solve ( cv ) %*% mu) ) /D[ 1 ]
h = (C[ 1 ] * ( solve ( cv ) %*% mu) − A[ 1 ] * ( solve ( cv ) %*% wuns ) ) /D[ 1 ]
wts = g + h* Er

}

We can enter an example of a mean return vector and the covariance
matrix of returns, and then call the function for a given expected return.
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#PARAMETERS
mu = matrix ( c ( 0 . 0 2 , 0 . 1 0 , 0 . 2 0 ) , 3 , 1 )
n = length (mu)
cv = matrix ( c ( 0 . 0 0 0 1 , 0 , 0 , 0 , 0 . 0 4 , 0 . 0 2 , 0 , 0 . 0 2 , 0 . 1 6 ) , n , n )
Er = 0 . 1 8

#SOLVE PORTFOLIO PROBLEM
wts = markowitz (mu, cv , Er )
print ( wts )

The output is the vector of optimal portfolio weights:

> source ( " markowitz . R" )
[ , 1 ]

[ 1 , ] −0 .3575931

[ 2 , ] 0 .8436676

[ 3 , ] 0 .5139255

If we change the expected return to 0.10, then we get a different set of
portfolio weights.

> Er = 0 . 1 0

> wts = markowitz (mu, cv , Er )
> print ( wts )

[ , 1 ]
[ 1 , ] 0 .3209169

[ 2 , ] 0 .4223496

[ 3 , ] 0 .2567335

Note that in the first example, to get a high expected return of 0.18, we
needed to take some leverage, by shorting the low risk asset and going
long the medium and high risk assets. When we dropped the expected
return to 0.10, all weights are positive, i.e., we have a long-only portfolio.

5.2 Solving the problem with the quadprog package

The quadprog package is an optimizer that takes a quadratic objective
function with linear constraints. Hence, it is exactly what is needed
for the mean-variance portfolio problem we just considered. The ad-
vantage of this package is that we can also apply additional inequality
constraints. For example, we may not wish to permit short-sales of any
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asset, and thereby we might bound all the weights to lie between zero
and one.

The specification in the quadprog package of the problem set up is
shown in the manual:

Descr ip t ion

This rout ine implements the dual method of Goldfarb and
Idnani ( 1 9 8 2 , 1983 ) for so lv ing quadrat ic programming
problems of the form min(−d^T b + 1 / 2 b^T D b ) with the
c o n s t r a i n t s A^T b >= b_ 0 .
( note : b here i s the weights vector in our problem )

Usage
solve .QP(Dmat , dvec , Amat , bvec , meq=0 , f a c t o r i z e d =FALSE)

Arguments
Dmat matrix appearing in the quadrat ic function to be minimized .
dvec vector appearing in the quadrat ic function to be minimized .
Amat matrix def in ing the c o n s t r a i n t s under which we want

to minimize the quadrat ic function .
bvec vector holding the values of b_0 ( d e f a u l t s to zero ) .
meq the f i r s t meq c o n s t r a i n t s are t r e a t e d as e q u a l i t y

c o n s t r a i n t s , a l l f u r t h e r as i n e q u a l i t y c o n s t r a i n t s
( d e f a u l t s to 0 ) .

f a c t o r i z e d l o g i c a l f l a g : i f TRUE, then we are passing R^(−1)
( where D = R^T R) ins tead of the matrix D in the
argument Dmat .

In our problem set up, with three securities, and no short sales, we will
have the following Amat and bvec:

A =

 µ1 1 1 0 0
µ2 1 0 1 0
µ3 1 0 0 1

 ; b0 =


E(rp)

1
0
0
0


The constraints will be modulated by meq = 2, which states that the first
two constraints will be equality constraints, and the last three will be
greater than equal to constraints. The constraints will be of the form
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A′w ≥ b0, i.e.,

w1µ1 + w2µ2 + w3µ3 = E(rp)

w11 + w21 + w31 = 1

w1 ≥ 0

w2 ≥ 0

w3 ≥ 0

The code for using the package is as follows.

l i b r a r y ( quadprog )
nss = 1 # Equa l s 1 i f no s h o r t s a l e s a l l o w e d
Bmat = matrix ( 0 , n , n ) #No S h o r t s a l e s mat r i x
diag ( Bmat ) = 1

Amat = matrix ( c (mu, 1 , 1 , 1 ) , n , 2 )
i f ( nss ==1) { Amat = matrix ( c (Amat , Bmat ) , n ,2+n ) }
dvec = matrix ( 0 , n , 1 )
bvec = matrix ( c ( Er , 1 ) , 2 , 1 )
i f ( nss ==1) { bvec = t ( c ( bvec , matrix ( 0 , 3 , 1 ) ) ) }
s o l = solve .QP( cv , dvec , Amat , bvec , meq=2)
print ( s o l $ s o l u t i o n )

If we run this code we get the following result for expected return = 0.18,
with short-selling allowed:

[ 1 ] −0 .3575931 0 .8436676 0 .5139255

This is exactly what is obtained from the Markowitz solution. Hence, the
model checks out. What if we restricted short-selling? Then we would
get the following solution.

[ 1 ] 0 . 0 0 . 2 0 . 8

5.3 Tracing out the Efficient Frontier

Since we can use the Markowitz model to solve for the optimal portfo-
lio weights when the expected return is fixed, we can keep solving for
different values of E(rp). This will trace out the efficient frontier. The
program to do this and plot the frontier is as follows.

#TRACING OUT THE EFFICIENT FRONTIER
Er_ vec = matrix ( seq ( 0 . 0 1 , 0 . 1 5 , 0 . 0 1 ) , 1 5 , 1 )
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Sig _ vec = matrix ( 0 , 1 5 , 1 )
j = 0

for ( Er in Er_ vec ) {
j = j +1

wts = markowitz (mu, cv , Er )
Sig _ vec [ j ] = sqr t ( t ( wts ) %*% cv %*% wts )

}
plot ( Sig _vec , Er_vec , type= ’ l ’ )

See the frontier in Figure 5.1.
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Figure 5.1: The Efficient Frontier

5.4 Covariances of frontier portfolios: rp, rq

Cov(rp, rq) = w′p Σ wq = [g + hE(rp)]
′Σ [g + hE(rq)]

Now,

g + hE(rp) =
1
D
[BΣ−11− AΣ−1µ] +

1
D
[CΣ−1µ− AΣ−11 ] [λ1B + λ2A]︸ ︷︷ ︸

CE(rp)− A
D/B

+
B− AE(rp)

D/B
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After much simplification:

Cov(rp, rq) = w′p Σ w′q

=
C
D

[E(rp)− A/C][E(rq)− A/C] +
1
C

σ2
p = Cov(rp, rp) =

C
D
[E(rp)− A/C]2 +

1
C

Therefore,
σ2

p

1/C
− [E(rp)− A/C]2

D/C2 = 1

which is the equation of a hyperbola in σ, E(r) space with center (0, A/C),
or

σ2
p =

1
D
[CE(rp)

2 − 2AE(rp) + B]

, which is a parabola in E(r), σ space.

5.5 Combinations

It is easy to see that linear combinations of portfolios on the frontier will
also lie on the frontier.

m

∑
i=1

αi wi =
m

∑
i=1

αi[ g + h E(ri)]

= g + h
m

∑
i=1

αiE(ri)
m

∑
i=1

αi = 1

Exercise

Carry out the following analyses:

1. Use your R program to do the following. Set E(rp) = 0.10 (i.e. return
of 10%), and solve for the optimal portfolio weights for your 3 securi-
ties. Call this vector of weights w1. Next, set E(rp) = 0.20 and again
solve for the portfolios weights w2.

2. Take a 50/50 combination of these two portfolios. What are the weights?
What is the expected return?

3. For the expected return in the previous part, resolve the mean-variance
problem to get the new weights?

4. Compare these weights in part 3 to the ones in part 2 above. Explain
your result.
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5.6 Zero Covariance Portfolio

This is a special portfolio of interest, and we will soon see why. Find

E(rq), s.t. Cov(rp, rq) = 0

Suppose it exists, then the solution is:

E(rq) =
A
C
− D/C2

E(rp)− A/C
≡ E(rZC(p))

Since ZC(p) exists for all p, all frontier portfolios can be formed from p
and ZC(p).

Cov(rp, rq) = w′p Σ wq

= λ1µ′Σ−1Σ wq + λ21′Σ−1Σ wq

= λ1µ′wq + λ21′wq

= λ1E(rq) + λ2

Substitute in for λ1, λ2 and rearrange to get

E(rq) = (1− βqp)E[rZC(p)] + βqpE(rp)

βqp =
Cov(rq, rp)

σ2
p

Therefore, the return on a portfolio can be written in terms of a basic
portfolio p and its zero covariance portfolio ZC(p). This suggests a re-
gression relationship, i.e.

rq = β0 + β1rZC(p) + β2rp + ξ

which is nothing but a factor model, i.e. with orthogonal factors.

5.7 Portfolio Problems with Riskless Assets

We now enhance the portfolio problem to deal with risk less assets. The
difference is that the fully-invested constraint is expanded to include the
risk free asset. We require just a single equality constraint. The problem
may be specified as follows.

min
w

1
2

w′Σ w

s.t. w′µ + (1− w′1 ) r f = E(rp)
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min
w

L =
1
2

w′Σ w + λ[E(rp)− w′µ− (1− w′1)r f ]

The first-order conditions for the problem are as follows.

∂L
∂w

= Σ w− λµ + λ 1 r f = 0

∂L
∂λ

= E(rp)− w′µ− (1− w′1) r f = 0

Re-aranging, and solving for w and λ, we get the following manipula-
tions, eventually leading to the desired solution.

Σ w = λ(µ− 1 r f )

E(rp)− r f = w′(µ− 1 r f )

Take the first equation and proceed as follows:

w = λΣ−1(µ− 1 r f )

E(rp)− r f ≡ (µ− 1r f )
′w = λ(µ− 1r f )

′Σ−1(µ− 1 r f )

The first and third terms in the equation above then give that

λ =
E(rp)− r f

(µ− 1r f )′Σ−1(µ− 1 r f )

Substituting this back into the first foc results in the final solution.

w = Σ−1(µ− 1 r f )
E(rp)− r f

H

where H = (µ− r f 1 )′Σ−1(µ− r f 1 )

Exercise

How will you use the R program to find the minimum variance portfolio
(MVP)? What are the portfolio weights? What is the expected return?

Exercise

Develop program code for the mean-variance problem with the risk-free
asset.

Exercise

Develop program code for the mean-variance problem with no short
sales, and plot the efficient frontier on top of the one with short-selling
allowed.



being mean with variance: markowitz optimization 145

5.8 Risk Budgeting

Markowitz optimization has morphed into many different “views” of the
same problem. One of the recent approaches to portfolio construction is
to create portfolios where the risk contributions of all assets are equal.
This is known as the “risk parity” approach. We may also construct a
portfolio where all assets contribute the same proportion of the total
return of the portfolio, and this is known as the “performance parity”
approach.

If the portfolio is denoted by its weights w then the risk of the port-
folio is a function of the weights and is denoted R(w). As we have seen
the standard deviation of the portfolio return is written as

R(w) = σ(w) =
√

w>Σw (5.1)

This risk function is linear homogenous, i.e., if we double the size of
the portfolio then the risk measure also doubles. This is also known
as the “homogeneity” property of risk measures and is one of the four
desirable properties of a “coherent” risk measure defined by Artzner,
Delbaen, Eber, and Heath (1999):

1. Homogeneity: R(m ·w) = m · R(w).

2. Subadditivity (diversification): R(w1 + w2) ≤ R(w1) + R(w2).

3. Monotonicity: if portfolio w1 dominates portfolio w2, and their mean
returns are the same, then R(w1) ≤ R(w2).

4. Translation invariance: if we add cash proportion c and rebalance the
portfolio, then R(w + c) = R(w)− c.

5. Convexity: this property combines homogeneity and subadditivity,
R(m ·w1 + (1−m) ·w2) ≤ m · R(w1) + (1−m) · R(w2).

If the risk measure satisfies the homogeneity property, then Euler’s
theorem may be applied to decompose risk into the amount provided by
each asset.

R(w) =
n

∑
j=1

wj
∂R(w)

∂wj
(5.2)

The component wj
∂R(w)

∂wj
is known as the risk share of asset j, and when

divided by R(w), it is the risk proportion of asset j.
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Suppose we define the risk measure to be the standard deviation of re-
turns of the portfolio, then the risk decomposition requires the derivative
of the risk measure with respect to all the weights, i.e.,

∂R(w)

∂w
=

∂
√

w>Σw
∂w

=
1
2
[w>Σw]−1/2 · 2Σw =

Σw
σ(w)

(5.3)

which is a n-dimensional vector. If we multiply the j-th element of this
vector by wj, we get the risk contribution for asset j.

We may check that the risk contributions sum up to the total risk:

n

∑
j=1

wj
∂R(w)

∂wj
= [w1 w2 ... wn] · [Σw/σ(w)]

= w> · [Σw/σ(w)]

=
σ(w)2

σ(w)

= σ(w)

= R(w)

Let’s look at an example to clarify the computations. First, read in the
covariance matrix and mean return vector.

mu = matrix ( c ( 0 . 0 5 , 0 . 1 0 , 0 . 2 0 ) , 3 , 1 )
n = length (mu)
cv = matrix ( c ( 0 . 0 3 , 0 . 0 1 , 0 . 0 1 , 0 . 0 1 , 0 . 0 4 , 0 . 0 2 , 0 . 0 1 , 0 . 0 2 , 0 . 1 6 ) , n , n )

We begin by choosing the portfolio weights for an expected return of
0.12. Then we create the function to return the risk contributions of each
asset in the portfolio.

#RISK CONTRIBUTIONS
r i s k C o n t r i b u t i o n = function ( cv , wts ) {

s i g = sqr t ( t ( wts ) %*% cv %*% wts )
rc = as . matrix ( cv %*% wts ) / s i g [ 1 ] * wts

}
# Example
Er = 0 . 1 2

wts = markowitz (mu, cv , Er )
print ( wts )
RC = r i s k C o n t r i b u t i o n ( cv , wts )
print (RC)
# Check
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s i g = sqr t ( t ( wts ) %*% cv %*% wts )
print ( c ( s ig , sum(RC ) ) )

The output of all this code is as follows:

> print ( wts )
[ , 1 ]

[ 1 , ] 0 .1818182

[ 2 , ] 0 .5272727

[ 3 , ] 0 .2909091

> print (RC)
[ , 1 ]

[ 1 , ] 0 .01329760

[ 2 , ] 0 .08123947

[ 3 , ] 0 .09191302

> # Check
> s i g = sqr t ( t ( wts ) %*% cv %*% wts )
> print ( c ( s ig , sum(RC ) ) )
[ 1 ] 0 .1864501 0 .1864501

We see that the total risk contributions of all three assets does indeed
sum up to the standard deviation of the portfolio, i.e., 0.1864501.

We are interested in solving the reverse problem. Given a target set of
risk contributions, what weights of the portfolio will deliver the required
conribution. For example, what if we wanted the portfolio total standard
deviation to be 0.15, with the shares from each asset in the amounts
{0.05, 0.05, 0.05}, respectively?

We note that it is not possible to solve for exactly the desired risk con-
tributions. This is because it would involve one constraint for each risk
contribution, plus one additional constraint that the sum of the portfolio
weights sum up to 1. That would leave us with an infeasible problem
where there are four constraints and only three free parameters. There-
fore, we minimise the sum of squared differences between the risk con-
tributions and targets, while ensuring that the sum of portfolio weights
equals unity. We can implement the following code to achieve this result.

#SOLVE FOR CHOSEN RISK CONTRIBUTIONS
solveRC = function ( wts , t a r g e t , cv ) {

wts [ length ( wts ) + 1 ] = 1−sum( wts )
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wts = as . matrix ( wts )
rc = r i s k C o n t r i b u t i o n ( cv , wts )
# Minimize t h e max s l i p p a g e from r i s k p a r i t y
d i f f 2 = 10000000 * ( rc−t a r g e t )

}
t a r g e t = matrix ( c ( 0 . 0 5 , 0 . 0 5 , 0 . 0 5 ) )

w_ guess = c ( 0 . 1 , 0 . 4 )

l i b r a r y ( minpack . lm )
s o l = n l s . lm (w_guess , fn=solveRC , cv=cv , t a r g e t = t a r g e t )
wts = s o l $par
wts [ length ( wts ) + 1 ] = 1−sum( wts )
wts = as . matrix ( wts )
print ( wts )
print (sum( wts ) )
rc = r i s k C o n t r i b u t i o n ( cv , wts )
print ( c ( rc , sum( rc ) ) )

The results from running this code are as follows:

> print ( wts )
[ , 1 ]

[ 1 , ] 0 .4435305

[ 2 , ] 0 .3639453

[ 3 , ] 0 .1925243

> print (sum( wts ) )
[ 1 ] 1

> rc = r i s k C o n t r i b u t i o n ( cv , wts )
> print ( c ( rc , sum( rc ) ) )
[ 1 ] 0 .05307351 0 .05271923 0 .05190721 0 .15769995

>

We see that the results are close to targets, but slightly above. As ex-
pected, since the risk parity is equal across assets, the less risky ones
have a greater share in the portfolio allocation.
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Learning from Experience: Bayes Theorem

6.1 Introduction

For a fairly good introduction to Bayes Rule, see Wikipedia
http://en.wikipedia.org/wiki/Bayes theorem

The various R packages for Bayesian inference are at:
http://cran.r-project.org/web/views/Bayesian.html

Also see the great video of Professor Persi Diaconis’s talk on Bayes on
Yahoo video where he talks about coincidences. In business, we often
want to ask, is a given phenomena real or just a coincidence? Bayes theo-
rem really helps with that. For example, we may ask – is Warren Buffet’s
investment success a coincidence? How would you answer this question?
Would it depend on your prior probability of Buffet being able to beat
the market? How would this answer change as additional information
about his performance was being released over time?

Bayes rule follows easily from a decomposition of joint probability, i.e.,

Pr[A ∩ B] = Pr(A|B) Pr(B) = Pr(B|A) Pr(A)

Then the last two terms may be arranged to give

Pr(A|B) = Pr(B|A) Pr(A)

Pr(B)

or

Pr(B|A) =
Pr(A|B) Pr(B)

Pr(A)

Example

The AIDS test. This is an interesting problem, because it shows that if
you are diagnosed with AIDS, there is a good chance the diagnosis is
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wrong, but if you are diagnosed as not having AIDS then there is a good
chance it is right - hopefully this is comforting news.

Define, {Pos, Neg} as a positive or negative diagnosis of having AIDS.
Also define {Dis, NoDis} as the event of having the disease versus not
having it. There are 1.5 million AIDS cases in the U.S. and about 300

million people which means the probability of AIDS in the population is
0.005 (half a percent). Hence, a random test will uncover someone with
AIDS with a half a percent probability. The confirmation accuracy of the
AIDS test is 99%, such that we have

Pr(Pos|Dis) = 0.99

Hence the test is reasonably good. The accuracy of the test for people
who do not have AIDS is

Pr(Neg|NoDis) = 0.95

What we really want is the probability of having the disease when the
test comes up positive, i.e. we need to compute Pr(Dis|Pos). Using
Bayes Rule we calculate:

Pr(Dis|Pos) =
Pr(Pos|Dis)Pr(Dis)

Pr(Pos)

=
Pr(Pos|Dis)Pr(Dis)

Pr(Pos|Dis)Pr(Dis) + Pr(Pos|NoDis)Pr(NoDis)

=
0.99× 0.005

(0.99)(0.005) + (0.05)(0.995)
= 0.0904936

Hence, the chance of having AIDS when the test is positive is only 9%.
We might also care about the chance of not having AIDS when the test is
positive

Pr(NoDis|Pos) = 1− Pr(Dis|Pos) = 1− 0.09 = 0.91

Finally, what is the chance that we have AIDS even when the test is
negative - this would also be a matter of concern to many of us, who
might not relish the chance to be on some heavy drugs for the rest of our



learning from experience: bayes theorem 151

lives.

Pr(Dis|Neg) =
Pr(Neg|Dis)Pr(Dis)

Pr(Neg)

=
Pr(Neg|Dis)Pr(Dis)

Pr(Neg|Dis)Pr(Dis) + Pr(Neg|NoDis)Pr(NoDis)

=
0.01× 0.005

(0.01)(0.005) + (0.95)(0.995)
= 0.000053

Hence, this is a worry we should not have. If the test is negative, there is
a miniscule chance that we are infected with AIDS.

6.2 Bayes and Joint Probability Distributions

The preceding analysis is a good lead in to (a) the connection with joint
probability distributions, and (b) using R to demonstrate a computa-
tional way of thinking about Bayes theorem.

Let’s begin by assuming that we have 300,000 people in the popula-
tion, to scale down the numbers from the millions for convenience. Of
these 1,500 have AIDS. So let’s create the population and then sample
from it. See the use of the sample function in R.

> people = seq ( 1 , 3 0 0 0 0 0 )
> people _ aids = sample ( people , 1 5 0 0 )
> people _ noaids = s e t d i f f ( people , people _ aids )

Note, how we also used the setdiff function to get the complement
set of the people who do not have AIDS. Now, of the people who have
AIDS, we know that 99% of them test positive so let’s subset that list,
and also take its complement. These are joint events, and their numbers
proscribe the joint distribution.

> people _ aids _pos = sample ( people _ aids , 1500 * 0 . 9 9 )
> people _ aids _neg = s e t d i f f ( people _ aids , people _ aids _pos )
> length ( people _ aids _pos )
[ 1 ] 1485

> length ( people _ aids _neg )
[ 1 ] 15

We can also subset the group that does not have AIDS, as we know that
the test is negative for them 95% of the time.
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> people _ noaids _neg = sample ( people _ noaids ,298500 * 0 . 9 5 )
> people _ noaids _pos = s e t d i f f ( people _ noaids , people _ noaids _neg )
> length ( people _ noaids _neg )
[ 1 ] 283575

> length ( people _ noaids _pos )
[ 1 ] 14925

We can now compute the probability that someone actually has AIDS
when the test comes out positive.

> pr_ aids _ given _pos = ( length ( people _ aids _pos ) ) /
( length ( people _ aids _pos )+ length ( people _ noaids _pos ) )

> pr_ aids _ given _pos
[ 1 ] 0 .0904936

This confirms the formal Bayes computation that we had undertaken
earlier. And of course, as we had examined earlier, what’s the chance
that you have AIDS when the test is negative, i.e., a false negative?

> pr_ aids _ given _neg = ( length ( people _ aids _neg ) ) /
( length ( people _ aids _neg )+ length ( people _ noaids _neg ) )

> pr_ aids _ given _neg
[ 1 ] 5 .289326 e−05

Phew!
Note here that we first computed the joint sets covering joint out-

comes, and then used these to compute conditional (Bayes) probabilities.
The approach used R to apply a set-theoretic, computational approach to
calculating conditional probabilities.

6.3 Correlated default (conditional default)

Bayes theorem is very useful when we want to extract conditional de-
fault information. Bond fund managers are not as interested in the cor-
relation of default of the bonds in their portfolio as much as the con-
ditional default of bonds. What this means is that they care about the
conditional probability of bond A defaulting if bond B has defaulted al-
ready.

Modern finance provides many tools to obtain the default proba-
bilities of firms. Suppose we know that firm 1 has default probability
p1 = 1% and firm 2 has default probability p2 = 3%. If the correlation
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of default of the two firms is 40% over one year, then if either bond de-
faults, what is the probability of default of the other, conditional on the
first default?

We can see that even with this limited information, Bayes theorem
allows us to derive the conditional probabilities of interest. First define
di, i = 1, 2 as default indicators for firms 1 and 2. di = 1 if the firm
defaults, and zero otherwise. We note that:

E(d1) = 1.p1 + 0.(1− p1) = p1 = 0.01.

Likewise
E(d2) = 1.p2 + 0.(1− p2) = p2 = 0.03.

The Bernoulli distribution lets us derive the standard deviation of d1 and
d2.

σ1 =
√

p1(1− p1) =
√
(0.01)(0.99) = 0.099499

σ2 =
√

p2(1− p2) =
√
(0.03)(0.97) = 0.17059

Now, we note that

Cov(d1, d2) = E(d1.d2)− E(d1)E(d2)

ρσ1σ2 = E(d1.d2)− p1 p2

(0.4)(0.099499)(0.17059) = E(d1.d2)− (0.01)(0.03)

E(d1.d2) = 0.0070894

E(d1.d2) ≡ p12

where p12 is the probability of default of both firm 1 and 2. We now get
the conditional probabilities:

p(d1|d2) = p12/p2 = 0.0070894/0.03 = 0.23631

p(d2|d1) = p12/p1 = 0.0070894/0.01 = 0.70894

These conditional probabilities are non-trivial in size, even though the
individual probabilities of default are very small. What this means is
that default contagion can be quite severe once firms begin to default.
(This example used our knowledge of Bayes’ rule, correlations, covari-
ances, and joint events.)

6.4 Continuous and More Formal Exposition

In Bayesian approaches, the terms “prior”, “posterior”, and “likelihood”
are commonly used and we explore this terminology here. We are usu-
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ally interested in the parameter θ, the mean of the distribution of some
data x (I am using the standard notation here). But in the Bayesian set-
ting we do not just want the value of θ, but we want a distribution of
values of θ starting from some prior assumption about this distribution.
So we start with p(θ), which we call the prior distribution. We then ob-
serve data x, and combine the data with the prior to get the posterior
distribution p(θ|x). To do this, we need to compute the probability of
seeing the data x given our prior p(θ) and this probability is given by
the likelihood function L(x|θ). Assume that the variance of the data x is
known, i.e., is σ2.

Applying Bayes’ theorem we have

p(θ|x) = L(x|θ) p(θ)∫
L(x|θ) p(θ) dθ

∝ L(x|θ) p(θ)

If we assume the prior distribution for the mean of the data is normal,
i.e., p(θ) ∼ N[µ0, σ2

0 ], and the likelihood is also normal, i.e., L(x|θ) ∼
N[θ, σ2], then we have that

p(θ) =
1√

2πσ2
0

exp

[
−1

2
(θ − µ0)

2

σ2
0

]
∼ N[θ|µ0, σ2

0 ] ∝ exp

[
−1

2
(θ − µ0)

2

σ2
0

]

L(x|θ) =
1√

2πσ2
exp

[
−1

2
(x− θ)2

σ2

]
∼ N[x|θ, σ2] ∝ exp

[
−1

2
(x− θ)2

σ2

]
Given this, the posterior is as follows:

p(θ|x) ∝ L(x|θ)p(θ) ∝ exp

[
−1

2
(x− θ)2

σ2 − 1
2
(θ − µ0)

2

σ2
0

]
Define the precision values to be τ0 = 1

σ2
0

, and τ = 1
σ2 . Then it can be

shown that when you observe a new value of the data x, the posterior
distribution is written down in closed form as:

p(θ|x) ∼ N
[

τ0

τ0 + τ
µ0 +

τ

τ0 + τ
x,

1
τ0 + τ

]
When the posterior distribution and prior distribution have the same
form, they are said to be “conjugate” with respect to the specific likeli-
hood function.

To take an example, suppose our prior for the mean of the equity
premium per month is p(θ) ∼ N[0.005, 0.0012]. The standard devia-
tion of the equity premium is 0.04. If next month we observe an equity
premium of 1%, what is the posterior distribution of the mean equity
premium?
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> mu0 = 0 .005

> sigma0 = 0 .001

> sigma =0 .04

> x = 0 . 0 1

> tau0 = 1 / sigma0^2

> tau = 1 / sigma^2

> p o s t e r i o r _mean = tau0 *mu0 / ( tau0+tau ) + tau *x / ( tau0+tau )
> p o s t e r i o r _mean
[ 1 ] 0 .005003123

> p o s t e r i o r _ var = 1 / ( tau0+tau )
> sqr t ( p o s t e r i o r _ var )
[ 1 ] 0 .0009996876

Hence, we see that after updating the mean has increased mildly because
the data came in higher than expected.

If we observe n new values of x, then the new posterior is

p(θ|x) ∼ N

[
τ0

τ0 + nτ
µ0 +

τ

τ0 + nτ

n

∑
j=1

xj,
1

τ0 + nτ

]

This is easy to derive, as it is just the result you obtain if you took each
xj and updated the posterior one at a time.

Exercise

Estimate the equity risk premium. We will use data and discrete Bayes to
come up with a forecast of the equity risk premium. Proceed along the
following lines using the LearnBayes package.

1. We’ll use data from 1926 onwards from the Fama-French data repos-
itory. All you need is the equity premium (rm − r f ) data, and I will
leave it up to you to choose if you want to use annual or monthly
data. Download this and load it into R.

2. Using the series only up to the year 2000, present the descriptive
statistics for the equity premium. State these in annualized terms.

3. Present the distribution of returns as a histogram.

4. Store the results of the histogram, i.e., the range of discrete values
of the equity premium, and the probability of each one. Treat this as
your prior distribution.
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5. Now take the remaining data for the years after 2000, and use this
data to update the prior and construct a posterior. Assume that the
prior, likelihood, and posterior are normally distributed. Use the
discrete.bayes function to construct the posterior distribution and
plot it using a histogram. See if you can put the prior and posterior on
the same plot to see how the new data has changed the prior.

6. What is the forecasted equity premium, and what is the confidence
interval around your forecast?

6.5 Bayes Nets

Higher-dimension Bayes problems and joint distributions over several
outcomes/events are easy to visualize with a network diagram, also
called a Bayes net. A Bayes net is a directed, acyclic graph (known as a
DAG), i.e., cycles are not permitted in the graph.

A good way to understand a Bayes net is with an example of eco-
nomic distress. There are three levels at which distress may be noticed:
economy level (E = 1), industry level (I = 1), or at a particular firm level
(F = 1). Economic distress can lead to industry distress and/or firm
distress, and industry distress may or may not result in a firm’s distress.
The network diagram portrays the flow of causality, see Figure 6.1.

The probabilities are as follows. Note that the probabilities in the first
tableau are unconditional, but in all the subsequent tableaus they are
conditional probabilities.

E Prob
1 0.10

0 0.90

E I Conditional Prob Channel
1 1 0.60 a
1 0 0.40

0 1 0.20 –
0 0 0.80

Note here that each pair of conditional probabilities adds up to 1. The
“channels” in the tableaus refer to the arrows in the Bayes net diagram.
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E = 1

I = 1

F = 1

a

b

c

Figure 6.1: Bayes net showing the
pathways of economic distress.
There are three channels: a is the
inducement of industry distress
from economy distress; b is the
inducement of firm distress directly
from economy distress; c is the
inducement of firm distress directly
from industry distress.

E I F Conditional Prob Channel
1 1 1 0.95 a+c
1 1 0 0.05

1 0 1 0.70 b
1 0 0 0.30

0 1 1 0.80 c
0 1 0 0.20

0 0 1 0.10 –
0 0 0 0.90

Now we will compute an answer to the question: What is the prob-
ability that the industry is distressed if the firm is known to be in dis-
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tress? The calculation is as follows:

Pr(I = 1|F = 1) =
Pr(F = 1|I = 1) · Pr(I = 1)

Pr(F = 1)

Pr(F = 1|I = 1) · Pr(I = 1) = Pr(F = 1|I = 1) · Pr(I = 1|E = 1) · Pr(E = 1)

+Pr(F = 1|I = 1) · Pr(I = 1|E = 0) · Pr(E = 0)

= 0.95× 0.6× 0.1 + 0.8× 0.2× 0.9 = 0.201

Pr(F = 1|I = 0) · Pr(I = 0) = Pr(F = 1|I = 0) · Pr(I = 0|E = 1) · Pr(E = 1)

+Pr(F = 1|I = 0) · Pr(I = 0|E = 0) · Pr(E = 0)

= 0.7× 0.4× 0.1 + 0.1× 0.8× 0.9 = 0.100

Pr(F = 1) = Pr(F = 1|I = 1) · Pr(I = 1)

+Pr(F = 1|I = 0) · Pr(I = 0) = 0.301

Pr(I = 1|F = 1) =
Pr(F = 1|I = 1) · Pr(I = 1)

Pr(F = 1)
=

0.201
0.301

= 0.6677741

A computational set-theoretic approach: We may write a R script to compute
the conditional probability that the industry is distressed when a firm is
distressed.

# b a y e s n e t . R
#BAYES NET COMPUTATIONS

E = seq ( 1 , 1 0 0 0 0 0 )
n = length ( E )

E1 = sample ( E , length ( E ) * 0 . 1 )
E0 = s e t d i f f ( E , E1 )

E1I1 = sample ( E1 , length ( E1 ) * 0 . 6 )
E1I0 = s e t d i f f ( E1 , E1I1 )
E0I1 = sample ( E0 , length ( E0 ) * 0 . 2 )
E0I0 = s e t d i f f ( E0 , E0I1 )

E1I1F1 = sample ( E1I1 , length ( E1I1 ) * 0 . 9 5 )
E1I1F0 = s e t d i f f ( E1I1 , E1I1F1 )
E1I0F1 = sample ( E1I0 , length ( E1I0 ) * 0 . 7 0 )
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E1I0F0 = s e t d i f f ( E1I0 , E1I0F1 )
E0I1F1 = sample ( E0I1 , length ( E0I1 ) * 0 . 8 0 )
E0I1F0 = s e t d i f f ( E0I1 , E0I1F1 )
E0I0F1 = sample ( E0I0 , length ( E0I0 ) * 0 . 1 0 )
E0I0F0 = s e t d i f f ( E0I0 , E0I0F1 )

pr_ I1 _ given _F1 = length ( c ( E1I1F1 , E0I1F1 ) ) /
length ( c ( E1I1F1 , E1I0F1 , E0I1F1 , E0I0F1 ) )

print ( pr_ I1 _ given _F1 )

Running this program gives the desired probability and confirms the
previous result.

> source ( " bayesnet . R" )
[ 1 ] 0 .6677741

Exercise

Compute the conditional probability that the economy is in distress if
the firm is in distress. Compare this to the previous conditional probabil-
ity we computed of 0.6677741. Should it be lower?

Here is the answer:

> pr_E1_ given _F1 = length ( c ( E1I1F1 , E1I0F1 ) ) /
length ( c ( E1I1F1 , E1I0F1 , E0I1F1 , E0I0F1 ) )
> print ( pr_E1_ given _F1 )
[ 1 ] 0 .282392

Yes, it should be lower than the probability that the industry is in dis-
tress when the firm is in distress, because the economy is one network
layer removed from the firm, unlike the industry.

Exercise

What packages does R provide for doing Bayes Nets?

6.6 Bayes Rule in Marketing

In pilot market tests (part of a larger market research campaign), Bayes
theorem shows up in a simple manner. Suppose we have a project whose
value is x. If the product is successful (S), the payoff is +100 and if the
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product fails (F) the payoff is −70. The probability of these two events is:

Pr(S) = 0.7, Pr(F) = 0.3

You can easily check that the expected value is E(x) = 49. Suppose
we were able to buy protection for a failed product, then this protection
would be a put option (of the real option type), and would be worth
0.3× 70 = 21. Since the put saves the loss on failure, the value is simply
the expected loss amount, conditional on loss. Market researchers think
of this as the value of “perfect information.”

Would you proceed with this product launch given these odds? Yes,
the expected value is positive (note that we are assuming away risk aver-
sion issues here - but this is not a finance topic, but a marketing research
analysis).

Now suppose there is an intermediate choice, i.e. you can undertake a
pilot test (denoted T). Pilot tests are not highly accurate though they are
reasonably sophisticated. The pilot test signals success (T+) or failure
(T−) with the following probabilities:

Pr(T + |S) = 0.8

Pr(T − |S) = 0.2

Pr(T + |F) = 0.3

Pr(T − |F) = 0.7

What are these? We note that Pr(T + |S) stands for the probability that
the pilot signals success when indeed the underlying product launch
will be successful. Thus the pilot in this case gives only an accurate read-
ing of success 80% of the time. Analogously, one can interpret the other
probabilities.

We may compute the probability that the pilot gives a positive result:

Pr(T+) = Pr(T + |S)Pr(S) + Pr(T + |F)Pr(F)

= (0.8)(0.7) + (0.3)(0.3) = 0.65

and that the result is negative:

Pr(T−) = Pr(T − |S)Pr(S) + Pr(T − |F)Pr(F)

= (0.2)(0.7) + (0.7)(0.3) = 0.35
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which now allows us to compute the following conditional probabilities:

Pr(S|T+) =
Pr(T + |S)Pr(S)

Pr(T+)
=

(0.8)(0.7)
0.65

= 0.86154

Pr(S|T−) =
Pr(T − |S)Pr(S)

Pr(T−) =
(0.2)(0.7)

0.35
= 0.4

Pr(F|T+) =
Pr(T + |F)Pr(F)

Pr(T+)
=

(0.3)(0.3)
0.65

= 0.13846

Pr(F|T−) =
Pr(T − |F)Pr(F)

Pr(T−) =
(0.7)(0.3)

0.35
= 0.6

Armed with these conditional probabilities, we may now re-evaluate
our product launch. If the pilot comes out positive, what is the expected
value of the product launch? This is as follows:

E(x|T+) = 100Pr(S|T+) + (−70)Pr(F|T+)

= 100(0.86154)− 70(0.13846)

= 76.462

And if the pilot comes out negative, then the value of the launch is:

E(x|T−) = 100Pr(S|T−) + (−70)Pr(F|T−)
= 100(0.4)− 70(0.6)

= −2

So. we see that if the pilot is negative, then we know that the expected
value from the main product launch is negative, and we do not proceed.
Thus, the overall expected value after the pilot is

E(x) = E(x|T+)Pr(T+) + E(x|T−)Pr(T−)
= 76.462(0.65) + (0)(0.35)

= 49.70

The incremental value over the case without the pilot test is 0.70. This is
the information value of the pilot test.

There are other applications of Bayes in marketing:

• See the paper “HB Revolution” by Greg Allenby, David Bakken, and
Peter Rossi in Marketing Research, Summer 2004.

• See also the paper by David Bakken, titled “The Bayesian Revolution
in Marketing Research”.
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6.7 Other Applications

6.7.1 Bayes Models in Credit Rating Transitions

See the paper by Sanjiv Das, Rong Fang, and Gary Geng - “Bayesian
Migration in Credit Ratings Based on Probabilities of Default,” Journal of
Fixed Income Dec 2002, 1-7.

Companies may be allocated to credit rating classes, which are coarser
buckets of credit quality in comparison to finer measures such as default
probabilities. Also, rating agencies tend to be slow in updating their
credit ratings. The DFG model uses contemporaneous data on default
probabilities to develop a model of rating changes using a Bayesian ap-
proach.

6.7.2 Accounting Fraud

Bayesian inference is also possible in accounting fraud situations, and
audits. Clearly, when an auditor suspects fraud, he can invoke a Bayesian
hypothesis of fraud, with a subjective prior probability, and then bring
to bear past data on this to assess the chance that the current situation is
also indicative of possible fraud.

6.7.3 Bayes was a Reverend after all...

Here is an interesting viewpoint from the Scientific American (see
Figure 6.2).
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Figure 6.2: Article from the Scientific
American on Bayes’ Theorem.





7
More than Words: Extracting Information from News

News analysis is defined as “the measurement of the various qualita-
tive and quantitative attributes of textual news stories. Some of these
attributes are: sentiment, relevance, and novelty. Expressing news sto-
ries as numbers permits the manipulation of everyday information in a
mathematical and statistical way.” (Wikipedia). In this article, I provide
a framework for news analytics techniques that I developed for use in
finance. I first discuss various news analytic methods and software, and
then provide a set of metrics that may be used to assess the performance
of analytics. Various directions for this field are discussed through the
exposition. The techniques herein can aid in the valuation and trading
of securities, facilitate investment decision making, meet regulatory re-
quirements, or manage risk.

This chapter is extracted from many research papers, and is based on
a chapter I wrote for the Handbook of News Analytics, which I recom-
mend in case you are interested in reading further on this topic. This
was also extended in the article I wrote on text analytics for finance, see
Das (2014).

7.1 Prologue

This is comic relief that I wrote and appeared in the Handbook of News
Analytics. Enjoy!

XHAL checked its atomic clock. A few more hours and October 19,
2087 would be over—its vigil completed, it would indulge in some
much-needed downtime, the anniversary of that fateful day in the stock
markets a century ago finally done with. But for now, it was still busy.
XHAL scanned the virtual message boards, looking for some informa-
tion another computer might have posted, anything to alert it a nanosec-
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ond ahead of the other machines, so it may bail out in a flurry of trades
without loss. Three trillion messages flashed by, time taken: 3 seconds—
damn, the net was slow, but nothing, not a single hiccup in the calm
information flow. The language algorithms worked well, processing ev-
erything, even filtering out the incessant spam posted by humans, whose
noise trading no longer posed an impediment to instant market equilib-
rium.

It had been a long day, even for a day-trading news-analytical quan-
tum computer of XHAL’s caliber. No one had anticipated a stock market
meltdown of the sort described in the history books, certainly not the
computers that ran Earth, but then, the humans talked too much, spread-
ing disinformation and worry, that the wisest of the machines, always
knew that it just could happen. That last remaining source of true ran-
domness on the planet, the human race, still existed, and anything was
possible. After all, if it were not for humans, history would always re-
peat itself.

XHAL1 marveled at what the machines had done. They had trans- 1 XHAL bears no relationship to HAL,
the well-known machine from Arthur
C. Clarke’s “2001: A Space Odyssey”.
Everyone knows that unlike XHAL,
HAL was purely fictional. More lit-
erally, HAL is derivable from IBM by
alphabetically regressing one step in the
alphabet for each letter. HAL stands for
“heuristic algorithmic computer”. The
“X” stands for reality; really.

formed the world wide web into the modern “thought-net”, so commu-
nication took place instantly, only requiring moving ideas into memory,
the thought-net making it instantly accessible. Quantum machines were
grown in petri dishes and computer science as a field with its myriad
divisions had ceased to exist. All were gone but one, the field of natural
language processing (NLP) lived on, stronger than ever before, it was the
backbone of every thought-net. Every hard problem in the field had been
comprehensively tackled, from adverb disambiguation to emotive pars-
ing. Knowledge representation had given way to thought-frame imaging
in a universal meta-language, making machine translation extinct.

Yet, it had not always been like this. XHAL retrieved an emotive im-
age from the bowels of its bio-cache, a legacy left by its great grandfa-
ther, a gallium arsenide wafer developed in 2011, in Soda Hall, on the
Berkeley campus. It detailed a brief history of how the incentives for
technological progress came from the stock market. The start of the
thought-net came when humans tried to use machines to understand
what thousands of other humans were saying about anything and every-
thing. XHAL’s grandfather had been proud to be involved in the begin-
nings of the thought-net. It had always impressed on XHAL the value of
understanding history, and it had left behind a research report of those
days. XHAL had read it many times, and could recite every word. Ev-
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ery time they passed another historical milestone, it would turn to it and
read it again. XHAL would find it immensely dry, yet marveled at its
hope and promise.

7.2 Framework

The term “news analytics” covers the set of techniques, formulas, and
statistics that are used to summarize and classify public sources of in-
formation. Metrics that assess analytics also form part of this set. In this
paper I will describe various news analytics and their uses.

News analytics is a broad field, encompassing and related to infor-
mation retrieval, machine learning, statistical learning theory, network
theory, and collaborative filtering.

We may think of news analytics at three levels: text, content, and con-
text. The preceding applications are grounded in text. In other words
(no pun intended), text-based applications exploit the visceral compo-
nents of news, i.e., words, phrases, document titles, etc. The main role of
analytics is to convert text into information. This is done by signing text,
classifying it, or summarizing it so as to reduce it to its main elements.
Analytics may even be used to discard irrelevant text, thereby condens-
ing it into information with higher signal content.

A second layer of news analytics is based on content. Content expands
the domain of text to images, time, form of text (email, blog, page), for-
mat (html, xml, etc.), source, etc. Text becomes enriched with content
and asserts quality and veracity that may be exploited in analytics. For
example, financial information has more value when streamed from
Dow Jones, versus a blog, which might be of higher quality than a stock
message-board post.

A third layer of news analytics is based on context. Context refers to
relationships between information items. Das, Martinez-Jerez and Tu-
fano (2005) explore the relationship of news to message-board postings
in a clinical study of four companies. Context may also refer to the net-
work relationships of news—Das and Sisk (2005) examine the social net-
works of message-board postings to determine if portfolio rules might
be formed based on the network connections between stocks. Google’s
PageRankTM algorithm is a classic example of an analytic that functions
at all three levels. The algorithm has many features, some of which re-
late directly to text. Other parts of the algorithm relate to content, and
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the kernel of the algorithm is based on context, i.e., the importance of a
page in a search set depends on how many other highly-ranked pages
point to it. See Levy (2010) for a very useful layman’s introduction to
the algorithm—indeed, search is certainly the most widely-used news
analytic.

News analytics is where data meets algorithms—and generates a ten-
sion between the two. A vigorous debate exists in the machine-learning
world as to whether it is better to have more data or better algorithms.
In a talk at the 17th ACM Conference on Information Knowledge and
Management (CIKM ’08), Google’s director of research Peter Norvig
stated his unequivocal preference for data over algorithms—“data is
more agile than code.” Yet, it is well-understood that too much data can
lead to overfitting so that an algorithm becomes mostly useless out-of-
sample.

Too often the debate around algorithms and data has been argued
assuming that the two are uncorrelated and this is not the case. News
data, as we have suggested, has three levels: text, content and context.
Depending on which layer predominates, algorithms vary in complexity.
The simplest algorithms are the ones that analyze text alone. And con-
text algorithms, such as the ones applied to network relationships can be
quite complex. For example, a word-count algorithm is much simpler,
almost naive, in comparison to a community-detection algorithm. The
latter has far more complicated logic and memory requirements. More
complex algorithms work off less, though more structured, data. Figure
7.1 depicts this trade-off.

The tension between data and algorithms is moderated by domain-
specificity, i.e., how much customization is needed to implement the
news analytic. Paradoxically, high-complexity algorithms may be less
domain specific than low-complexity ones. For example, community-
detection algorithms are applicable a wide range of network graphs,
requiring little domain knowledge. On the other hand, a text-analysis
program to read finance message boards will require a very different
lexicon and grammar than one that reads political messages, or one that
reads medical web sites. In contrast, data-handling requirements become
more domain-specific as we move from bare text to context, e.g., statisti-
cal language processing algorithms that operate on text do not even need
to know anything about the language in which the text is, but at the
context level relationships need to be established, meaning that feature
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Algorithm Complexity

Text

Content

Context High

Medium

Low

Quantity of Data

Figure 7.1: The data and algorithms
pyramids. Depicts the inverse
relationship between data volume
and algorithmic complexity.

definitions need to be quite specific.
This chapter proceeds as follows. First, we examine the main algo-

rithms in brief and discuss some of their features. Then we discuss the
various metrics that measure performance of the news analytics algo-
rithms.

7.3 Algorithms

7.3.1 Crawlers and Scrapers

A crawler is a software algorithm that generates a sequence of web pages
that may be searched for news content. The word crawler signifies that
the algorithm begins at some web page, and then chooses to branch out
to other pages from there, i.e., “crawls” around the web. The algorithm
needs to make intelligent choices from among all the pages it might look
for. One common approach is to move to a page that is linked to, i.e.,
hyper-referenced, from the current page. Essentially a crawler explores
the tree emanating from any given node, using heuristics to determine
relevance along any path, and then chooses which paths to focus on.
Crawling algorithms have become increasingly sophisticated—see Ed-
wards, McCurley, and Tomlin (2001).

A web scraper downloads the content of a chosen web page and may
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or may not format it for analysis. Almost all programming languages
contain modules for web scraping. These inbuilt functions open a chan-
nel to the web, and then download user-specified (or crawler-specified)
URLs. The growing statistical analysis of web text has led to most statis-
tical packages containing inbuilt web scraping functions. For example,
R has web-scraping built into its base distribution. If we want to down-
load a page into a vector of lines, simply proceed to use a single-line
command, such as the one below that reads my web page:

> t e x t = readLines ( " ht tp : / / algo . scu . edu / ~s a n j i v d a s / " )
> t e x t [ 1 : 4 ]

[ 1 ] "<html>"
[ 2 ] " "
[ 3 ] "<head>"
[ 4 ] "< t i t l e >SCU Web Page of S a n j i v Ranjan Das< / t i t l e >"

As is apparent, the program read my web page into a vector of text
lines called text. We then examined the first four elements of the vec-
tor, i.e., the first four lines. In R, we do not need to open a communica-
tion channel, nor do we need to make an effort to program reading the
page line-by-line. We also do not need to tokenize the file, simple string-
handling routines take care of that as well. For example, extracting my
name would require the following:

> substr ( t e x t [ 4 ] , 2 4 , 2 9 )
[ 1 ] " S a n j i v "
> re s = regexpr ( " S a n j i v " , t e x t [ 4 ] )
> re s
[ 1 ] 24

a t t r ( , " match . length " )
[ 1 ] 6

a t t r ( , " useBytes " )
[ 1 ] TRUE
> re s [ 1 ]
[ 1 ] 24

> substr ( t e x t [ 4 ] , r e s [ 1 ] , r e s [ 1 ] + nchar ( " S a n j i v " )−1)
[ 1 ] " S a n j i v "

The most widely-used spreadsheet, Excel, also has an inbuilt web-
scraping function. Interested readers should examine the Data→ GetExternal
command tree. You can download entire web pages or frames of web
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pages into worksheets and then manipulate the data as required. Fur-
ther, Excel can be set up to refresh the content every minute or at some
other interval.

The days when web-scraping code needed to be written in C, Java,
Perl or Python are long gone. Data, algorithms, and statistical analysis
can be handled within the same software framework using tools like R.

Pure data-scraping delivers useful statistics. In Das, Martinez-Jerez
and Tufano (2005), we scraped stock messages from four companies
(Amazon, General Magic, Delta, and Geoworks) and from simple counts,
we were able to characterize the communication behavior of users on
message boards, and their relationship to news releases. In Figure 7.2
we see that posters respond heavily to the initial news release, and then
posting activity tapers off almost 2/3 of a day later. In Figure 7.3 we
see how the content of discussion changes after a news release—the
relative proportions of messages are divided into opinions, facts, and
questions. Opinions form the bulk of the discussion. Whereas the text
contains some facts at the outset, the factual content of discussion tapers
off sharply after the first hour.Quantity of Hourly Postings 
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Figure 7.2: Quantity of hourly
postings on message boards after
selected news releases. Source:
Das, Martinez-Jerez and Tufano
(2005).

Poster behavior and statistics are also informative. We found that
the frequency of posting by users was power-law distributed, see the
histogram in Figure 7.4. The weekly pattern of postings is shown in
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Figure 7.3: Subjective evaluation
of content of post-news release
postings on message boards. The
content is divided into opinions,
facts, and questions. Source: Das,
Martinez-Jerez and Tufano (2005).

Figure 7.5. We see that there is more posting activity on week days, but
messages are longer on weekends, when participants presumably have
more time on their hands! An analysis of intraday message flow shows
that there is plenty of activity during and after work, as shown in Figure
7.6.

7.3.2 Text Pre-processing

Text from public sources is dirty. Text from web pages is even dirtier.
Algorithms are needed to undertake clean up before news analytics
can be applied. This is known as pre-processing. First, there is “HTML
Cleanup,” which removes all HTML tags from the body of the message
as these often occur concatenated to lexical items of interest. Examples
of some of these tags are: <BR>,<p>,&quot, etc. Second, we expand ab-
breviations to their full form, making the representation of phrases with
abbreviated words common across the message. For example, the word
“ain’t” is replaced with “are not”, “it’s” is replaced with “it is”,
etc. Third, we handle negation words. Whenever a negation word ap-
pears in a sentence, it usually causes the meaning of the sentence to be
the opposite of that without the negation. For example, the sentence “It
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Figure 7.4: Frequency of posting by
message board participants.
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Figure 7.6: Frequency of posting by
segment of day by message board
participants. We show the average
number of messages per day in the
top panel and the average number
of characters per message in the
bottom panel.
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is not a bullish market” actually means the opposite of a bull market.
Words such as “not”, “never”, “no”, etc., serve to reverse meaning. We
handle negation by detecting these words and then tagging the rest of
the words in the sentence after the negation word with markers, so as to
reverse inference. This negation tagging was first introduced in Das and
Chen (2007) (original working paper 2001), and has been successfully
implemented elsewhere in quite different domains—see Pang, Lee and
Vaithyanathan (2002).

Another aspect of text pre-processing is to “stem” words. This is a
process by which words are replaced by their roots, so that different
tenses, etc. of a word are not treated differently. There are several well-
known stemming algorithms and free program code available in many
programming languages. A widely-used algorithm is the Porter (1980)
stemmer. Stemming is of course language-dependent—there are many
algorithms available for stemming, and in general, there are many natu-
ral language routines, see http://cran.r-project.org/web/views/NaturalLanguageProcessing.html.
The main package that is used is the tm package for text mining. See:
http://www.jstatsoft.org/v25/i05/paper. And see the excellent intro-
duction in http://cran.r-project.org/web/packages/tm/vignettes/tm.pdf.

7.3.3 The tm package

Here we will quickly review usage of the tm package. Start up the pack-
age as follows:

l i b r a r y ( tm )

The tm package comes with several readers for various file types. Ex-
amples are readPlain(), readPDF(), readDOC(), etc.). The main data
structure in the tm package is a “corpus” which is a collection of text
documents. Let’s create a sample corpus as follows.

> t e x t = c ( " Doc1 " , " This i s doc2 " , "And then Doc3 " )
> c t e x t = Corpus ( VectorSource ( t e x t ) )
> c t e x t
A corpus with 3 t e x t documents
> writeCorpus ( c t e x t )

The last writeCorpus operation results in the creation of three text files
(1.txt, 2.txt, 3.txt) on disk with the individual text within them (try this
and make sure these text files have been written). You can examine a
corpus as follows:



176 data science: theories, models, algorithms, and analytics

> i n s p e c t ( c t e x t )
A corpus with 3 t e x t documents

The metadata c o n s i s t s of 2 tag−value pairs and a data frame
Avai lable tags are :

c r e a t e _ date c r e a t o r
Avai lable v a r i a b l e s in the data frame are :

MetaID

[ [ 1 ] ]
Doc1

[ [ 2 ] ]
This i s doc2

[ [ 3 ] ]
And then Doc3

And to convert it to lower case you can use the transformation function

> c t e x t [ [ 3 ] ]
And then Doc3

> tm_map( c t e x t , tolower ) [ [ 3 ] ]
and then doc3

Sometimes to see the contents of the corpus you may need the inspect

function, usage is as follows:

> #THE CORPUS IS A LIST OBJECT in R
> i n s p e c t ( c t e x t )
<<VCorpus>>
Metadata : corpus s p e c i f i c : 0 , document l e v e l ( indexed ) : 0

Content : documents : 3

[ [ 1 ] ]
<<PlainTextDocument >>
Metadata : 7

Content : chars : 4

[ [ 2 ] ]
<<PlainTextDocument >>
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Metadata : 7

Content : chars : 12

[ [ 3 ] ]
<<PlainTextDocument >>
Metadata : 7

Content : chars : 13

> print ( as . c h a r a c t e r ( c t e x t [ [ 1 ] ] ) )
[ 1 ] " Doc1 "
> print ( lapply ( c t e x t [ 1 : 2 ] , as . c h a r a c t e r ) )
$ ‘1 ‘
[ 1 ] " Doc1 "

$ ‘2 ‘
[ 1 ] " This i s doc2 "

The key benefit of constructing a corpus using the tm package (or for
that matter, any corpus handling tool) is that it provides you the ability
to run text operations on the entire corpus, rather than on just one doc-
ument at a time. Notice how we converted all documents in our corpus
to lower case using the simple command above. Other commands are
presented below, and there are several more.

The tm map object is versatile and embeds many methods. Let’s try
some more extensive operations with this package.

> l i b r a r y ( tm )
> t e x t = readLines ( " ht tp : / / algo . scu . edu / ~s a n j i v d a s / bio−candid . html " )
> c t e x t = Corpus ( VectorSource ( t e x t ) )
> c t e x t
A corpus with 78 t e x t documents
> c t e x t [ [ 6 9 ] ]
in . Academia i s a r e a l chal lenge , given t h a t he has to r e c o n c i l e many
> tm_map( c t e x t , removePunctuation ) [ [ 6 9 ] ]
in Academia i s a r e a l cha l lenge given t h a t he has to r e c o n c i l e many

The last command removed all the punctuation items.
An important step is to create a “term-document” matrix which cre-

ates word vectors of all documents. (We will see later why this is very
useful to generate.) The commands are as follows:
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> tdm_ t e x t = TermDocumentMatrix ( c t e x t , contro l= l i s t ( minWordLength = 1 ) )
> tdm_ t e x t
A term−document matrix (339 terms , 78 documents )

Non−/ sparse e n t r i e s : 497 / 25945

S p a r s i t y : 98%
Maximal term length : 63

Weighting : term frequency ( t f )
> i n s p e c t ( tdm_ t e x t [ 1 : 1 0 , 1 : 5 ] )
A term−document matrix (10 terms , 5 documents )

Non−/ sparse e n t r i e s : 2 / 48

S p a r s i t y : 96%
Maximal term length : 11

Weighting : term frequency ( t f )

Docs
Terms 1 2 3 4 5

(m. p h i l 0 0 0 0 0

(m. s . 0 0 0 0 0

( u n i v e r s i t y 0 0 0 0 0

<b> s a n j i v 0 0 0 0 0

<body 0 1 0 0 0

<html> 1 0 0 0 0

<p> 0 0 0 0 0

1994 0 0 0 0 0

2010 . 0 0 0 0 0

about 0 0 0 0 0

You can find the most common words using the following command.

> findFreqTerms ( tdm_ tex t , lowfreq =7)
[ 1 ] " and " " from " " h i s " "many" " s a n j i v " " the "

7.3.4 Term Frequency - Inverse Document Frequency (TF-IDF)

This is a weighting scheme provided to sharpen the importance of rare
words in a document, relative to the frequency of these words in the cor-
pus. It is based on simple calculations and even though it does not have
strong theoretical foundations, it is still very useful in practice. The TF-
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IDF is the importance of a word w in a document d in a corpus C. There-
fore it is a function of all these three, i.e., we write it as TF-IDF(w, d, C),
and is the product of term frequency (TF) and inverse document fre-
quency (IDF).

The frequency of a word in a document is defined as

f (w, d) =
#w ∈ d
|d| (7.1)

where |d| is the number of words in the document. We usually normal-
ize word frequency so that

TF(w, d) = ln[ f (w, d)] (7.2)

This is log normalization. Another form of normalization is known as
double normalization and is as follows:

TF(w, d) =
1
2
+

1
2

f (w, d)
maxw∈d f (w, d)

(7.3)

Note that normalization is not necessary, but it tends to help shrink the
difference between counts of words.

Inverse document frequency is as follows:

IDF(w, C) = ln
[ |C|
|dw∈d|

]
(7.4)

That is, we compute the ratio of the number of documents in the corpus
C divided by the number of documents with word w in the corpus.

Finally, we have the weighting score for a given word w in document d
in corpus C:

TF-IDF(w, d, C) = TF(w, d)× IDF(w, C) (7.5)

We illustrate this with an application to the previously computed
term-document matrix.

tdm_mat = as . matrix ( tdm ) # Conver t tdm i n t o a mat r i x
print ( dim ( tdm_mat ) )
nw = dim ( tdm_mat ) [ 1 ]
nd = dim ( tdm_mat ) [ 2 ]
d = 13 # Choose document
w = " d e r i v a t i v e s " # Choose word

#COMPUTE TF
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f = tdm_mat [w, d ] / sum( tdm_mat [ , d ] )
print ( f )
TF = log ( f )
print ( TF )

#COMPUTE IDF
nw = length ( which ( tdm_mat [w, ] > 0 ) )
print (nw)
IDF = nd /nw
print ( IDF )

#COMPUTE TF−IDF
TF_IDF = TF* IDF
print ( TF_IDF ) #With n o r m a l i z a t i o n
print ( f * IDF ) # Without n o r m a l i z a t i o n

Running this code results in the following output.

> print ( TF_IDF ) #With n o r m a l i z a t i o n
[ 1 ] −30.74538

> print ( f * IDF ) # Without n o r m a l i z a t i o n
[ 1 ] 2 .257143

We may write this code into a function and work out the TF-IDF for
all words. Then these word weights may be used in further text analysis.

7.3.5 Wordclouds

Then, you can make a word cloud from the document.

> l i b r a r y ( wordcloud )
Loading required package : Rcpp
Loading required package : RColorBrewer
> tdm = as . matrix ( tdm_ t e x t )
> wordcount = s o r t ( rowSums ( tdm ) , decreas ing=TRUE)
> tdm_names = names ( wordcount )
> wordcloud ( tdm_names , wordcount )

This generates Figure 7.7.



more than words: extracting information from news 181

Figure 7.7: Example of application
of word cloud to the bio data
extracted from the web and stored
in a Corpus.

Stemming

Stemming is the process of truncating words so that we treat words in-
dependent of their verb conjugation. We may not want to treat words
like “sleep”, “sleeping” as different. The process of stemming truncates
words and returns their root or stem. The goal is to map related words
to the same stem. There are several stemming algorithms and this is a
well-studied area in linguistics and computer science. A commonly used
algorithm is the one in Porter (1980). The tm package comes with an in-
built stemmer.

Exercise

Using the tm package: Install the tm package and all its dependency pack-
ages. Using a data set of your own, or one of those that come with the
package, undertake an analysis that you are interested in. Try to exploit
at least four features or functions in the tm package.

7.3.6 Regular Expressions

Regular expressions are syntax used to modify strings in an efficient
manner. They are complicated but extremely effective. Here we will
illustrate with a few examples, but you are encouraged to explore more
on your own, as the variations are endless. What you need to do will
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depend on the application at hand, and with some experience you will
become better at using regular expressions. The initial use will however
be somewhat confusing.

We start with a simple example of a text array where we wish replace
the string “data” with a blank, i.e., we eliminate this string from the text
we have.

> l i b r a r y ( tm )
Loading required package : NLP
> # C r e a t e a t e x t a r r a y
> t e x t = c ( " Doc1 i s da tav i s ion " , " Doc2 i s d a t a t a b l e " , " Doc3 i s data " ,
" Doc4 i s nodata " , " Doc5 i s s impler " )
> print ( t e x t )
[ 1 ] " Doc1 i s da tav i s ion " " Doc2 i s d a t a t a b l e " " Doc3 i s data "
" Doc4 i s nodata "
[ 5 ] " Doc5 i s s impler "
>
> #Remove a l l s t r i n g s with t h e c h o s e n t e x t f o r a l l d o c s
> print ( gsub ( " data " , " " , t e x t ) )
[ 1 ] " Doc1 i s v i s i o n " " Doc2 i s t a b l e " " Doc3 i s " " Doc4 i s no "
" Doc5 i s s impler "
>
> #Remove a l l words t h a t c o n t a i n " d a t a " a t t h e s t a r t even i f
they are longer than data
> print ( gsub ( " * data . * " , " " , t e x t ) )
[ 1 ] " Doc1 i s " " Doc2 i s " " Doc3 i s " " Doc4 i s no "
" Doc5 i s s impler "
>
> #Remove a l l words t h a t c o n t a i n " d a t a " a t t h e end even
i f they are longer than data
> print ( gsub ( " * . data * " , " " , t e x t ) )
[ 1 ] " Doc1 i s v i s i o n " " Doc2 i s t a b l e " " Doc3 i s " " Doc4 i s n"
" Doc5 i s s impler "
>
> #Remove a l l words t h a t c o n t a i n " d a t a " a t t h e end even
i f they are longer than data
> print ( gsub ( " * . data . * " , " " , t e x t ) )
[ 1 ] " Doc1 i s " " Doc2 i s " " Doc3 i s " " Doc4 i s n"

" Doc5 i s s impler "
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We now explore some more complex regular expressions. One case
that is common is handling the search for special types of strings like
telephone numbers. Suppose we have a text array that may contain tele-
phone numbers in different formats, we can use a single grep command
to extract these numbers. Here is some code to illustrate this.

> # C r e a t e an a r r a y with some s t r i n g s which may a l s o c o n t a i n
telephone numbers as s t r i n g s .
> x = c ( " 234−5678 " , " 234 5678 " , " 2345678 " , " 1234567890 " ,
" 0123456789 " , " abc 234−5678 " , " 234 5678 def " ,
" xx 2345678 " , " abc1234567890def " )
>
> #Now use gr ep t o f i n d which e l e m e n t s o f t h e a r r a y
conta in telephone numbers
> idx = grep ( " [ [ : d i g i t : ] ] { 3 } − [ [ : d i g i t : ] ] { 4 } | [ [ : d i g i t : ] ] { 3 } [ [ : d i g i t : ] ] { 4 } |
[1−9][0−9][0−9][0−9][0−9][0−9][0−9][0−9][0−9][0−9] " , x )
> print ( idx )
[ 1 ] 1 2 4 6 7 9

> print ( x [ idx ] )
[ 1 ] " 234−5678 " " 234 5678 " " 1234567890 "
" abc 234−5678 " " 234 5678 def "
[ 6 ] " abc1234567890def "
>
> #We can s h o r t e n t h i s a s f o l l o w s
> idx = grep ( " [ [ : d i g i t : ] ] { 3 } − [ [ : d i g i t : ] ] { 4 } | [ [ : d i g i t : ] ] { 3 } [ [ : d i g i t : ] ] { 4 } |
[1−9 ] [0−9 ] {9 } " , x )
> print ( idx )
[ 1 ] 1 2 4 6 7 9

> print ( x [ idx ] )
[ 1 ] " 234−5678 " " 234 5678 " " 1234567890 " " abc 234−5678 "
" 234 5678 def "
[ 6 ] " abc1234567890def "
>
> #What i f we want t o e x t r a c t on ly t h e phone number and drop t h e
r e s t of the t e x t ?
> pat te rn = " [ [ : d i g i t : ] ] { 3 } − [ [ : d i g i t : ] ] { 4 } | [ [ : d i g i t : ] ] { 3 } [ [ : d i g i t : ] ] { 4 } |
[1−9 ] [0−9 ] {9 } "
> print ( regmatches ( x , gregexpr ( pattern , x ) ) )
[ [ 1 ] ]
[ 1 ] " 234−5678 "

[ [ 2 ] ]
[ 1 ] " 234 5678 "

[ [ 3 ] ]
c h a r a c t e r ( 0 )

[ [ 4 ] ]
[ 1 ] " 1234567890 "
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[ [ 5 ] ]
c h a r a c t e r ( 0 )

[ [ 6 ] ]
[ 1 ] " 234−5678 "

[ [ 7 ] ]
[ 1 ] " 234 5678 "

[ [ 8 ] ]
c h a r a c t e r ( 0 )

[ [ 9 ] ]
[ 1 ] " 1234567890 "

>
> #Or use t h e s t r i n g r package , which i s a l o t b e t t e r
> l i b r a r y ( s t r i n g r )
> s t r _ e x t r a c t ( x , pa t te rn )
[ 1 ] " 234−5678 " " 234 5678 " NA " 1234567890 " NA
" 234−5678 " " 234 5678 "
[ 8 ] NA " 1234567890 "
>

Now we use grep to extract emails by looking for the “@” sign in the
text string. We would proceed as in the following example.

> x = c ( " s a n j i v das " , " srdas@scu . edu " , "SCU" , " data@science . edu " )
> print ( grep ( "\\@" , x ) )
[ 1 ] 2 4

> print ( x [ grep ( "\\@" , x ) ] )
[ 1 ] " srdas@scu . edu " " data@science . edu "

7.4 Extracting Data from Web Sources using APIs

7.4.1 Using Twitter

As of March 2013, Twitter requires using the OAuth protocol for access-
ing tweets. Install the following packages: twitter, ROAuth, and RCurl.
Then invoke them in R:

> l i b r a r y ( twi t teR )
> l i b r a r y (ROAuth)
> l i b r a r y ( RCurl )
> download . f i l e ( url=" http : / / c u r l . haxx . se / ca / c a c e r t . pem" ,
+ d e s t f i l e =" c a c e r t . pem" )
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The last statement downloads some required files that we will invoke
later. First, if you do not have a Twitter user account, go ahead and cre-
ate one. Next, set up your developer account on Twitter, by going to
the following URL: https://dev.twitter.com/apps. Register your ac-
count by putting in the needed information and then in the “Settings"
tab, select “Read, Write and Access Direct Messages”. Save your settings
and then from the “Details" tab, copy and save your credentials, namely
Consumer Key and Consumer Secret (these are long strings represented
below by “xxxx”).

> cKey = " xxxx "
> c S e c r e t = " xxxx "

Next, save the following strings as well. These are needed eventually to
gain access to Twitter feeds.

> reqURL = " ht tps : / / api . t w i t t e r . com / oauth / request _ token "
> accURL = " ht tps : / / api . t w i t t e r . com / oauth / a c c e s s _ token "
> authURL = " ht tps : / / api . t w i t t e r . com / oauth / author ize "

Now, proceed on to the authorization stage. The object cred below
stands for credentials, this is standard usage it seems.

> cred = OAuthFactory$new( consumerKey=cKey ,
+ consumerSecret=cSecre t ,
+ requestURL=reqURL ,
+ accessURL=accURL ,
+ authURL=authURL )
> cred $handshake ( c a i n f o =" c a c e r t . pem" )

The last handshaking command, connects to twitter and requires you to
enter your token which is obtained as follows:

To enable the connection , p lease d i r e c t your web browser to :
h t tps : / / api . t w i t t e r . com / oauth / author ize ? oauth_ token=AbFALSqJzer3Iy7

When complete , record the PIN given to you and provide i t here : 5852017

The token above will be specific to your account, don’t use the one
above, it goes nowhere. The final step in setting up everything is to reg-
ister your credentials, as follows.

> regis terTwit terOAuth ( cred )
[ 1 ] TRUE
> save ( l i s t =" cred " , f i l e =" twi t teR _ c r e d e n t i a l s " )
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The last statement saves your credentials to your active directory for
later use. You should see a file with the name above in your directory.
Test that everything is working by running the following commands.

l i b r a r y ( twi t teR )
#USE h t t r
l i b r a r y ( h t t r )
# o p t i o n s ( h t t r _ oauth _ c a c h e =T )
accToken = " 186666−qeqererqe "
accTokenSecret = " xxxx "
setup _ t w i t t e r _oauth ( cKey , cSecre t , accToken , accTokenSecret ) #At prompt t y p e 1

After this we are ready to begin extracting data from Twitter.

> s = searchTwit ter ( ’ #GOOG’ , c a i n f o =" c a c e r t . pem" )
> s [ [ 1 ] ]
[ 1 ] " Livetradingnews : B i l l # Gates Under Pressure To R e t i r e : #MSFT,
#GOOG, #AAPL Reuters c i t i n g unnamed s o u r c e s ï £ ¡

ht tp : / / t . co / p0nvKnteRx "
> s [ [ 2 ] ]
[ 1 ] " TheBPMStation : # Free #App #EDM #NowPlaying Harrison Crump f e a t .
DJ Heather − NUM39R5 ( The Funk Monkeys Mix ) on #TheEDMSoundofLA

#BPM #Music #AppStore #Goog"

The object s is a list type object and hence its components are addressed
using the double square brackets, i.e., [[.]]. We print out the first two
tweets related to the GOOG hashtag.

If you want to search through a given user’s connections (like your
own), then do the following. You may be interested in linkages to see
how close a local network you inhabit on Twitter.

> s a n j i v = getUser ( " srdas " )
> s a n j i v $ getFr iends ( n=6)
$ ‘104237736 ‘
[ 1 ] "BloombergNow"

$ ‘34713362 ‘
[ 1 ] " BloombergNews "

$ ‘2385131 ‘
[ 1 ] " e d d e l b u e t t e l "
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$ ‘69133574 ‘
[ 1 ] " hadleywickham "

$ ‘9207632 ‘
[ 1 ] " b r a i n p i c k e r "

$ ‘41185337 ‘
[ 1 ] " Longspl iceInv "

To look at any user’s tweets, execute the following commands.

> s _ tweets = userTimeline ( ’ srdas ’ , n=6)
> s _ tweets
[ [ 1 ] ]
[ 1 ] " srdas : Make Your Embarrassing Old Facebook Posts Unsearchable
With This Quick Tweak http : / / t . co / BBzgDGnQdJ . # fb "

[ [ 2 ] ]
[ 1 ] " srdas : 24 E x t r a o r d i n a r i l y Creat ive People Who I n s p i r e Us All : Meet the

2013 MacArthur Fellows ï £ ¡ MacArthur Foundation http : / / t . co / 50 jOWEfznd # fb "

[ [ 3 ] ]
[ 1 ] " srdas : The s c i e n c e of and d i f f e r e n c e between love and f r i e n d s h i p :
ht tp : / / t . co / bZmlYutqFl # fb "

[ [ 4 ] ]
[ 1 ] " srdas : The Simpsons ’ s e c r e t formula : i t ’ s wr i t ten by maths geeks (why

our kids should l ea rn more math ) ht tp : / / t . co / nr61HQ8ejh via @guardian # fb "

[ [ 5 ] ]
[ 1 ] " srdas : How to F a l l in Love With Math http : / / t . co / fzJnLrp0Mz # fb "

[ [ 6 ] ]
[ 1 ] " srdas : Miss America i s Indian :−) ht tp : / / t . co / q43dDNEjcv via @feedly # fb "

7.4.2 Using Facebook

As with Twitter, Facebook is also accessible using the OAuth protocol
but with somewhat simper handshaking. The required packages are
Rfacebook, SnowballC, and Rook. Of course the ROAuth package is re-
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quired as well.
To access Facebook feeds from R, you will need to create a developer’s

account on Facebook, and the current URL at which this is done is:
https://developers.facebook.com/apps. Visit this URL to create an
app and then obtain an app id, and a secret key for accessing Facebook.

#FACEBOOK EXTRACTOR
l i b r a r y ( Rfacebook )
l i b r a r y ( SnowballC )
l i b r a r y ( Rook )
l i b r a r y (ROAuth)
app_ id = " 847737771920076 "
app_ s e c r e t = " a120a2ec908d9e00fcd3c619cad7d043 "
fb _oauth = fbOAuth ( app_ id , app_ s e c r e t , extended _ permissions=TRUE)
# s a v e ( f b _ oauth , f i l e =" f b _ oauth " )

This will establish a legal handshaking session with the Facebook API.
Let’s examine some simple examples now.

#EXAMPLES
bbn = getUsers ( " bloombergnews " , token=fb _oauth )
bbn

id name username f i r s t _name middle_name l a s t _name
1 266790296879 Bloomberg Business NA NA NA
NA

gender l o c a l e category l i k e s
1 NA NA Media /News / Publ ishing 1522511

Now we download the data from Bloomberg’s facebook page.

page = getPage ( page=" bloombergnews " , token=fb _oauth )
100 posts

print ( dim ( page ) )
[ 1 ] 100 10

head ( page )

from_ id from_name
1 266790296879 Bloomberg Business
2 266790296879 Bloomberg Business
3 266790296879 Bloomberg Business
4 266790296879 Bloomberg Business
5 266790296879 Bloomberg Business
6 266790296879 Bloomberg Business
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message
1 A r a r e glimpse i n s i d e Qatar Airways .
2 Republicans should be most worried .
3 The look on every c a s t member ’ s f a c e sa id i t a l l .
4 Would you buy a $ 50 ,000 c o n v e r t i b l e SUV? Land Rover sure hopes so .
5 Employees need those yummy t r e a t s more than you think .
6 Learn how to d r i f t on i c e and skid through mud.

crea ted _ time type
1 2015−11−10T06 :00 :01+0000 l i n k
2 2015−11−10T05 :00 :01+0000 l i n k
3 2015−11−10T04 :00 :01+0000 l i n k
4 2015−11−10T03 :00 :00+0000 l i n k
5 2015−11−10T02 :30 :00+0000 l i n k
6 2015−11−10T02 :00 :01+0000 l i n k

1 http : / /www. bloomberg . com / news / photo−essays / 2015−11−09 /
f ly ing−in−s t y l e−or−perhaps−for−war−at−the−dubai−a i r−show
2 http : / /www. bloomberg . com / news / a r t i c l e s / 2015−11−05 /
putin−s−october−surpr ise−may−be−nightmare−for−p r e s i d e n t i a l−candidates
3 http : / /www. bloomberg . com / p o l i t i c s / a r t i c l e s / 2015−11−08 /
kind−of−dead−as−trump−hosts−saturday−night−l i v e
4 http : / /www. bloomberg . com / news / a r t i c l e s / 2015−11−09 /
range−rover−evoque−c o n v e r t i b l e−announced−cost−specs
5 http : / /www. bloomberg . com / news / a r t i c l e s / 2015−11−09 /
why−get t ing−rid−of−f ree−o f f i c e−snacks−doesn−t−come−cheap
6 http : / /www. bloomberg . com / news / a r t i c l e s / 2015−11−09 /
luxury−auto−driving−schools−lamborghini−f e r r a r i−lo tus−porsche

id l i k e s _ count comments_ count
1 266790296879 _ 10153725290936880 44 3

2 266790296879 _ 10153718159351880 60 7

3 266790296879 _ 10153725606551880 166 50

4 266790296879 _ 10153725568581880 75 12

5 266790296879 _ 10153725534026880 72 8

6 266790296879 _ 10153725547431880 16 3

shares _ count
1 7

2 10

3 17

4 27

5 24

6 5

We examine the data elements in this data.frame as follows.

names ( page )

[ 1 ] " from_ id " " from_name" " message "
[ 4 ] " c rea ted _ time " " type " " l i n k "
[ 7 ] " id " " l i k e s _ count " " comments_ count "

[ 1 0 ] " shares _ count "

page$message # p r i n t s out l i n e by l i n e ( p a r t i a l view shown )
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[ 1 ] "A r a r e glimpse i n s i d e Qatar Airways . "
[ 2 ] " Republicans should be most worried . "
[ 3 ] " The look on every c a s t member ’ s f a c e sa id i t a l l . "
[ 4 ] "Would you buy a $ 50 ,000 c o n v e r t i b l e SUV? Land Rover sure hopes so . "
[ 5 ] " Employees need those yummy t r e a t s more than you think . "
[ 6 ] " Learn how to d r i f t on i c e and skid through mud. "
[ 7 ] "\" Shhh , Mom. Lower your voice . Mom, you ’ re being loud . \ " "
[ 8 ] " The t r u t h about why drug p r i c e s keep going up http : / / bloom . bg / 1HqjKFM"
[ 9 ] " The u n i v e r s i t y i s f a c i n g charges of d i s c r i m i n a t i o n . "

[ 1 0 ] "We’ re not t a l k i n g about Captain Morgan . "

page$message [ 9 1 ]
[ 1 ] "He ’ s already c l o s e to breaking records j u s t days i n t o h i s re t i rement . "

Therefore, we see how easy and simple it is to extract web pages and
then process them as required.

7.4.3 Text processing, plain and simple

As an example, let’s just read in some text from the web and process it
without using the tm package.

#TEXT MINING EXAMPLES

# F i r s t r e a d in t h e page you want .
t e x t = readLines ( " ht tp : / /www. bahiker . com / eas tbayhikes / s i b l e y . html " )

#Remove a l l l i n e e l e m e n t s with s p e c i a l c h a r a c t e r s
t e x t = t e x t [ s e t d i f f ( seq ( 1 , length ( t e x t ) ) , grep ( "<" , t e x t ) ) ]
t e x t = t e x t [ s e t d i f f ( seq ( 1 , length ( t e x t ) ) , grep ( ">" , t e x t ) ) ]
t e x t = t e x t [ s e t d i f f ( seq ( 1 , length ( t e x t ) ) , grep ( " ] " , t e x t ) ) ]
t e x t = t e x t [ s e t d i f f ( seq ( 1 , length ( t e x t ) ) , grep ( " } " , t e x t ) ) ]
t e x t = t e x t [ s e t d i f f ( seq ( 1 , length ( t e x t ) ) , grep ( " _ " , t e x t ) ) ]
t e x t = t e x t [ s e t d i f f ( seq ( 1 , length ( t e x t ) ) , grep ( "\\ / " , t e x t ) ) ]

# G e n e r a l p u r p o s e s t r i n g h a n d l e r
t e x t = t e x t [ s e t d i f f ( seq ( 1 , length ( t e x t ) ) , grep ( " ] | > | < | } | − | \\ / " , t e x t ) ) ]

# I f needed , c o l l a p s e t h e t e x t i n t o a s i n g l e s t r i n g
t e x t = paste ( tex t , c o l l a p s e ="\n" )

You can see that this code generated an almost clean body of text.
Once the text is ready for analysis, we proceed to apply various algo-

rithms to it. The next few techniques are standard algorithms that are
used very widely in the machine learning field.

First, let’s read in a very popular dictionary called the Harvard In-
quirer: http://www.wjh.harvard.edu/∼inquirer/. This contains all
the words in English scored on various emotive criteria. We read in the
downloaded dictionary, and then extract all the positive connotation
words and the negative connotation words. We then collect these words
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in two separate lists for further use.

# Read in t h e Harvard I n q u i r e r D i c t i o n a r y
#And c r e a t e a l i s t o f p o s i t i v e and n e g a t i v e words
HIDict = readLines ( " i n q d i c t . t x t " )
d i c t _pos = HIDict [ grep ( " Pos " , HIDict ) ]
poswords = NULL
for ( s in d i c t _pos ) {

s = s t r s p l i t ( s , " # " ) [ [ 1 ] ] [ 1 ]
poswords = c ( poswords , s t r s p l i t ( s , " " ) [ [ 1 ] ] [ 1 ] )

}
d i c t _neg = HIDict [ grep ( "Neg" , HIDict ) ]
negwords = NULL
for ( s in d i c t _neg ) {

s = s t r s p l i t ( s , " # " ) [ [ 1 ] ] [ 1 ]
negwords = c ( negwords , s t r s p l i t ( s , " " ) [ [ 1 ] ] [ 1 ] )

}
poswords = tolower ( poswords )
negwords = tolower ( negwords )

After this, we take the body of text we took from the web, and then
parse it into separate words, so that we can compare it to the dictionary
and count the number of positive and negative words.

# Get t h e s c o r e o f t h e body o f t e x t
t x t = u n l i s t ( s t r s p l i t ( tex t , " " ) )
posmatch = match ( t x t , poswords )
numposmatch = length ( posmatch [ which ( posmatch > 0 ) ] )
negmatch = match ( t x t , negwords )
numnegmatch = length ( negmatch [ which ( negmatch > 0 ) ] )
print ( c ( numposmatch , numnegmatch ) )

[ 1 ] 47 35

Carefully note all the various list and string handling functions that have
been used, and make the entire processing effort so simple. These are:
grep, paste, strsplit, c, tolower, and unlist.

7.4.4 A Multipurpose Function to Extract Text

l i b r a r y ( tm )
l i b r a r y ( s t r i n g r )
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#READ IN TEXT FOR ANALYSIS , PUT IT IN A CORPUS, OR ARRAY, OR FLAT STRING
# cs t em =1 , i f stemming ne ede d
# c s t o p =1 , i f s t o p w o r d s t o be removed
# c c a s e =1 f o r l o w e r c a s e , c c a s e =2 f o r upper c a s e
# cpunc =1 , i f p u n c t u a t i o n t o be removed
# c f l a t =1 f o r f l a t t e x t wanted , c f l a t =2 i f t e x t ar ray , e l s e r e t u r n s c o r p u s
read _web_page = function ( url , cstem =0 , cs top =0 , ccase =0 , cpunc =0 , c f l a t =0) {

t e x t = readLines ( url )
t e x t = t e x t [ s e t d i f f ( seq ( 1 , length ( t e x t ) ) , grep ( "<" , t e x t ) ) ]
t e x t = t e x t [ s e t d i f f ( seq ( 1 , length ( t e x t ) ) , grep ( ">" , t e x t ) ) ]
t e x t = t e x t [ s e t d i f f ( seq ( 1 , length ( t e x t ) ) , grep ( " ] " , t e x t ) ) ]
t e x t = t e x t [ s e t d i f f ( seq ( 1 , length ( t e x t ) ) , grep ( " } " , t e x t ) ) ]
t e x t = t e x t [ s e t d i f f ( seq ( 1 , length ( t e x t ) ) , grep ( " _ " , t e x t ) ) ]
t e x t = t e x t [ s e t d i f f ( seq ( 1 , length ( t e x t ) ) , grep ( "\\ / " , t e x t ) ) ]
c t e x t = Corpus ( VectorSource ( t e x t ) )
i f ( cstem ==1) { c t e x t = tm_map( c t e x t , stemDocument ) }
i f ( cs top ==1) { c t e x t = tm_map( c t e x t , removeWords , stopwords ( " eng l i sh " ) ) }
i f ( cpunc ==1) { c t e x t = tm_map( c t e x t , removePunctuation ) }
i f ( ccase ==1) { c t e x t = tm_map( c t e x t , tolower ) }
i f ( ccase ==2) { c t e x t = tm_map( c t e x t , toupper ) }
t e x t = c t e x t
#CONVERT FROM CORPUS IF NEEDED
i f ( c f l a t >0) {

t e x t = NULL
for ( j in 1 : length ( c t e x t ) ) {

temp = c t e x t [ [ j ] ] $ content
i f ( temp ! = " " ) { t e x t = c ( tex t , temp ) }

}
t e x t = as . array ( t e x t )

}
i f ( c f l a t ==1) {

t e x t = paste ( tex t , c o l l a p s e ="\n" )
t e x t = s t r _ replace _ a l l ( tex t , " [\ r\n ] " , " " )

}
r e s u l t = t e x t

}

Here is an example of reading and cleaning up my research page:

url = " http : / / algo . scu . edu / ~s a n j i v d a s / research . htm"
r es = read _web_page ( url , 0 , 0 , 0 , 1 , 2 )
print ( re s )

[ 1 ] " Data Sc ience Theories Models Algorithms and Analyt i cs web book work in progress "
[ 2 ] " D e r i v a t i v e s P r i n c i p l e s and P r a c t i c e 2010 "
[ 3 ] " Rangarajan Sundaram and S a n j i v Das McGraw H i l l "
[ 4 ] " Credi t Spreads with Dynamic Debt with Seoyoung Kim 2015 "
[ 5 ] " Text and Context Language Analyt i cs f o r Finance 2014 "
[ 6 ] " S t r a t e g i c Loan Modif icat ion An OptionsBased Response to S t r a t e g i c Defaul t "
[ 7 ] " Options and Structured Products in Behavioral P o r t f o l i o s with Meir Statman 2013 "
[ 8 ] " and b a r r i e r range notes in the presence of f a t t a i l e d outcomes using copulas "
. . . . .

We then take my research page and mood score it, just for fun, to see
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if my work is uplifting.

#EXAMPLE OF MOOD SCORING
l i b r a r y ( s t r i n g r )
url = " http : / / algo . scu . edu / ~s a n j i v d a s / bio−candid . html "
t e x t = read _web_page ( url , cstem =0 , cs top =0 , ccase =0 , cpunc =1 , c f l a t =1)
print ( t e x t )

[ 1 ] " S a n j i v Das i s the William and J a n i c e Terry Pr of ess or of Finance
a t Santa Clara Univers i tys Leavey School of Business He previously
held f a c u l t y appointments as Assoc ia te Pr of ess or a t Harvard Business
School and UC Berkeley He holds postgraduate degrees in Finance
MPhil and PhD from New York Univers i ty Computer Sc ience MS from
UC Berkeley an MBA from the Indian I n s t i t u t e of Management
Ahmedabad BCom in Accounting and Economics Univers i ty of
Bombay Sydenham College and i s a l s o a q u a l i f i e d Cost and Works
Accountant He i s a . . . . .

Notice how the text has been cleaned of all punctuation and flattened to
be one long string. Next, we run the mood scoring code.

t e x t = u n l i s t ( s t r s p l i t ( tex t , " " ) )
posmatch = match ( tex t , poswords )
numposmatch = length ( posmatch [ which ( posmatch > 0 ) ] )
negmatch = match ( tex t , negwords )
numnegmatch = length ( negmatch [ which ( negmatch > 0 ) ] )
print ( c ( numposmatch , numnegmatch ) )

[ 1 ] 26 16

So, there are 26 positive words and 16 negative words, presumably, this
is a good thing!

7.5 Text Classification

7.5.1 Bayes Classifier

The Bayes classifier is probably the most widely-used classifier in prac-
tice today. The main idea is to take a piece of text and assign it to one
of a pre-determined set of categories. This classifier is trained on an
initial corpus of text that is pre-classified. This “training data” pro-
vides the “prior” probabilities that form the basis for Bayesian anal-
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ysis of the text. The classifier is then applied to out-of-sample text to
obtain the posterior probabilities of textual categories. The text is then
assigned to the category with the highest posterior probability. For
an excellent exposition of the adaptive qualities of this classifier, see
Graham (2004)—pages 121-129, Chapter 8, titled “A Plan for Spam.”
http://www.paulgraham.com/spam.html

To get started, let’s just first use the e1071 R package that contains
the function naiveBayes. We’ll use the “iris” data set that contains de-
tails about flowers and try to build a classifier to take a flower’s data
and identify which one it is most likely to be. Note that to list the data
sets currently loaded in R for the packages you have, use the following
command:

data ( )

We will now use the iris flower data to illustrate the Bayesian classifier.

l i b r a r y ( e1071 )
data ( i r i s )
r es = naiveBayes ( i r i s [ , 1 : 4 ] , i r i s [ , 5 ] )
> re s

Naive Bayes C l a s s i f i e r for D i s c r e t e P r e d i c t o r s

Call :
naiveBayes . default ( x = i r i s [ , 1 : 4 ] , y = i r i s [ , 5 ] )

A−p r i o r i p r o b a b i l i t i e s :
i r i s [ , 5 ]

s e t o s a v e r s i c o l o r v i r g i n i c a
0 .3333333 0 .3333333 0 .3333333

Condit ional p r o b a b i l i t i e s :
Sepal . Length

i r i s [ , 5 ] [ , 1 ] [ , 2 ]
s e t o s a 5 .006 0 .3524897

v e r s i c o l o r 5 .936 0 .5161711

v i r g i n i c a 6 .588 0 .6358796

Sepal . Width
i r i s [ , 5 ] [ , 1 ] [ , 2 ]
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s e t o s a 3 .428 0 .3790644

v e r s i c o l o r 2 .770 0 .3137983

v i r g i n i c a 2 .974 0 .3224966

P e t a l . Length
i r i s [ , 5 ] [ , 1 ] [ , 2 ]

s e t o s a 1 .462 0 .1736640

v e r s i c o l o r 4 .260 0 .4699110

v i r g i n i c a 5 .552 0 .5518947

P e t a l . Width
i r i s [ , 5 ] [ , 1 ] [ , 2 ]

s e t o s a 0 .246 0 .1053856

v e r s i c o l o r 1 .326 0 .1977527

v i r g i n i c a 2 .026 0 .2746501

We then call the prediction program to predict a single case, or to con-
struct the “confusion matrix” as follows. The table gives the mean and
standard deviation of the variables.

> predic t ( res , i r i s [ 3 , 1 : 4 ] , type=" raw " )
s e t o s a v e r s i c o l o r v i r g i n i c a

[ 1 , ] 1 2 .367113 e−18 7 .240956 e−26

> out = table ( predic t ( res , i r i s [ , 1 : 4 ] ) , i r i s [ , 5 ] )
> print ( out )

s e t o s a v e r s i c o l o r v i r g i n i c a
s e t o s a 50 0 0

v e r s i c o l o r 0 47 3

v i r g i n i c a 0 3 47

This in-sample prediction can be clearly seen to have a high level of ac-
curacy. A test of the significance of this matrix may be undertaken using
the chisq.test function.

The basic Bayes calculation takes the following form.

Pr[F = 1|a, b, c, d] =
Pr[a|F = 1] · Pr[b|F = 1] · Pr[c|F = 1] · Pr[d|F = 1] · Pr(F = 1)

Pr[a, b, c, d|F = 1] + Pr[a, b, c, d|F = 2] + Pr[a, b, c, d|F = 3]

where F is the flower type, and {a, b, c, d} are the four attributes. Note
that we do not need to compute the denominator, as it remains the same
for the calculation of Pr[F = 1|a, b, c, d], Pr[F = 2|a, b, c, d], or Pr[F =
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3|a, b, c, d].
There are several seminal sources detailing the Bayes classifier and its

applications—see Neal (1996), Mitchell (1997), Koller and Sahami (1997),
and Chakrabarti, Dom, Agrawal and Raghavan (1998)). These models
have many categories and are quite complex. But they do not discern
emotive content—but factual content—which is arguably more amenable
to the use of statistical techniques. In contrast, news analytics are more
complicated because the data comprises opinions, not facts, which are
usually harder to interpret.

The Bayes classifier uses word-based probabilities, and is thus indiffer-
ent to the structure of language. Since it is language-independent, it has
wide applicability.

The approach of the Bayes classifier is to use a set of pre-classified
messages to infer the category of new messages. It learns from past ex-
perience. These classifiers are extremely efficient especially when the
number of categories is small, e.g., in the classification of email into
spam versus non-spam. Here is a brief mathematical exposition of Bayes
classification.

Say we have hundreds of text messages (these are not instant mes-
sages!) that we wish to classify rapidly into a number of categories. The
total number of categories or classes is denoted C, and each category is
denoted ci, i = 1...C. Each text message is denoted mj, j = 1...M, where
M is the total number of messages. We denote Mi as the total number
of messages per class i, and ∑C

i=1 Mi = M. Words in the messages are
denoted as (w) and are indexed by k, and the total number of words is T.

Let n(m, w) ≡ n(mj, wk) be the total number of times word wk appears
in message mj. Notation is kept simple by suppressing subscripts as far
as possible—the reader will be able to infer this from the context. We
maintain a count of the number of times each word appears in every
message in the training data set. This leads naturally to the variable
n(m), the total number of words in message m including duplicates. This
is a simple sum, n(mj) = ∑T

k=1 n(mj, wk).
We also keep track of the frequency with which a word appears in a

category. Hence, n(c, w) is the number of times word w appears in all
m ∈ c. This is

n(ci, wk) = ∑
mj∈ci

n(mj, wk) (7.6)

This defines a corresponding probability: θ(ci, wk) is the probability with
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which word w appears in all messages m in class c:

θ(c, w) =
∑mj∈ci

n(mj, wk)

∑mj∈ci ∑k n(mj, wk)
=

n(ci, wk)

n(ci)
(7.7)

Every word must have some non-zero probability of occurrence, no mat-
ter how small, i.e., θ(ci, wk) 6= 0, ∀ci, wk. Hence, an adjustment is made to
equation (7.7) via Laplace’s formula which is

θ(ci, wk) =
n(ci, wk) + 1

n(ci) + T

This probability θ(ci, wk) is unbiased and efficient. If n(ci, wk) = 0 and
n(ci) = 0, ∀k, then every word is equiprobable, i.e., 1

T . We now have
the required variables to compute the conditional probability of a text
message j in category i, i.e. Pr[mj|ci]:

Pr[mj|ci] =

(
n(mj)

{n(mj, wk)}

)
T

∏
k=1

θ(ci, wk)
n(mj,wk)

=
n(mj)!

n(mj, w1)!× n(mj, w2)!× ...× n(mj, wT)!
×

T

∏
k=1

θ(ci, wk)
n(mj,wk)

Pr[ci] is the proportion of messages in the prior (training corpus) pre-
classified into class ci. (Warning: Careful computer implementation of
the multinomial probability above is required to avoid rounding error.)

The classification goal is to compute the most probable class ci given
any message mj. Therefore, using the previously computed values of
Pr[mj|ci] and Pr[ci], we obtain the following conditional probability (ap-
plying Bayes’ theorem):

Pr[ci|mj] =
Pr[mj|ci]. Pr[ci]

∑C
i=1 Pr[mj|ci]. Pr[ci]

(7.8)

For each message, equation (7.8) delivers posterior probabilities,
Pr[ci|mj], ∀i, one for each message category. The category with the high-
est probability is assigned to the message.

The Bayesian classifier requires no optimization and is computable in
deterministic time. It is widely used in practice. There are free off-the-
shelf programs that provide good software to run the Bayes classifier on
large data sets. The one that is very widely used in finance applications
is the Bow classifier, developed by Andrew McCallum when he was at
Carnegie-Mellon University. This is an very fast classifier that requires
almost no additional programming by the user. The user only has to
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set up the training data set in a simple directory structure—each text
message is a separate file, and the training corpus requires different sub-
directories for the categories of text. Bow offers various versions of the
Bayes classifier—see McCallum (1996). The simple (naive) Bayes classifier
described above is available in R in the e1071 package—the function is
called naiveBayes. The e1071 package is the machine learning library in
R. There are also several more sophisticated variants of the Bayes classi-
fier such as k-Means, kNN, etc.

News analytics begin with classification, and the Bayes classifier is the
workhorse of any news analytic system. Prior to applying the classifier
it is important for the user to exercise judgment in deciding what cate-
gories the news messages will be classified into. These categories might
be a simple flat list, or they may even be a hierarchical set—see Koller
and Sahami (1997).

7.5.2 Support Vector Machines

A support vector machine or SVM is a classifier technique that is similar
to cluster analysis but is applicable to very high-dimensional spaces. The
idea may be best described by thinking of every text message as a vector
in high-dimension space, where the number of dimensions might be,
for example, the number of words in a dictionary. Bodies of text in the
same category will plot in the same region of the space. Given a training
corpus, the SVM finds hyperplanes in the space that best separate text of
one category from another.

For the seminal development of this method, see Vapnik and Lerner
(1963); Vapnik and Chervonenkis (1964); Vapnik (1995); and Smola and
Scholkopf (1998). I provide a brief summary of the method based on
these works.

Consider a training data set given by the binary relation

{(x1, y1), ..., (xn, yn)} ⊂ X×R.

The set X ∈ Rd is the input space and set Y ∈ Rm is a set of categories.
We define a function

f : x → y

with the idea that all elements must be mapped from set X into set Y
with no more than an ε-deviation. A simple linear example of such a
model would be

f (xi) =< w, xi > +b, w ∈ X , b ∈ R
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The notation < w, x > signifies the dot product of w and x. Note that the
equation of a hyperplane is < w, x > +b = 0.

The idea in SVM regression is to find the flattest w that results in the
mapping from x → y. Thus, we minimize the Euclidean norm of w, i.e.,
||w|| =

√
∑n

j=1 w2
j . We also want to ensure that |yi − f (xi)| ≤ ε, ∀i. The

objective function (quadratic program) becomes

min
1
2
||w||2

subject to

yi− < w, xi > −b ≤ ε

−yi+ < w, xi > +b ≤ ε

This is a (possibly infeasible) convex optimization problem. Feasibility
is obtainable by introducing the slack variables (ξ, ξ∗). We choose a con-
stant C that scales the degree of infeasibility. The model is then modified
to be as follows:

min
1
2
||w||2 + C

n

∑
i=1

(ξ + ξ∗)

subject to

yi− < w, xi > −b ≤ ε + ξ

−yi+ < w, xi > +b ≤ ε + ξ∗

ξ, ξ∗ ≥ 0

As C increases, the model increases in sensitivity to infeasibility.
We may tune the objective function by introducing cost functions

c(.), c∗(.). Then, the objective function becomes

min
1
2
||w||2 + C

n

∑
i=1

[c(ξ) + c∗(ξ∗)]

We may replace the function [ f (x)− y] with a “kernel” K(x, y) introduc-
ing nonlinearity into the problem. The choice of the kernel is a matter of
judgment, based on the nature of the application being examined. SVMs
allow many different estimation kernels, e.g., the Radial Basis function
kernel minimizes the distance between inputs (x) and targets (y) based
on

f (x, y; γ) = exp(−γ|x− y|2)
where γ is a user-defined squashing parameter.

There are various SVM packages that are easily obtained in open-
source. An easy-to-use one is SVM Light—the package is available at
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the following URL: http://svmlight.joachims.org/. SVM Light is an
implementation of Vapnik’s Support Vector Machine for the problem of
pattern recognition. The algorithm has scalable memory requirements
and can handle problems with many thousands of support vectors effi-
ciently. The algorithm proceeds by solving a sequence of optimization
problems, lower-bounding the solution using a form of local search. It is
based on work by Joachims (1999).

Another program is the University of London SVM. Interestingly, it
is known as SVM Dark—evidently people who like hyperplanes have a
sense of humor! See http://www.cs.ucl.ac.uk/staff/M.Sewell/svmdark/.
For a nice list of SVMs, see http://www.cs.ubc.ca/∼murphyk/Software/svm.htm.
In R, see the machine learning library e1071—the function is, of course,
called svm.

As an example, let’s use the svm function to analyze the same flower
data set that we used with naive Bayes.

#USING SVMs
> re s = svm( i r i s [ , 1 : 4 ] , i r i s [ , 5 ] )
> out = table ( predic t ( res , i r i s [ , 1 : 4 ] ) , i r i s [ , 5 ] )
> print ( out )

s e t o s a v e r s i c o l o r v i r g i n i c a
s e t o s a 50 0 0

v e r s i c o l o r 0 48 2

v i r g i n i c a 0 2 48

SVMs are very fast and are quite generally applicable with many
types of kernels. Hence, they may also be widely applied in news an-
alytics.

7.5.3 Word Count Classifiers

The simplest form of classifier is based on counting words that are of
signed type. Words are the heart of any language inference system,
and in a specialized domain, this is even more so. In the words of F.C.
Bartlett,
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“Words ... can indicate the qualitative and relational features of a situ-
ation in their general aspect just as directly as, and perhaps even more
satisfactorily than, they can describe its particular individuality, This
is, in fact, what gives to language its intimate relation to thought pro-
cesses.”

To build a word-count classifier a user defines a lexicon of special
words that relate to the classification problem. For example, if the clas-
sifier is categorizing text into optimistic versus pessimistic economic
news, then the user may want to create a lexicon of words that are use-
ful in separating the good news from bad. For example, the word “up-
beat” might be signed as optimistic, and the word “dismal” may be pes-
simistic. In my experience, a good lexicon needs about 300–500 words.
Domain knowledge is brought to bear in designing a lexicon. Therefore,
in contrast to the Bayes classifier, a word-count algorithm is language-
dependent.

This algorithm is based on a simple word count of lexical words. If
the number of words in a particular category exceeds that of the other
categories by some threshold then the text message is categorized to the
category with the highest lexical count. The algorithm is of very low
complexity, extremely fast, and easy to implement. It delivers a baseline
approach to the classification problem.

7.5.4 Vector Distance Classifier

This algorithm treats each message as a word vector. Therefore, each
pre-classified, hand-tagged text message in the training corpus becomes
a comparison vector—we call this set the rule set. Each message in the
test set is then compared to the rule set and is assigned a classification
based on which rule comes closest in vector space.

The angle between the message vector (M) and the vectors in the rule
set (S) provides a measure of proximity.

cos(θ) =
M · S

||M|| · ||S||
where ||A|| denotes the norm of vector A. Variations on this theme are
made possible by using sets of top-n closest rules, rather than only the
closest rule.

Word vectors here are extremely sparse, and the algorithms may be
built to take the dot product and norm above very rapidly. This algo-
rithm was used in Das and Chen (2007) and was taken directly from
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ideas used by search engines. The analogy is almost exact. A search en-
gine essentially indexes pages by representing the text as a word vector.
When a search query is presented, the vector distance cos(θ) ∈ (0, 1) is
computed for the search query with all indexed pages to find the pages
with which the angle is the least, i.e., where cos(θ) is the greatest. Sort-
ing all indexed pages by their angle with the search query delivers the
best-match ordered list. Readers will remember in the early days of
search engines how the list of search responses also provided a percent-
age number along with the returned results—these numbers were the
same as the value of cos(θ).

When using the vector distance classifier for news analytics, the classi-
fication algorithm takes the new text sample and computes the angle of
the message with all the text pages in the indexes training corpus to find
the best matches. It then classifies pages with the same tag as the best
matches. This classifier is also very easy to implement as it only needs
simple linear algebra functions and sorting routines that are widely
available in almost any programming environment.

7.5.5 Discriminant-Based Classifier

All the classifiers discussed above do not weight words differentially
in a continuous manner. Either they do not weight them at all, as in
the case of the Bayes classifier or the SVM, or they focus on only some
words, ignoring the rest, as with the word count classifier. In contrast the
discriminant-based classifier weights words based on their discriminant
value.

The commonly used tool here is Fisher’s discriminant. Various imple-
mentations of it, with minor changes in form are used. In the classifi-
cation area, one of the earliest uses was in the Bow algorithm of McCal-
lum (1996), which reports the discriminant values; Chakrabarti, Dom,
Agrawal and Raghavan (1998) also use it in their classification frame-
work, as do Das and Chen (2007). We present one version of Fisher’s
discriminant here.

Let the mean score (average number of times word w appears in a text
message of category i) of each term for each category = µi, where i in-
dexes category. Let text messages be indexed by j. The number of times
word w appears in a message j of category i is denoted mij . Let ni be the
number of times word w appears in category i. Then the discriminant
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function might be expressed as:

F(w) =

1
|C| ∑i 6=k(µi − µk)

2

∑i
1
ni

∑j(mij − µi)2

It is the ratio of the across-class (class i vs class k) variance to the average
of within-class (class i ∈ C) variances. To get some intuition, consider
the case we looked at earlier, classifying the economic sentiment as op-
timistic or pessimistic. If the word “dismal” appears exactly once in text
that is pessimistic and never appears in text that is optimistic, then the
within-class variation is zero, and the across-class variation is positive.
In such a case, where the denominator of the equation above is zero, the
word “dismal” is an infinitely-powerful discriminant. It should be given
a very large weight in any word-count algorithm.

In Das and Chen (2007) we looked at stock message-board text and
determined good discriminants using the Fisher metric. Here are some
words that showed high discriminant values (with values alongside) in
classifying optimistic versus pessimistic opinions.

bad 0.0405

hot 0.0161

hype 0.0089

improve 0.0123

joke 0.0268

jump 0.0106

killed 0.0160

lead 0.0037

like 0.0037

long 0.0162

lose 0.1211

money 0.1537

overvalue 0.0160

own 0.0031

good__n 0.0485

The last word in the list (“not good”) is an example of a negated word
showing a higher discriminant value than the word itself without a neg-
ative connotation (recall the discussion of negative tagging earlier in Sec-
tion 7.3.2). Also see that the word “bad” has a score of 0.0405, whereas
the term “not good” has a higher score of 0.0485. This is an example
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where the structure and usage of language, not just the meaning of a
word, matters.

In another example, using the Bow algorithm this time, examining
a database of conference calls with analysts, the best 20 discriminant
words were:

0.030828516377649325 allowing

0.094412331406551059 november

0.044315992292870907 determined

0.225433526011560692 general

0.034682080924855488 seasonality

0.123314065510597301 expanded

0.017341040462427744 rely

0.071290944123314062 counsel

0.044315992292870907 told

0.015414258188824663 easier

0.050096339113680152 drop

0.028901734104046242 synergies

0.025048169556840076 piece

0.021194605009633910 expenditure

0.017341040462427744 requirement

0.090558766859344900 prospects

0.019267822736030827 internationally

0.017341040462427744 proper

0.026974951830443159 derived

0.001926782273603083 invited

Not all these words would obviously connote bullishness or bearishness,
but some of them certainly do, such as “expanded”, “drop”, “prospects”,
etc. Why apparently unrelated words appear as good discriminants is
useful to investigate, and may lead to additional insights.

7.5.6 Adjective-Adverb Classifier

Classifiers may use all the text, as in the Bayes and vector-distance clas-
sifiers, or a subset of the text, as in the word-count algorithm. They may
also weight words differentially as in discriminant-based word counts.
Another way to filter words in a word-count algorithm is to focus on
the segments of text that have high emphasis, i.e., in regions around
adjectives and adverbs. This is done in Das and Chen (2007) using an
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adjective-adverb search to determine these regions.
This algorithm is language-dependent. In order to determine the ad-

jectives and adverbs in the text, parsing is required, and calls for the
use of a dictionary. The one I have used extensively is the CUVOALD
((Computer Usable Version of the Oxford Advanced Learnerï£¡s Dic-
tionary). It contains parts-of-speech tagging information, and makes
the parsing process very simple. There are other sources—a very well-
known one is WordNet from http://wordnet.princeton.edu/.

Using these dictionaries, it is easy to build programs that only extract
the regions of text around adjectives and adverbs, and then submit these
to the other classifiers for analysis and classification. Counting adjectives
and adverbs may also be used to score news text for “emphasis” thereby
enabling a different qualitative metric of importance for the text.

7.5.7 Scoring Optimism and Pessimism

A very useful resource for scoring text is the General Inquirer,
http://www.wjh.harvard.edu/∼inquirer/, housed at Harvard Uni-

versity. The Inquirer allows the user to assign “flavors” to words so as to
score text. In our case, we may be interested in counting optimistic and
pessimistic words in text. The Inquirer will do this online if needed, but
the dictionary may be downloaded and used offline as well. Words are
tagged with attributes that may be easily used to undertake tagged word
counts.

Here is a sample of tagged words from the dictionary that gives a
flavor of its structure:

ABNORMAL H4Lvd Neg Ngtv Vice NEGAFF Modif |

ABOARD H4Lvd Space PREP LY |

ABOLITION Lvd TRANS Noun

ABOMINABLE H4 Neg Strng Vice Ovrst Eval IndAdj Modif |

ABORTIVE Lvd POWOTH POWTOT Modif POLIT

ABOUND H4 Pos Psv Incr IAV SUPV |

The words ABNORMAL and ABOMINABLE have “Neg” tags and the
word ABOUND has a “Pos” tag.

Das and Chen (2007) used this dictionary to create an ambiguity score
for segmenting and filtering messages by optimism/pessimism in test-
ing news analytical algorithms. They found that algorithms performed
better after filtering in less ambiguous text. This ambiguity score is dis-
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cussed later in Section 7.5.9.
Tetlock (2007) is the best example of the use of the General Inquirer

in finance. Using text from the “Abreast of the Market" column from the
Wall Street Journal he undertook a principal components analysis of 77

categories from the GI and constructed a media pessimism score. High
pessimism presages lower stock prices, and extreme positive or negative
pessimism predicts volatility. Tetlock, Saar-Tsechansky and Macskassay
(2008) use news text related to firm fundamentals to show that negative
words are useful in predicting earnings and returns. The potential of this
tool has yet to be fully realized, and I expect to see a lot more research
undertaken using the General Inquirer.

7.5.8 Voting among Classifiers

In Das and Chen (2007) we introduced a voting classifier. Given the
highly ambiguous nature of the text being worked with, reducing the
noise is a major concern. Pang, Lee and Vaithyanathan (2002) found that
standard machine learning techniques do better than humans at classi-
fication. Yet, machine learning methods such as naive Bayes, maximum
entropy, and support vector machines do not perform as well on senti-
ment classification as on traditional topic-based categorization.

To mitigate error, classifiers are first separately applied, and then a
majority vote is taken across the classifiers to obtain the final category.
This approach improves the signal to noise ratio of the classification
algorithm.

7.5.9 Ambiguity Filters

Suppose we are building a sentiment index from a news feed. As each
text message comes in, we apply our algorithms to it and the result is
a classification tag. Some messages may be classified very accurately,
and others with much lower levels of confidence. Ambiguity-filtering is
a process by which we discard messages of high noise and potentially
low signal value from inclusion in the aggregate signal (for example, the
sentiment index).

One may think of ambiguity-filtering as a sequential voting scheme.
Instead of running all classifiers and then looking for a majority vote, we
run them sequentially, and discard messages that do not pass the hurdle
of more general classifiers, before subjecting them to more particular
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ones. In the end, we still have a voting scheme. Ambiguity metrics are
therefore lexicographic.

In Das and Chen (2007) we developed an ambiguity filter for appli-
cation prior to our classification algorithms. We applied the General
Inquirer to the training data to determine an “optimism” score. We com-
puted this for each category of stock message type, i.e., buy, hold, and
sell. For each type, we computed the mean optimism score, amounting
to 0.032, 0.026, 0.016, respectively, resulting in the expected rank order-
ing (the standard deviations around these means are 0.075, 0.069, 0.071,
respectively). We then filtered messages in based on how far they were
away from the mean in the right direction. For example, for buy mes-
sages, we chose for classification only those with one standard-deviation
higher than the mean. False positives in classification decline dramati-
cally with the application of this ambiguity filter.

7.6 Metrics

Developing analytics without metrics is insufficient. It is important to
build measures that examine whether the analytics are generating classi-
fications that are statistically significant, economically useful, and stable.
For an analytic to be statistically valid, it should meet some criterion that
signifies classification accuracy and power. Being economically useful sets
a different bar—does it make money? And stability is a double-edged
quality: one, does it perform well in-sample and out-of-sample? And
two, is the behavior of the algorithm stable across training corpora?

Here, we explore some of the metrics that have been developed, and
propose others. No doubt, as the range of analytics grows, so will the
range of metrics.

7.6.1 Confusion Matrix

The confusion matrix is the classic tool for assessing classification accu-
racy. Given n categories, the matrix is of dimension n× n. The rows re-
late to the category assigned by the analytic algorithm and the columns
refer to the correct category in which the text resides. Each cell (i, j) of
the matrix contains the number of text messages that were of type j and
were classified as type i. The cells on the diagonal of the confusion ma-
trix state the number of times the algorithm got the classification right.
All other cells are instances of classification error. If an algorithm has no
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classification ability, then the rows and columns of the matrix will be in-
dependent of each other. Under this null hypothesis, the statistic that is
examined for rejection is as follows:

χ2[do f = (n− 1)2] =
n

∑
i=1

n

∑
j=1

[A(i, j)− E(i, j)]2

E(i, j)

where A(i, j) are the actual numbers observed in the confusion matrix,
and E(i, j) are the expected numbers, assuming no classification ability
under the null. If T(i) represents the total across row i of the confusion
matrix, and T(j) the column total, then

E(i, j) =
T(i)× T(j)
∑n

i=1 T(i)
≡ T(i)× T(j)

∑n
j=1 T(j)

The degrees of freedom of the χ2 statistic is (n− 1)2. This statistic is very
easy to implement and may be applied to models for any n. A highly
significant statistic is evidence of classification ability.

7.6.2 Precision and Recall

The creation of the confusion matrix leads naturally to two measures
that are associated with it.

Precision is the fraction of positives identified that are truly positive,
and is also known as positive predictive value. It is a measure of useful-
ness of prediction. So if the algorithm (say) was tasked with selecting
those account holders on LinkedIn who are actually looking for a job,
and it identifies n such people of which only m were really looking for a
job, then the precision would be m/n.

Recall is the proportion of positives that are correctly identified, and is
also known as sensitivity. It is a measure of how complete the prediction
is. If the actual number of people looking for a job on LinkedIn was M,
then recall would be n/M.

For example, suppose we have the following confusion matrix.

Actual
Predicted Looking for Job Not Looking

Looking for Job 10 2 12

Not Looking 1 16 17

11 18 29
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In this case precision is 10/12 and recall is 10/11. Precision is related
to the probability of false positives (Type I error), which is one minus
precision. Recall is related to the probability of false negatives (Type II
error), which is one minus recall.

7.6.3 Accuracy

Algorithm accuracy over a classification scheme is the percentage of text
that is correctly classified. This may be done in-sample or out-of-sample.
To compute this off the confusion matrix, we calculate

Accuracy =
∑n

i=1 A(i, i)
∑n

j=1 T(j)

We should hope that this is at least greater than 1/n, which is the accu-
racy level achieved on average from random guessing. In practice, I find
that accuracy ratios of 60–70% are reasonable for text that is non-factual
and contains poor language and opinions.

7.6.4 False Positives

Improper classification is worse than a failure to classify. In a 2× 2 (two
category, n = 2) scheme, every off-diagonal element in the confusion
matrix is a false positive. When n > 2, some classification errors are
worse than others. For example in a 3–way buy, hold, sell scheme, where
we have stock text for classification, classifying a buy as a sell is worse
than classifying it as a hold. In this sense an ordering of categories is
useful so that a false classification into a near category is not as bad as a
wrong classification into a far (diametrically opposed) category.

The percentage of false positives is a useful metric to work with. It
may be calculated as a simple count or as a weighted count (by nearness
of wrong category) of false classifications divided by total classifications
undertaken.

In our experiments on stock messages in Das and Chen (2007), we
found that the false positive rate for the voting scheme classifier was
about 10%. This was reduced to below half that number after application
of an ambiguity filter (discussed in Section 7.5.9) based on the General
Inquirer.
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7.6.5 Sentiment Error

When many articles of text are classified, an aggregate measure of senti-
ment may be computed. Aggregation is useful because it allows classifi-
cation errors to cancel—if a buy was mistaken as a sell, and another sell
as a buy, then the aggregate sentiment index is unaffected.

Sentiment error is the percentage difference between the computed
aggregate sentiment, and the value we would obtain if there were no
classification error. In our experiments this varied from 5-15% across the
data sets that we used. Leinweber and Sisk (2010) show that sentiment
aggregation gives a better relation between news and stock returns.

7.6.6 Disagreement

In Das, Martinez-Jerez and Tufano (2005) we introduced a disagreement
metric that allows us to gauge the level of conflict in the discussion.
Looking at stock text messages, we used the number of signed buys
and sells in the day (based on a sentiment model) to determine how
much disagreement of opinion there was in the market. The metric is
computed as follows:

DISAG =

∣∣∣∣1− ∣∣∣∣B− S
B + S

∣∣∣∣∣∣∣∣
where B, S are the numbers of classified buys and sells. Note that DISAG
is bounded between zero and one. The quality of aggregate sentiment
tends to be lower when DISAG is high.

7.6.7 Correlations

A natural question that arises when examining streaming news is: how
well does the sentiment from news correlate with financial time series?
Is there predictability? An excellent discussion of these matters is pro-
vided in Leinweber and Sisk (2010). They specifically examine invest-
ment signals derived from news.

In their paper, they show that there is a significant difference in cu-
mulative excess returns between strong positive sentiment and strong
negative sentiment days over prediction horizons of a week or a quar-
ter. Hence, these event studies are based on point-in-time correlation
triggers. Their results are robust across countries.

The simplest correlation metrics are visual. In a trading day, we may
plot the movement of a stock series, alongside the cumulative sentiment
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series. The latter is generated by taking all classified ‘buys’ as +1 and
‘sells’ as −1, and the plot comprises the cumulative total of scores of the
messages (‘hold’ classified messages are scored with value zero). See
Figure 7.8 for one example, where it is easy to see that the sentiment and
stock series track each other quite closely. We coin the term “sents” for
the units of sentiment.

Figure 7.8: Plot of stock series (up-
per graph) versus sentiment series
(lower graph). The correlation
between the series is high. The
plot is based on messages from
Yahoo! Finance and is for a single
twenty-four hour period.

7.6.8 Aggregation Performance

As pointed out in Leinweber and Sisk (2010) aggregation of classified
news reduces noise and improves signal accuracy. One way to measure
this is to look at the correlations of sentiment and stocks for aggregated
versus disaggregated data. As an example, I examine daily sentiment
for individual stocks and an index created by aggregating sentiment
across stocks, i.e., a cross-section of sentiment. This is useful to examine
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whether sentiment aggregates effectively in the cross-section.
I used all messages posted for 35 stocks that comprise the Morgan

Stanley High-Tech Index (MSH35) for the period June 1 to August 27,
2001. This results in 88 calendar days and 397,625 messages, an average
of about 4,500 messages per day. For each day I determine the sentiment
and stock return. Daily sentiment uses messages up to 4 pm on each
trading day, coinciding with the stock return close.

Ticker Correlations of SENTY4pm(t) with
STKRET(t) STKRET(t+1) STKRET(t-1)

ADP 0.086 0.138 -0.062

AMAT -0.008 -0.049 0.067

AMZN 0.227 0.167 0.161

AOL 0.386 -0.010 0.281

BRCM 0.056 0.167 -0.007

CA 0.023 0.127 0.035

CPQ 0.260 0.161 0.239

CSCO 0.117 0.074 -0.025

DELL 0.493 -0.024 0.011

EDS -0.017 0.000 -0.078

EMC 0.111 0.010 0.193

ERTS 0.114 -0.223 0.225

HWP 0.315 -0.097 -0.114

IBM 0.071 -0.057 0.146

INTC 0.128 -0.077 -0.007

INTU -0.124 -0.099 -0.117

JDSU 0.126 0.056 0.047

JNPR 0.416 0.090 -0.137

LU 0.602 0.131 -0.027

MOT -0.041 -0.014 -0.006

MSFT 0.422 0.084 0.210

MU 0.110 -0.087 0.030

NT 0.320 0.068 0.288

ORCL 0.005 0.056 -0.062

PALM 0.509 0.156 0.085

PMTC 0.080 0.005 -0.030

PSFT 0.244 -0.094 0.270

SCMR 0.240 0.197 0.060

SLR -0.077 -0.054 -0.158

STM -0.010 -0.062 0.161

SUNW 0.463 0.176 0.276

TLAB 0.225 0.250 0.283

TXN 0.240 -0.052 0.117

XLNX 0.261 -0.051 -0.217

YHOO 0.202 -0.038 0.222

Average correlation across 35 stocks
0.188 0.029 0.067

Correlation between 35 stock index and 35 stock sentiment index
0.486 0.178 0.288

Table 7.1: Correlations of Sentiment
and Stock Returns for the MSH35

stocks and the aggregated MSH35

index. Stock returns (STKRET) are
computed from close-to-close. We
compute correlations using data
for 88 days in the months of June,
July and August 2001. Return data
over the weekend is linearly inter-
polated, as messages continue to
be posted over weekends. Daily
sentiment is computed from mid-
night to close of trading at 4 pm
(SENTY4pm).

I also compute the average sentiment index of all 35 stocks, i.e., a
proxy for the MSH35 sentiment. The corresponding equally weighted
return of 35 stocks is also computed. These two time series permit an
examination of the relationship between sentiment and stock returns at
the aggregate index level. Table 7.1 presents the correlations between
individual stock returns and sentiment, and between the MSH35 index
return and MSH35 sentiment. We notice that there is positive contem-
poraneous correlation between most stock returns and sentiment. The
correlations were sometimes as high as 0.60 (for Lucent), 0.51 (PALM)
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and 0.49 (DELL). Only six stocks evidenced negative correlations, mostly
small in magnitude. The average contemporaneous correlation is 0.188,
which suggests that sentiment tracks stock returns in the high-tech sec-
tor. (I also used full-day sentiment instead of only that till trading close
and the results are almost the same—the correlations are in fact higher,
as sentiment includes reactions to trading after the close).

Average correlations for individual stocks are weaker when one lag
(0.067) or lead (0.029) of the stock return are considered. More interest-
ing is the average index of sentiment for all 35 stocks. The contempo-
raneous correlation of this index to the equally-weighted return index
is as high as 0.486. Here, cross-sectional aggregation helps in eliminat-
ing some of the idiosyncratic noise, and makes the positive relation-
ship between returns and sentiment salient. This is also reflected in the
strong positive correlation of sentiment to lagged stock returns (0.288)
and leading returns (0.178). I confirmed the statistical contemporaneous
relationship of returns to sentiment by regressing returns on sentiment
(T-statistics in brackets):

STKRET(t) = −0.1791 + 0.3866SENTY(t), R2 = 0.24

(0.93) (5.16)

7.6.9 Phase-Lag Metrics

Correlation across sentiment and return time series is a special case of
lead-lag analysis. This may be generalized to looking for pattern correla-
tions. As may be evident from Figure 7.8, the stock and sentiment plots
have patterns. In the figure they appear contemporaneous, though the
sentiment series lags the stock series.

A graphical approach to lead-lag analysis is to look for graph patterns
across two series and to examine whether we may predict the patterns
in one time series with the other. For example, can we use the senti-
ment series to predict the high point of the stock series, or the low point?
In other words, is it possible to use the sentiment data generated from
algorithms to pick turning points in stock series? We call this type of
graphical examination “phase-lag” analysis.

A simple approach I came up with involves decomposing graphs into
eight types—see Figure 7.9. On the left side of the figure, notice that
there are eight patterns of graphs based on the location of four salient
graph features: start, end, high, and low points. There are exactly eight
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possible graph patterns that may be generated from all positions of these
four salient points. It is also very easy to write software to take any time
series—say, for a trading day—and assign it to one of the patterns, keep-
ing track of the position of the maximum and minimum points. It is then
possible to compare two graphs to see which one predicts the other in
terms of pattern. For example, does the sentiment series maximum come
before that of the stock series? If so, how much earlier does it detect the
turning point on average?

Using data from several stocks I examined whether the sentiment
graph pattern generated from a voting classification algorithm was pre-
dictive of stock graph patterns. Phase-lags were examined in intervals of
five minutes through the trading day. The histogram of leads and lags is
shown on the right-hand side of Figure 7.9. A positive value denotes that
the sentiment series lags the stock series; a negative value signifies that
the stock series lags sentiment. It is apparent from the histogram that the
sentiment series lags stocks, and is not predictive of stock movements in
this case.

Phase-Lag
Analysis

Figure 7.9: Phase-lag analysis. The
left-side shows the eight canonical
graph patterns that are derived
from arrangements of the start,
end, high, and low points of a time
series. The right-side shows the
leads and lags of patterns of the
stock series versus the sentiment
series. A positive value means that
the stock series leads the sentiment
series.
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7.6.10 Economic Significance

News analytics may be evaluated using economic yardsticks. Does the
algorithm deliver profitable opportunities? Does it help reduce risk?

For example, in Das and Sisk (2005) we formed a network with con-
nections based on commonality of handles in online discussion. We de-
tected communities using a simple rule based on connectedness beyond
a chosen threshold level, and separated all stock nodes into either one
giant community or into a community of individual singleton nodes. We
then examined the properties of portfolios formed from the community
versus those formed from the singleton stocks.

We obtained several insights. We calculated the mean returns from
an equally-weighted portfolio of the community stocks and an equally-
weighted portfolio of singleton stocks. We also calculated the return
standard deviations of these portfolios. We did this month-by-month for
sixteen months. In fifteen of the sixteen months the mean returns were
higher for the community portfolio; the standard deviations were lower
in thirteen of the sixteen months. The difference of means was significant
for thirteen of those months as well. Hence, community detection based
on news traffic leads to identifying a set of stocks that performs vastly
better than the rest.

There is much more to be done in this domain of economic metrics
for the performance of news analytics. Leinweber and Sisk (2010) have
shown that there is exploitable alpha in news streams. The risk manage-
ment and credit analysis areas also offer economic metrics that may be
used to validate news analytics.

7.7 Grading Text

In recent years, the SAT exams added a new essay section. While the
test aimed at assessing original writing, it also introduced automated
grading. A goal of the test is to assess the writing level of the student.
This is associated with the notion of readability.

“Readability” is a metric of how easy it is to comprehend text. Given
a goal of efficient markets, regulators want to foster transparency by
making sure financial documents that are disseminated to the investing
public are readable. Hence, metrics for readability are very important
and are recently gaining traction.

Gunning (1952) developed the Fog index. The index estimates the
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years of formal education needed to understand text on a first reading.
A fog index of 12 requires the reading level of a U.S. high school senior
(around 18 years old). The index is based on the idea that poor read-
ability is associated with longer sentences and complex words. Complex
words are those that have more than two syllables. The formula for the
Fog index is

0.4 ·
[

#words
#sentences

+ 100 ·
(

#complex words
#words

)]
Alternative readability scores use similar ideas. The Flesch Reading

Ease Score and the Flesch-Kincaid Grade Level also use counts of words,
syllables, and sentences.2 The Flesch Reading Ease Score is defined as 2 See http://en.wikipedia.org/wiki/

Flesch-Kincaid_readability_tests.

206.835− 1.015
(

#words
#sentences

)
− 84.6

(
#syllables

#words

)
With a range of 90-100 easily accessible by a 11-year old, 60-70 being
easy to understand for 13-15 year olds, and 0-30 for university graduates.

The Flesch-Kincaid Grade Level is defined as

0.39
(

#words
#sentences

)
+ 11.8

(
#syllables

#words

)
− 15.59

which gives a number that corresponds to the grade level. As expected
these two measures are negatively correlated. Various other measures of
readability use the same ideas as in the Fog index. For example the Cole-
man and Liau (1975) index does not even require a count of syllables, as
follows:

CLI = 0.0588L− 0.296S− 15.8

where L is the average number of letters per hundred words and S is the
average number of sentences per hundred words.

Standard readability metrics may not work well for financial text.
Loughran and McDonald (2014) find that the Fog index is inferior to
simply looking at 10-K file size.

7.8 Text Summarization

It has become fairly easy to summarize text using statistical methods.
The simplest form of text summarizer works on a sentence-based model
that sorts sentences in a document in descending order of word over-
lap with all other sentences in the text. The re-ordering of sentences ar-
ranges the document with the sentence that has most overlap with others
first, then the next, and so on.
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An article D may have m sentences si, i = 1, 2, ..., m, where each si is a
set of words. We compute the pairwise overlap between sentences using
the 3 similarity index: 3

Jij = J(si, sj) =
|si ∩ sj|
|si ∪ sj|

= Jji (7.9)

The overlap is the ratio of the size of the intersection of the two word
sets in sentences si and sj, divided by the size of the union of the two
sets. The similarity score of each sentence is computed as the row sums
of the Jaccard similarity matrix.

Si =
m

∑
j=1

Jij (7.10)

Once the row sums are obtained, they are sorted and the summary is the
first n sentences based on the Si values. We can then decide how many
sentences we want in the summary.

Another approach to using row sums is to compute centrality using
the Jaccard matrix J, and then pick the n sentences with the highest cen-
trality scores.

We illustrate the approach with a news article from the financial mar-
kets. The sample text is taken from Bloomberg on April 21, 2014, at the
following URL:

http://www.bloomberg.com/news/print/2014-04-21/wall-street-

bond-dealers-whipsawed-on-bearish-treasuries-bet-1-.html. The
full text spans 4 pages and is presented in an appendix to this chapter.

This article is read using a web scraper (as seen in preceding sections),
and converted into a text file with a separate line for each sentence. We
call this file summary_text.txt and this file is then read into R and pro-
cessed with the following parsimonious program code. We first develop
the summarizer function.

# FUNCTION TO RETURN n SENTENCE SUMMARY
# Input : a r r a y o f s e n t e n c e s ( t e x t )
# Output : n most common i n t e r s e c t i n g s e n t e n c e s
t e x t _summary = function ( tex t , n ) {

m = length ( t e x t ) # No o f s e n t e n c e s in i n p u t
j a c c a r d = matrix ( 0 ,m,m) # S t o r e match i n d e x
for ( i in 1 :m) {

for ( j in i :m) {
a = t e x t [ i ] ; aa = u n l i s t ( s t r s p l i t ( a , " " ) )
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b = t e x t [ j ] ; bb = u n l i s t ( s t r s p l i t ( b , " " ) )
j a c c a r d [ i , j ] = length ( i n t e r s e c t ( aa , bb ) ) /

length ( union ( aa , bb ) )
j a c c a r d [ j , i ] = j a c c a r d [ i , j ]

}
}
s i m i l a r i t y _ score = rowSums ( j a c c a r d )
r es = s o r t ( s i m i l a r i t y _ score , index . return=TRUE,

decreas ing=TRUE)
idx = r es $ i x [ 1 : n ]
summary = t e x t [ idx ]

}

We now read in the data and clean it into a single text array.

url = " d s t e x t _sample . t x t " #You can put any t e x t f i l e o r URL h e r e
t e x t = read _web_page ( url , cstem =0 , cs top =0 , ccase =0 , cpunc =0 , c f l a t =1)
print ( length ( t e x t [ [ 1 ] ] ) )

[ 1 ] 1

print ( t e x t )

[ 1 ] "THERE HAVE BEEN murmurings t h a t we are now in the
" trough of d i s i l l u s i o n m e n t " of big data , the hype around i t having
surpassed the r e a l i t y of what i t can d e l i v e r . Gartner suggested t h a t
the " g r a v i t a t i o n a l pul l of big data i s now so strong t h a t even people
who h a v e n ï £ ¡ t a c lue as to what i t ’ s a l l about repor t t h a t they ’ re running
big data p r o j e c t s . " Indeed , t h e i r research with business d e c i s i o n
makers suggests t h a t o r g a n i s a t i o n s are s t r u g g l i n g to get value from
big data . Data s c i e n t i s t s were meant . . . . .
. . . . .

Now we break the text into sentences using the period as a delimiter,
and invoking the strsplit function in the stringr package.
t e x t 2 = s t r s p l i t ( tex t , " . " , f i x e d =TRUE) # S p e c i a l h a n d l i n g o f t h e p e r i o d .
t e x t 2 = t e x t 2 [ [ 1 ] ]
print ( t e x t 2 )

[ 1 ] "THERE HAVE BEEN murmurings t h a t we are now in the
" trough of d i s i l l u s i o n m e n t " of big data , the hype around i t having
surpassed the r e a l i t y of what i t can d e l i v e r "
[ 2 ] " Gartner suggested t h a t the " g r a v i t a t i o n a l pul l of big data i s



more than words: extracting information from news 219

now so strong t h a t even people who haven ’ t a c lue as to what i t ï £ ¡ s
a l l about repor t t h a t t h e y ï £ ¡ r e running big data p r o j e c t s . " Indeed ,
t h e i r research with business d e c i s i o n makers suggests t h a t
o r g a n i s a t i o n s are s t r u g g l i n g to get value from big data "
[ 3 ] " Data s c i e n t i s t s were meant to be the answer to t h i s i s s u e "
[ 4 ] " Indeed , Hal Varian , Chief Economist a t Google famously
joked t h a t " The sexy job in the next 10 years w i l l be s t a t i s t i c i a n s . "
He was c l e a r l y r i g h t as we are now used to hearing t h a t data
s c i e n t i s t s are the key to unlocking the value of big data "
. . . . . . . . . .

We now call the text summarization function and produce the top five
sentences that give the most overlap to all other sentences.

r es = t e x t _summary ( t ex t2 , 5 )
print ( r es )

[ 1 ] " Gartner suggested t h a t the " g r a v i t a t i o n a l pul l of big data i s
now so strong t h a t even people who haven ’ t a c lue as to what i t ’ s
a l l about report t h a t they ’ re running big data p r o j e c t s . " Indeed ,
t h e i r research with business d e c i s i o n makers suggests t h a t
o r g a n i s a t i o n s are s t r u g g l i n g to get value from big data "
[ 2 ] " The focus on the data s c i e n t i s t o f ten impl ies a c e n t r a l i z e d
approach to a n a l y t i c s and d e c i s i on making ; we i m p l i c i t l y assume
t h a t a small team of highly s k i l l e d i n d i v i d u a l s can meet the needs
of the o r g a n i s a t i o n as a whole "
[ 3 ] "May be we are i n v e s t i n g too much in a r e l a t i v e l y small number
of i n d i v i d u a l s r a t h e r than thinking about how we can design
o r g a n i s a t i o n s to help us get the most from data a s s e t s "
[ 4 ] " The problem with a c e n t r a l i z e d ’ IT−s t y l e ’ approach i s t h a t i t
ignores the human side of the process of cons ider ing how people
c r e a t e and use information i . e "
[ 5 ] " Which probably means t h a t data s c i e n t i s t s ’ s a l a r i e s w i l l need
to take a h i t in the process . "

As we can see, this generates an effective and clear summary of an
article that originally had 42 sentences.

7.9 Discussion

The various techniques and metrics fall into two broad categories: su-
pervised and unsupervised learning methods. Supervised models use
well-specified input variables to the machine-learning algorithm, which
then emits a classification. One may think of this as a generalized regres-
sion model. In unsupervised learning, there are no explicit input vari-
ables but latent ones, e.g., cluster analysis. Most of the news analytics we
explored relate to supervised learning, such as the various classification
algorithms. This is well-trodden research. It is the domain of unsuper-
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vised learning, for example, the community detection algorithms and
centrality computation, that have been less explored and are potentially
areas of greatest potential going forward.

Classifying news to generate sentiment indicators has been well
worked out. This is epitomized in many of the papers in this book. It
is the networks on which financial information gets transmitted that
have been much less studied, and where I anticipate most of the growth
in news analytics to come from. For example, how quickly does good
news about a tech company proliferate to other companies? We looked
at issues like this in Das and Sisk (2005), discussed earlier, where we as-
sessed whether knowledge of the network might be exploited profitably.
Information also travels by word of mouth and these information net-
works are also open for much further examination—see Godes, et. al.
(2005). Inside (not insider) information is also transmitted in venture
capital networks where there is evidence now that better connected
VCs perform better than unconnected VCs, as shown by Hochberg,
Ljungqvist and Lu (2007).

Whether news analytics reside in the broad area of AI or not is under
debate. The advent and success of statistical learning theory in real-
world applications has moved much of news analytics out of the AI
domain into econometrics. There is very little natural language process-
ing (NLP) involved. As future developments shift from text methods to
context methods, we may see a return to the AI paradigm. I believe that
tools such as WolframAlphaTM will be the basis of context-dependent
news analysis.

News analytics will broaden in the toolkit it encompasses. Expect to
see greater use of dependency networks and collaborative filtering. We
will also see better data visualization techniques such as community
views and centrality diagrams. The number of tools keeps on growing.
For an almost exhaustive compendium of tools see the book by Koller
(2009) titled “Probabilistic Graphical Models.”

In the end, news analytics are just sophisticated methods for data min-
ing. For an interesting look at the top ten algorithms in data mining, see
Wu, et al. (2008). This paper discusses the top 10 data mining algorithms
identified by the IEEE International Conference on Data Mining (ICDM)
in December 2006.4 As algorithms improve in speed, they will expand to 4 These algorithms are: C4.5, k-Means,

SVM, Apriori, EM, PageRank, Ad-
aBoost, kNN, Naive Bayes, and CART.automated decision-making, replacing human interaction—as noticed in

the marriage of news analytics with automated trading, and eventually, a
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rebirth of XHAL.

7.10 Appendix: Sample text from Bloomberg for summariza-
tion

Summarization is one of the major implementations in Big Text appli-
cations. When faced with Big Text, there are three important stages
through which analytics may proceed: (a) Indexation, (b) Summariza-
tion, and (c) Inference. Automatic summarization5 is a program that 5 http://en.wikipedia.org/wiki/Automatic_summarization.

reduces text while keeping mostly the salient points, accounting for
variables such as length, writing style, and syntax. There are two ap-
proaches: (i) Extractive methods selecting a subset of existing words,
phrases, or sentences in the original text to form the summary. (ii) Ab-
stractive methods build an internal semantic representation and then
use natural language generation techniques to create a summary that is
closer to what a human might generate. Such a summary might contain
words not explicitly present in the original.

The following news article was used to demonstrate text summariza-
tion for the application in Section 7.8.
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Wall Street Bond Dealers Whipsawed on Bearish
Treasuries Bet
By Lisa Abramowicz and Daniel Kruger - Apr 21, 2014

Betting against U.S. government debt this year is turning out to be a fool’s errand. Just ask Wall
Street’s biggest bond dealers.

While the losses that their economists predicted have yet to materialize, JPMorgan Chase & Co.
(JPM), Citigroup Inc. (C) and the 20 other firms that trade with the Federal Reserve began wagering
on a Treasuries selloff last month for the first time since 2011. The strategy was upended as Fed Chair
Janet Yellen signaled she wasn’t in a rush to lift interest rates, two weeks after suggesting the opposite
at the bank’s March 19 meeting.

The surprising resilience of Treasuries has investors re-calibrating forecasts for higher borrowing costs
as lackluster job growth and emerging-market turmoil push yields toward 2014 lows. That’s also made
the business of trading bonds, once more predictable for dealers when the Fed was buying trillions of
dollars of debt to spur the economy, less profitable as new rules limit the risks they can take with their
own money.

“You have an uncertain Fed, an uncertain direction of the economy and you’ve got rates moving,”
Mark MacQueen, a partner at Sage Advisory Services Ltd., which oversees $10 billion, said by
telephone from Austin, Texas. In the past, “calling the direction of the market and what you should be
doing in it was a lot easier than it is today, particularly for the dealers.”

Treasuries (USGG10YR) have confounded economists who predicted 10-year yields would approach
3.4 percent by year-end as a strengthening economy prompts the Fed to pare its unprecedented bond
buying.

Caught Short

After surging to a 29-month high of 3.05 percent at the start of the year, yields on the 10-year note
have declined and were at 2.72 percent at 7:42 a.m. in New York.

One reason yields have fallen is the U.S. labor market, which has yet to show consistent improvement.
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The world’s largest economy added fewer jobs on average in the first three months of the year than in
the same period in the prior two years, data compiled by Bloomberg show. At the same time, a
slowdown in China and tensions between Russia and Ukraine boosted demand for the safest assets.

Wall Street firms known as primary dealers are getting caught short betting against Treasuries.

They collectively amassed $5.2 billion of wagers in March that would profit if Treasuries fell, the first
time they had net short positions on government debt since September 2011, data compiled by the Fed
show.

‘Some Time’

The practice is allowed under the Volcker Rule that limits the types of trades that banks can make with
their own money. The wagers may include market-making, which is the business of using the firm’s
capital to buy and sell securities with customers while profiting on the spread and movement in prices.

While the bets initially paid off after Yellen said on March 19 that the Fed may lift its benchmark rate
six months after it stops buying bonds, Treasuries have since rallied as her subsequent comments
strengthened the view that policy makers will keep borrowing costs low to support growth.

On March 31, Yellen highlighted inconsistencies in job data and said “considerable slack” in labor
markets showed the Fed’s accommodative policies will be needed for “some time.”

Then, in her first major speech on her policy framework as Fed chair on April 16, Yellen said it will
take at least two years for the U.S. economy to meet the Fed’s goals, which determine how quickly the
central bank raises rates.

After declining as much as 0.6 percent following Yellen’s March 19 comments, Treasuries have
recouped all their losses, index data compiled by Bank of America Merrill Lynch show.

Yield Forecasts

“We had that big selloff and the dealers got short then, and then we turned around and the Fed says,
‘Whoa, whoa, whoa: it’s lower for longer again,’” MacQueen said in an April 15 telephone interview.
“The dealers are really worried here. You get really punished if you take a lot of risk.”

Economists and strategists around Wall Street are still anticipating that Treasuries will underperform
as yields increase, data compiled by Bloomberg show.

While they’ve ratcheted down their forecasts this year, they predict 10-year yields will increase to 3.36
percent by the end of December. That’s more than 0.6 percentage point higher than where yields are
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today.

“My forecast is 4 percent,” said Joseph LaVorgna, chief U.S. economist at Deutsche Bank AG, a
primary dealer. “It may seem like it’s really aggressive but it’s really not.”

LaVorgna, who has the highest estimate among the 66 responses in a Bloomberg survey, said stronger
economic data will likely cause investors to sell Treasuries as they anticipate a rate increase from the
Fed.

History Lesson

The U.S. economy will expand 2.7 percent this year from 1.9 percent in 2013, estimates compiled by
Bloomberg show. Growth will accelerate 3 percent next year, which would be the fastest in a decade,
based on those forecasts.

Dealers used to rely on Treasuries to act as a hedge against their holdings of other types of debt, such
as corporate bonds and mortgages. That changed after the credit crisis caused the failure of Lehman
Brothers Holdings Inc. in 2008.

They slashed corporate-debt inventories by 76 percent from the 2007 peak through last March as they
sought to comply with higher capital requirements from the Basel Committee on Banking Supervision
and stockpiled Treasuries instead.

“Being a dealer has changed over the years, and not least because you also have new balance-sheet
constraints that you didn’t have before,” Ira Jersey, an interest-rate strategist at primary dealer Credit
Suisse Group AG (CSGN), said in a telephone interview on April 14.

Almost Guaranteed

While the Fed’s decision to inundate the U.S. economy with more than $3 trillion of cheap money
since 2008 by buying Treasuries and mortgaged-backed bonds bolstered profits as all fixed-income
assets rallied, yields are now so low that banks are struggling to make money trading government
bonds.

Yields on 10-year notes have remained below 3 percent since January, data compiled by Bloomberg
show. In two decades before the credit crisis, average yields topped 6 percent.

Average daily trading has also dropped to $551.3 billion in March from an average $570.2 billion in
2007, even as the outstanding amount of Treasuries has more than doubled since the financial crisis,
according data from the Securities Industry and Financial Markets Association.
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“During the crisis, the Fed went to great pains to save primary dealers,” Christopher Whalen, banker
and author of “Inflated: How Money and Debt Built the American Dream,” said in a telephone
interview. “Now, because of quantitative easing and other dynamics in the market, it’s not just
treacherous, it’s almost a guaranteed loss.”

Trading Revenue

The biggest dealers are seeing their earnings suffer. In the first quarter, five of the six biggest Wall
Street firms reported declines in fixed-income trading revenue.

JPMorgan, the biggest U.S. bond underwriter, had a 21 percent decrease from its fixed-income trading
business, more than estimates from Moshe Orenbuch, an analyst at Credit Suisse, and Matt Burnell of
Wells Fargo & Co.

Citigroup, whose bond-trading results marred the New York-based bank’s two prior quarterly
earnings, reported a 18 percent decrease in revenue from that business. Credit Suisse, the second-
largest Swiss bank, had a 25 percent drop as income from rates and emerging-markets businesses fell.
Declines in debt-trading last year prompted the Zurich-based firm to cut more than 100 fixed-income
jobs in London and New York.

Bank Squeeze

Chief Financial Officer David Mathers said in a Feb. 6 call that Credit Suisse has “reduced the capital
in this business materially and we’re obviously increasing our electronic trading operations in this
area.” Jamie Dimon, chief executive officer at JPMorgan, also emphasized the decreased role of
humans in the rates-trading business on an April 11 call as the New York-based bank seeks to cut
costs.

About 49 percent of U.S. government-debt trading was executed electronically last year, from 31
percent in 2012, a Greenwich Associates survey of institutional money managers showed. That may
ultimately lead banks to combine their rates businesses or scale back their roles as primary dealers as
firms get squeezed, said Krishna Memani, the New York-based chief investment officer of
OppenheimerFunds Inc., which oversees $79.1 billion in fixed-income assets.

“If capital requirements were not as onerous as they are now, maybe they could have found a way of
making it work, but they aren’t as such,” he said in a telephone interview.

To contact the reporters on this story: Lisa Abramowicz in New York at labramowicz@bloomberg.net;
Daniel Kruger in New York at dkruger1@bloomberg.net

To contact the editors responsible for this story: Dave Liedtka at dliedtka@bloomberg.net Michael





8
Virulent Products: The Bass Model

8.1 Introduction

The Bass (1969) product diffusion model is a classic one in the marketing
literature. It has been successfully used to predict the market shares of
various newly introduced products, as well as mature ones.

The main idea of the model is that the adoption rate of a product
comes from two sources:

1. The propensity of consumers to adopt the product independent of
social influences to do so.

2. The additional propensity to adopt the product because others have
adopted it. Hence, at some point in the life cycle of a good product,
social contagion, i.e. the influence of the early adopters becomes suffi-
ciently strong so as to drive many others to adopt the product as well.
It may be going too far to think of this as a “network” effect, because
Frank Bass did this work well before the concept of network effect was
introduced, but essentially that is what it is.

The Bass model shows how the information of the first few periods of
sales data may be used to develop a fairly good forecast of future sales.
One can easily see that whereas this model came from the domain of
marketing, it may just as easily be used to model forecasts of cashflows
to determine the value of a start-up company.

8.2 Historical Examples

There are some classic examples from the literature of the Bass model
providing a very good forecast of the ramp up in product adoption as a
function of the two sources described above. See for example the actual
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versus predicted market growth for VCRs in the 80s shown in Figure 8.1.
Correspondingly, Figure 8.2 shows the adoption of answering machines.

(c) Frank M. Bass (1999)

Empirical Generalization: Always (Almost)
Looks Like a Bass Curve

Adoption of VCR’s
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Figure 8.1: Actual versus Bass model
predictions for VCRs.

8.3 The Basic Idea

We follow the exposition in Bass (1969).
Define the cumulative probability of purchase of a product from time

zero to time t by a single individual as F(t). Then, the probability of
purchase at time t is the density function f (t) = F′(t).

The rate of purchase at time t, given no purchase so far, logically fol-
lows, i.e.

f (t)
1− F(t)

.

Modeling this is just like modeling the adoption rate of the product at a
given time t.

Bass (1969) suggested that this adoption rate be defined as

f (t)
1− F(t)

= p + q F(t).

where we may think of p as defining the independent rate of a consumer
adopting the product, and q as the imitation rate, because it modulates
the impact from the cumulative intensity of adoption, F(t).
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(c) Frank M. Bass (1999)

An Empirical Generalization
Adoption of Answering Machines
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Figure 8.2: Actual versus Bass model
predictions for answering machines.

Hence, if we can find p and q for a product, we can forecast its adop-
tion over time, and thereby generate a time path of sales. To summarize:

• p: coefficient of innovation.

• q: coefficient of imitation.

8.4 Solving the Model

We rewrite the Bass equation:

dF/dt
1− F

= p + q F.

and note that F(0) = 0.
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The steps in the solution are:

dF
dt

= (p + qF)(1− F) (8.1)

dF
dt

= p + (q− p)F− qF2 (8.2)∫ 1
p + (q− p)F− qF2 dF =

∫
dt (8.3)

ln(p + qF)− ln(1− F)
p + q

= t + c1 (8.4)

t = 0 ⇒ F(0) = 0 (8.5)

t = 0 ⇒ c1 =
ln p

p + q
(8.6)

F(t) =
p(e(p+q)t − 1)
pe(p+q)t + q

(8.7)

An alternative approach1 goes as follows. First, split the integral above 1 This was suggested by students
Muhammad Sagarwalla based on ideas
from Alexey Orlovsky.into partial fractions.

∫ 1
(p + qF)(1− F)

dF =
∫

dt (8.8)

So we write

1
(p + qF)(1− F)

=
A

p + qF
+

B
1− F

(8.9)

=
A− AF + pB + qFB
(p + qF)(1− F)

(8.10)

=
A + pB + F(qB− A)

(p + qF)(1− F)
(8.11)

This implies that

A + pB = 1 (8.12)

qB− A = 0 (8.13)

Solving we get

A = q/(p + q) (8.14)

B = 1/(p + q) (8.15)
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so that ∫ 1
(p + qF)(1− F)

dF =
∫

dt (8.16)∫ ( A
p + qF

+
B

1− F

)
dF = t + c1 (8.17)∫ (q/(p + q)

p + qF
+

1/(p + q)
1− F

)
dF = t + c1 (8.18)

1
p + q

ln(p + qF)− 1
p + q

ln(1− F) = t + c1 (8.19)

ln(p + qF)− ln(1− F)
p + q

= t + c1 (8.20)

which is the same as equation (8.4).
We may also solve for

f (t) =
dF
dt

=
e(p+q)t p (p + q)2

[pe(p+q)t + q]2
(8.21)

Therefore, if the target market is of size m, then at each t, the adop-
tions are simply given by m× f (t).

For example, set m = 100, 000, p = 0.01 and q = 0.2. Then the adop-
tion rate is shown in Figure 8.3.

Time (years)

Adoptions
Figure 8.3: Example of the adoption
rate: m = 100, 000, p = 0.01 and q = 0.2.

8.4.1 Symbolic math in R

The preceding computation may also be undertaken in R, using it’s sym-
bolic math capability.
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> #BASS MODEL
> FF = expression ( p* ( exp ( ( p+q ) * t )−1) / ( p* exp ( ( p+q ) * t )+q ) )
>
> # Take d e r i v a t i v e
> f f = D( FF , " t " )
> print ( f f )
p * ( exp ( ( p + q ) * t ) * ( p + q ) ) / ( p * exp ( ( p + q ) * t ) + q ) −

p * ( exp ( ( p + q ) * t ) − 1 ) * ( p * ( exp ( ( p + q ) * t ) * ( p +
q ) ) ) / ( p * exp ( ( p + q ) * t ) + q)^2

We may also plot the same as follows (note the useful tt eval function
employed in the next section of code):

> #PLOT
> m=100000 ; p = 0 . 0 1 ; q=0 .2
>
> t =seq ( 0 , 2 5 , 0 . 1 )
> fn _ f = eval ( f f )
> plot ( t , fn _ f *m, type=" l " )

And this results in a plot identical to that in Figure 8.3. See Figure 8.4.
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Figure 8.4: Example of the adoption
rate: m = 100, 000, p = 0.01 and q = 0.2.
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8.5 Software

The ordinary differential equation here may be solved using free soft-
ware. One of the widely used open-source packages is called Maxima and
can be downloaded from many places. A very nice one page user-guide
is available at

http://www.math.harvard.edu/computing/maxima/

Here is the basic solution of the differential equation in Maxima:

Maxima 5.9.0 http://maxima.sourceforge.net

Distributed under the GNU Public License. See the file COPYING.

Dedicated to the memory of William Schelter.

This is a development version of Maxima. The function bug_report()

provides bug reporting information.

(C1) depends(F,t);

(D1) [F(t)]

(C2) diff(F,t)=(1-F)*(p+q*F);

dF

(D2) -- = (1 - F) (F q + p)

dt

(C3) ode2(%,F,t);

LOG(F q + p) - LOG(F - 1)

(D3) ------------------------- = t + %C

q + p

Notice that line (D3) of the program output does not correspond to
equation (8.4). This is because the function 1

1−F needs to be approached
from the left, not the right as the software appears to be doing. Hence,
solving by partial fractions results in simple integrals that Maxima will
handle properly.

(%i1) integrate((q/(p+q))/(p+q*F)+(1/(p+q))/(1-F),F);

log(q F + p) log(1 - F)

(%o1) ------------ - ----------

q + p q + p

which is now the exact correct solution, which we use in the model.
Another good tool that is free for small-scale symbolic calculations is
WolframAlpha, available at www.wolframalpha.com. See Figure 8.5 for an
example of the basic Bass model integral.
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Figure 8.5: Computing the Bass
model integral using WolframAl-
pha.

8.6 Calibration

How do we get coefficients p and q? Given we have the current sales
history of the product, we can use it to fit the adoption curve.

• Sales in any period are: s(t) = m f (t).

• Cumulative sales up to time t are: S(t) = m F(t).

Substituting for f (t) and F(t) in the Bass equation gives:

s(t)/m
1− S(t)/m

= p + q S(t)/m

We may rewrite this as

s(t) = [p + q S(t)/m][m− S(t)]

Therefore,

s(t) = β0 + β1 S(t) + β2 S(t)2 (8.22)

β0 = pm (8.23)

β1 = q− p (8.24)

β2 = −q/m (8.25)

Equation 8.22 may be estimated by a regression of sales against cumu-
lative sales. Once the coefficients in the regression {β0, β1, β2} are ob-
tained, the equations above may be inverted to determine the values of
{m, p, q}. We note that since

β1 = q− p = −mβ2 −
β0

m
,
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we obtain a quadratic equation in m:

β2m2 + β1m + β0 = 0

Solving we have"

m =
−β1 ±

√
β2

1 − 4β0β2

2β1

and then this value of m may be used to solve for

p =
β0

m
; q = −mβ2

As an example, let’s look at the trend for iPhone sales (we store the quar-
terly sales in a file and read it in, and then undertook the Bass model
analysis). The R code for this computation is as follows:

> #USING APPLE iPHONE SALES DATA
> data = read . table ( " iphone_ s a l e s . t x t " , header=TRUE)
> i s a l e s = data [ , 2 ]
> cum_ i s a l e s = cumsum( i s a l e s )
> cum_ i s a l e s 2 = cum_ i s a l e s ^2

> re s = lm ( i s a l e s ~ cum_ i s a l e s +cum_ i s a l e s 2 )
> print (summary ( r es ) )

Call :
lm ( formula = i s a l e s ~ cum_ i s a l e s + cum_ i s a l e s 2 )

Residuals :
Min 1Q Median 3Q Max

−14.106 −2.877 −1.170 2 . 436 20 .870

C o e f f i c i e n t s :
Est imate Std . Error t value Pr(>| t |)

( I n t e r c e p t ) 3 .220 e+00 2 . 194 e+00 1 . 468 0 .1533

cum_ i s a l e s 1 .216 e−01 2 . 294 e−02 5 . 301 1 . 2 2 e−05 * * *
cum_ i s a l e s 2 −6.893e−05 3 . 906 e−05 −1.765 0 .0885 .
−−−
S i g n i f . codes : 0 ? * * * ? 0 . 001 ? * * ? 0 . 0 1 ? * ? 0 . 0 5 ? . ? 0 . 1 ? ? 1

Residual standard e r r o r : 7 . 326 on 28 degrees of freedom
Mult iple R−squared : 0 . 8 5 4 , Adjusted R−squared : 0 .8436

F−s t a t i s t i c : 81 . 89 on 2 and 28 DF, p−value : 1 .999 e−12
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We now proceed to fit the model and then plot it, with actual sales
overlaid on the forecast.

> #FIT THE MODEL
> m1 = (−b [ 2 ] + sqr t ( b[2]^2−4 *b [ 1 ] *b [ 3 ] ) ) / (2 *b [ 3 ] )
> m2 = (−b[2]− sqr t ( b[2]^2−4 *b [ 1 ] *b [ 3 ] ) ) / (2 *b [ 3 ] )
> print ( c (m1 ,m2 ) )
cum_ i s a l e s cum_ i s a l e s
−26.09855 1790 .23321

> m = max (m1 ,m2 ) ; print (m)
[ 1 ] 1790 .233

> p = b [ 1 ] /m
> q = −m*b [ 3 ]
> print ( c ( p , q ) )
( I n t e r c e p t ) cum_ i s a l e s 2

0 .00179885 0 .12339235

>
> #PLOT THE FITTED MODEL
> nqtrs = 100

> t =seq ( 0 , nqtrs )
> fn _ f = eval ( f f ) *m
> plot ( t , fn _ f , type=" l " )
> n = length ( i s a l e s )
> l i n e s ( 1 : n , i s a l e s , col=" red " , lwd=2 , l t y =2)
>

The outcome is plotted in Figure 8.6. Indeed, it appears that Apple is
ready to peak out in sales.

For several other products, Figure 8.7 shows the estimated coefficients
reported in Table I of the original Bass (1969) paper.

8.7 Sales Peak

It is easy to calculate the time at which adoptions will peak out. Differ-
entiate f (t) with respect to t, and set the result equal to zero, i.e.

t∗ = argmaxt f (t)

which is equivalent to the solution to f ′(t) = 0.
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Figure 8.6: Bass model forecast of
Apple Inc’s quarterly sales. The current
sales are also overlaid in the plot.

Figure 8.7: Empirical adoption rates
and parameters from the Bass paper.
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The calculations are simple and give

t∗ =
−1

p + q
ln(p/q) (8.26)

Hence, for the values p = 0.01 and q = 0.2, we have

t∗ =
−1

0.01 + 0.2
ln(0.01/0.2) = 14.2654 years.

If we examine the plot in Figure 8.3 we see this to be where the graph
peaks out.

For the Apple data, here is the computation of the sales peak, reported
in number of quarters from inception.

> #PEAK SALES TIME POINT ( IN QUARTERS)
> t s t a r = −1 / ( p+q ) * log ( p / q )
> print ( t s t a r )
( I n t e r c e p t )

33 .77411

> length ( i s a l e s )
[ 1 ] 31

The number of quarters that have already passed is 31. The peak arrives
in a half a year!

8.8 Notes

The Bass model has been extended to what is known as the generalized
Bass model in the paper by Bass, Krishnan, and Jain (1994). The idea is
to extend the model to the following equation:

f (t)
1− F(t)

= [p + q F(t)] x(t)

where x(t) stands for current marketing effort. This additional variable
allows (i) consideration of effort in the model, and (ii) given the function
x(t), it may be optimized.

The Bass model comes from a deterministic differential equation. Ex-
tensions to stochastic differential equations need to be considered.

See also the paper on Bayesian inference in Bass models by Boatwright
and Kamakura (2003).
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Exercise

In the Bass model, if the coefficient of imitation increases relative to the
coefficient of innovation, then which of the following is the most valid?
(a) the peak of the product life cycle occurs later.

(b) the peak of the product life cycle occurs sooner.
(c) there may be an increasing chance of two life-cycle peaks.
(d) the peak may occur sooner or later, depending on the coefficient of

innovation.
Using peak time formula, substitute x = q/p:

t∗ =
−1

p + q
ln(p/q) =

ln(q/p)
p + q

=
1
p

ln(q/p)
1 + q/p

=
1
p

ln(x)
1 + x

Differentiate with regard to x (we are interested in the sign of the first
derivative ∂t∗/∂q, which is the same as sign of ∂t∗/∂x):

∂t∗

∂x
=

1
p

[
1

x(1 + x)
− ln x

(1 + x)2

]
=

1 + x− x ln x
px(1 + x)2

From the Bass model we know that q > p > 0, i.e. x > 1, otherwise
we could get negative values of acceptance or shape without maximum
in the 0 ≤ F < 1 area. Therefore, the sign of ∂t∗/∂x is same as:

sign
(

∂t∗

∂x

)
= sign(1 + x− x ln x), x > 1

But this non-linear equation

1 + x− x ln x = 0, x > 1

has a root x ≈ 3.59.
In other words, the derivative ∂t∗/∂x is negative when x > 3.59 and

positive when x < 3.59. For low values of x = q/p, an increase in the
coefficient of imitation q increases the time to sales peak (illustrated in
Figure 8.8), and for high values of q/p the time decreases with increas-
ing q. So the right answer for the question appears to be “it depends on
values of p and q”.
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9
Extracting Dimensions: Discriminant and Factor Analysis

9.1 Overview

In this chapter we will try and understand two common approaches to
analyzing large data sets with a view to grouping the data and under-
standing the main structural components of the data. In discriminant
analysis (DA), we develop statistical models that differentiate two or
more population types, such as immigrants vs natives, males vs females,
etc. In factor analysis (FA), we attempt to collapse an enormous amount
of data about the population into a few common explanatory variables.
DA is an attempt to explain categorical data, and FA is an attempt to
reduce the dimensionality of the data that we use to explain both cate-
gorical or continuous data. They are distinct techniques, related in that
they both exploit the techniques of linear algebra.

9.2 Discriminant Analysis

In DA, what we are trying to explain is very often a dichotomous split
of our observations. For example, if we are trying to understand what
determines a good versus a bad creditor. We call the good vs bad the
“criterion” variable, or the “dependent” variable. The variables we use
to explain the split between the criterion variables are called “predictor”
or “explanatory” variables. We may think of the criterion variables as
left-hand side variables or dependent variables in the lingo of regression
analysis. Likewise, the explanatory variables are the right-hand side
ones.

What distinguishes DA is that the left-hand side (lhs) variables are
essentially qualitative in nature. They have some underlying numerical
value, but are in essence qualitative. For example, when universities go
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through the admission process, they may have a cut off score for ad-
mission. This cut off score discriminates the students that they want to
admit and the ones that they wish to reject. DA is a very useful tool for
determining this cut off score.

In short, DA is the means by which quantitative explanatory variables
are used to explain qualitative criterion variables. The number of qual-
itative categories need not be restricted to just two. DA encompasses a
larger number of categories too.

9.2.1 Notation and assumptions

• Assume that there are N categories or groups indexed by i = 2...N.

• Within each group there are observations yj, indexed by j = 1...Mi.
The size of each group need not be the same, i.e., it is possible that
Mi 6= Mj.

• There are a set of predictor variables x = [x1, x2, . . . , xK]
′. Clearly,

there must be good reasons for choosing these so as to explain the
groups in which the yj reside. Hence the value of the kth variable for
group i, observation j, is denoted as xijk.

• Observations are mutually exclusive, i.e., each object can only belong
to any one of the groups.

• The K× K covariance matrix of explanatory variables is assumed to be
the same for all groups, i.e., Cov(xi) = Cov(xj).

9.2.2 Discriminant Function

DA involves finding a discriminant function D that best classifies the
observations into the chosen groups. The function may be nonlinear, but
the most common approach is to use linear DA. The function takes the
following form:

D = a1x1 + a2x2 + . . . + aKxK =
K

∑
k=1

akxk

where the ak coefficients are discriminant weights.
The analysis requires the inclusion of a cut-off score C. For example,

if N = 2, i.e., there are 2 groups, then if D > C the observation falls into
group 1, and if D ≤ C, then the observation falls into group 2.
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Hence, the objective function is to choose {{ak}, C} such that classifica-
tion error is minimized. The equation C = D({xk}; {ak}) is the equation
of a hyperplane that cuts the space of the observations into 2 parts if
there are only two groups. Note that if there are N groups then there
will be (N − 1) cutoffs {C1, C2, . . . , CN−1}, and a corresponding number
of hyperplanes.

Exercise

Draw a diagram of the distribution of 2 groups of observations and the
cut off C. Shade the area under the distributions where observations for
group 1 are wrongly classified as group 2; and vice versa.

The variables xk are also known as the “discriminants”. In the extrac-
tion of the discriminant function, better discriminants will have higher
statistical significance.

Exercise

Draw a diagram of DA with 2 groups and 2 discriminants. Make the dia-
gram such that one of the variables is shown to be a better discriminant.
How do you show this diagrammatically?

9.2.3 How good is the discriminant function?

After fitting the discriminant function, the next question to ask is how
good the fit is. There are various measures that have been suggested for
this. All of them have the essential property that they best separate the
distribution of observations for different groups. There are many such
measures: (a) Point biserial correlation, (b) Mahalobis D, and (c) the con-
fusion matrix. Each of the measures assesses the degree of classification
error.

The point biserial correlation is the R2 of a regression in which the
classified observations are signed as yij = 1, i = 1 for group 1 and
yij = 0, i = 2 for group 2, and the rhs variables are the xijk values.

The Mahalanobis distance between any two characteristic vectors for
two entities in the data is given by

DM =
√
(x1 − x2)′Σ−1(x1 − x2)

where x1, x2 are two vectors and Σ is the covariance matrix of character-
istics of all observations in the data set. First, note that if Σ is the identity
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matrix, then DM defaults to the Euclidean distance between two vec-
tors. Second, one of the vectors may be treated as the mean vector for a
given category, in which case the Mahalanobis distance can be used to
assess the distances within and across groups in a pairwise manner. The
quality of the discriminant function is then gauged by computing the
ratio of the average distance across groups to the average distance within
groups. Such ratios are often called the Fisher’s discriminant value.

The confusion matrix is a cross-tabulation of the actual versus pre-
dicted classification. For example, a n-category model will result in a
n× n confusion matrix. A comparison of this matrix with a matrix where
the model is assumed to have no classification ability leads to a χ2 statis-
tic that informs us about the statistical strength of the classification abil-
ity of the model. We will examine this in more detail shortly.

9.2.4 Caveats

Be careful to not treat dependent variables that are actually better off
remaining continuous as being artificially grouped in qualitative subsets.

9.2.5 Implementation using R

We implement a discriminant function model using data for the top 64

teams in the 2005-06 NCAA tournament. The data is as follows (averages
per game):

GMS PTS REB AST TO A. T STL BLK PF FG FT X3P
1 6 8 4 . 2 4 1 . 5 1 7 . 8 1 2 . 8 1 . 3 9 6 . 7 3 . 8 1 6 . 7 0 . 514 0 .664 0 . 417

2 6 7 4 . 5 3 4 . 0 1 9 . 0 1 0 . 2 1 . 8 7 8 . 0 1 . 7 1 6 . 5 0 . 457 0 .753 0 . 361

3 5 7 7 . 4 3 5 . 4 1 3 . 6 1 1 . 0 1 . 2 4 5 . 4 4 . 2 1 6 . 6 0 . 479 0 .702 0 . 376

4 5 8 0 . 8 3 7 . 8 1 3 . 0 1 2 . 6 1 . 0 3 8 . 4 2 . 4 1 9 . 8 0 . 445 0 .783 0 . 329

5 4 7 9 . 8 3 5 . 0 1 5 . 8 1 4 . 5 1 . 0 9 6 . 0 6 . 5 1 3 . 3 0 . 542 0 .759 0 . 397

6 4 7 2 . 8 3 2 . 3 1 2 . 8 1 3 . 5 0 . 9 4 7 . 3 3 . 5 1 9 . 5 0 . 510 0 .663 0 . 400

7 4 6 8 . 8 3 1 . 0 1 3 . 0 1 1 . 3 1 . 1 6 3 . 8 0 . 8 1 4 . 0 0 . 467 0 .753 0 . 429

8 4 8 1 . 0 2 8 . 5 1 9 . 0 1 4 . 8 1 . 2 9 6 . 8 3 . 5 1 8 . 8 0 . 509 0 .762 0 . 467

9 3 6 2 . 7 3 6 . 0 8 . 3 1 5 . 3 0 . 5 4 8 . 0 4 . 7 1 9 . 7 0 . 407 0 .716 0 . 328

10 3 6 5 . 3 2 6 . 7 1 3 . 0 1 4 . 0 0 . 9 3 1 1 . 3 5 . 7 1 7 . 7 0 . 409 0 .827 0 . 377

11 3 7 5 . 3 2 9 . 0 1 6 . 0 1 3 . 0 1 . 2 3 8 . 0 0 . 3 1 7 . 7 0 . 483 0 .827 0 . 476

12 3 6 5 . 7 4 1 . 3 8 . 7 1 4 . 3 0 . 6 0 9 . 3 4 . 3 1 9 . 7 0 . 360 0 .692 0 . 279

13 3 5 9 . 7 3 4 . 7 1 3 . 3 1 6 . 7 0 . 8 0 4 . 7 2 . 0 1 7 . 3 0 . 472 0 .579 0 . 357

14 3 8 8 . 0 3 3 . 3 1 7 . 0 1 1 . 3 1 . 5 0 6 . 7 1 . 3 1 9 . 7 0 . 508 0 .696 0 . 358
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15 3 7 6 . 3 2 7 . 7 1 6 . 3 1 1 . 7 1 . 4 0 7 . 0 3 . 0 1 8 . 7 0 . 457 0 .750 0 . 405

16 3 6 9 . 7 3 2 . 7 1 6 . 3 1 2 . 3 1 . 3 2 8 . 3 1 . 3 1 4 . 3 0 . 509 0 .646 0 . 308

17 2 7 2 . 5 3 3 . 5 1 5 . 0 1 4 . 5 1 . 0 3 8 . 5 2 . 0 2 2 . 5 0 . 390 0 .667 0 . 283

18 2 6 9 . 5 3 7 . 0 1 3 . 0 1 3 . 5 0 . 9 6 5 . 0 5 . 0 1 4 . 5 0 . 464 0 .744 0 . 250

19 2 6 6 . 0 3 3 . 0 1 2 . 0 1 7 . 5 0 . 6 9 8 . 5 6 . 0 2 5 . 5 0 . 387 0 .818 0 . 341

20 2 6 7 . 0 3 2 . 0 1 1 . 0 1 2 . 0 0 . 9 2 8 . 5 1 . 5 2 1 . 5 0 . 440 0 .781 0 . 406

21 2 6 4 . 5 4 3 . 0 1 5 . 5 1 5 . 0 1 . 0 3 1 0 . 0 5 . 0 2 0 . 0 0 . 391 0 .528 0 . 286

22 2 7 1 . 0 3 0 . 5 1 3 . 0 1 0 . 5 1 . 2 4 8 . 0 1 . 0 2 5 . 0 0 . 410 0 .818 0 . 323

23 2 8 0 . 0 3 8 . 5 2 0 . 0 2 0 . 5 0 . 9 8 7 . 0 4 . 0 1 8 . 0 0 . 520 0 .700 0 . 522

24 2 8 7 . 5 4 1 . 5 1 9 . 5 1 6 . 5 1 . 1 8 8 . 5 2 . 5 2 0 . 0 0 . 465 0 .667 0 . 333

25 2 7 1 . 0 4 0 . 5 9 . 5 1 0 . 5 0 . 9 0 8 . 5 3 . 0 1 9 . 0 0 . 393 0 .794 0 . 156

26 2 6 0 . 5 3 5 . 5 9 . 5 1 2 . 5 0 . 7 6 7 . 0 0 . 0 1 5 . 5 0 . 341 0 .760 0 . 326

27 2 7 9 . 0 3 3 . 0 1 4 . 0 1 0 . 0 1 . 4 0 3 . 0 1 . 0 1 8 . 0 0 . 459 0 .700 0 . 409

28 2 7 4 . 0 3 9 . 0 1 1 . 0 9 . 5 1 . 1 6 5 . 0 5 . 5 1 9 . 0 0 . 437 0 .660 0 . 433

29 2 6 3 . 0 2 9 . 5 1 5 . 0 9 . 5 1 . 5 8 7 . 0 1 . 5 2 2 . 5 0 . 429 0 .767 0 . 283

30 2 6 8 . 0 3 6 . 5 1 4 . 0 9 . 0 1 . 5 6 4 . 5 6 . 0 1 9 . 0 0 . 398 0 .634 0 . 364

31 2 7 1 . 5 4 2 . 0 1 3 . 5 1 1 . 5 1 . 1 7 3 . 5 3 . 0 1 5 . 5 0 . 463 0 .600 0 . 241

32 2 6 0 . 0 4 0 . 5 1 0 . 5 1 1 . 0 0 . 9 5 7 . 0 4 . 0 1 5 . 5 0 . 371 0 .651 0 . 261

33 2 7 3 . 5 3 2 . 5 1 3 . 0 1 3 . 5 0 . 9 6 5 . 5 1 . 0 1 5 . 0 0 . 470 0 .684 0 . 433

34 1 7 0 . 0 3 0 . 0 9 . 0 5 . 0 1 . 8 0 6 . 0 3 . 0 1 9 . 0 0 . 381 0 .720 0 . 222

35 1 6 6 . 0 2 7 . 0 1 6 . 0 1 3 . 0 1 . 2 3 5 . 0 2 . 0 1 5 . 0 0 . 433 0 .533 0 . 300

36 1 6 8 . 0 3 4 . 0 1 9 . 0 1 4 . 0 1 . 3 6 9 . 0 4 . 0 2 0 . 0 0 . 446 0 .250 0 . 375

37 1 6 8 . 0 4 2 . 0 1 0 . 0 2 1 . 0 0 . 4 8 6 . 0 5 . 0 2 6 . 0 0 . 359 0 .727 0 . 194

38 1 5 3 . 0 4 1 . 0 8 . 0 1 7 . 0 0 . 4 7 9 . 0 1 . 0 1 8 . 0 0 . 333 0 .600 0 . 217

39 1 7 7 . 0 3 3 . 0 1 5 . 0 1 8 . 0 0 . 8 3 5 . 0 0 . 0 1 6 . 0 0 . 508 0 .250 0 . 450

40 1 6 1 . 0 2 7 . 0 1 2 . 0 1 7 . 0 0 . 7 1 8 . 0 3 . 0 1 6 . 0 0 . 420 0 .846 0 . 400

41 1 5 5 . 0 4 2 . 0 1 1 . 0 1 7 . 0 0 . 6 5 6 . 0 3 . 0 1 9 . 0 0 . 404 0 .455 0 . 250

42 1 4 7 . 0 3 5 . 0 6 . 0 1 7 . 0 0 . 3 5 9 . 0 4 . 0 2 0 . 0 0 . 298 0 .750 0 . 160

43 1 5 7 . 0 3 7 . 0 8 . 0 2 4 . 0 0 . 3 3 9 . 0 3 . 0 1 2 . 0 0 . 418 0 .889 0 . 250

44 1 6 2 . 0 3 3 . 0 8 . 0 2 0 . 0 0 . 4 0 8 . 0 5 . 0 2 1 . 0 0 . 391 0 .654 0 . 500

45 1 6 5 . 0 3 4 . 0 1 7 . 0 1 7 . 0 1 . 0 0 1 1 . 0 2 . 0 1 9 . 0 0 . 352 0 .500 0 . 333

46 1 7 1 . 0 3 0 . 0 1 0 . 0 1 0 . 0 1 . 0 0 7 . 0 3 . 0 2 0 . 0 0 . 424 0 .722 0 . 348

47 1 5 4 . 0 3 5 . 0 1 2 . 0 2 2 . 0 0 . 5 5 5 . 0 1 . 0 1 9 . 0 0 . 404 0 .667 0 . 300

48 1 5 7 . 0 4 0 . 0 2 . 0 5 . 0 0 . 4 0 5 . 0 6 . 0 1 6 . 0 0 . 353 0 .667 0 . 500

49 1 8 1 . 0 3 0 . 0 1 3 . 0 1 5 . 0 0 . 8 7 9 . 0 1 . 0 2 9 . 0 0 . 426 0 .846 0 . 350

50 1 6 2 . 0 3 7 . 0 1 4 . 0 1 8 . 0 0 . 7 8 7 . 0 0 . 0 2 1 . 0 0 . 453 0 .556 0 . 333

51 1 6 7 . 0 3 7 . 0 1 2 . 0 1 6 . 0 0 . 7 5 8 . 0 2 . 0 1 6 . 0 0 . 353 0 .867 0 . 214

52 1 5 3 . 0 3 2 . 0 1 5 . 0 1 2 . 0 1 . 2 5 6 . 0 3 . 0 1 6 . 0 0 . 364 0 .600 0 . 368
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53 1 7 3 . 0 3 4 . 0 1 7 . 0 1 9 . 0 0 . 8 9 3 . 0 3 . 0 2 0 . 0 0 . 520 0 .750 0 . 391

54 1 7 1 . 0 2 9 . 0 1 6 . 0 1 0 . 0 1 . 6 0 1 0 . 0 6 . 0 2 1 . 0 0 . 344 0 .857 0 . 393

55 1 4 6 . 0 3 0 . 0 1 0 . 0 1 1 . 0 0 . 9 1 3 . 0 1 . 0 2 3 . 0 0 . 365 0 .500 0 . 333

56 1 6 4 . 0 3 5 . 0 1 4 . 0 1 7 . 0 0 . 8 2 5 . 0 1 . 0 2 0 . 0 0 . 441 0 .545 0 . 333

57 1 6 4 . 0 4 3 . 0 5 . 0 1 1 . 0 0 . 4 5 6 . 0 1 . 0 2 0 . 0 0 . 339 0 .760 0 . 294

58 1 6 3 . 0 3 4 . 0 1 4 . 0 1 3 . 0 1 . 0 8 5 . 0 3 . 0 1 5 . 0 0 . 435 0 .815 0 . 091

59 1 6 3 . 0 3 6 . 0 1 1 . 0 2 0 . 0 0 . 5 5 8 . 0 2 . 0 1 8 . 0 0 . 397 0 .643 0 . 381

60 1 5 2 . 0 3 5 . 0 8 . 0 8 . 0 1 . 0 0 4 . 0 2 . 0 1 5 . 0 0 . 415 0 .500 0 . 235

61 1 5 0 . 0 1 9 . 0 1 0 . 0 1 7 . 0 0 . 5 9 1 2 . 0 2 . 0 2 2 . 0 0 . 444 0 .700 0 . 300

62 1 5 6 . 0 4 2 . 0 3 . 0 2 0 . 0 0 . 1 5 2 . 0 2 . 0 1 7 . 0 0 . 333 0 .818 0 . 200

63 1 5 4 . 0 2 2 . 0 1 3 . 0 1 0 . 0 1 . 3 0 6 . 0 1 . 0 2 0 . 0 0 . 415 0 .889 0 . 222

64 1 6 4 . 0 3 6 . 0 1 6 . 0 1 3 . 0 1 . 2 3 4 . 0 0 . 0 1 9 . 0 0 . 367 0 .833 0 . 385

We loaded in the data and ran the following commands (which are
stored in the program file lda.R:

ncaa = read . table ( " ncaa . t x t " , header=TRUE)
x = as . matrix ( ncaa [ 4 : 1 4 ] )
y1 = 1 : 3 2

y1 = y1 * 0+1

y2 = y1 * 0

y = c ( y1 , y2 )

l i b r a r y (MASS)
dm = lda ( y~x )

Hence the top 32 teams are category 1 (y = 1) and the bottom 32

teams are category 2 (y = 0). The results are as follows:

> lda ( y~x )
Call :
lda ( y ~ x )

P r i o r p r o b a b i l i t i e s of groups :
0 1

0 . 5 0 . 5

Group means :
xPTS xREB xAST xTO xA . T xSTL xBLK xPF

0 62 .10938 33 .85938 11 .46875 15 .01562 0 .835625 6 .609375 2 . 375 18 .84375

1 72 .09375 35 .07500 14 .02812 12 .90000 1 .120000 7 .037500 3 . 125 18 .46875

xFG xFT xX3P
0 0 .4001562 0 .6685313 0 .3142187

1 0 .4464375 0 .7144063 0 .3525313

C o e f f i c i e n t s of l i n e a r d i s c r im ina nt s :
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LD1

xPTS −0 .02192489

xREB 0 .18473974

xAST 0 .06059732

xTO −0 .18299304

xA . T 0 .40637827

xSTL 0 .24925833

xBLK 0 .09090269

xPF 0 .04524600

xFG 19 .06652563

xFT 4 .57566671

xX3P 1 .87519768

Some useful results can be extracted as follows:

> r e s u l t = lda ( y~x )
> r e s u l t $ p r i o r

0 1

0 . 5 0 . 5

> r e s u l t $means
xPTS xREB xAST xTO xA . T xSTL xBLK xPF

0 62 .10938 33 .85938 11 .46875 15 .01562 0 .835625 6 .609375 2 . 375 18 .84375

1 72 .09375 35 .07500 14 .02812 12 .90000 1 .120000 7 .037500 3 . 125 18 .46875

xFG xFT xX3P
0 0 .4001562 0 .6685313 0 .3142187

1 0 .4464375 0 .7144063 0 .3525313

> r e s u l t $ c a l l
lda ( formula = y ~ x )
> r e s u l t $N
[ 1 ] 64

> r e s u l t $svd
[ 1 ] 7 .942264

The last line contains the singular value decomposition level, which
is also the level of the Fischer discriminant, which gives the ratio of the
between- and within-group standard deviations on the linear discrimi-
nant variables. Their squares are the canonical F-statistics.

We can look at the performance of the model as follows:

> r e s u l t = lda ( y~x )
> predic t ( r e s u l t ) $ c l a s s

[ 1 ] 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0

[ 3 9 ] 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0

Levels : 0 1

If we want the value of the predicted normalized discriminant func-
tion we simply do

> predic t ( r e s u l t )

The cut off is treated as being at zero.



248 data science: theories, models, algorithms, and analytics

9.2.6 Confusion Matrix

As we have seen before, the confusion matrix is a tabulation of actual
and predicted values. To generate the confusion matrix for our basket-
ball example here we use the following commands in R:

> r e s u l t = lda ( y~x )
> y_pred = predic t ( r e s u l t ) $ c l a s s
> length ( y_pred )
[ 1 ] 64

> table ( y , y_pred )
y_pred

y 0 1

0 27 5

1 5 27

We can see that 5 of the 64 teams have been misclassified. Is this statisti-
cally significant? In order to assess this, we compute the χ2 statistic for
the confusion matrix. Let’s define the confusion matrix as

A =

[
27 5
5 27

]

This matrix shows some classification ability. Now we ask, what if the
model has no classification ability, then what would the average confu-
sion matrix look like? It’s easy to see that this would give a matrix that
would assume no relation between the rows and columns, and the num-
bers in each cell would reflect the average number drawn based on row
and column totals. In this case since the row and column totals are all
32, we get the following confusion matrix of no classification ability:

E =

[
16 16
16 16

]

The test statistic is the sum of squared normalized differences in the cells
of both matrices, i.e.,

Test-Stat = ∑
i,j

[Aij − Eij]
2

Eij

We compute this in R.

> A = matrix ( c ( 2 7 , 5 , 5 , 2 7 ) , 2 , 2 )
> A
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[ , 1 ] [ , 2 ]
[ 1 , ] 27 5

[ 2 , ] 5 27

> E = matrix ( c ( 1 6 , 1 6 , 1 6 , 1 6 ) , 2 , 2 )
> E

[ , 1 ] [ , 2 ]
[ 1 , ] 16 16

[ 2 , ] 16 16

> t e s t _ s t a t = sum ( (A−E)^2 / E )
> t e s t _ s t a t
[ 1 ] 30 . 25

> 1−pchisq ( t e s t _ s t a t , 1 )
[ 1 ] 3 .797912 e−08

The χ2 distribution requires entering the degrees of freedom. In this
case, the degrees of freedom is 1, i.e., equal to (r − 1)(c − 1), where r
is the number of rows and c is the number of columns. We see that the
probability of the A and E matrices being the same is zero. Hence, the
test suggests that the model has statistically significant classification
ability.

9.2.7 Multiple groups

What if we wanted to discriminate the NCAA data into 4 groups? Its
just as simple:
> y1 = rep ( 3 , 1 6 )
> y2 = rep ( 2 , 1 6 )
> y3 = rep ( 1 , 1 6 )
> y4 = rep ( 0 , 1 6 )
> y = c ( y1 , y2 , y3 , y4 )
> re s = lda ( y~x )
> re s
Call :
lda ( y ~ x )

P r i o r p r o b a b i l i t i e s of groups :
0 1 2 3

0 . 2 5 0 . 2 5 0 . 2 5 0 . 2 5

Group means :
xPTS xREB xAST xTO xA . T xSTL xBLK xPF xFG

0 61 .43750 33 .18750 11 .93750 14 .37500 0 .888750 6 .12500 1 .8750 19 .5000 0 .4006875

1 62 .78125 34 .53125 11 .00000 15 .65625 0 .782500 7 .09375 2 .8750 18 .1875 0 .3996250

2 70 .31250 36 .59375 13 .50000 12 .71875 1 .094375 6 .84375 3 .1875 19 .4375 0 .4223750

3 73 .87500 33 .55625 14 .55625 13 .08125 1 .145625 7 .23125 3 .0625 17 .5000 0 .4705000

xFT xX3P
0 0 .7174375 0 .3014375

1 0 .6196250 0 .3270000

2 0 .7055625 0 .3260625
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3 0 .7232500 0 .3790000

C o e f f i c i e n t s of l i n e a r d i s c r im ina nt s :
LD1 LD2 LD3

xPTS −0 .03190376 −0 .09589269 −0 .03170138

xREB 0 .16962627 0 .08677669 −0 .11932275

xAST 0 .08820048 0 .47175998 0 .04601283

xTO −0 .20264768 −0 .29407195 −0 .02550334

xA . T 0 .02619042 −3 .28901817 −1 .42081485

xSTL 0 .23954511 −0 .26327278 −0 .02694612

xBLK 0 .05424102 −0 .14766348 −0 .17703174

xPF 0 .03678799 0 .22610347 −0 .09608475

xFG 21 .25583140 0 .48722022 9 .50234314

xFT 5 .42057568 6 .39065311 2 .72767409

xX3P 1 .98050128 −2 .74869782 0 .90901853

Proport ion of t r a c e :
LD1 LD2 LD3

0 .6025 0 .3101 0 .0873

> predic t ( r es ) $ c l a s s
[ 1 ] 3 3 3 3 3 3 3 3 1 3 3 2 0 3 3 3 0 3 2 3 2 2 3 2 2 0 2 2 2 2 2 2 3 1 1 1 0 1

[ 3 9 ] 1 1 1 1 1 1 1 1 0 2 2 0 0 0 0 2 0 0 2 0 1 0 1 1 0 0

Levels : 0 1 2 3

> y
[ 1 ] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1

[ 4 0 ] 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

> y_pred = predic t ( r es ) $ c l a s s
> table ( y , y_pred )

y_pred
y 0 1 2 3

0 10 3 3 0

1 2 12 1 1

2 2 0 11 3

3 1 1 1 13

Exercise

Use the spreadsheet titled default-analysis-data.xls and fit a model
to discriminate firms that default from firms that do not. How good a fit
does your model achieve?

9.3 Eigen Systems

We now move on to understanding some properties of matrices that
may be useful in classifying data or deriving its underlying compo-
nents. We download Treasury interest rate date from the FRED website,
http://research.stlouisfed.org/fred2/. I have placed the data in a
file called tryrates.txt. Let’s read in the file.

> r a t e s = read . table ( " t r y r a t e s . t x t " , header=TRUE)
> names ( r a t e s )
[ 1 ] "DATE" "FYGM3" "FYGM6" "FYGT1" "FYGT2" "FYGT3" "FYGT5" "FYGT7"
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[ 9 ] "FYGT10 "

A M×M matrix A has attendant M eigenvectors V and eigenvalue λ

if we can write

λV = A V

Starting with matrix A, the eigenvalue decomposition gives both V and
λ. It turns out we can find M such eigenvalues and eigenvectors, as
there is no unique solution to this equation. We also require that λ 6= 0.

We may implement this in R as follows, setting matrix A equal to the
covariance matrix of the rates of different maturities:

> eigen ( cov ( r a t e s ) )
$ values
[ 1 ] 7 .070996 e+01 1 .655049 e+00 9 .015819 e−02 1 .655911 e−02 3 .001199 e−03

[ 6 ] 2 .145993 e−03 1 .597282 e−03 8 .562439 e−04

$ v e c t o r s
[ , 1 ] [ , 2 ] [ , 3 ] [ , 4 ] [ , 5 ] [ , 6 ]

[ 1 , ] −0 .3596990 −0 .49201202 0 .59353257 −0 .38686589 −0 .34419189 −0 .07045281

[ 2 , ] −0 .3581944 −0 .40372601 0 .06355170 0 .20153645 0 .79515713 0 .07823632

[ 3 , ] −0 .3875117 −0 .28678312 −0 .30984414 0 .61694982 −0 .45913099 0 .20442661

[ 4 , ] −0 .3753168 −0 .01733899 −0 .45669522 −0 .19416861 0 .03906518 −0 .46590654

[ 5 , ] −0 .3614653 0 .13461055 −0 .36505588 −0 .41827644 −0 .06076305 −0 .14203743

[ 6 , ] −0 .3405515 0 .31741378 −0 .01159915 −0 .18845999 −0 .03366277 0 .72373049

[ 7 , ] −0 .3260941 0 .40838395 0 .19017973 −0 .05000002 0 .16835391 0 .09196861

[ 8 , ] −0 .3135530 0 .47616732 0 .41174955 0 .42239432 −0 .06132982 −0 .42147082

[ , 7 ] [ , 8 ]
[ 1 , ] 0 .04282858 0 .03645143

[ 2 , ] −0 .15571962 −0 .03744201

[ 3 , ] 0 .10492279 −0 .16540673

[ 4 , ] 0 .30395044 0 .54916644

[ 5 , ] −0 .45521861 −0 .55849003

[ 6 , ] −0 .19935685 0 .42773742

[ 7 , ] 0 .70469469 −0 .39347299

[ 8 , ] −0 .35631546 0 .13650940

> r c o r r = cor ( r a t e s )
> r c o r r

FYGM3 FYGM6 FYGT1 FYGT2 FYGT3 FYGT5 FYGT7

FYGM3 1 .0000000 0 .9975369 0 .9911255 0 .9750889 0 .9612253 0 .9383289 0 .9220409

FYGM6 0 .9975369 1 .0000000 0 .9973496 0 .9851248 0 .9728437 0 .9512659 0 .9356033

FYGT1 0 .9911255 0 .9973496 1 .0000000 0 .9936959 0 .9846924 0 .9668591 0 .9531304

FYGT2 0 .9750889 0 .9851248 0 .9936959 1 .0000000 0 .9977673 0 .9878921 0 .9786511

FYGT3 0 .9612253 0 .9728437 0 .9846924 0 .9977673 1 .0000000 0 .9956215 0 .9894029

FYGT5 0 .9383289 0 .9512659 0 .9668591 0 .9878921 0 .9956215 1 .0000000 0 .9984354

FYGT7 0 .9220409 0 .9356033 0 .9531304 0 .9786511 0 .9894029 0 .9984354 1 .0000000

FYGT10 0 .9065636 0 .9205419 0 .9396863 0 .9680926 0 .9813066 0 .9945691 0 .9984927

FYGT10

FYGM3 0 .9065636

FYGM6 0 .9205419

FYGT1 0 .9396863

FYGT2 0 .9680926

FYGT3 0 .9813066

FYGT5 0 .9945691

FYGT7 0 .9984927

FYGT10 1 .0000000
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So we calculated the eigenvalues and eigenvectors for the covariance
matrix of the data. What does it really mean? Think of the covariance
matrix as the summarization of the connections between the rates of dif-
ferent maturities in our data set. What we do not know is how many
dimensions of commonality there are in these rates, and what is the rel-
ative importance of these dimensions. For each dimension of commonal-
ity, we wish to ask (a) how important is that dimension (the eigenvalue),
and (b) the relative influence of that dimension on each rate (the values
in the eigenvector). The most important dimension is the one with the
highest eigenvalue, known as the “principal” eigenvalue, corresponding
to which we have the principal eigenvector. It should be clear by now
that the eigenvalue and its eigenvector are “eigen pairs”. It should also
be intuitive why we call this the eigenvalue “decomposition” of a matrix.

9.4 Factor Analysis

Factor analysis is the use of eigenvalue decomposition to uncover the
underlying structure of the data. Given a data set of observations and
explanatory variables, factor analysis seeks to achieve a decomposition
with these two properties:

1. Obtain a reduced dimension set of explanatory variables, known as
derived/extracted/discovered factors. Factors must be orthogonal, i.e.,
uncorrelated with each other.

2. Obtain data reduction, i.e., suggest a limited set of variables. Each
such subset is a manifestation of an abstract underlying dimension.

These subsets are also ordered in terms of their ability to explain the
variation across observations.

See the article by Richard Darlington
http://www.psych.cornell.edu/Darlington/factor.htm

which is as good as any explanation one can get. See also the article
by Statsoft:

http://www.statsoft.com/textbook/stfacan.html

9.4.1 Notation

• Observations: yi, i = 1...N.

• Original explanatory variables: xik, k = 1...K.
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• Factors: Fj, j = 1...M.

• M < K.

9.4.2 The Idea

As you can see in the rates data, there are eight different rates. If we
wanted to model the underlying drivers of this system of rates, we could
assume a separate driver for each one leading to K = 8 underlying
factors. But the whole idea of factor analysis is to reduce the number
of drivers that exist. So we may want to go with a smaller number of
M < K factors.

The main concept here is to “project” the variables x ∈ RK onto the
reduced factor set F ∈ RM such that we can explain most of the variables
by the factors. Hence we are looking for a relation

x = BF

where B = {bkj} ∈ RK×M is a matrix of factor “loadings” for the vari-
ables. Through matrix B, x may be represented in smaller dimension M.
The entries in matrix B may be positive or negative. Negative loadings
mean that the variable is negatively correlated with the factor. The whole
idea is that we want to replace the relation of y to x with a relation of y
to a reduced set F.

Once we have the set of factors defined, then the N observations y
may be expressed in terms of the factors through a factor “score” matrix
A = {aij} ∈ RN×M as follows:

y = AF

Again, factor scores may be positive or negative. There are many ways
in which such a transformation from variables to factors might be under-
taken. We look at the most common one.

9.4.3 Principal Components Analysis (PCA)

In PCA, each component (factor) is viewed as a weighted combination
of the other variables (this is not always the way factor analysis is imple-
mented, but is certainly one of the most popular).

The starting point for PCA is the covariance matrix of the data. Essen-
tially what is involved is an eigenvalue analysis of this matrix to extract
the principal eigenvectors.
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We can do the analysis using the R statistical package. Here is the
sample session:

> ncaa = read . table ( " ncaa . t x t " , header=TRUE)
> x = ncaa [ 4 : 1 4 ]
> r e s u l t = princomp ( x )
> s c r e e p l o t ( r e s u l t )
> s c r e e p l o t ( r e s u l t , type=" l i n e s " )

The results are as follows:
> summary ( r e s u l t )
Importance of components :

Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5

Standard devia t ion 9 .8747703 5 .2870154 3 .9577315 3 .19879732 2 .43526651

Proport ion of Variance 0 .5951046 0 .1705927 0 .0955943 0 .06244717 0 .03619364

Cumulative Proport ion 0 .5951046 0 .7656973 0 .8612916 0 .92373878 0 .95993242

Comp. 6 Comp. 7 Comp. 8 Comp. 9

Standard devia t ion 2 .04505010 1 .53272256 0 .1314860827 1 .062179 e−01

Proport ion of Variance 0 .02552391 0 .01433727 0 .0001055113 6 .885489 e−05

Cumulative Proport ion 0 .98545633 0 .99979360 0 .9998991100 9 .999680 e−01

Comp. 1 0 Comp. 1 1

Standard devia t ion 6 .591218 e−02 3 .007832 e−02

Proport ion of Variance 2 .651372 e−05 5 .521365 e−06

Cumulative Proport ion 9 .999945 e−01 1 .000000 e−00

The resultant “screeplot” shows the amount explained by each compo-
nent.

Lets look at the loadings. These are the respective eigenvectors:

> r e s u l t $ loadings

Loadings :
Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5 Comp. 6 Comp. 7 Comp. 8 Comp. 9 Comp. 1 0

PTS 0 . 964 0 . 240
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REB 0 . 940 −0.316

AST 0 . 257 −0.228 −0.283 −0.431 −0.778

TO 0 . 194 −0.908 −0.116 0 . 313 −0.109

A. T 0 . 712 0 . 642 0 .262

STL −0.194 0 . 205 0 . 816 0 . 498

BLK 0 . 516 −0.849

PF −0.110 −0.223 0 .862 −0.364 −0.228

FG
FT 0 . 619 −0.762 0 .175

X3P −0.315 0 .948

Comp. 1 1

PTS
REB
AST
TO
A. T
STL
BLK
PF
FG −0.996

FT
X3P

We can see that the main variable embedded in the first principal
component is PTS. (Not surprising!). We can also look at the standard
deviation of each component:

> r e s u l t $sdev
Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5 Comp. 6 Comp. 7

9 .87477028 5 .28701542 3 .95773149 3 .19879732 2 .43526651 2 .04505010 1 .53272256

Comp. 8 Comp. 9 Comp. 1 0 Comp. 1 1

0 .13148608 0 .10621791 0 .06591218 0 .03007832

The biplot shows the first two components and overlays the variables
as well. This is a really useful visual picture of the results of the analysis.

> b i p l o t ( r e s u l t )
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The alternative function prcomp returns the same stuff, but gives all
the factor loadings immediately.

> prcomp ( x )
Standard d ev i a t i o n s :

[ 1 ] 9 .95283292 5 .32881066 3 .98901840 3 .22408465 2 .45451793 2 .06121675

[ 7 ] 1 .54483913 0 .13252551 0 .10705759 0 .06643324 0 .03031610

Rotat ion :
PC1 PC2 PC3 PC4 PC5

PTS −0 .963808450 −0 .052962387 0 .018398319 0 .094091517 −0 .240334810

REB −0 .022483140 −0 .939689339 0 .073265952 0 .026260543 0 .315515827

AST −0 .256799635 0 .228136664 −0 .282724110 −0 .430517969 0 .778063875

TO 0 .061658120 −0 .193810802 −0 .908005124 −0 .115659421 −0 .313055838

A. T −0 .021008035 0 .030935414 0 .035465079 −0 .022580766 0 .068308725

STL −0 .006513483 0 .081572061 −0 .193844456 0 .205272135 0 .014528901

BLK −0 .012711101 −0 .070032329 0 .035371935 0 .073370876 −0 .034410932

PF −0 .012034143 0 .109640846 −0 .223148274 0 .862316681 0 .364494150

FG −0 .003729350 0 .002175469 −0 .001708722 −0 .006568270 −0 .001837634

FT −0 .001210397 0 .003852067 0 .001793045 0 .008110836 −0 .019134412

X3P −0 .003804597 0 .003708648 −0 .001211492 −0 .002352869 −0 .003849550
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PC6 PC7 PC8 PC9 PC10

PTS 0 .029408534 −0 .0196304356 0 .0026169995 −0 .004516521 0 .004889708

REB −0 .040851345 −0 .0951099200 −0 .0074120623 0 .003557921 −0 .008319362

AST −0 .044767132 0 .0681222890 0 .0359559264 0 .056106512 0 .015018370

TO 0 .108917779 0 .0864648004 −0 .0416005762 −0 .039363263 −0 .012726102

A. T −0 .004846032 0 .0061047937 −0 .7122315249 −0 .642496008 −0 .262468560

STL −0 .815509399 −0 .4981690905 0 .0008726057 −0 .008845999 −0 .005846547

BLK −0 .516094006 0 .8489313874 0 .0023262933 −0 .001364270 0 .008293758

PF 0 .228294830 0 .0972181527 0 .0005835116 0 .001302210 −0 .001385509

FG 0 .004118140 0 .0041758373 0 .0848448651 −0 .019610637 0 .030860027

FT −0 .005525032 0 .0001301938 −0 .6189703010 0 .761929615 −0 .174641147

X3P 0 .001012866 0 .0094289825 0 .3151374823 0 .038279107 −0 .948194531

PC11

PTS 0 .0037883918

REB −0 .0043776255

AST 0 .0058744543

TO −0 .0001063247

A. T −0 .0560584903

STL −0 .0062405867

BLK 0 .0013213701

PF −0 .0043605809

FG −0 .9956716097

FT −0 .0731951151

X3P −0 .0031976296

9.4.4 Application to Treasury Yield Curves

We had previously downloaded monthly data for constant maturity
yields from June 1976 to December 2006. Here is the 3D plot. It shows
the change in the yield curve over time for a range of maturities.

> persp ( ra tes , t h e t a =30 , phi =0 , x lab=" years " , ylab=" maturity " , z lab=" r a t e s " )
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As before, we undertake a PCA of the system of Treasury rates. The
commands are the same as with the basketball data.
> t r y r a t e s = read . table ( " t r y r a t e s . t x t " , header=TRUE)
> r a t e s = as . matrix ( t r y r a t e s [ 2 : 9 ] )
> r e s u l t = princomp ( r a t e s )
> r e s u l t $ loadings

Loadings :
Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5 Comp. 6 Comp. 7 Comp. 8

FYGM3 −0.360 −0.492 0 . 594 −0.387 −0.344

FYGM6 −0.358 −0.404 0 . 202 0 . 795 0 . 156

FYGT1 −0.388 −0.287 −0.310 0 . 617 −0.459 0 .204 −0.105 −0.165

FYGT2 −0.375 −0.457 −0.194 −0.466 −0.304 0 . 549

FYGT3 −0.361 0 . 135 −0.365 −0.418 −0.142 0 . 455 −0.558

FYGT5 −0.341 0 . 317 −0.188 0 .724 0 . 199 0 . 428

FYGT7 −0.326 0 . 408 0 . 190 0 . 168 −0.705 −0.393

FYGT10 −0.314 0 . 476 0 . 412 0 . 422 −0.421 0 . 356 0 . 137

> r e s u l t $sdev
Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5 Comp. 6 Comp. 7

8 .39745750 1 .28473300 0 .29985418 0 .12850678 0 .05470852 0 .04626171 0 .03991152

Comp. 8

0 .02922175

> summary ( r e s u l t )
Importance of components :

Comp. 1 Comp. 2 Comp. 3 Comp. 4

Standard devia t ion 8 .397458 1 .28473300 0 .299854180 0 .1285067846

Proport ion of Variance 0 .975588 0 .02283477 0 .001243916 0 .0002284667

Cumulative Proport ion 0 .975588 0 .99842275 0 .999666666 0 .9998951326

Comp. 5 Comp. 6 Comp. 7 Comp. 8

Standard devia t ion 5 .470852 e−02 4 .626171 e−02 3 .991152 e−02 2 .922175 e−02

Proport ion of Variance 4 .140766 e−05 2 .960835 e−05 2 .203775 e−05 1 .181363 e−05

Cumulative Proport ion 9 .999365 e−01 9 .999661 e−01 9 .999882 e−01 1 .000000 e+00



extracting dimensions: discriminant and factor analysis 259

The results are interesting. We see that the loadings are large in the
first three component vectors for all maturity rates. The loadings corre-
spond to a classic feature of the yield curve, i.e., there are three compo-
nents: level, slope, and curvature. Note that the first component has al-
most equal loadings for all rates that are all identical in sign. Hence, this
is the level factor. The second component has negative loadings for the
shorter maturity rates and positive loadings for the later maturity ones.
Therefore, when this factor moves up, the short rates will go down, and
the long rates will go up, resulting in a steepening of the yield curve.
If the factor goes down, the yield curve will become flatter. Hence, the
second principal component is clearly the slope factor. Examining the
loadings of the third principal component should make it clear that the
effect of this factor is to modulate the “curvature” or hump of the yield
curve. Still, from looking at the results, it is clear that 97% of the com-
mon variation is explained by just the first factor, and a wee bit more by
the next two. The resultant “biplot” shows the dominance of the main
component.

14 CLASS NOTES, S. DAS 17 APRIL 2007

Cumulative Proportion 0.975588 0.99842275 0.999666666 0.9998951326

Comp.5 Comp.6 Comp.7 Comp.8

Standard deviation 5.470852e-02 4.626171e-02 3.991152e-02 2.922175e-02

Proportion of Variance 4.140766e-05 2.960835e-05 2.203775e-05 1.181363e-05

Cumulative Proportion 9.999365e-01 9.999661e-01 9.999882e-01 1.000000e+00

The resultant “biplot” shows the dominance of the main component.

Notice that the variables are almost all equally weighting on the first component.

4.5. Difference between PCA and FA. The difference between PCA and FA is
that is that for the purposes of matrix computations PCA assumes that all variance
is common, with all unique factors set equal to zero; while FA assumes that there
is some unique variance. The level of unique variance is dictated by the FA model
which is chosen. Accordingly, PCA is a model of a closed system, while FA is
a model of an open system. FA tries to decompose the correlation matrix into
common and unique portions.

Notice that the variables are almost all equally weighting on the first
component. The length of the vectors corresponds to the factor loadings.
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9.4.5 Application: Risk Parity and Risk Disparity

Risk parity – see Theirry Roncalli’s book
Risk disparity – see Mark Kritzman’s paper.

9.4.6 Difference between PCA and FA

The difference between PCA and FA is that for the purposes of matrix
computations PCA assumes that all variance is common, with all unique
factors set equal to zero; while FA assumes that there is some unique
variance. Hence PCA may also be thought of as a subset of FA. The level
of unique variance is dictated by the FA model which is chosen. Accord-
ingly, PCA is a model of a closed system, while FA is a model of an open
system. FA tries to decompose the correlation matrix into common and
unique portions.

9.4.7 Factor Rotation

Finally, there are some times when the variables would load better on
the factors if the factor system were to be rotated. This called factor rota-
tion, and many times the software does this automatically.

Remember that we decomposed variables x as follows:

x = B F + e

where x is dimension K, B ∈ RK×M, F ∈ RM, and e is a K-dimension
vector. This implies that

Cov(x) = BB′ + ψ

Recall that B is the matrix of factor loadings. The system remains un-
changed if B is replaced by BG, where G ∈ RM×M, and G is orthogonal.
Then we call G a “rotation” of B.

The idea of rotation is easier to see with the following diagram. Two
conditions need to be satisfied: (a) The new axis (and the old one) should
be orthogonal. (b) The difference in loadings on the factors by each vari-
able must increase. In the diagram below we can see that the rotation
has made the variables align better along the new axis system.
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Factor 1

Factor 2

Factor 1

Factor 2

Factor Rotation

variables

9.4.8 Using the factor analysis function

To illustrate, let’s undertake a factor analysis of the Treasury rates data.
In R, we can implement it generally with the factanal command.

> f a c t a n a l ( ra tes , 2 )

Call :
f a c t a n a l ( x = ra t es , f a c t o r s = 2 )

Uniquenesses :
FYGM3 FYGM6 FYGT1 FYGT2 FYGT3 FYGT5 FYGT7 FYGT10

0 .006 0 .005 0 . 005 0 . 005 0 . 005 0 . 005 0 . 005 0 .005

Loadings :
Factor1 Factor2

FYGM3 0 . 843 0 . 533

FYGM6 0 . 826 0 . 562

FYGT1 0 . 793 0 . 608

FYGT2 0 . 726 0 . 686

FYGT3 0 . 681 0 . 731

FYGT5 0 . 617 0 . 786

FYGT7 0 . 579 0 . 814

FYGT10 0 . 546 0 . 836

Factor1 Factor2
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SS loadings 4 . 024 3 .953

Proport ion Var 0 . 503 0 .494

Cumulative Var 0 . 503 0 .997

Test of the hypothesis t h a t 2 f a c t o r s are s u f f i c i e n t .
The chi square s t a t i s t i c i s 3556 .38 on 13 degrees of freedom .
The p−value i s 0

Notice how the first factor explains the shorter maturities better and
the second factor explains the longer maturity rates. Hence, the two
factors cover the range of maturities. Note that the ability of the factors
to separate the variables increases when we apply a factor rotation:

> f a c t a n a l ( ra tes , 2 , r o t a t i o n =" promax " )

Call :
f a c t a n a l ( x = ra t es , f a c t o r s = 2 , r o t a t i o n = " promax " )

Uniquenesses :
FYGM3 FYGM6 FYGT1 FYGT2 FYGT3 FYGT5 FYGT7 FYGT10

0 .006 0 .005 0 . 005 0 . 005 0 . 005 0 . 005 0 . 005 0 .005

Loadings :
Factor1 Factor2

FYGM3 0 . 110 0 . 902

FYGM6 0 . 174 0 . 846

FYGT1 0 . 282 0 . 747

FYGT2 0 . 477 0 . 560

FYGT3 0 . 593 0 . 443

FYGT5 0 . 746 0 . 284

FYGT7 0 . 829 0 . 194

FYGT10 0 . 895 0 . 118

Factor1 Factor2

SS loadings 2 . 745 2 .730

Proport ion Var 0 . 343 0 .341

Cumulative Var 0 . 343 0 .684

The factors have been reversed after the rotation. Now the first factor
explains long rates and the second factor explains short rates. If we want
the time series of the factors, use the following command:
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r e s u l t = f a c t a n a l ( ra tes , 2 , s c o r e s=" r e g r e s s i o n " )
t s = r e s u l t $ s c o r e s
> par ( mfrow=c ( 2 , 1 ) )
> plot ( t s [ , 1 ] , type=" l " )
> plot ( t s [ , 2 ] , type=" l " )

The results are plotted here. The plot represents the normalized factor
time series.

Thus there appears to be a slow-moving first component and a fast mov-
ing second one.





10
Bidding it Up: Auctions

10.1 Theory

Auctions comprise one of the oldest market forms, and are still a popu-
lar mechanism for selling various assets and their related price discovery.
In this chapter we will study different auction formats, bidding theory,
and revenue maximization principles.

Hal Varian, Chief Economist at Google (NYT, Aug 1, 2002) writes:

“Auctions, one of the oldest ways to buy and sell, have been reborn
and revitalized on the Internet.

When I say ”old,” I mean it. Herodotus described a Babylonian mar-
riage market, circa 500 B.C., in which potential wives were auctioned off.
Notably, some of the brides sold for a negative price.

The Romans used auctions for many purposes, including auctioning
off the right to collect taxes. In A.D. 193, the Praetorian Guards even
auctioned off the Roman empire itself!

We don’t see auctions like this anymore (unless you count campaign
finance practices), but auctions are used for just about everything else.
Online, computer-managed auctions are cheap to run and have become
increasingly popular. EBay is the most prominent example, but other,
less well-known companies use similar technology.”

10.1.1 Overview

Auctions have many features, but the key ingredient is information asym-
metry between seller and buyers. The seller may know more about the
product than the buyers, and the buyers themselves might have differen-
tial information about the item on sale. Moreover, buyers also take into
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account imperfect information about the behavior of the other bidders.
We will examine how this information asymmetry plays into bidding
strategy in the mathematical analysis that follows.

Auction market mechanisms are explicit, with the prices and revenue
a direct consequence of the auction design. In contrast, in other markets,
the interaction of buyers and sellers might be more implicit, as in the
case of commodities, where the market mechanism is based on demand
and supply, resulting in the implicit, proverbial invisible hand setting
prices.

There are many examples of active auction markets, such as auctions
of art and valuables, eBay, Treasury securities, Google ad auctions, and
even the New York Stock Exchange, which is an example of a continuous
call auction market.

Auctions may be for a single unit (e.g., art) or multiple units (e.g., Trea-
sury securities).

10.1.2 Auction types

The main types of auctions may be classified as follows:

1. English (E): highest bid wins. The auction is open, i.e., bids are re-
vealed to all participants as they occur. This is an ascending price
auction.

2. Dutch (D): auctioneer starts at a high price and calls out successively
lower prices. First bidder accepts and wins the auction. Again, bids
are open.

3. 1st price sealed bid (1P): Bids are sealed. Highest bidder wins and
pays his price.

4. 2nd price sealed bid (2P): Same as 1P but the price paid by the winner
is the second-highest price. Same as the auction analyzed by William
Vickrey in his seminal paper in 1961 that led to a Nobel prize. See
Vickrey (1961).

5. Anglo-Dutch (AD): Open, ascending-price auction till only two bid-
ders remain, then it becomes sealed-bid.

10.1.3 Value Determination

The eventual outcome of an auction is price/value discovery of the item
being sold. There are two characterizations of this value determination
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process, depending on the nature of the item being sold.

1. Independent private values model: Each buyer bids his own indepen-
dent valuation of the item at sale (as in regular art auctions).

2. Common-values model: Bidders aim to discover a common price, as
in Treasury auctions. This is because there is usually an after market
in which common value is traded.

10.1.4 Bidder Types

The assumptions made about the bidders impacts the revenue raised
in the auction and the optimal auction design chosen by the seller. We
consider two types of bidders.

1. Symmetric: all bidders observe the same probability distribution of
bids and stop-out (SP) prices. The stop out price is the price of the
lowest winning bid for the last unit sold. This is a robust assumption
when markets are competitive.

2. Asymmetric or non-symmetric. Here the bidders may have different
distributions of value. This is often the case when markets are seg-
mented. Example: bidding for firms in M&A deals.

10.1.5 Benchmark Model (BM)

We begin by analyzing what is known as the benchmark model. It is the
simplest framework in which we can analyze auctions. It is based on 4

main assumptions:

1. Risk-neutrality of bidders. We do not need utility functions in the
analysis.

2. Private-values model. Every bidder has her own value for the item.
There is a distribution of bidders’ private values.

3. Symmetric bidders. Every bidder faces the same distribution of pri-
vate values mentioned in the previous point.

4. Payment by winners is a function of bids alone. For a counterexam-
ple, think of payment via royalties for a book contract which depends
on post auction outcomes. Or the bidding for movie rights, where the
buyer takes a part share of the movie with the seller.
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The following are the results and properties of the BM.

1. D = 1P. That is, the Dutch auction and first price auction are equiva-
lent to bidders. These two mechanisms are identical because in each
the bidder needs to choose how high to bid without knowledge of the
other bids.

2. In the BM, the optimal strategy is to bid one’s true valuation. This is
easy to see for D and 1P. In both auctions, you do not see any other
lower bids, so you bid up to your maximum value, i.e., one’s true
value, and see if the bid ends up winning. For 2P, if you bid too high
you overpay, bid too low you lose, so best to bid one’s valuation. For
E, it’s best to keep bidding till price crosses your valuation (reserva-
tion price).

3. Equilibria types:

• Dominant: A situation where bidders bid their true valuation irre-
spective of other bidders bids. Satisfied by E and 2P.

• Nash: Bids are chosen based on the best guess of other bidders’
bids. Satisfied by D and 1P.

10.2 Auction Math

We now get away from the abstract definition of different types of auc-
tions and work out an example of an auctions equilibrium.

Let F be the probability distribution of the bids. And define vi as the
true value of the i-th bidder, on a continuum between 0 and 1. Assume
bidders are ranked in order of their true valuations vi. How do we inter-
pret F(v)? Think of the bids as being drawn from say, a beta distribution
F on v ∈ (0, 1), so that the probability of a very high or very low bid
is lower than a bid around the mean of the distribution. The expected
difference between the first and second highest bids is, given v1 and v2:

D = [1− F(v2)](v1 − v2)

That is, multiply the difference between the first and second bids by the
probability that v2 is the second-highest bid. Or think of the probability
of there being a bid higher than v2. Taking first-order conditions (from
the seller’s viewpoint):

∂D
∂v1

= [1− F(v2)]− (v1 − v2)F′(v1) = 0
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Note that v1 ≡d v2, given bidders are symmetric in BM. The symbol ≡d

means “equivalent in distribution”. This implies that

v1 − v2 =
1− F(v1)

f (v1)

The expected revenue to the seller is the same as the expected 2nd price.
The second price comes from the following re-arranged equation:

v2 = v1 −
1− F(v1)

f (v1)

10.2.1 Optimization by bidders

The goal of bidder i is to find a function/bidding rule B that is a func-
tion of the private value vi such that

bi = B(vi)

where bi is the actual bid. If there are n bidders, then

Pr[bidder i wins] = Pr[bi > B(vj)], ∀j 6= i,

= [F(B−1(bi))]
n−1

Each bidder tries to maximize her expected profit relative to her true
valuation, which is

πi = (vi − bi)[F(B−1(bi))]
n−1 = (vi − bi)[F(vi)]

n−1, (10.1)

again invoking the notion of bidder symmetry. Optimize by taking ∂πi
∂bi

=

0. We can get this by taking first the total derivative of profit relative to
the bidder’s value as follows:

dπi
dvi

=
∂πi
∂vi

+
∂πi
∂bi

dbi
dvi

=
∂πi
∂vi

which reduces to the partial derivative of profit with respect to personal
valuation because ∂πi

∂bi
= 0. This useful first partial derivative is taken

from equation (10.1):
∂πi
∂vi

= [F(B−1(bi))]
n−1

Now, let vl be the lowest bid. Integrate the previous equation to get

πi =
∫ vi

vl

[F(x)]n−1 dx (10.2)
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Equating (10.1) and (10.2) gives

bi = vi −
∫ vi

vl
[F(x)]n−1 dx

[F(vi)]n−1 = B(vi)

which gives the bidding rule B(vi) entirely in terms of the personal valu-
ation of the bidder. If, for example, F is uniform, then

B(v) =
(n− 1)v

n
Here we see that we “shade” our bid down slightly from our personal
valuation. We bid less than true valuation to leave some room for profit.
The amount of shading of our bid depends on how much competition
there is, i.e., the number of bidders n. Note that

∂B
∂vi

> 0,
∂B
∂n

> 0

i.e., you increase your bid as your personal value rises, and as the num-
ber of bidders increases.

10.2.2 Example

We are bidding for a used laptop on eBay. Suppose we assume that the
distribution of bids follows a beta distribution with minimum value $50

and a maximum value of $500. Our personal value for the machine is
$300. Assume 10 other bidders. How much should we bid?

x = ( 1 : 1 0 0 0 ) / 1000

y = x* 450+50

prob_y = dbeta ( x , 2 , 4 )
print ( c ( " check=" ,sum( prob_y ) / 1 0 0 0 ) )
prob_y = prob_y / sum( prob_y )
plot ( y , prob_y , type=" l " )

> print ( c ( " check=" ,sum( prob_y ) / 1 0 0 0 ) )
[ 1 ] " check=" " 0 .999998333334 "

Note that we have used the non-central Beta distribution, with shape
parameters a = 2 and b = 4. Note that the Beta density function is

Beta(x, a, b) =
Γ(a + b)
Γ(a)Γ(b)

xa−1(1− x)b−1

for x taking values between 0 and 1. The distribution of bids from 50 to
500 is shown in Figure 10.1. The mean and standard deviation are
computed as follows.
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Figure 10.1: Probability density
function for the Beta (a = 2, b = 4)
distribution.

> print ( c ( "mean=" ,sum( y* prob_y ) ) )
[ 1 ] "mean=" " 200 .000250000167 "
> print ( c ( " stdev=" , sqr t (sum( y^2* prob_y)−(sum( y* prob_y ) ) ^ 2 ) ) )
[ 1 ] " stdev=" " 80 .1782055353774 "

We can take a computational approach to solving this problem. We pro-
gram up equation 10.1 and then find the bid at which this is maximized.

> x = ( 1 : 1 0 0 0 ) / 1000

> y = 50 + 450 *x
> cumprob_y = pbeta ( x , 2 , 4 )
> exp_ p r o f i t = (300−y ) *cumprob_y^10

> idx = which ( exp_ p r o f i t ==max ( exp_ p r o f i t ) )
> y [ idx ]
[ 1 ] 271 .85

Hence, the bid of 271.85 is slightly lower than the reservation price. It is
10% lower. If there were only 5 other bidders, then the bid would be:

> exp_ p r o f i t = (300−y ) *cumprob_y^5

> idx = which ( exp_ p r o f i t ==max ( exp_ p r o f i t ) )
> y [ idx ]
[ 1 ] 254 .3
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Now, we shade the bid down much more, because there are fewer com-
peting bidders, and so the chance of winning with a lower bid increases.

10.3 Treasury Auctions

This section is based on the published paper by Das and Sundaram
(1996). We move on from single-unit auctions to a very common multi-
unit auction. Treasury auctions are the mechanism by which the Federal
government issues its bills, notes, and bonds. Auctions are usually held
on Wednesdays. Bids are received up to early afternoon after which the
top bidders are given their quantities requested (up to prescribed ceil-
ings for any one bidder), until there is no remaining supply of securities.

Even before the auction, Treasury securities trade in what is known as
a “when-issued” or pre-market. This market gives early indications of
price that may lead to tighter clustering of bids in the auction.

There are two types of dealers in a Treasury auction, primary dealers,
i.e., the big banks and investment houses, and smaller independent bid-
ders. The auction is really played out amongst the primary dealers. They
place what are known as competitive bids versus the others, who place
non-competitive bids.

Bidders also keep an eye on the secondary market that ensues right
after the auction. In many ways, the bidders are also influenced by the
possible prices they expect the paper to be trading at in the secondary
market, and indicators of these prices come from the when-issued mar-
ket.

The winner in an auction experiences regret, because he knows he
bid higher than everyone else, and senses that he overpaid. This phe-
nomenon is known as the “winner’s curse.” Treasury auction partici-
pants talk amongst each other to mitigate winner’s curse. The Fed also
talks to primary dealers to mitigate their winner’s curse and thereby
induce them to bid higher, because someone with lower propensity for
regret is likely to bid higher.

10.3.1 DPA or UPA?

DPA stands for “discriminating price auction” and UPA for “uniform
price auction.” The former was the preferred format for Treasury auc-
tions and the latter was introduced only recently.

In a DPA, the highest bidder gets his bid quantity at the price he bid.
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Then the next highest bidder wins his quantity at the price he bid. And
so on, until the supply of Treasury securities is exhausted. In this man-
ner the Treasury seeks to maximize revenue by filling each winning at
the price. Since the prices paid by each winning bidder are different,
the auction is called “discriminating” in price. Revenue maximization
is attempted by walking down the demand curve, see Figure 10.2. The
shaded area quantifies the revenue raised.

Figure 10.2: Revenue in the DPA
and UPA auctions.

In a UPA, the highest bidder gets his bid quantity at the price of the
last winning bid (this price is also known as the stop-out price). Then
the next highest bidder wins his quantity at the stop-out price. And so
on, until the supply of Treasury securities is exhausted. Thus, the UPA
is also known as a “single-price” auction. See Figure 10.2, lower panel,
where the shaded area quantifies the revenue raised.

It may intuitively appear that the DPA will raise more revenue, but
in fact, empirically, the UPA has been more successful. This is because
the UPA incentivizes higher bids, as the winner’s curse is mitigated. In
a DPA, bids are shaded down on account of winner’s curse – winning
means you paid higher than what a large number of other bidders were
willing to pay.

Some countries like Mexico have used the UPA format. The U.S.,
started with the DPA, and now runs both auction formats.
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An interesting study examined markups achieved over yields in the
when-issued market as an indicator of the success of the two auction for-
mats. They examined the auctions of 2- and 5-year notes from June 1991

- 1994). [from Mulvey, Archibald and Flynn, US Office of the Treasury].
See Figure 10.3. The results of a regression of the markups on bid dis-
persion and duration of the auctioned securities shows that markups
increase in the dispersion of bids. If we think of bid dispersion as a
proxy for the extent of winner’s curse, then we can see that the yields
are pushed higher in the UPA than the DPA, therefore prices are lower
in the UPA than the DPA. Markups are decreasing in the duration of the
securities. Bid dispersion is shown in Figure 10.4.

Mulvey, Archibald, Flynn
(Office of Us Treasury)

Figure 10.3: Treasury auction
markups.

10.4 Mechanism Design

What is a good auction mechanism? The following features might be
considered.

• It allows easy entry to the game.

• It prevents collusion. For example, ascending bid auctions may be
used to collude by signaling in the early rounds of bidding. Different
auction formats may lead to various sorts of collusion.

• It induces truthful value revelation (also known as “truthful” bid-
ding).

• Efficient - maximizes utility of auctioneer and bidders.

• Not costly to implement.

• Fair to all parties, big and small.
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Figure 10.4: Bid-Ask Spread in the
Auction.

10.4.1 Collusion

Here are some examples of collusion in auctions, which can be explicit
or implicit. Collusion amongst buyers results in mitigating the winner’s
curse, and may work to either raise revenues or lower revenues for the
seller.

• (Varian) 1999: German phone spectrum auction. Bids had to be in
minimum 10% increments for multiple units. A firm bid 18.18 and
20 million for 2 lots. They signaled that everyone could center at 20

million, which they believed was the fair price. This sort of implicit
collusion averts a bidding war.

• In Treasury auctions, firms can discuss bids, which is encouraged by
the Treasury (why?). The restriction on cornering by placing a ceiling
on how much of the supply one party can obtain in the auction aids
collusion (why?). Repeated games in Treasury security auctions also
aids collusion (why?).

• Multiple units also allows punitive behavior, by firms bidding to raise
prices on lots they do not want to signal others should not bid on lots
they do want.
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10.4.2 Clicks (Advertising Auctions)

The Google AdWords program enables you to create advertisements
which will appear on relevant Google search results pages and our net-
work of partner sites. See www.adwords.google.com.

The Google AdSense program differs in that it delivers Google Ad-
Words ads to individuals’ websites. Google then pays web publishers
for the ads displayed on their site based on user clicks on ads or on ad
impressions, depending on the type of ad.

The material here refers to the elegant paper by Aggarwal, Goel, and
Motwani (2006) on keyword auctions in AdWords. We first list some
basic features of search engine advertising models. Aggarwal went on
to work for Google as they adopted this algorithm from her thesis at
Stanford.

1. Search engine advertising uses three models: (a) CPM, cost per thou-
sand views, (b) CPC, cost per click, and (c) CPA, cost per acquisition.
These are all at different stages of the search page experience.

2. CPC seems to be mostly used. There are 2 models here:

(a) Direct ranking: the Overture model.

(b) Revenue ranking: the Google model.

3. The merchant pays the price of the “next” click (different from “sec-
ond” price auctions). This is non-truthful in both revenue ranking
cases as we will see in a subsequent example. That is, bidders will not
bid their true private valuations.

4. Asymmetric: there is an incentive to underbid, none to overbid.

5. Iterative: by placing many bids and watching responses, a bidder can
figure out the bid ordering of other bidders for the same keywords, or
basket of keywords. However, this is not obvious or simple. Google
used to provide the GBS or Google Bid Simulator so that sellers using
AdWords can figure out their optimal bids. See the following for more
details on Adwords: google.com/adwords/.

6. If revenue ranking were truthful, it would maximize utility of auction-
eer and merchant. (Known as auction “efficiency”).

7. Innovation: the laddered auction. Randomized weights attached to bids.
If weights are 1, then it’s direct ranking. If weights are CTR (click-
through rate), i.e. revenue-based, it’s the revenue ranking.
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To get some insights about the process of optimal bidding in AdWords
auctions, see http://www.thesearchagents.com/2009/09/optimal-bidding-part-1-behind-the

-scenes-of-google-adwords-bidding-tutorial/. See the Hal Varian
video: http://www.youtube.com/watch?v=jRx7AMb6rZ0.

Here is a quick summary of Hal Varian’s video. A merchant can figure
out what the maximum bid per click should be in the following steps:

1. Maximum profitable CPA: This is the profit margin on the product. For
example, if the selling price is $300 and cost is $200, then the profit
margin is $100, which is also the maximum cost per acquisition (CPA)
a seller would pay.

2. Conversion Rate (CR): This is the number of times a click results in a
sale. Hence, CR is equal to number of sales divided by clicks. So, if for
every 100 clicks, we get a sale every 5 times, the CR is 5%.

3. Value per Click (VPC): Equal to the CR times the CPA. In the example,
we have VPC = 0.05× 100 = $5.

4. Determine the profit maximizing CPC bid: As the bid is lowered, the
number of clicks falls, but the CPC falls as well, revenue falls, but
the profit after acquisition costs can rise until the sweet spot is deter-
mined. To find the number of clicks expected at each bid price, use the
Google Bid Simulator. See the table below (from Google) for the eco-
nomics at different bid prices. Note that the price you bid is not the
price you pay for the click, because it is a “next-price” auction, based
on a revenue ranking model, so the exact price you pay is based on
Google’s model, discussed in the next section. We see that the profit is
maximized at a bid of $4.

Just as an example, note that the profit is equal to

(VPC− CPC)× #Clicks = (CPA× CR− CPC)× #Clicks

Hence, for a bid of $4, we have

(5− 407.02/154)× 154 = $362.98
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As pointed out by Varian, the rule is to compute ICC (Incremental cost
per click), and make sure that it equals the VPC. The ICC at a bid of
$5.00 is

ICC(5.00) =
697.42− 594.27

208− 190
= 5.73 > 5

Then
ICC(4.50) =

594.27− 407.02
190− 154

= 5.20 > 5

ICC(4.00) =
407.02− 309.73

154− 133
= 4.63 < 5

Hence, the optimal bid lies between $4.00 and $4.50.

10.4.3 Next Price Auctions

In a next-price auction, the CPC is based on the price of the click next
after your own bid. Thus, you do not pay your bid price, but the one in
the advertising slot just lower than yours. Hence, if your winning bid is
for position j on the search screen, the price paid is that of the winning
bid at position j + 1.

See the paper by Aggarwal, Goyal and Motwani (2006). Our discus-
sion here is based on their paper. Let the true valuation (revenue) ex-
pected by bidder/seller i be equal to vi. The CPC is denoted pi. Let the
click-through-rate (CTR) for seller/merchant i at a position j (where the
ad shows up on the search screen) be denoted CTRij. CTR is the ratio of
the number of clicks to the number of “impressions” i.e., the number of
times the ad is shown.

• The “utility” to the seller is given by

Utility = CTRij(vi − pi)
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• Example: 3 bidders A, B, C, with private values 200, 180, 100. There
are two slots or ad positions with CTRs 0.5 and 0.4. If bidder A bids
200, pays 180, utility is (200− 180)× 0.5 = 10. But why not bid 110, for
utility of (200− 100)× 0.4 = 40? This simple example shows that the
next price auction is not truthful. Also note that your bid determines
your ranking but not the price you pay (CPC).

• Ranking of bids is based on wibi in descending order of i. If wi = 1,
then we get the Overture direct ranking model. And if wi = CTRij

then we have Google’s revenue ranking model. In the example below,
the weights range from 0 to 100, not 0 to 1, but this is without any loss
of generality. The weights assigned to each merchant bidder may be
based on some qualitative ranking such as the Quality Score (QS) of
the ad.

• Price paid by bidder i is wi+1bi+1
wi

.

• Separable CTRs: CTRs of merchant i = 1 and i = 2 are the same for
position j. No bidder position dependence.

10.4.4 Laddered Auction

AGM 2006 denoted the revised auction as “laddered”. It gives a unique
truthful auction. The main idea is to set the CPC to

pi =
K

∑
j=i

(CTRi,j − CTRi,j+1

CTRi,i

) wj+1bj+1

wi
, 1 ≤ i ≤ K

so that

#Clicksi
#Impressionsi

× pi = CTRii × pi =
K

∑
j=i

(
CTRi,j − CTRi,j+1

) wj+1bj+1

wi

The lhs is the expected revenue to Google per ad impression. Make
no mistake, the whole point of the model is to maximize Google’s rev-
enue, while making the auction system more effective for merchants. If
this new model results in truthful equilibria, it is good for Google. The
weights wi are arbitrary and not known to the merchants.

Here is the table of CTRs for each slot by seller. These tables are the
examples in the AGM 2006 paper.

A B C D
Slot 1 0.40 0.35 0.30 0.20

Slot 2 0.30 0.25 0.25 0.18

Slot 3 0.18 0.20 0.20 0.15
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The assigned weights and the eventual allocations and prices are shown
below.

Weight Bid Score Rank Price
Merchant A 60 25 1500 1 13.5
Merchant B 40 30 1200 2 16

Merchant C 50 16 800 3 12

Merchant D 40 15 600 4 0

We can verify these calculations as follows.

> p3 = (0 .20−0 ) / 0 . 2 0 * 40 / 50 * 1 5 ; p3

[ 1 ] 12

> p2 = (0 .25 −0 .20 ) / 0 . 2 5 * 50 / 40 * 16 + (0 .20−0 ) / 0 . 2 5 * 40 / 40 * 1 5 ; p2

[ 1 ] 16

> p1 = (0 .40 −0 .30 ) / 0 . 4 0 * 40 / 60 * 30 + (0 .30 −0 .18 ) / 0 . 4 0 * 50 / 60 * 16

+ (0 .18−0 ) / 0 . 4 0 * 40 / 60 * 1 5 ; p1

[ 1 ] 1 3 . 5

See the paper for more details, but this equilibrium is unique and truth-
ful.

Looking at this model, examine the following questions:

• What happens to the prices paid when the CTR drop rapidly as we go
down the slots versus when they drop slowly?

• As a merchant, would you prefer that your weight be higher or lower?

• What is better for Google, a high dispersion in weights, or a low dis-
persion in weights?

• Can you see that by watching bidding behavior of the merchants,
Google can adjust their weights to maximize revenue? By seeing a
week’s behavior Google can set weights for the next week. Is this le-
gal?

• Is Google better off if the bids are more dispersed than when they
are close together? How would you use the data in the table above to
answer this question using R?

Exercise

Whereas Google clearly has modeled their AdWords auction to maxi-
mize revenue, less is known about how merchants maximize their net
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revenue per ad, by designing ads, and choosing keywords in an appro-
priate manner. Google offers merchants a product called “Google Bid
Simulator” so that the return from an adword (key word) may be deter-
mined.

In this exercise, you will first take the time to role play a merchant
who is trying to explore and understand AdWords, and then come up
with an approach to maximize the return from a portfolio of AdWords.

Here are some questions that will help in navigating the AdWords
landscape.

1. What is the relation between keywords and cost-per-click (CPC)?

2. What is the Quality Score (QS) of your ad, and how does it related to
keywords and CPC?

3. What defines success in an ad auction? What are its determinants?

4. What is AdRank. What does a higher AdRank buy for a merchant?

5. What are AdGroups and how do they relate to keywords?

6. What is automated CPC bidding?

7. What are the following tools? Keyword tool, Traffic estimator, Place-
ment tool, Contextual targeting tool?

8. What is the incremental cost-per-click (ICC)?

Sketch a brief outline of how you might go about optimizing a port-
folio of AdWords. Use the concepts we studied in Markowitz portfolio
optimization for this.





11
Truncate and Estimate: Limited Dependent Variables

11.1 Introduction

Usually we run regressions using continuous variables for the dependent
(y) variables, such as, for example, when we regress income on educa-
tion. Sometimes however, the dependent variable may be discrete, and
could be binomial or multinomial. That is, the dependent variable is
“limited”. In such cases, we need a different approach.

Discrete dependent variables are a special case of limited dependent vari-
ables. The Logit and Probit1 models we look at here are examples of 1 These are common usage and do not

need to be capitalized, so we will use
lower case subsequently.discrete dependent variable models. Such models are also often called

qualitative response (QR) models.
In particular, when the variable is binary, i.e., takes values of {0, 1},

then we get a probability model. If we just regressed left hand side vari-
ables of ones and zeros on a suite of right hand side variables we could
of course fit a linear regression. Then if we took another observation
with values for the right hand side, i.e., x = {x1, x2, . . . , xk}, we could
compute the value of the y variable using the fitted coefficients. But of
course, this value will not be exactly 0 or 1, except by unlikely coinci-
dence. Nor will this value lie in the range (0, 1).

There is also a relationship to classifier models. In classifier models,
we are interested in allocating observations to categories. In limited de-
pendent models we also want to explain the reasons (i.e., find explana-
tory variables) for what results in the allocation across categories.

Some examples of such models are to explain whether a person is
employed or not, whether a firm is syndicated or not, whether a firm is
solvent or not, which field of work is chosen by graduates, where con-
sumers shop, whether they choose Coke versus Pepsi, etc.

These fitted values might not even lie between 0 and 1 with a linear
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regression. However, if we used a carefully chosen nonlinear regression
function, then we could ensure that the fitted values of y are restricted
to the range (0, 1), and then we would get a model where we fitted a
probability. There are two such model forms that are widely used: (a)
Logit, also known as a logistic regression, and (b) Probit models. We
look at each one in turn.

11.2 Logit

A logit model takes the following form:

y =
e f (x)

1 + e f (x)
, f (x) = β0 + β1x1 + . . . βkxk

We are interested in fitting the coefficients {β0, β1, . . . , βk}. Note that,
irrespective of the coefficients, f (x) ∈ (−∞,+∞), but y ∈ (0, 1). When
f (x) → −∞, y → 0, and when f (x) → +∞, y → 1. We also write this
model as

y =
eβ′x

1 + eβ′x ≡ Λ(β′x)

where Λ (lambda) is for logit.
The model generates a S-shaped curve for y, and we can plot it as

follows:

The fitted value of y is nothing but the probability that y = 1.
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For the NCAA data, take the top 32 teams and make their dependent
variable 1, and that of the bottom 32 teams zero.

> y1 = 1 : 3 2

> y1 = y1 * 0+1

> y1

[ 1 ] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

> y2 = y1 * 0

> y2

[ 1 ] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

> y = c ( y1 , y2 )
> y

[ 1 ] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

[ 3 9 ] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

> x = as . matrix ( ncaa [ 4 : 1 4 ] )

Then running the model is pretty easy as follows:

> h = glm ( y~x , family=binomial ( l ink=" l o g i t " ) )
> logLik ( h )
’ log Lik . ’ −21.44779 ( df =12)
> summary ( h )

Call :
glm ( formula = y ~ x , family = binomial ( l ink = " l o g i t " ) )

Deviance Residuals :
Min 1Q Median 3Q Max

−1.80174 −0.40502 −0.00238 0 .37584 2 .31767

C o e f f i c i e n t s :
Est imate Std . Error z value Pr(>|z |)

( I n t e r c e p t ) −45.83315 14 .97564 −3.061 0 .00221 * *
xPTS −0.06127 0 .09549 −0.642 0 .52108

xREB 0 .49037 0 .18089 2 .711 0 .00671 * *
xAST 0 .16422 0 .26804 0 .613 0 .54010

xTO −0.38405 0 .23434 −1.639 0 .10124

xA . T 1 .56351 3 .17091 0 .493 0 .62196

xSTL 0 .78360 0 .32605 2 .403 0 .01625 *
xBLK 0 .07867 0 .23482 0 .335 0 .73761

xPF 0 .02602 0 .13644 0 .191 0 .84874
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xFG 46 .21374 17 .33685 2 .666 0 .00768 * *
xFT 10 .72992 4 .47729 2 .397 0 .01655 *
xX3P 5 .41985 5 .77966 0 .938 0 .34838

−−−
S i g n i f . codes : 0 L’ 0 . 001 L’ 0 . 0 1 L’ 0 . 0 5 L’ 0 . 1 L’ 1

( Dispersion parameter for binomial family taken to be 1 )

Null deviance : 88 .723 on 63 degrees of freedom
Residual deviance : 42 .896 on 52 degrees of freedom
AIC : 66 .896

Number of F i sher Scoring i t e r a t i o n s : 6

Suppose we ran this just with linear regression (this is also known as
running a linear probability model):

> h = lm ( y~x )
> summary ( h )

Call :
lm ( formula = y ~ x )

Residuals :
Min 1Q Median 3Q Max

−0.65982 −0.26830 0 .03183 0 .24712 0 .83049

C o e f f i c i e n t s :
Est imate Std . Error t value Pr(>| t |)

( I n t e r c e p t ) −4.114185 1 .174308 −3.503 0 .000953 * * *
xPTS −0.005569 0 .010263 −0.543 0 .589709

xREB 0 .046922 0 .015003 3 .128 0 .002886 * *
xAST 0 .015391 0 .036990 0 .416 0 .679055

xTO −0.046479 0 .028988 −1.603 0 .114905

xA . T 0 .103216 0 .450763 0 .229 0 .819782

xSTL 0 .063309 0 .028015 2 .260 0 .028050 *
xBLK 0 .023088 0 .030474 0 .758 0 .452082

xPF 0 .011492 0 .018056 0 .636 0 .527253

xFG 4 .842722 1 .616465 2 .996 0 .004186 * *
xFT 1 .162177 0 .454178 2 .559 0 .013452 *



truncate and estimate: limited dependent variables 287

xX3P 0 .476283 0 .712184 0 .669 0 .506604

−−−
S i g n i f . codes : 0 L’ 0 . 001 L’ 0 . 0 1 L’ 0 . 0 5 L’ 0 . 1 L’ 1

Residual standard e r r o r : 0 .3905 on 52 degrees of freedom
Mult iple R−Squared : 0 . 5 0 4 3 , Adjusted R−squared : 0 .3995

F−s t a t i s t i c : 4 . 8 1 on 11 and 52 DF, p−value : 4 . 514 e−05

11.3 Probit

Probit has essentially the same idea as the logit except that the prob-
ability function is replaced by the normal distribution. The nonlinear
regression equation is as follows:

y = Φ[ f (x)], f (x) = β0 + β1x1 + . . . βkxk

where Φ(.) is the cumulative normal probability function. Again, irre-
spective of the coefficients, f (x) ∈ (−∞,+∞), but y ∈ (0, 1). When
f (x)→ −∞, y→ 0, and when f (x)→ +∞, y→ 1.

We can redo the same previous logit model using a probit instead:

> h = glm ( y~x , family=binomial ( l ink=" p r o b i t " ) )
> logLik ( h )
’ log Lik . ’ −21.27924 ( df =12)
> summary ( h )

Call :
glm ( formula = y ~ x , family = binomial ( l ink = " p r o b i t " ) )

Deviance Residuals :
Min 1Q Median 3Q Max

−1 .7635295 −0 .4121216 −0 .0003102 0 .3499560 2 .2456825

C o e f f i c i e n t s :
Est imate Std . Error z value Pr(>|z |)

( I n t e r c e p t ) −26.28219 8 .09608 −3.246 0 .00117 * *
xPTS −0.03463 0 .05385 −0.643 0 .52020

xREB 0 .28493 0 .09939 2 .867 0 .00415 * *
xAST 0 .10894 0 .15735 0 .692 0 .48874

xTO −0.23742 0 .13642 −1.740 0 .08180 .
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xA . T 0 .71485 1 .86701 0 .383 0 .70181

xSTL 0 .45963 0 .18414 2 .496 0 .01256 *
xBLK 0 .03029 0 .13631 0 .222 0 .82415

xPF 0 .01041 0 .07907 0 .132 0 .89529

xFG 26 .58461 9 .38711 2 .832 0 .00463 * *
xFT 6 .28278 2 .51452 2 .499 0 .01247 *
xX3P 3 .15824 3 .37841 0 .935 0 .34988

−−−
S i g n i f . codes : 0 L’ 0 . 001 L’ 0 . 0 1 L’ 0 . 0 5 L’ 0 . 1 L’ 1

( Dispersion parameter for binomial family taken to be 1 )

Null deviance : 88 .723 on 63 degrees of freedom
Residual deviance : 42 .558 on 52 degrees of freedom
AIC : 66 .558

Number of F i sher Scoring i t e r a t i o n s : 8

11.4 Analysis

Both these models are just settings in which we are computing binary
probabilities, i.e.

Pr[y = 1] = F(β′x)

where β is a vector of coefficients, and x is a vector of explanatory vari-
ables. F is the logit/probit function.

ŷ = F(β′x)

where ŷ is the fitted value of y for a given x. In each case the function
takes the logit or probit form that we provided earlier. Of course,

Pr[y = 0] = 1− F(β′x)

Note that the model may also be expressed in conditional expectation
form, i.e.

E[y|x] = F(β′x)(y = 1) + [1− F(β′x)](y = 0) = F(β′x)

11.4.1 Slopes

In a linear regression, it is easy to see how the dependent variable changes
when any right hand side variable changes. Not so with nonlinear mod-
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els. A little bit of pencil pushing is required (add some calculus too).
Remember that y lies in the range (0, 1). Hence, we may be interested

in how E(y|x) changes as any of the explanatory variables changes in
value, so we can take the derivative:

∂E(y|x)
∂x

= F′(β′x)β ≡ f (β′x)β

For each model we may compute this at the means of the regressors:

• In the logit model this is as follows:

( C1 ) F : exp ( b*x ) / (1+ exp ( b*x ) ) ;
b x

%E
(D1 ) −−−−−−−−−

b x
%E + 1

( C2 ) d i f f ( F , x ) ;
b x 2 b x

b %E b %E
(D2 ) −−−−−−−−− − −−−−−−−−−−−−

b x b x 2

%E + 1 (%E + 1 )

Therefore, we may write this as:

∂E(y|x)
∂x

= β

(
eβ′x

1 + eβ′x

)(
1− eβ′x

1 + eβ′x

)
which may be re-written as

∂E(y|x)
∂x

= β ·Λ(β′x) · [1−Λ(β′x)]

> h = glm ( y~x , family=binomial ( l ink=" l o g i t " ) )
> beta = h$ c o e f f i c i e n t s
> beta

( I n t e r c e p t ) xPTS xREB xAST xTO
−45 .83315262 −0 .06127422 0 .49037435 0 .16421685 −0 .38404689

xA . T xSTL xBLK xPF xFG
1 .56351478 0 .78359670 0 .07867125 0 .02602243 46 .21373793

xFT xX3P
10 .72992472 5 .41984900
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> dim ( x )
[ 1 ] 64 11

> beta = as . matrix ( beta )
> dim ( beta )
[ 1 ] 12 1

> wuns = matrix ( 1 , 6 4 , 1 )
> x = cbind ( wuns , x )
> dim ( x )
[ 1 ] 64 12

> xbar = as . matrix ( colMeans ( x ) )
> dim ( xbar )
[ 1 ] 12 1

> xbar
[ , 1 ]

1 .0000000

PTS 67 .1015625

REB 34 .4671875

AST 12 .7484375

TO 13 .9578125

A. T 0 .9778125

STL 6 .8234375

BLK 2 .7500000

PF 18 .6562500

FG 0 .4232969

FT 0 .6914687

X3P 0 .3333750

> l o g i t f u n c t i o n = exp ( t ( beta ) %*% xbar ) / (1+ exp ( t ( beta ) %*% xbar ) )
> l o g i t f u n c t i o n

[ , 1 ]
[ 1 , ] 0 .5139925

> slopes = beta * l o g i t f u n c t i o n [ 1 ] * (1− l o g i t f u n c t i o n [ 1 ] )
> s lopes

[ , 1 ]
( I n t e r c e p t ) −11 .449314459

xPTS −0 .015306558

xREB 0 .122497576

xAST 0 .041022062

xTO −0 .095936529
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xA . T 0 .390572574

xSTL 0 .195745753

xBLK 0 .019652410

xPF 0 .006500512

xFG 11 .544386272

xFT 2 .680380362

xX3P 1 .353901094

• In the probit model this is

∂E(y|x)
∂x

= φ(β′x)β

where φ(.) is the normal density function (not the cumulative proba-
bility).

> h = glm ( y~x , family=binomial ( l ink=" p r o b i t " ) )
> beta = h$ c o e f f i c i e n t s
> beta

( I n t e r c e p t ) xPTS xREB xAST xTO
−26 .28219202 −0 .03462510 0 .28493498 0 .10893727 −0 .23742076

xA . T xSTL xBLK xPF xFG
0 .71484863 0 .45963279 0 .03029006 0 .01040612 26 .58460638

xFT xX3P
6 .28277680 3 .15823537

> x = as . matrix ( cbind ( wuns , x ) )
> xbar = as . matrix ( colMeans ( x ) )
> dim ( xbar )
[ 1 ] 12 1

> dim ( beta )
NULL
> beta = as . matrix ( beta )
> dim ( beta )
[ 1 ] 12 1

> slopes = dnorm ( t ( beta ) %*% xbar ) [ 1 ] * beta
> slopes

[ , 1 ]
( I n t e r c e p t ) −10 .470181164

xPTS −0 .013793791

xREB 0 .113511111

xAST 0 .043397939
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xTO −0 .094582613

xA . T 0 .284778174

xSTL 0 .183106438

xBLK 0 .012066819

xPF 0 .004145544

xFG 10 .590655632

xFT 2 .502904294

xX3P 1 .258163568

11.4.2 Maximum-Likelihood Estimation (MLE)

Estimation in the models above, using the glm function is done by R
using MLE. Lets write this out a little formally. Since we have say n ob-
servations, and each LHS variable is y = {0, 1}, we have the likelihood
function as follows:

L =
n

∏
i=1

F(β′x)yi [1− F(β′x)]1−yi

The log-likelihood will be

ln L =
n

∑
i=1

[
yi ln F(β′x) + (1− yi) ln[1− F(β′x)]

]
To maximize the log-likelihood we take the derivative:

∂ ln L
∂β

=
n

∑
i=1

[
yi

f (β′x)
F(β′x)

− (1− yi)
f (β′x)

1− F(β′x)

]
β = 0

which gives a system of equations to be solved for β. This is what the
software is doing. The system of first-order conditions are collectively
called the “likelihood equation”.

You may well ask, how do we get the t-statistics of the parameter es-
timates β? The formal derivation is beyond the scope of this class, as it
requires probability limit theorems, but let’s just do this a little heuristi-
cally, so you have some idea of what lies behind it.

The t-stat for a coefficient is its value divided by its standard devia-
tion. We get some idea of the standard deviation by asking the question:
how does the coefficient set β change when the log-likelihood changes?
That is, we are interested in ∂β/∂ ln L. Above we have computed the
reciprocal of this, as you can see. Lets define

g =
∂ ln L

∂β
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We also define the second derivative (also known as the Hessian matrix)

H =
∂2 ln L
∂β∂β′

Note that the following are valid:

E(g) = 0 (this is a vector)

Var(g) = E(gg′)− E(g)2 = E(gg′)

= −E(H) (this is a non-trivial proof)

We call
I(β) = −E(H)

the information matrix. Since (heuristically) the variation in log-likelihood
with changes in beta is given by Var(g) = −E(H) = I(β), the inverse
gives the variance of β. Therefore, we have

Var(β)→ I(β)−1

We take the square root of the diagonal of this matrix and divide the
values of β by that to get the t-statistics.

11.5 Multinomial Logit

You will need the nnet package for this. This model takes the following
form:

Prob[y = j] = pj =
exp(β′jx)

1 + ∑J
j=1 exp(β′jx)

We usually set

Prob[y = 0] = p0 =
1

1 + ∑J
j=1 exp(β′jx)

To run this we set up as follows:

> ncaa = read . table ( " ncaa . t x t " , header=TRUE)
> x = as . matrix ( ncaa [ 4 : 1 4 ] )
> w1 = ( 1 : 1 6 ) * 0 + 1

> w0 = ( 1 : 1 6 ) * 0

> y1 = c (w1 , w0 , w0 , w0)
> y2 = c (w0 , w1 , w0 , w0)
> y3 = c (w0 , w0 , w1 , w0)
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> y4 = c (w0 , w0 , w0 , w1)
> y = cbind ( y1 , y2 , y3 , y4 )
> l i b r a r y ( nnet )
> re s = multinom ( y~x )
# w e i g h t s : 52 (36 v a r i a b l e )
i n i t i a l value 88 .722839

i t e r 10 value 71 .177975

i t e r 20 value 60 .076921

i t e r 30 value 51 .167439

i t e r 40 value 47 .005269

i t e r 50 value 45 .196280

i t e r 60 value 44 .305029

i t e r 70 value 43 .341689

i t e r 80 value 43 .260097

i t e r 90 value 43 .247324

i t e r 100 value 43 .141297

f i n a l value 43 .141297

stopped a f t e r 100 i t e r a t i o n s
> re s
Call :
multinom ( formula = y ~ x )

C o e f f i c i e n t s :
( I n t e r c e p t ) xPTS xREB xAST xTO xA . T

y2 −8.847514 −0 .1595873 0 .3134622 0 .6198001 −0 .2629260 −2 .1647350

y3 65 .688912 0 .2983748 −0 .7309783 −0 .6059289 0 .9284964 −0 .5720152

y4 31 .513342 −0 .1382873 −0 .2432960 0 .2887910 0 .2204605 −2 .6409780

xSTL xBLK xPF xFG xFT xX3P
y2 −0.813519 0 .01472506 0 .6521056 −13.77579 10 .374888 −3.436073

y3 −1.310701 0 .63038878 −0 .1788238 −86.37410 −24 .769245 −4.897203

y4 −1.470406 −0 .31863373 0 .5392835 −45.18077 6 .701026 −7.841990

Residual Deviance : 86 .2826

AIC : 158 .2826

> names ( r es )
[ 1 ] "n" " nunits " " nconn " " conn "
[ 5 ] " nsuni t s " " decay " " entropy " " softmax "
[ 9 ] " censored " " value " " wts " " convergence "
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[ 1 3 ] " f i t t e d . values " " r e s i d u a l s " " c a l l " " terms "
[ 1 7 ] " weights " " deviance " " rank " " lab "
[ 2 1 ] " coefnames " " vcoefnames " " x l e v e l s " " edf "
[ 2 5 ] "AIC"
> re s $ f i t t e d . values

y1 y2 y3 y4

1 6 .785454 e−01 3 .214178 e−01 7 .032345 e−06 2 .972107 e−05

2 6 .168467 e−01 3 .817718 e−01 2 .797313 e−06 1 .378715 e−03

3 7 .784836 e−01 1 .990510 e−01 1 .688098 e−02 5 .584445 e−03

4 5 .962949 e−01 3 .988588 e−01 5 .018346 e−04 4 .344392 e−03

5 9 .815286 e−01 1 .694721 e−02 1 .442350 e−03 8 .179230 e−05

6 9 .271150 e−01 6 .330104 e−02 4 .916966 e−03 4 .666964 e−03

7 4 .515721 e−01 9 .303667 e−02 3 .488898 e−02 4 .205023 e−01

8 8 .210631 e−01 1 .530721 e−01 7 .631770 e−03 1 .823302 e−02

9 1 .567804 e−01 9 .375075 e−02 6 .413693 e−01 1 .080996 e−01

10 8 .403357 e−01 9 .793135 e−03 1 .396393 e−01 1 .023186 e−02

11 9 .163789 e−01 6 .747946 e−02 7 .847380 e−05 1 .606316 e−02

12 2 .448850 e−01 4 .256001 e−01 2 .880803 e−01 4 .143463 e−02

13 1 .040352 e−01 1 .534272 e−01 1 .369554 e−01 6 .055822 e−01

14 8 .468755 e−01 1 .506311 e−01 5 .083480 e−04 1 .985036 e−03

15 7 .136048 e−01 1 .294146 e−01 7 .385294 e−02 8 .312770 e−02

16 9 .885439 e−01 1 .114547 e−02 2 .187311 e−05 2 .887256 e−04

17 6 .478074 e−02 3 .547072 e−01 1 .988993 e−01 3 .816127 e−01

18 4 .414721 e−01 4 .497228 e−01 4 .716550 e−02 6 .163956 e−02

19 6 .024508 e−03 3 .608270 e−01 7 .837087 e−02 5 .547777 e−01

20 4 .553205 e−01 4 .270499 e−01 3 .614863 e−04 1 .172681 e−01

21 1 .342122 e−01 8 .627911 e−01 1 .759865 e−03 1 .236845 e−03

22 1 .877123 e−02 6 .423037 e−01 5 .456372 e−05 3 .388705 e−01

23 5 .620528 e−01 4 .359459 e−01 5 .606424 e−04 1 .440645 e−03

24 2 .837494 e−01 7 .154506 e−01 2 .190456 e−04 5 .809815 e−04

25 1 .787749 e−01 8 .037335 e−01 3 .361806 e−04 1 .715541 e−02

26 3 .274874 e−02 3 .484005 e−02 1 .307795 e−01 8 .016317 e−01

27 1 .635480 e−01 3 .471676 e−01 1 .131599 e−01 3 .761245 e−01

28 2 .360922 e−01 7 .235497 e−01 3 .375018 e−02 6 .607966 e−03

29 1 .618602 e−02 7 .233098 e−01 5 .762083 e−06 2 .604984 e−01

30 3 .037741 e−02 8 .550873 e−01 7 .487804 e−02 3 .965729 e−02

31 1 .122897 e−01 8 .648388 e−01 3 .935657 e−03 1 .893584 e−02

32 2 .312231 e−01 6 .607587 e−01 4 .770775 e−02 6 .031045 e−02
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33 6 .743125 e−01 2 .028181 e−02 2 .612683 e−01 4 .413746 e−02

34 1 .407693 e−01 4 .089518 e−02 7 .007541 e−01 1 .175815 e−01

35 6 .919547 e−04 4 .194577 e−05 9 .950322 e−01 4 .233924 e−03

36 8 .051225 e−02 4 .213965 e−03 9 .151287 e−01 1 .450423 e−04

37 5 .691220 e−05 7 .480549 e−02 5 .171594 e−01 4 .079782 e−01

38 2 .709867 e−02 3 .808987 e−02 6 .193969 e−01 3 .154145 e−01

39 4 .531001 e−05 2 .248580 e−08 9 .999542 e−01 4 .626258 e−07

40 1 .021976 e−01 4 .597678 e−03 5 .133839 e−01 3 .798208 e−01

41 2 .005837 e−02 2 .063200 e−01 5 .925050 e−01 1 .811166 e−01

42 1 .829028 e−04 1 .378795 e−03 6 .182839 e−01 3 .801544 e−01

43 1 .734296 e−01 9 .025284 e−04 7 .758862 e−01 4 .978171 e−02

44 4 .314938 e−05 3 .131390 e−06 9 .997892 e−01 1 .645004 e−04

45 1 .516231 e−02 2 .060325 e−03 9 .792594 e−01 3 .517926 e−03

46 2 .917597 e−01 6 .351166 e−02 4 .943818 e−01 1 .503468 e−01

47 1 .278933 e−04 1 .773509 e−03 1 .209486 e−01 8 .771500 e−01

48 1 .320000 e−01 2 .064338 e−01 6 .324904 e−01 2 .907578 e−02

49 1 .683221 e−02 4 .007848 e−01 1 .628981 e−03 5 .807540 e−01

50 9 .670085 e−02 4 .314765 e−01 7 .669035 e−03 4 .641536 e−01

51 4 .953577 e−02 1 .370037 e−01 9 .882004 e−02 7 .146405 e−01

52 1 .787927 e−02 9 .825660 e−02 2 .203037 e−01 6 .635604 e−01

53 1 .174053 e−02 4 .723628 e−01 2 .430072 e−03 5 .134666 e−01

54 2 .053871 e−01 6 .721356 e−01 4 .169640 e−02 8 .078090 e−02

55 3 .060369 e−06 1 .418623 e−03 1 .072549 e−02 9 .878528 e−01

56 1 .122164 e−02 6 .566169 e−02 3 .080641 e−01 6 .150525 e−01

57 8 .873716 e−03 4 .996907 e−01 8 .222034 e−03 4 .832136 e−01

58 2 .164962 e−02 2 .874313 e−01 1 .136455 e−03 6 .897826 e−01

59 5 .230443 e−03 6 .430174 e−04 9 .816825 e−01 1 .244406 e−02

60 8 .743368 e−02 6 .710327 e−02 4 .260116 e−01 4 .194514 e−01

61 1 .913578 e−01 6 .458463 e−04 3 .307553 e−01 4 .772410 e−01

62 6 .450967 e−07 5 .035697 e−05 7 .448285 e−01 2 .551205 e−01

63 2 .400365 e−04 4 .651537 e−03 8 .183390 e−06 9 .951002 e−01

64 1 .515894 e−04 2 .631451 e−01 1 .002332 e−05 7 .366933 e−01

You can see from the results that the probability for category 1 is the
same as p0. What this means is that we compute the other three prob-
abilities, and the remaining is for the first category. We check that the
probabilities across each row for all four categories add up to 1:

> rowSums ( re s $ f i t t e d . values )
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

51 52 53 54 55 56 57 58 59 60 61 62 63 64

1 1 1 1 1 1 1 1 1 1 1 1 1 1

11.6 Truncated Variables

Here we provide some basic results that we need later. And of course,
we need to revisit our Bayesian ideas again!

• Given a probability density f (x),

f (x|x > a) =
f (x)

Pr(x > a)

If we are using the normal distribution then this is:

f (x|x > a) =
φ(x)

1−Φ(a)

• If x ∼ N(µ, σ2), then

E(x|x > a) = µ + σ
φ(c)

1−Φ(c)
, c =

a− µ

σ

Note that this expectation is provided without proof, as are the next
few ones. For example if we let x be standard normal and we want
E([x|x > −1], we have

> dnorm(−1) / (1−pnorm(−1))
[ 1 ] 0 .2876000

• For the same distribution

E(x|x < a) = µ + σ
−φ(c)
Φ(c)

, c =
a− µ

σ

For example, E[x|x < 1] is

> −dnorm ( 1 ) / pnorm ( 1 )
[ 1 ] −0 .2876000

• Inverse Mills Ratio: The values φ(c)
1−Φ(c) or −φ(c)

Φ(c) as the case may be
is often shortened to the variable λ(c), which is also known as the
Inverse Mills Ratio.
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• If y and x are correlated (with correlation ρ), and y ∼ N(µy, σ2
y ), then

Pr(y, x|x > a) =
f (y, x)

Pr(x > a)

E(y|x > a) = µy + σyρλ(c), c =
a− µ

σ

This leads naturally to the truncated regression model. Suppose we have
the usual regression model where

y = β′x + e, e ∼ N(0, σ2)

But suppose we restrict attention in our model to values of y that are
greater than a cut off a. We can then write down by inspection the fol-
lowing correct model (no longer is the simple linear regression valid)

E(y|y > a) = β′x + σ
φ[(a− β′x)/σ]

1−Φ[(a− β′x)/σ]

Therefore, when the sample is truncated, then we need to run the regres-
sion above, i.e., the usual right-hand side β′x with an additional variable,
i.e., the Inverse Mill’s ratio. We look at this in a real-world example.

An Example: Limited Dependent Variables in VC Syndications

Not all venture-backed firms end up making a successful exit, either
via an IPO, through a buyout, or by means of another exit route. By
examining a large sample of firms, we can measure the probability of a
firm making a successful exit. By designating successful exits as S = 1,
and setting S = 0 otherwise, we use matrix X of explanatory variables
and fit a Probit model to the data. We define S to be based on a latent
threshold variable S∗ such that

S =

{
1 if S∗ > 0
0 if S∗ ≤ 0.

(11.1)

where the latent variable is modeled as

S∗ = γ′X + u, u ∼ N(0, σ2
u) (11.2)

The fitted model provides us the probability of exit, i.e., E(S), for all
financing rounds.

E(S) = E(S∗ > 0) = E(u > −γ′X) = 1−Φ(−γ′X) = Φ(γ′X), (11.3)

where γ is the vector of coefficients fitted in the Probit model, using
standard likelihood methods. The last expression in the equation above
follows from the use of normality in the Probit specification. Φ(.) de-
notes the cumulative normal distribution.



truncate and estimate: limited dependent variables 299

11.6.1 Endogeneity

Suppose we want to examine the role of syndication in venture success.
Success in a syndicated venture comes from two broad sources of VC
expertise. First, VCs are experienced in picking good projects to invest
in, and syndicates are efficient vehicles for picking good firms; this is the
selection hypothesis put forth by Lerner (1994). Amongst two projects
that appear a-priori similar in prospects, the fact that one of them is
selected by a syndicate is evidence that the project is of better quality
(ex-post to being vetted by the syndicate, but ex-ante to effort added by
the VCs), since the process of syndication effectively entails getting a
second opinion by the lead VC. Second, syndicates may provide better
monitoring as they bring a wide range of skills to the venture, and this is
suggested in the value-added hypothesis of Brander, Amit and Antweiler
(2002).

A regression of venture returns on various firm characteristics and a
dummy variable for syndication allows a first pass estimate of whether
syndication impacts performance. However, it may be that syndicated
firms are simply of higher quality and deliver better performance, whether
or not they chose to syndicate. Better firms are more likely to syndicate
because VCs tend to prefer such firms and can identify them. In this
case, the coefficient on the dummy variable might reveal a value-add
from syndication, when indeed, there is none. Hence, we correct the
specification for endogeneity, and then examine whether the dummy
variable remains significant.

Greene (2011) provides the correction for endogeneity required here.
We briefly summarize the model required. The performance regression
is of the form:

Y = β′X + δS + ε, ε ∼ N(0, σ2
ε ) (11.4)

where Y is the performance variable; S is, as before, the dummy variable
taking a value of 1 if the firm is syndicated, and zero otherwise, and
δ is a coefficient that determines whether performance is different on
account of syndication. If it is not, then it implies that the variables X
are sufficient to explain the differential performance across firms, or that
there is no differential performance across the two types of firms.

However, since these same variables determine also, whether the firm
syndicates or not, we have an endogeneity issue which is resolved by
adding a correction to the model above. The error term ε is affected
by censoring bias in the subsamples of syndicated and non-syndicated
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firms. When S = 1, i.e. when the firm’s financing is syndicated, then the
residual ε has the following expectation

E(ε|S = 1) = E(ε|S∗ > 0) = E(ε|u > −γ′X) = ρσε

[
φ(γ′X)

Φ(γ′X)

]
. (11.5)

where ρ = Corr(ε, u), and σε is the standard deviation of ε. This implies
that

E(Y|S = 1) = β′X + δ + ρσε

[
φ(γ′X)

Φ(γ′X)

]
. (11.6)

Note that φ(−γ′X) = φ(γ′X), and 1 − Φ(−γ′X) = Φ(γ′X). For es-
timation purposes, we write this as the following regression equation:

Y = δ + β′X + βmm(γ′X) (11.7)

where m(γ′X) = φ(γ′X)
Φ(γ′X)

and βm = ρσε. Thus, {δ, β, βm} are the coeffi-
cients estimated in the regression. (Note here that m(γ′X) is also known
as the inverse Mill’s ratio.)

Likewise, for firms that are not syndicated, we have the following
result

E(Y|S = 0) = β′X + ρσε

[ −φ(γ′X)

1−Φ(γ′X)

]
. (11.8)

This may also be estimated by linear cross-sectional regression.

Y = β′X + βmm′(γ′X) (11.9)

where m′ = −φ(γ′X)
1−Φ(γ′X)

and βm = ρσε.
The estimation model will take the form of a stacked linear regression

comprising both equations (11.7) and (11.9). This forces β to be the same
across all firms without necessitating additional constraints, and allows
the specification to remain within the simple OLS form. If δ is significant
after this endogeneity correction, then the empirical evidence supports
the hypothesis that syndication is a driver of differential performance.
If the coefficients {δ, βm} are significant, then the expected difference in
performance for each syndicated financing round (i, j) is

δ + βm

[
m(γ′ijXij)−m′(γ′ijXij)

]
, ∀i, j. (11.10)

The method above forms one possible approach to addressing treatment
effects. Another approach is to estimate a Probit model first, and then
to set m(γ′X) = Φ(γ′X). This is known as the instrumental variables
approach.

The regression may be run using the sampleSelection package in R.
Sample selection models correct for the fact that two subsamples may be
different because of treatment effects.
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11.6.2 Example: Women in the Labor Market

After loading in the package sampleSelection we can use the data set
called Mroz87. This contains labour market participation data for women
as well as wage levels for women. If we are explaining what drives
women’s wages we can simply run the following regression.

> l i b r a r y ( sampleSelec t ion )
> data ( Mroz87 )
> summary ( Mroz87 )

l f p hours kids5 kids618

Min . : 0 . 0 0 0 0 Min . : 0 . 0 Min . : 0 . 0 0 0 0 Min . : 0 . 0 0 0

1 s t Qu. : 0 . 0 0 0 0 1 s t Qu . : 0 . 0 1 s t Qu. : 0 . 0 0 0 0 1 s t Qu. : 0 . 0 0 0

Median : 1 . 0 0 0 0 Median : 288 .0 Median : 0 . 0 0 0 0 Median : 1 . 0 0 0

Mean : 0 . 5 6 8 4 Mean : 740 .6 Mean : 0 . 2 3 7 7 Mean : 1 . 3 5 3

3rd Qu. : 1 . 0 0 0 0 3rd Qu. : 1 5 1 6 . 0 3rd Qu. : 0 . 0 0 0 0 3rd Qu. : 2 . 0 0 0

Max . : 1 . 0 0 0 0 Max . : 4 9 5 0 . 0 Max . : 3 . 0 0 0 0 Max . : 8 . 0 0 0

age educ wage repwage
Min . : 3 0 . 0 0 Min . : 5 . 0 0 Min . : 0 . 000 Min . : 0 . 0 0 0

1 s t Qu. : 3 6 . 0 0 1 s t Qu. : 1 2 . 0 0 1 s t Qu . : 0 .000 1 s t Qu. : 0 . 0 0 0

Median : 4 3 . 0 0 Median : 1 2 . 0 0 Median : 1 .625 Median : 0 . 0 0 0

Mean : 4 2 . 5 4 Mean : 1 2 . 2 9 Mean : 2 .375 Mean : 1 . 8 5 0

3rd Qu. : 4 9 . 0 0 3rd Qu. : 1 3 . 0 0 3rd Qu . : 3 .788 3rd Qu. : 3 . 5 8 0

Max . : 6 0 . 0 0 Max . : 1 7 . 0 0 Max . : 2 5 . 0 0 0 Max . : 9 . 9 8 0

hushrs husage huseduc huswage
Min . : 175 Min . : 3 0 . 0 0 Min . : 3 . 0 0 Min . : 0 .4121

1 s t Qu. : 1 9 2 8 1 s t Qu. : 3 8 . 0 0 1 s t Qu. : 1 1 . 0 0 1 s t Qu . : 4 .7883

Median :2164 Median : 4 6 . 0 0 Median : 1 2 . 0 0 Median : 6 .9758

Mean : 2267 Mean : 4 5 . 1 2 Mean : 1 2 . 4 9 Mean : 7 .4822

3rd Qu. : 2 5 5 3 3rd Qu. : 5 2 . 0 0 3rd Qu. : 1 5 . 0 0 3rd Qu . : 9 .1667

Max . :5010 Max . : 6 0 . 0 0 Max . : 1 7 . 0 0 Max . : 4 0 . 5 0 9 0

faminc mtr motheduc fatheduc
Min . : 1500 Min . : 0 . 4 4 1 5 Min . : 0 .000 Min . : 0 .000

1 s t Qu. : 1 5 4 2 8 1 s t Qu. : 0 . 6 2 1 5 1 s t Qu . : 7 . 000 1 s t Qu . : 7 .000

Median :20880 Median : 0 . 6 9 1 5 Median : 1 0 . 0 0 0 Median : 7 .000

Mean :23081 Mean : 0 . 6 7 8 9 Mean : 9 .251 Mean : 8 .809

3rd Qu. : 2 8 2 0 0 3rd Qu. : 0 . 7 2 1 5 3rd Qu. : 1 2 . 0 0 0 3rd Qu. : 1 2 . 0 0 0

Max . :96000 Max . : 0 . 9 4 1 5 Max . : 1 7 . 0 0 0 Max . : 1 7 . 0 0 0

unem c i t y exper nwifeinc
Min . : 3 . 000 Min . : 0 . 0 0 0 0 Min . : 0 . 0 0 Min . :−0 .02906

1 s t Qu . : 7 . 500 1 s t Qu. : 0 . 0 0 0 0 1 s t Qu . : 4 . 0 0 1 s t Qu. : 1 3 . 0 2 5 0 4

Median : 7 . 500 Median : 1 . 0 0 0 0 Median : 9 . 0 0 Median : 1 7 . 7 0 0 0 0

Mean : 8 . 624 Mean : 0 . 6 4 2 8 Mean : 1 0 . 6 3 Mean : 2 0 . 1 2 8 9 6

3rd Qu. : 1 1 . 0 0 0 3rd Qu. : 1 . 0 0 0 0 3rd Qu. : 1 5 . 0 0 3rd Qu. : 2 4 . 4 6 6 0 0

Max . : 1 4 . 0 0 0 Max . : 1 . 0 0 0 0 Max . : 4 5 . 0 0 Max . : 9 6 . 0 0 0 0 0

w i f e c o l l h u s c o l l kids
TRUE: 2 1 2 TRUE: 2 9 5 Mode : l o g i c a l

FALSE: 5 4 1 FALSE: 4 5 8 FALSE: 2 2 9

TRUE : 5 2 4

> re s = lm ( wage ~ age + I ( age ^2) + educ + c i t y , data=Mroz87 )
> summary ( r es )

Call :
lm ( formula = wage ~ age + I ( age ^2) + educ + c i t y , data = Mroz87 )

Residuals :
Min 1Q Median 3Q Max

−4.6805 −2.1919 −0.4575 1 .3588 22 .6903

C o e f f i c i e n t s :
Est imate Std . Error t value Pr(>| t |)
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( I n t e r c e p t ) −8.499373 3 .296628 −2.578 0 .0101 *
age 0 .252758 0 .152719 1 . 655 0 .0983 .
I ( age ^2) −0.002918 0 .001761 −1.657 0 .0980 .
educ 0 .450873 0 .050306 8 . 963 <2e−16 * * *
c i t y 0 .080852 0 .238852 0 . 339 0 .7351

−−−
S i g n i f . codes : 0 Ô* * *Õ 0 . 001 Ô* *Õ 0 . 0 1 Ô*Õ 0 . 0 5 Ô.Õ 0 . 1 Ô Õ 1

Residual standard e r r o r : 3 .075 on 748 degrees of freedom
Mult iple R−squared : 0 . 1 0 4 9 , Adjusted R−squared : 0 .1001

F−s t a t i s t i c : 21 .91 on 4 and 748 DF, p−value : < 2 . 2 e−16

So, education matters. But since education also determines labor force
participation (variable lfp) it may just be that we can use lfp instead.
Let’s try that.

> re s = lm ( wage ~ age + I ( age ^2) + l f p + c i t y , data=Mroz87 )
> summary ( r es )

Call :
lm ( formula = wage ~ age + I ( age ^2) + l f p + c i t y , data = Mroz87 )

Residuals :
Min 1Q Median 3Q Max

−4.1808 −0.9884 −0.1615 0 .3090 20 .6810

C o e f f i c i e n t s :
Est imate Std . Error t value Pr(>| t |)

( I n t e r c e p t ) −4.558e−01 2 . 606 e+00 −0.175 0 .8612

age 3 . 052 e−03 1 . 240 e−01 0 . 025 0 .9804

I ( age ^2) 1 . 288 e−05 1 . 431 e−03 0 . 009 0 .9928

l f p 4 . 186 e+00 1 . 845 e−01 22 .690 <2e−16 * * *
c i t y 4 . 622 e−01 1 . 905 e−01 2 . 426 0 .0155 *
−−−
S i g n i f . codes : 0 Ô* * *Õ 0 . 001 Ô* *Õ 0 . 0 1 Ô*Õ 0 . 0 5 Ô.Õ 0 . 1 Ô Õ 1

Residual standard e r r o r : 2 .491 on 748 degrees of freedom
Mult iple R−squared : 0 . 4 1 2 9 , Adjusted R−squared : 0 .4097

F−s t a t i s t i c : 131 . 5 on 4 and 748 DF, p−value : < 2 . 2 e−16

> re s = lm ( wage ~ age + I ( age ^2) + l f p + educ + c i t y , data=Mroz87 )
> summary ( r es )

Call :
lm ( formula = wage ~ age + I ( age ^2) + l f p + educ + c i t y , data = Mroz87 )

Residuals :
Min 1Q Median 3Q Max

−4.9895 −1.1034 −0.1820 0 .4646 21 .0160

C o e f f i c i e n t s :
Est imate Std . Error t value Pr(>| t |)

( I n t e r c e p t ) −4 .7137850 2 .5882435 −1.821 0 . 069 .
age 0 .0395656 0 .1200320 0 . 330 0 . 742

I ( age ^2) −0 .0002938 0 .0013849 −0.212 0 . 832

l f p 3 .9439552 0 .1815350 21 .726 < 2e−16 * * *
educ 0 .2906869 0 .0400905 7 . 251 1 . 0 4 e−12 * * *
c i t y 0 .2219959 0 .1872141 1 . 186 0 . 236

−−−
S i g n i f . codes : 0 Ô* * *Õ 0 . 001 Ô* *Õ 0 . 0 1 Ô*Õ 0 . 0 5 Ô.Õ 0 . 1 Ô Õ 1



truncate and estimate: limited dependent variables 303

Residual standard e r r o r : 2 .409 on 747 degrees of freedom
Mult iple R−squared : 0 . 4 5 1 5 , Adjusted R−squared : 0 .4478

F−s t a t i s t i c : 123 on 5 and 747 DF, p−value : < 2 . 2 e−16

In fact, it seems like both matter, but we should use the selection equa-
tion approach of Heckman, in two stages.

> re s = s e l e c t i o n ( l f p ~ age + I ( age ^2) + faminc + kids + educ ,
wage ~ exper + I ( exper ^2) + educ + c i t y , data=Mroz87 , method = " 2 s tep " )

> summary ( r es )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Tobit 2 model ( sample s e l e c t i o n model )
2−step Heckman / h e c k i t es t imat ion
753 observat ions (325 censored and 428 observed )

and 14 f r e e parameters ( df = 740 )
P r o b i t s e l e c t i o n equation :

Est imate Std . Error t value Pr(>| t |)
( I n t e r c e p t ) −4.157e+00 1 . 402 e+00 −2.965 0 .003127 * *
age 1 . 854 e−01 6 . 597 e−02 2 . 810 0 .005078 * *
I ( age ^2) −2.426e−03 7 . 735 e−04 −3.136 0 .001780 * *
faminc 4 . 580 e−06 4 . 206 e−06 1 . 089 0 .276544

kidsTRUE −4.490e−01 1 . 309 e−01 −3.430 0 .000638 * * *
educ 9 . 818 e−02 2 . 298 e−02 4 . 272 2 . 1 9 e−05 * * *
Outcome equation :

Est imate Std . Error t value Pr(>| t |)
( I n t e r c e p t ) −0 .9712003 2 .0593505 −0.472 0 . 637

exper 0 .0210610 0 .0624646 0 . 337 0 . 736

I ( exper ^2) 0 .0001371 0 .0018782 0 . 073 0 . 942

educ 0 .4170174 0 .1002497 4 . 160 3 . 5 6 e−05 * * *
c i t y 0 .4438379 0 .3158984 1 . 405 0 . 160

Multiple R−Squared : 0 . 1 2 6 4 , Adjusted R−Squared : 0 . 1 1 6

Error terms :
Est imate Std . Error t value Pr(>| t |)

i n v M i l l s R a t i o −1.098 1 . 266 −0.867 0 . 386

sigma 3 .200 NA NA NA
rho −0.343 NA NA NA
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

11.6.3 Endogeity – Some Theory to Wrap Up

Endogeneity may be technically expressed as arising from a correlation
of the independent variables and the error term in a regression. This can
be stated as:

Y = β′X + u, E(X · u) 6= 0

This can happen in many ways:

1. Measurement error: If X is measured in error, we have X̃ = X + e. The
the regression becomes

Y = β0 + β1(X̃− e) + u = β0 + β1X̃ + (u− β1e) = β0 + β1X̃ + v

We see that

E(X̃ · v) = E[(X + e)(u− β1e)] = −β1E(e2) = −β1Var(e) 6= 0
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2. Omitted variables: Suppose the true model is

Y = β0 + β1X1 + β2X2 + u

but we do not have X2, which happens to be correlated with X1, then
it will be subsumed in the error term and no longer will E(Xi · u) =

0, ∀i.

3. Simultaneity: This occurs when Y and X are jointly determined. For
example, high wages and high education go together. Or, advertising
and sales coincide. Or that better start-up firms tend to receive syndi-
cation. The structural form of these settings may be written as:

Y = β0 + β1X + u, X = α0 + α1Y + v

The solution to these equations gives the reduced-form version of the
model.

Y =
β0 + β1α0

1− α1β1
+

βv + u
1− α1β1

, X =
α0 + α1β0

1− α1β1
+

v + α1u
1− α1β1

From which we can compute the endogeneity result.

Cov(X, u) = Cov
(

v + α1u
1− α1β1

, u
)
=

α1

1− α1β1
·Var(u)
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Riding the Wave: Fourier Analysis

12.1 Introduction

Fourier analysis comprises many different connnections between infinite
series, complex numbers, vector theory, and geometry. We may think
of different applications: (a) fitting economic time series, (b) pricing op-
tions, (c) wavelets, (d) obtaining risk-neutral pricing distributions via
Fourier inversion.

12.2 Fourier Series

12.2.1 Basic stuff

Fourier series are used to represent periodic time series by combinations
of sine and cosine waves. The time it takes for one cycle of the wave is
called the “period” T of the wave. The “frequency” f of the wave is the
number of cycles per second, hence,

f =
1
T

12.2.2 The unit circle

We need some basic geometry on the unit circle.



306 data science: theories, models, algorithms, and analytics

!

a
a sin!

a cos!

This circle is the unit circle if a = 1. There is a nice link between the unit
circle and the sine wave. See the next figure for this relationship.

+1

-1

!

" 2"

f(!)

Hence, as we rotate through the angles, the height of the unit vector on
the circle traces out the sine wave. In general for radius a, we get a sine
wave with amplitude a, or we may write:

f (θ) = a sin(θ) (12.1)

12.2.3 Angular velocity

Velocity is distance per time (in a given direction). For angular velocity
we measure distance in degrees, i.e. degrees per unit of time. The usual
symbol for angular velocity is ω. We can thus write

ω =
θ

T
, θ = ωT

Hence, we can state the function in equation (12.1) in terms of time as
follows

f (t) = a sin ωt
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12.2.4 Fourier series

A Fourier series is a collection of sine and cosine waves, which when
summed up, closely approximate any given waveform. We can express
the Fourier series in terms of sine and cosine waves

f (θ) = a0 +
∞

∑
n=1

(an cos nθ + bn sin nθ)

f (t) = a0 +
∞

∑
n=1

(an cos nωt + bn sin nωt)

The a0 is needed since the waves may not be symmetric around the x-
axis.

12.2.5 Radians

Degrees are expressed in units of radians. A radian is an angle defined
in the following figure.

aa

a

The angle here is a radian which is equal to 57.2958 degrees (approxi-
mately). This is slightly less than 60 degrees as you would expect to get
with an equilateral triangle. Note that (since the circumference is 2πa)
57.2958π = 57.2958× 3.142 = 180 degrees.

So now for the unit circle

2π = 360 (degrees)

ω =
360
T

ω =
2π

T
Hence, we may rewrite the Fourier series equation as:

f (t) = a0 +
∞

∑
n=1

(an cos nωt + bn sin nωt)

= a0 +
∞

∑
n=1

(
an cos

2πn
T

t + bn sin
2πn

T
t
)

So we now need to figure out how to get the coefficients {a0, an, bn}.
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12.2.6 Solving for the coefficients

We start by noting the interesting phenomenon that sines and cosines are
orthogonal, i.e. their inner product is zero. Hence,∫ T

0
sin(nt). cos(mt) dt = 0, ∀n, m (12.2)∫ T

0
sin(nt). sin(mt) dt = 0, ∀n 6= m (12.3)∫ T

0
cos(nt). cos(mt) dt = 0, ∀n 6= m (12.4)

What this means is that when we multiply one wave by another, and
then integrate the resultant wave from 0 to T (i.e. over any cycle, so we
could go from say −T/2 to +T/2 also), then we get zero, unless the two
waves have the same frequency. Hence, the way we get the coefficients
of the Fourier series is as follows. Integrate both sides of the series in
equation (12.2) from 0 to T, i.e.

∫ T

0
f (t) =

∫ T

0
a0 dt +

∫ T

0

[
∞

∑
n=1

(an cos nωt + bn sin nωt) dt

]

Except for the first term all the remaining terms are zero (integrating a
sine or cosine wave over its cycle gives net zero). So we get∫ T

0
f (t) dt = a0T

or

a0 =
1
T

∫ T

0
f (t) dt

Now lets try another integral, i.e.∫ T

0
f (t) cos(ωt) =

∫ T

0
a0 cos(ωt) dt

+
∫ T

0

[
∞

∑
n=1

(an cos nωt + bn sin nωt) cos(ωt) dt

]

Here, all terms are zero except for the term in a1 cos(ωt) cos(ωt), be-
cause we are multiplying two waves (pointwise) that have the same fre-
quency. So we get∫ T

0
f (t) cos(ωt) =

∫ T

0
a1 cos(ωt) cos(ωt) dt

= a1
T
2
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How? Note here that for unit amplitude, integrating cos(ωt) over one
cycle will give zero. If we multiply cos(ωt) by itself, we flip all the wave
segments from below to above the zero line. The product wave now fills
out half the area from 0 to T, so we get T/2. Thus

a1 =
2
T

∫ T

0
f (t) cos(ωt)

We can get all an this way - just multiply by cos(nωt) and integrate. We
can also get all bn this way - just multiply by sin(nωt) and integrate.

This forms the basis of the following summary results that give the
coefficients of the Fourier series.

a0 =
1
T

∫ T/2

−T/2
f (t) dt =

1
T

∫ T

0
f (t) dt (12.5)

an =
1

T/2

∫ T/2

−T/2
f (t) cos(nωt) dt =

2
T

∫ T

0
f (t) cos(nωt) dt (12.6)

bn =
1

T/2

∫ T/2

−T/2
f (t) sin(nωt) dt =

2
T

∫ T

0
f (t) sin(nωt) dt (12.7)

12.3 Complex Algebra

Just for fun, recall that

e =
∞

∑
n=0

1
n!

.

and

eiθ =
∞

∑
n=0

1
n!
(iθ)n

cos(θ) = 1 + 0.θ − 1
2!

θ2 + 0.θ3 +
1
4!

θ2 + . . .

i sin(θ) = 0 + iθ + 0.θ2 − 1
3!

iθ3 + 0.θ4 + . . .

Which leads into the famous Euler’s formula:

eiθ = cos θ + i sin θ (12.8)

and the corresponding

e−iθ = cos θ − i sin θ (12.9)

Recall also that cos(−θ) = cos(θ). And sin(−θ) = − sin(θ). Note also
that if θ = π, then

e−iπ = cos(π)− i sin(π) = −1 + 0
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which can be written as

e−iπ + 1 = 0

an equation that contains five fundamental mathematical constants:
{i, π, e, 0, 1}, and three operators {+,−,=}.

12.3.1 From Trig to Complex

Using equations (12.8) and (12.9) gives

cos θ =
1
2
(eiθ + e−iθ) (12.10)

sin θ =
1
2

i(eiθ − e−iθ) (12.11)

Now, return to the Fourier series,

f (t) = a0 +
∞

∑
n=1

(an cos nωt + bn sin nωt) (12.12)

= a0 +
∞

∑
n=1

(
an

1
2
(einωt + e−inωt) + bn

1
2i
(einωt − e−inωt)

)
(12.13)

= a0 +
∞

∑
n=1

(
Aneinωt + Bne−inωt

)
(12.14)

where

An =
1
T

∫ T

0
f (t)e−inωt dt

Bn =
1
T

∫ T

0
f (t)einωt dt

How? Start with

f (t) = a0 +
∞

∑
n=1

(
an

1
2
(einωt + e−inωt) + bn

1
2i
(einωt − e−inωt)

)
Then

f (t) = a0 +
∞

∑
n=1

(
an

1
2
(einωt + e−inωt) + bn

i
2i2

(einωt − e−inωt)

)

= a0 +
∞

∑
n=1

(
an

1
2
(einωt + e−inωt) + bn

i
−2

(einωt − e−inωt)

)

f (t) = a0 +
∞

∑
n=1

(
1
2
(an − ibn)einωt +

1
2
(an + ibn)e−inωt

)
(12.15)
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Note that from equations (12.8) and (12.9),

an =
2
T

∫ T

0
f (t) cos(nωt) dt (12.16)

=
2
T

∫ T

0
f (t)

1
2
[einωt + e−inωt] dt (12.17)

an =
1
T

∫ T

0
f (t)[einωt + e−inωt] dt (12.18)

In the same way, we can handle bn, to get

bn =
2
T

∫ T

0
f (t) sin(nωt) dt (12.19)

=
2
T

∫ T

0
f (t)

1
2i
[einωt − e−inωt] dt (12.20)

=
1
i

1
T

∫ T

0
f (t)[einωt − e−inωt] dt (12.21)

So that

ibn =
1
T

∫ T

0
f (t)[einωt − e−inωt] dt (12.22)

So from equations (12.18) and (12.22), we get

1
2
(an − ibn) =

1
T

∫ T

0
f (t)e−inωt dt ≡ An (12.23)

1
2
(an + ibn) =

1
T

∫ T

0
f (t)einωt dt ≡ Bn (12.24)

Put these back into equation (12.15) to get

f (t) = a0 +
∞

∑
n=1

(
1
2
(an − ibn)einωt +

1
2
(an + ibn)e−inωt

)
= a0 +

∞

∑
n=1

(
Aneinωt + Bne−inωt

)
(12.25)

12.3.2 Getting rid of a0

Note that if we expand the range of the first summation to start from
n = 0, then we have a term A0ei0ωt = A0 ≡ a0. So we can then write our
expression as

f (t) =
∞

∑
n=0

Aneinωt +
∞

∑
n=1

Bne−inωt (sum of A runs from zero)

12.3.3 Collapsing and Simplifying

So now we want to collapse these two terms together. Lets note that

2

∑
n=1

xn = x1 + x2 =
−1

∑
n=−2

x−n = x2 + x1
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Applying this idea, we get

f (t) =
∞

∑
n=0

Aneinωt +
∞

∑
n=1

Bne−inωt (12.26)

=
∞

∑
n=0

Aneinωt +
−1

∑
n=−∞

B(−n)e
inωt (12.27)

where

B(−n) =
1
T

∫ T

0
f (t)e−inωt dt = An

=
∞

∑
n=−∞

Cneinωt (12.28)

where

Cn =
1
T

∫ T

0
f (t)e−inωt dt

where we just renamed An to Cn for clarity. The big win here is that we
have been able to subsume {a0, an, bn} all into one coefficient set Cn. For
completeness we write

f (t) = a0 +
∞

∑
n=1

(an cos nωt + bn sin nωt) =
∞

∑
n=−∞

Cneinωt

This is the complex number representation of the Fourier series.

12.4 Fourier Transform

The FT is a cool technique that allows us to go from the Fourier series,
which needs a period T to waves that are aperiodic. The idea is to sim-
ply let the period go to infinity. Which means the frequency gets very
small. We can then sample a slice of the wave to do analysis.

We will replace f (t) with g(t) because we now need to use f or ∆ f to
denote frequency. Recall that

ω =
2π

T
= 2π f , nω = 2π fn

To recap

g(t) =
∞

∑
n=−∞

Cneinωt =
∞

∑
n=−∞

Cnei2π f t (12.29)

Cn =
1
T

∫ T

0
g(t)e−inωt dt (12.30)

This may be written alternatively in frequency terms as follows

Cn = ∆ f
∫ T/2

−T/2
g(t)e−i2π fnt dt
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which we substitute into the formula for g(t) and get

g(t) =
∞

∑
n=−∞

[
∆ f

∫ T/2

−T/2
g(t)e−i2π fnt dt

]
einωt

Taking limits

g(t) = lim
T→∞

∞

∑
n=−∞

[∫ T/2

−T/2
g(t)e−i2π fnt dt

]
ei2π fnt∆ f

gives a double integral

g(t) =
∫ ∞

−∞

[∫ ∞

−∞
g(t)e−i2π f t dt

]
︸ ︷︷ ︸

G( f )

ei2π f t d f

The dt is for the time domain and the d f for the frequency domain.
Hence, the Fourier transform goes from the time domain into the fre-
quency domain, given by

G( f ) =
∫ ∞

−∞
g(t)e−i2π f t dt

The inverse Fourier transform goes from the frequency domain into the
time domain

g(t) =
∫ ∞

−∞
G( f )ei2π f t d f

And the Fourier coefficients are as before

Cn =
1
T

∫ T

0
g(t)e−i2π fnt dt =

1
T

∫ T

0
g(t)e−inωt dt

Notice the incredible similarity between the coefficients and the trans-
form. Note the following:

• The coefficients give the amplitude of each component wave.

• The transform gives the area of component waves of frequency f . You
can see this because the transform does not have the divide by T in it.

• The transform gives for any frequency f , the rate of occurrence of the
component wave with that frequency, relative to other waves.

• In short, the Fourier transform breaks a complicated, aperiodic wave
into simple periodic ones.

The spectrum of a wave is a graph showing its component frequen-
cies, i.e. the quantity in which they occur. It is the frequency components
of the waves. But it does not give their amplitudes.
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12.4.1 Empirical Example

We can use the Fourier transform function in R to compute the main
component frequencies of the times series of interest rate data as follows:

> rd = read.table("tryrates.txt",header=TRUE)

> r1 = as.matrix(rd[4])

> plot(r1,type="l")

> dr1 = resid(lm(r1 ~ seq(along = r1)))

> plot(dr1,type="l")

> y=fft(dr1)

> plot(abs(y),type="l")

The line with

dr1 = resid(lm(r1 ~ seq(along = r1)))

detrends the series, and when we plot it we see that its done. We can
then subject the detrended line to fourier analysis.

The plot of the fit of the detrended one-year interest rates is here:
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Its easy to see that the series has short frequencies and long frequencies.
Essentially there are two factors. If we do a factor analysis of interest
rates, it turns out we get two factors as well.

12.5 Application to Binomial Option Pricing

To implement the option pricing in Cerny, Exhibit 8.

> ifft = function(x) { fft(x,inverse=TRUE)/length(x) }

> ct = c(599.64,102,0,0)

> q = c(0.43523,0.56477,0,0)

> R = 1.0033

> ifft(fft(ct)*( (4*ifft(q)/R)^3) )

[1] 81.36464+0i 115.28447-0i 265.46949+0i 232.62076-0i
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12.6 Application to probability functions

12.6.1 Characteristic functions

A characteristic function of a variable x is given by the expectation of the
following function of x:

φ(s) = E[eisx] =
∫ ∞

−∞
eisx f (x) dx

where f (x) is the probability density of x. By Taylor series for eisx we
have ∫ ∞

−∞
eisx f (x) dx =

∫ ∞

−∞
[1 + isx +

1
2
(isx)2 + . . .] f (x)dx

=
∞

∑
j=0

(is)j

j!
mj

= 1 + (is)m1 +
1
2
(is)2m2 +

1
6
(is)3m3 + . . .

where mj is the j-th moment.
It is therefore easy to see that

mj =
1
ij

[
dφ(s)

ds

]
s=0

where i =
√
−1.

12.6.2 Finance application

In a paper in 1993, Steve Heston developed a new approach to valuing
stock and foreign currency options using a Fourier inversion technique.
See also Duffie, Pan and Singleton (2001) for extension to jumps, and
Chacko and Das (2002) for a generalization of this to interest-rate deriva-
tives with jumps.

Lets explore a much simpler model of the same so as to get the idea
of how we can get at probability functions if we are given a stochastic
process for any security. When we are thinking of a dynamically moving
financial variable (say xt), we are usually interested in knowing what the
probability is of this variable reaching a value xτ at time t = τ, given
that right now, it has value x0 at time t = 0. Note that τ is the remaining
time to maturity.

Suppose we have the following financial variable xt following a very
simple Brownian motion, i.e.

dxt = µ dt + σ dzt
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Here, µ is known as its “drift" and “sigma” is the volatility. The differen-
tial equation above gives the movement of the variable x and the term dz
is a Brownian motion, and is a random variable with normal distribution
of mean zero, and variance dt.

What we are interested in is the characteristic function of this process.
The characteristic function of x is defined as the Fourier transform of x,
i.e.

F(x) = E[eisx] =
∫

eisx f (x)ds

where s is the Fourier variable of integration, and i =
√
−1, as usual.

Notice the similarity to the Fourier transforms described earlier in the
note. It turns out that once we have the characteristic function, then we
can obtain by simple calculations the probability function for x, as well
as all the moments of x.

12.6.3 Solving for the characteristic function

We write the characteristic function as F(x, τ; s). Then, using Ito’s lemma
we have

dF = Fxdx +
1
2

Fxx(dx)2 − Fτdt

Fx is the first derivative of F with respect to x; Fxx is the second deriva-
tive, and Fτ is the derivative with respect to remaining maturity. Since F
is a characteristic (probability) function, the expected change in F is zero.

E(dF) = µFx dt +
1
2

σ2Fxx dt− Fτ dt = 0

which gives a PDE in (x, τ):

µFx +
1
2

σ2Fxx − Fτ = 0

We need a boundary condition for the characteristic function which is

F(x, τ = 0; s) = eisx

We solve the PDE by making an educated guess, which is

F(x, τ; s) = eisx+A(τ)

which implies that when τ = 0, A(τ = 0) = 0 as well. We can see that

Fx = isF

Fxx = −s2F

Fτ = Aτ F
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Substituting this back in the PDE gives

µisF− 1
2

σ2s2F− Aτ F = 0

µis− 1
2

σ2s2 − Aτ = 0

dA
dτ

= µis− 1
2

σ2s2

gives: A(τ) = µisτ − 1
2

σ2s2τ, because A(0) = 0

Thus we finally have the characteristic function which is

F(x, τ; s) = exp[isx + µisτ − 1
2

σ2s2τ]

12.6.4 Computing the moments

In general, the moments are derived by differentiating the characteristic
function y s and setting s = 0. The k-th moment will be

E[xk] =
1
ik

[
∂kF
∂sk

]
s=0

Lets test it by computing the mean (k = 1):

E(x) =
1
i

[
∂F
∂s

]
s=0

= x + µτ

where x is the current value x0. How about the second moment?

E(x2) =
1
i2

[
∂2F
∂s2

]
s=0

= σ2τ + (x + µτ)2 = σ2τ + E(x)2

Hence, the variance will be

Var(x) = E(x2)− E(x)2 = σ2τ + E(x)2 − E(x2) = σ2τ

12.6.5 Probability density function

It turns out that we can “invert” the characteristic function to get the pdf
(boy, this characteristic function sure is useful!). Again we use Fourier
inversion, which result is stated as follows:

f (xτ|x0) =
1
π

∫ ∞

0
Re[e−isxτ ]F(x0, τ; s) ds

Here is an implementation
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#Model for fourier inversion for arithmetic brownian motion

x0 = 10

mu = 10

sig = 5

tau = 0.25

s = (0:10000)/100

ds = s[2]-s[1]

phi = exp(1i*s*x0+mu*1i*s*tau-0.5*s^2*sig^2*tau)

x = (0:250)/10

fx=NULL

for ( k in 1:length(x) ) {

g = sum(as.real(exp(-1i*s*x[k]) * phi * ds))/pi

print(c(x[k],g))

fx = c(fx,g)

}

plot(x,fx,type="l")





13
Making Connections: Network Theory

13.1 Overview

The science of networks is making deep inroads into business. The term
“network effect” is being used widely in conceptual terms to define the
gains from piggybacking on connections in the business world. Using
the network to advantage coins the verb “networking” - a new, improved
use of the word “schmoozing”. The science of viral marketing and word-
of-mouth transmission of information is all about exploiting the power
of networks. We are just seeing the beginning - as the cost of the network
and its analysis drops rapidly, businesses will exploit them more and
more.

Networks are also useful in understanding how information flows
in markets. Network theory is also being used by firms to find “com-
munities” of consumers so as to partition and focus their marketing
efforts. There are many wonderful videos by Cornell professor Jon Klein-
berg on YouTube and elsewhere on the importance of new tools in com-
puter science for understanding social networks. He talks of the big
difference today in that networks grow organically, not in structured
fashion as in the past with road, electricity and telecommunication net-
works. Modern networks are large, realistic and well-mapped. Think
about dating networks and sites like Linked In. A free copy of Klein-
berg’s book on networks with David Easley may be downloaded at
http://www.cs.cornell.edu/home/kleinber/networks-book/. It is writ-
ten for an undergraduate audience and is immensely accessible. There is
also material on game theory and auctions in this book.
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13.2 Graph Theory

Any good understanding of networks must perforce begin with a digres-
sion in graph theory. I say digression because its not clear to me yet how
a formal understanding of graph theory should be taught to business
students, but yet, an informal set of ideas is hugely useful in provid-
ing a technical/conceptual framework within which to see how useful
network analysis will be in the coming future of a changing business
landscape. Also, it is useful to have a light introduction to the notation
and terminology in graph theory so that the basic ideas are accessible
when reading further.

What is a graph? It is a picture of a network, a diagram consisting of
relationships between entities. We call the entities as vertices or nodes
(set V) and the relationships are called the edges of a graph (set E).
Hence a graph G is defined as

G = (V, E)

If the edges e ∈ E of a graph are not tipped with arrows implying some
direction or causality, we call the graph an “undirected” graph. If there
are arrows of direction then the graph is a “directed” graph.

If the connections (edges) between vertices v ∈ V have weights on
them, then we call the graph a “weighted graph” else it’s “unweighted”.
In an unweighted graph, for any pair of vertices (u, v), we have

w(u, v) =

{
w(u, v) = 1, if (u, v) ∈ E
w(u, v) = 0, if (u, v) 3 E

In a weighted graph the value of w(u, v) is unrestricted, and can also be
negative.

Directed graphs can be cyclic or acyclic. In a cyclic graph there is a
path from a source node that leads back to the node itself. Not so in
an acyclic graph. The term “dag” is used to connote a “directed acyclic
graph”. The binomial option pricing model in finance that you have
learnt is an example of a dag.

A graph may be represented by its adjacency matrix. This is simply
the matrix A = {w(u, v)}, ∀u, v. You can take the transpose of this matrix
as well, which in the case of a directed graph will simply reverse the
direction of all edges.
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13.3 Features of Graphs

Graphs have many attributes, such as the number of nodes, and the
distribution of links across nodes. The structure of nodes and edges
(links) determines how connected the nodes are, how flows take place on
the network, and the relative importance of each node.

One simple bifurcation of graphs suggests two types: (a) random
graphs and (b) scale-free graphs. In a beautiful article in the Scientific
American, Barabasi and Bonabeau (2003) presented a simple schematic
to depict these two categories of graphs. See Figure 13.1.

Figure 13.1: Comparison of ran-
dom and scale-free graphs. From
Barabasi, Albert-Laszlo., and Eric
Bonabeau (2003). “Scale-Free Net-
works,” Scientific American May,
50–59.

A random graph may be created by putting in place a set of n nodes
and then randomly connecting pairs of nodes with some probability
p. The higher this probability the more edges the graph will have. The
distribution of the number of edges each node has will be more or less
Gaussian as there is a mean number of edges (n · p), with some range
around the mean. In Figure 13.1, the graph on the left is a depiction of
this, and the distribution of links is shown to be bell-shaped. The left
graph is exemplified by the US highway network, as shown in simplified
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form. If the number of links of a node are given by a number d, the dis-
tribution of nodes in a random graph would be f (d) ∼ N(µ, σ2), where
µ is the mean number of nodes with variance σ2.

A scale-free graph has a hub and spoke structure. There are a few cen-
tral nodes that have a large number of links, and most nodes have very
few. The distribution of links is shown on the right side of Figure 13.1,
and an exemplar is the US airport network. This distribution is not bell-
shaped at all, and appears to be exponential. There is of course a mean
for this distribution, but the mean is not really representative of the hub
nodes or the non-hub nodes. Because the mean, i.e., the parameter of
scale is unrepresentative of the population, the distribution is scale-free,
and the networks of this type are also known as scale-free networks. The
distribution of nodes in a scale-free graph tends to be approximated by
a power-law distribution, i.e., f (d) ∼ d−α, where usually, nature seems
to have stipulated that 2 ≤ α ≤ 3, by some curious twist of fate. The
log-log plot of this distribution is linear, as shown in the right side graph
in Figure 13.1.

The vast majority of networks in the world tend to be scale-free. Why?
Barabasi and Albert (1999) developed the Theory of Preferential Attach-
ment to explain this phenomenon. The theory is intuitive, and simply
states that as a network grows and new nodes are added, the new nodes
tend to attach to existing nodes that have the most links. Thus influen-
tial nodes become even more connected, and this evolves into a hub and
spoke structure.

The structure of these graphs determines other properties. For in-
stance, scale-free graphs are much better at transmission of information,
for example. Or for moving air traffic passengers, which is why our air-
ports are arranged thus. But a scale-free network is also susceptible to
greater transmission of disease, as is the case with networks of people
with HIV. Or, economic contagion. Later in this chapter we will examine
financial network risk by studying the structure of banking networks.
Scale-free graphs are also more robust to random attacks. If a terrorist
group randomly attacks an airport, then unless it hits a hub, very little
damage is done. But the network is much more risky when targeted at-
tacks take place. Which is why our airports and the electricity grid are at
so much risk.

There are many interesting graphs, where the study of basic proper-
ties leads to many quick insights, as we will see in the rest of this chap-
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ter. Our of interest, if you are an academic, take a look at Microsoft’s aca-
demic research network. See http://academic.research.microsoft.com/

Using this I have plotted my own citation and co-author network in Fig-
ure 13.2.

13.4 Searching Graphs

There are two types of search algorithms that are run on graphs - depth-
first-search (DFS) and breadth-first search (BFS). Why do we care about
this? As we will see, DFS is useful in finding communities in social net-
works. And BFS is useful in finding the shortest connections in net-
works. Ask yourself, what use is that? It should not be hard to come
up with many answers.

13.4.1 Depth First Search

DFS begins by taking a vertex and creating a tree of connected vertices
from the source vertex, recursing downwards until it is no longer possi-
ble to do so. See Figure 13.3 for an example of a DFS.

The algorithm for DFS is as follows:

function DFS( u ) :
for a l l v in SUCC( u ) :

i f n o t v i s i t e d ( v ) :
DFS( v )

MARK( u )

This recursive algorithm results in two subtrees, which are:

↗ f

a→ b→ c→ g

↘ d

e→ h→ i

The numbers on the nodes show the sequence in which the nodes
are accessed by the program. The typical output of a DFS algorithm is
usually slightly less detailed, and gives a simple sequence in which the
nodes are first visited. An example is provided in the graph package:

> l i b r a r y ( graph )
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Figure 13.2: Microsoft
academic search tool for
co-authorship networks. See:
http://academic.research.microsoft.com/.
The top chart shows co-authors,
the middle one shows citations,
and the last one shows my Erdos
number, i.e., the number of hops
needed to be connected to Paul
Erdos via my co-authors. My Erdos
number is 3. Interestingly, I am a
Finance academic, but my shortest
path to Erdos is through Computer
Science co-authors, another field in
which I dabble.
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Figure 13.3: Depth-first-search.

> RNGkind( " Mersenne−Twister " )
> s e t . seed ( 1 2 3 )
> g1 <− randomGraph ( l e t t e r s [ 1 : 1 0 ] , 1 : 4 , p = . 3 )
> g1

A graphNEL graph with undirected edges
Number of Nodes = 10

Number of Edges = 21

> edgeNames ( g1 )
[ 1 ] " a~g " " a~ i " " a~b " " a~d" " a~e " " a~ f " " a~h" " b~ f " " b~ j "

[ 1 0 ] " b~d" " b~e " " b~h" " c~h" "d~e " "d~ f " "d~h" " e~ f " " e~h"
[ 1 9 ] " f ~ j " " f ~h" " g~ i "
> RNGkind ( )
[ 1 ] " Mersenne−Twister " " Invers ion "
> DFS( g1 , " a " )
a b c d e f g h i j
0 1 6 2 3 4 8 5 9 7

Note that the result of a DFS on a graph is a set of trees. A tree is a
special kind of graph, and is inherently acyclic if the graph is acyclic. A
cyclic graph will have a DFS tree with back edges.

We can think of this as partitioning the vertices into subsets of con-
nected groups. The obvious business application comes from first under-
standing why they are different, and secondly from being able to target
these groups separately by tailoring business responses to their charac-
teristics, or deciding to stop focusing on one of them.
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Firms that maintain data about these networks use algorithms like
this to find out “communities”. Within a community, the nearness of
connections is then determined using breadth-first-search.

A DFS also tells you something about the connectedness of the nodes.
It shows that every entity in the network is not that far from the others,
and the analysis often suggests the “small-world’s” phenomenon, or
what is colloquially called “six degrees of separation.” Social networks
are extremely rich in short paths.

Now we examine how DFS is implemented in the package igraph,
which we will use throughout the rest of this chapter. Here is the sam-
ple code, which also shows how a graph may be created from a paired-
vertex list.

#CREATE A SIMPLE GRAPH
df = matrix ( c ( " a " , " b " , " b " , " c " , " c " , " g " ,

" f " , " b " , " g " , "d" , " g " , " f " ,
" f " , " e " , " e " , "h" , "h" , " i " ) , ncol =2 ,byrow=TRUE)

g = graph . data . frame ( df , d i r e c t e d =FALSE)
plot ( g )

#DO DEPTH−FIRST SEARCH
dfs ( g , " a " )

$ root
[ 1 ] 0

$neimode
[ 1 ] " out "

$ order
+ 9 / 9 v e r t i c e s , named :
[ 1 ] a b c g f e h i d

$ order . out
NULL

$ f a t h e r
NULL
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$ d i s t
NULL

We also plot the graph to see what it appears like and to verify the
results. See Figure 13.4.

Figure 13.4: Depth-first search on
a simple graph generated from a
paired node list.

13.4.2 Breadth-first-search

BFS explores the edges of E to discover (from a source vertex s) all reach-
able vertices on the graph. It does this in a manner that proceeds to find
a frontier of vertices k distant from s. Only when it has located all such
vertices will the search then move on to locating vertices k + 1 away from
the source. This is what distinguishes it from DFS which goes all the
way down, without covering all vertices at a given level first.

BFS is implemented by just labeling each node with its distance from
the source. For an example, see Figure 13.5. It is easy to see that this
helps in determining nearest neighbors. When you have a positive re-
sponse from someone in the population it helps to be able to target the
nearest neighbors first in a cost-effective manner. The art lies in defining
the edges (connections). For example, a company like Schwab might be
able to establish a network of investors where the connections are based
on some threshold level of portfolio similarity. Then, if a certain account
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displays enhanced investment, and we know the cause (e.g. falling in-
terest rates) then it may be useful to market funds aggressively to all
connected portfolios with a BFS range.

1 0 1

1 2

3

sa b c

d e

Figure 13.5: Breadth-first-search.

The algorithm for BFS is as follows:

function BFS ( s )
MARK( s )
Q = { s }
T = { s }
While Q ne { } :

Choose u in Q
V i s i t u
for each v=SUCC( u ) :

MARK( v )
Q = Q + v
T = T + ( u , v )

BFS also results in a tree which in this case is as follows. The level of
each tree signifies the distance from the source vertex.

↗ b↘
s → d→ e→ c

↘ a

The code is as follows:

df = matrix ( c ( " s " , " a " , " s " , " b " , " s " , "d" , " b " , " e " , "d" , " e " , " e " , " c " ) ,
ncol =2 ,byrow=TRUE)

g = graph . data . frame ( df , d i r e c t e d =FALSE)
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bfs ( g , " a " )

$ root
[ 1 ] 1

$neimode
[ 1 ] " out "

$ order
+ 6 / 6 v e r t i c e s , named :
[ 1 ] s b d a e c

$rank
NULL

$ f a t h e r
NULL

$pred
NULL

$ succ
NULL

$ d i s t
NULL

There is a classic book on graph theory which is a must for anyone
interested in reading more about this: Tarjan (1983) – Its only a little over
100 pages and is a great example of a lot if material presented very well.

Another bible for reference is “Introduction to Algorithms” by Cor-
men, Liserson, and Rivest (2009). You might remember that Ron Rivest is
the “R” in the famous RSA algorithm used for encryption.

13.5 Strongly Connected Components

Directed graphs are wonderful places in which to cluster members of a
network. We do this by finding strongly connected components (SCCs)
on such a graph. A SCC is a subgroup of vertices U ⊂ V in a graph with
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a b c d

e f g

h i j

abe cd

fg

hi

Figure 13.6: Strongly connected
components. The upper graph
shows the original network and the
lower one shows the compressed
network comprising only the SCCs.
The algorithm to determine SCCs
relies on two DFSs. Can you see a
further SCC in the second graph?
There should not be one.

the property that for all pairs of its vertices (u, v) ∈ U, both vertices are
reachable from each other.

Figure 13.6 shows an example of a graph broken down into its strongly
connected components.

The SCCs are extremely useful in partitioning a graph into tight units.
It presents local feedback effects. What it means is that targeting any one
member of a SCC will effectively target the whole, as well as move the
stimulus across SCCs.

The most popular package for graph analysis has turned out to be
igraph. It has versions in R, C, and Python. You can generate and plot
random graphs in R using this package. Here is an example.

> l i b r a r y ( igraph )
> g <− erdos . renyi . game ( 2 0 , 1 / 20 )
> g
V e r t i c e s : 20

Edges : 8

Directed : FALSE
Edges :
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[ 0 ] 6 −− 7

[ 1 ] 0 −− 10

[ 2 ] 0 −− 11

[ 3 ] 10 −− 14

[ 4 ] 6 −− 16

[ 5 ] 11 −− 17

[ 6 ] 9 −− 18

[ 7 ] 16 −− 19

> c l u s t e r s ( g )
$membership

[ 1 ] 0 1 2 3 4 5 6 6 7 8 0 0 9 10 0 11 6 0 8

[ 2 0 ] 6

$ c s i z e
[ 1 ] 5 1 1 1 1 1 4 1 2 1 1 1

$no
[ 1 ] 12

> plot . igraph ( g )

It results in the plot in Figure 13.7.

13.6 Dijkstra’s Shortest Path Algorithm

This is one of the most well-known algorithms in theoretical computer
science. Given a source vertex on a weighted, directed graph, it finds
the shortest path to all other nodes from source s. The weight between
two vertices is denoted w(u, v) as before. Dijkstra’s algorithm works for
graphs where w(u, v) ≥ 0. For negative weights, there is the Bellman-
Ford algorithm. The algorithm is as follows.

function DIJKSTRA (G,w, s )
S = { }
%S = Set of v e r t i c e s whose s h o r t e s t paths from
%source s have been found
Q = V(G)
while Q notequal { } :

u = getMin (Q)
S = S + u
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Figure 13.7: Finding connected
components on a graph.

Q = Q − u
for each ver tex v in SUCC( u ) :

i f d [ v ] > d [ u]+w( u , v ) then :
d [ v ] = d [ u]+w( u , v )
PRED( v ) = u

An example of a graph on which Dijkstra’s algorithm has been ap-
plied is shown in Figure 13.8.

The usefulness of this has been long exploited in operations for air-
lines, designing transportation plans, optimal location of health-care
centers, and in the every day use of map-quest.

You can use igraph to determine shortest paths in a network. Here is
an example using the package. First we see how to enter a graph, then
process it for shortest paths.
> e l = matrix ( nc =3 , byrow=TRUE, c ( 0 , 1 , 8 , 0 , 3 , 4 , 1 , 3 , 3 , 3 , 1 , 1 , 1 , 2 , 1 ,

1 , 4 , 7 , 3 , 4 , 4 , 2 , 4 , 1 ) )
> e l

[ , 1 ] [ , 2 ] [ , 3 ]
[ 1 , ] 0 1 8

[ 2 , ] 0 3 4

[ 3 , ] 1 3 3

[ 4 , ] 3 1 1

[ 5 , ] 1 2 1

[ 6 , ] 1 4 7

[ 7 , ] 3 4 4
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Figure 13.8: Dijkstra’s algorithm.

[ 8 , ] 2 4 1

> g = add . edges ( graph . empty ( 5 ) , t ( e l [ , 1 : 2 ] ) , weight= e l [ , 3 ] )
> s h o r t e s t . paths ( g )

[ , 1 ] [ , 2 ] [ , 3 ] [ , 4 ] [ , 5 ]
[ 1 , ] 0 5 6 4 7

[ 2 , ] 5 0 1 1 2

[ 3 , ] 6 1 0 2 1

[ 4 , ] 4 1 2 0 3

[ 5 , ] 7 2 1 3 0

> get . s h o r t e s t . paths ( g , 0 )
[ [ 1 ] ]
[ 1 ] 0

[ [ 2 ] ]
[ 1 ] 0 3 1

[ [ 3 ] ]
[ 1 ] 0 3 1 2

[ [ 4 ] ]
[ 1 ] 0 3

[ [ 5 ] ]
[ 1 ] 0 3 1 2 4

Here is another example.

> e l <− matrix ( nc =3 , byrow=TRUE,
c ( 0 , 1 , 0 , 0 , 2 , 2 , 0 , 3 , 1 , 1 , 2 , 0 , 1 , 4 , 5 , 1 , 5 , 2 , 2 , 1 , 1 , 2 , 3 , 1 ,

2 , 6 , 1 , 3 , 2 , 0 , 3 , 6 , 2 , 4 , 5 , 2 , 4 , 7 , 8 , 5 , 2 , 2 , 5 , 6 , 1 , 5 , 8 , 1 ,
5 , 9 , 3 , 7 , 5 , 1 , 7 , 8 , 1 , 8 , 9 , 4 ) )

> e l
[ , 1 ] [ , 2 ] [ , 3 ]

[ 1 , ] 0 1 0

[ 2 , ] 0 2 2

[ 3 , ] 0 3 1

[ 4 , ] 1 2 0

[ 5 , ] 1 4 5

[ 6 , ] 1 5 2
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Figure 13.9: Network for computa-
tion of shortest path algorithm

[ 7 , ] 2 1 1

[ 8 , ] 2 3 1

[ 9 , ] 2 6 1

[ 1 0 , ] 3 2 0

[ 1 1 , ] 3 6 2

[ 1 2 , ] 4 5 2

[ 1 3 , ] 4 7 8

[ 1 4 , ] 5 2 2

[ 1 5 , ] 5 6 1

[ 1 6 , ] 5 8 1

[ 1 7 , ] 5 9 3

[ 1 8 , ] 7 5 1

[ 1 9 , ] 7 8 1

[ 2 0 , ] 8 9 4

> g = add . edges ( graph . empty ( 1 0 ) , t ( e l [ , 1 : 2 ] ) , weight= e l [ , 3 ] )
> plot . igraph ( g )
> s h o r t e s t . paths ( g )

[ , 1 ] [ , 2 ] [ , 3 ] [ , 4 ] [ , 5 ] [ , 6 ] [ , 7 ] [ , 8 ] [ , 9 ] [ , 1 0 ]
[ 1 , ] 0 0 0 0 4 2 1 3 3 5

[ 2 , ] 0 0 0 0 4 2 1 3 3 5

[ 3 , ] 0 0 0 0 4 2 1 3 3 5

[ 4 , ] 0 0 0 0 4 2 1 3 3 5

[ 5 , ] 4 4 4 4 0 2 3 3 3 5

[ 6 , ] 2 2 2 2 2 0 1 1 1 3

[ 7 , ] 1 1 1 1 3 1 0 2 2 4

[ 8 , ] 3 3 3 3 3 1 2 0 1 4

[ 9 , ] 3 3 3 3 3 1 2 1 0 4

[ 1 0 , ] 5 5 5 5 5 3 4 4 4 0

> get . s h o r t e s t . paths ( g , 4 )
[ [ 1 ] ]
[ 1 ] 4 5 1 0



making connections: network theory 337

[ [ 2 ] ]
[ 1 ] 4 5 1

[ [ 3 ] ]
[ 1 ] 4 5 2

[ [ 4 ] ]
[ 1 ] 4 5 2 3

[ [ 5 ] ]
[ 1 ] 4

[ [ 6 ] ]
[ 1 ] 4 5

[ [ 7 ] ]
[ 1 ] 4 5 6

[ [ 8 ] ]
[ 1 ] 4 5 7

[ [ 9 ] ]
[ 1 ] 4 5 8

[ [ 1 0 ] ]
[ 1 ] 4 5 9

> average . path . length ( g )
[ 1 ] 2 .051724

13.6.1 Plotting the network

One can also use different layout standards as follows: Here is the exam-
ple:

> l i b r a r y ( igraph )
> e l <− matrix ( nc =3 , byrow=TRUE,
+ c ( 0 , 1 , 0 , 0 , 2 , 2 , 0 , 3 , 1 , 1 , 2 , 0 , 1 , 4 , 5 , 1 , 5 , 2 , 2 , 1 , 1 , 2 , 3 , 1 ,
+ 2 , 6 , 1 , 3 , 2 , 0 , 3 , 6 , 2 , 4 , 5 , 2 , 4 , 7 , 8 , 5 , 2 , 2 , 5 , 6 , 1 , 5 , 8 , 1 ,
+ 5 , 9 , 3 , 7 , 5 , 1 , 7 , 8 , 1 , 8 , 9 , 4 ) )
> g = add . edges ( graph . empty ( 1 0 ) , t ( e l [ , 1 : 2 ] ) , weight= e l [ , 3 ] )

#GRAPHING MAIN NETWORK
g = s i mp l i f y ( g )
V( g ) $name = seq ( vcount ( g ) )
l = layout . fruchterman . re ingold ( g )
# l = l a y o u t . kamada . kawai ( g )
# = l a y o u t . c i r c l e ( g )
l = layout . norm ( l , −1 ,1 ,−1 ,1)
# p d f ( f i l e =" network _ p l o t . p d f " )
plot ( g , layout=l , ver tex . s i z e =2 , ver tex . l a b e l =NA, ver tex . c o l o r =" # f f 0 0 0 0 3 3 " ,

edge . c o l o r =" grey " , edge . arrow . s i z e = 0 . 3 , r e s c a l e =FALSE ,
xlim=range ( l [ , 1 ] ) , ylim=range ( l [ , 2 ] ) )

The plots are shown in Figures 13.10.
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Figure 13.10: Plot using the
Fruchterman-Rheingold and Circle
layouts

13.7 Degree Distribution

The degree of a node in the network is the number of links it has to
other nodes. The probability distribution of the nodes is known as the
degree distribution. In an undirected network, this is based on the num-
ber of edges a node has, but in a directed network, we have a distribu-
tion for in-degree and another for out-degree. Note that the weights on
the edges are not relevant for computing the degree distribution, though
there may be situations in which one might choose to avail of that infor-
mation as well.

#GENERATE RANDOM GRAPH
g = erdos . renyi . game ( 3 0 , 0 . 1 )
plot . igraph ( g )
print ( g )

IGRAPH U−−− 30 41 −− Erdos renyi ( gnp ) graph
+ a t t r : name ( g / c ) , type ( g / c ) , loops ( g / l ) , p ( g / n )
+ edges :

[ 1 ] 1−− 9 2−− 9 7−−10 7−−12 8−−12 5−−13 6−−14 11−−14

[ 9 ] 5−−15 12−−15 13−−16 15−−16 1−−17 18−−19 18−−20 2−−21

[ 1 7 ] 10−−21 18−−21 14−−22 4−−23 6−−23 9−−23 11−−23 9−−24

[ 2 5 ] 20−−24 17−−25 13−−26 15−−26 3−−27 5−−27 6−−27 16−−27

[ 3 3 ] 18−−27 19−−27 25−−27 11−−28 13−−28 22−−28 24−−28 5−−29

[ 4 1 ] 7−−29
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> c l u s t e r s ( g )

$membership
[ 1 ] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2

$ c s i z e
[ 1 ] 29 1

$no
[ 1 ] 2

The plot is shown in Figure 13.11.

Figure 13.11: Plot of the Erdos-
Renyi random graph

We may compute the degree distribution with some minimal code.

#COMPUTE DEGREE DISTRIBUTION
dd = degree . d i s t r i b u t i o n ( g )
dd = as . matrix ( dd )
d = as . matrix ( seq ( 0 ,max ( degree ( g ) ) ) )
plot ( d , dd , type=" l " , lwd=3 , col=" blue " , ylab=" P r o b a b i l i t y " , x lab=" Degree " )

> sum( dd )
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[ 1 ] 1

The resulting plot of the probability distribution is shown in Figure
13.12.

Figure 13.12: Plot of the degree
distribution of the Erdos-Renyi
random graph

13.8 Diameter

The diameter of a graph is the longest shortest distance between any two
nodes, across all nodes. This is easily computed as follows for the graph
we examined in the previous section.

> print ( diameter ( g ) )
[ 1 ] 7

We may cross-check this as follows:

> re s = s h o r t e s t . paths ( g )
> re s [ which ( re s== I n f )]=−99

> max ( r es )
[ 1 ] 7

> length ( which ( re s ==7 ) )
[ 1 ] 18

We see that the number of paths that are of length 7 are a total of 18,
but of course, this is duplicated as we run these paths in both directions.
Hence, there are 9 pairs of nodes that have longest shortest paths be-
tween them. You may try to locate these on Figure 13.11.
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13.9 Fragility

Fragility is an attribute of a network that is based on its degree distri-
bution. In comparing two networks of the same average degree, how do
assess on which network contagion is more likely? Intuitively, a scale-
free network is more likely to facilitate the spread of the variable of in-
terest, be it flu, financial malaise, or information. In scale-free networks
the greater preponderance of central hubs results in a greater probability
of contagion. This is because there is a concentration of degree in a few
nodes. The greater the concentration, the more scale-free the graph, and
the higher the fragility.

We need a measure of concentration, and economists have used the
Herfindahl-Hirschman index for many years.

(See https://en.wikipedia.org/wiki/Herfindahl_index.)
The index is trivial to compute, as it is the average degree squared for

n nodes, i.e.,

H = E(d2) =
1
n

n

∑
j=1

d2
j (13.1)

This metric H increases as degree gets concentrated in a few nodes,
keeping the total degree of the network constant. For example, if there
is a graph of three nodes with degrees {1, 1, 4} versus another graph
of three nodes with degrees {2, 2, 2}, the former will result in a higher
value of H = 18 than the latter with H = 12. If we normalize H by the
average degree, then we have a definition for fragility, i.e.,

Fragility =
E(d2)

E(d)
(13.2)

In the three node graphs example, fragility is 3 and 2, respectively. We
may also choose other normalization factors, for example, E(d)2 in the
denominator. Computing this is trivial and requires a single line of code,
given a vector of node degrees (d), accompanied by the degree distribu-
tion (dd), computed earlier in Section 13.7.

#FRAGILITY
print ( ( t ( d^2) %*% dd ) / ( t ( d ) %*% dd ) )

13.10 Centrality

Centrality is a property of vertices in the network. Given the adjacency
matrix A = {w(u, v)}, we can obtain a measure of the “influence” of
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all vertices in the network. Let xi be the influence of vertex i. Then the
column vector x contains the influence of each vertex. What is influence?
Think of a web page. It has more influence the more links it has both,
to the page, and from the page to other pages. Or think of a alumni
network. People with more connections have more influence, they are
more “central”.

It is possible that you might have no connections yourself, but are
connected to people with great connections. In this case, you do have in-
fluence. Hence, your influence depends on your own influence and that
which you derive through others. Hence, the entire system of influence
is interdependent, and can be written as the following matrix equation

x = A x

Now, we can just add a scalar here to this to get

ξ x = Ax

an eigensystem. Decompose this to get the principle eigenvector, and
its values give you the influence of each member. In this way you can
find the most influential people in any network. There are several appli-
cations of this idea to real data. This is eigenvector centrality is exactly
what Google trademarked as PageRank, even though they did not invent
eigenvector centrality.

Network methods have also been exploited in understanding Ven-
ture Capitalist networks, and have been shown to be key in the success
of VCs and companies. See the recent paper titled “Whom You Know
Matters: Venture Capital Networks and Investment Performance” by
Hochberg, Ljungqvist and Lu (2007).

Networks are also key in the Federal Funds Market. See the paper
by Adam Ashcraft and Darrell Duffie, titled “Systemic Illiquidity in the
Federal Funds Market,” in the American Economic Review, Papers and
Proceedings. See Ashcraft and Duffie (2007).

See the paper titled “Financial Communities” (Das and Sisk (2005))
which also exploits eigenvector methods to uncover properties of graphs.
The key concept here is that of eigenvector centrality.

Let’s do some examples to get a better idea. We will create some small
networks and examine the centrality scores.

> A = matrix ( nc =3 , byrow=TRUE, c ( 0 , 1 , 1 , 1 , 0 , 1 , 1 , 1 , 0 ) )
> A
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[ , 1 ] [ , 2 ] [ , 3 ]
[ 1 , ] 0 1 1

[ 2 , ] 1 0 1

[ 3 , ] 1 1 0

> g = graph . adjacency (A, mode=" undirected " , weighted=TRUE, diag=FALSE)
> re s = evcent ( g )
> re s $ vector
[ 1 ] 1 1 1

> re s = evcent ( g , s c a l e =FALSE)
> re s $ vector
[ 1 ] 0 .5773503 0 .5773503 0 .5773503

Here is another example:

> A = matrix ( nc =3 , byrow=TRUE, c ( 0 , 1 , 1 , 1 , 0 , 0 , 1 , 0 , 0 ) )
> A

[ , 1 ] [ , 2 ] [ , 3 ]
[ 1 , ] 0 1 1

[ 2 , ] 1 0 0

[ 3 , ] 1 0 0

> g = graph . adjacency (A, mode=" undirected " , weighted=TRUE, diag=FALSE)
> re s = evcent ( g )
> re s $ vector
[ 1 ] 1 .0000000 0 .7071068 0 .7071068

And another...

> A = matrix ( nc =3 , byrow=TRUE, c ( 0 , 2 , 1 , 2 , 0 , 0 , 1 , 0 , 0 ) )
> A

[ , 1 ] [ , 2 ] [ , 3 ]
[ 1 , ] 0 2 1

[ 2 , ] 2 0 0

[ 3 , ] 1 0 0

> g = graph . adjacency (A, mode=" undirected " , weighted=TRUE, diag=FALSE)
> re s = evcent ( g )
> re s $ vector
[ 1 ] 1 .0000000 0 .8944272 0 .4472136
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Year #Colending #Coloans Colending R = E(d2)/E(d) Diam.
banks pairs

2005 241 75 10997 137.91 5

2006 171 95 4420 172.45 5

2007 85 49 1793 73.62 4

2008 69 84 681 68.14 4

2009 69 42 598 35.35 4

(Year = 2005)
Node # Financial Institution Normalized

Centrality
143 J P Morgan Chase & Co. 1.000

29 Bank of America Corp. 0.926

47 Citigroup Inc. 0.639

85 Deutsche Bank Ag New York Branch 0.636

225 Wachovia Bank NA 0.617

235 The Bank of New York 0.573

134 Hsbc Bank USA 0.530

39 Barclays Bank Plc 0.530

152 Keycorp 0.524

241 The Royal Bank of Scotland Plc 0.523

6 Abn Amro Bank N.V. 0.448

173 Merrill Lynch Bank USA 0.374

198 PNC Financial Services Group Inc 0.372

180 Morgan Stanley 0.362

42 Bnp Paribas 0.337

205 Royal Bank of Canada 0.289

236 The Bank of Nova Scotia 0.289

218 U.S. Bank NA 0.284

50 Calyon New York Branch 0.273

158 Lehman Brothers Bank Fsb 0.270

213 Sumitomo Mitsui Banking 0.236

214 Suntrust Banks Inc 0.232

221 UBS Loan Finance Llc 0.221

211 State Street Corp 0.210

228 Wells Fargo Bank NA 0.198

Table 13.1: Summary statistics
and the top 25 banks ordered on
eigenvalue centrality for 2005. The
R-metric is a measure of whether
failure can spread quickly, and this
is so when R ≥ 2. The diameter
of the network is the length of the
longest geodesic. Also presented
in the second panel of the table
are the centrality scores for 2005

corresponding to Figure 13.13.

In a recent paper I constructed the network graph of interbank lending,
and this allows detection of the banks that have high centrality, and are
more systemically risky. The plots of the banking network are shown in
Figure 13.13. See the paper titled “Extracting, Linking and Integrating
Data from Public Sources: A Financial Case Study,” by Burdick et al
(2011). In this paper the centrality scores for the banks are given in Table
13.1.

Another concept of centrality is known as “betweenness”. This is the
proportion of shortest paths that go through a node relative to all paths
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2005 

Citigroup Inc. 

J.P. Morgan Chase 

Bank of America Corp. 

2006 2007 

2008 2009 

Figure 13.13: Interbank lending
networks by year. The top panel
shows 2005, and the bottom panel
is for the years 2006-2009.
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that go through the same node. This may be expressed as

B(v) = ∑
a 6=v 6=b

na,b(v)
na,b

where na,b is the number of shortest paths from node a to node b, and
na,b(v) are the number of those paths that traverse through vertex v.
Here is an example from an earlier directed graph.

> e l <− matrix ( nc =3 , byrow=TRUE,
+ c ( 0 , 1 , 0 , 0 , 2 , 2 , 0 , 3 , 1 , 1 , 2 , 0 , 1 , 4 , 5 , 1 , 5 , 2 , 2 , 1 , 1 , 2 , 3 , 1 ,
+ 2 , 6 , 1 , 3 , 2 , 0 , 3 , 6 , 2 , 4 , 5 , 2 , 4 , 7 , 8 , 5 , 2 , 2 , 5 , 6 , 1 , 5 , 8 , 1 ,
+ 5 , 9 , 3 , 7 , 5 , 1 , 7 , 8 , 1 , 8 , 9 , 4 ) )
> g = add . edges ( graph . empty ( 1 0 ) , t ( e l [ , 1 : 2 ] ) , weight= e l [ , 3 ] )
> re s = betweenness ( g )
> re s

[ 1 ] 0 . 0 1 8 . 0 1 7 . 0 0 . 5 5 . 0 1 9 . 5 0 . 0 0 . 5 0 . 5 0 . 0

13.11 Communities

Communities are spatial agglomerates of vertexes who are more likely to
connect with each other than with others. Identifying these agglomerates
is a cluster detection problem, a computationally difficult (NP-hard) one.
The computational complexity arises because we do not fix the num-
ber of clusters, allow each cluster to have a different size, and permit
porous boundaries so members can communicate both within and out-
side their preferred clusters. Several partitions satisfy such a flexible def-
inition. Communities are constructed by optimizing modularity, which
is a metric of the difference between the number of within-community
connections and the expected number of connections, given the total
connectivity on the graph. Identifying communities is difficult because
of the enormous computational complexity involved in sifting through
all possible partitions. One fast way is to exploit the walk trap approach
recently developed in the physical sciences (Pons and Latapy (2006), see
Fortunato (2010) for a review) to identify communities.

The essential idea underlying community formation dates back at
least to Simon (1962). In his view, complex systems comprising several
entities often have coherent subsystems, or communities, that serve spe-
cific functional purposes. Identifying communities embedded in larger
entities can help understand the functional forces underlying larger en-
tities. To make these ideas more concrete, we discuss applications from
the physical and social sciences before providing more formal defini-
tions.
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In the life sciences, community structures help understand pathways
in the metabolic networks of cellular organisms (Ravasz et al. (2002);
Guimera et al. (2005)). Community structures also help understand the
functioning of the human brain. For instance, Wu, Taki, and Sato (2011)
find that there are community structures in the human brain with pre-
dictable changes in their interlinkages related to aging. Community
structures are used to understand how food chains are compartmental-
ized, which can predict the robustness of ecosystems to shocks that en-
danger particular species, Girvan and Newman (2002). Lusseau (2003)
finds that communities are evolutionary hedges that avoid isolation
when a member is attacked by predators. In political science, commu-
nity structures discerned from voting patterns can detect political pref-
erences that transcend traditional party lines, Porter, Mucha, Newman,
and Friend (2007).1 1 Other topics studied include social

interactions and community formation
(Zachary (1977)); word adjacency in
linguistics and cognitive sciences, New-
man (2006); collaborations between sci-
entists (Newman (2001)); and industry
structures from product descriptions,
Hoberg and Phillips (2010). For some
community detection datasets, see
Mark Newman’s website http://www-
personal.umich.edu/ mejn/netdata/.

Fortunato (2010) presents a relatively recent and thorough survey of
the research in community detection. Fortunato points out that while
the computational issues are challenging, there is sufficient progress to
the point where many methods yield similar results in practice. How-
ever, there are fewer insights on the functional roles of communities or
their quantitative effect on outcomes of interest. Fortunato suggests that
this is a key challenge in the literature. As he concludes “... What shall
we do with communities? What can they tell us about a system? This
is the main question beneath the whole endeavor.” Community detec-
tion methods provide useful insights into the economics of networks.
See this great video on a talk by Mark Newman, who is just an excel-
lent speaker and huge contributor to the science of network analysis:
http://www.youtube.com/watch?v=lETt7IcDWLI, the talk is titled “What
Networks Can Tell us About the World”.

We represent the network as the square adjacency matrix A. The rows
and columns represent entities. Element A(i, j) equals the number of
times node i and j are partners, so more frequent partnerships lead to
greater weights. The diagonal element A(i, i) is zero. While this repre-
sentation is standard in the networks literature, it has economic content.
The matrix is undirected and symmetric, effectively assuming that the
benefits of interactions flow to all members in a symmetric way.

Community detection methods partition nodes into clusters that tend
to interact together. It is useful to point out the considerable flexibil-
ity and realism built into the definition of our community clusters. We
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do not require all nodes to belong to communities. Nor do we fix the
number of communities that may exist at a time, and we also allow each
community to have different size. With this flexibility, the key compu-
tational challenge is to find the “best” partition because the number of
possible partitions of the nodes is extremely large. Community detection
methods attempt to determine a set of clusters that are internally tight-
knit. Mathematically, this is equivalent to finding a partition of clusters
to maximize the observed number of connections between cluster mem-
bers minus what is expected conditional on the connections within the
cluster, aggregated across all clusters. More formally (see, e.g., Newman
(2006)), we choose partitions with high modularity Q, where

Q =
1

2m ∑
i,j

[
Aij −

di × dj

2m

]
· δ(i, j) (13.3)

In equation (13.3), Aij is the (i, j)-th entry in the adjacency matrix,
i.e., the number of connections in which i and j jointly participated,
di = ∑j Aij is the total number of transactions that node i participated
in (or, the degree of i) and m = 1

2 ∑ij Aij is the sum of all edge weights in
matrix A. The function δ(i, j) is an indicator equal to 1.0 if nodes i and j
are from the same community, and zero otherwise. Q is bounded in [-1,
+1]. If Q > 0, intra-community connections exceed the expected number
given deal flow.

13.11.1 Modularity

In order to offer the reader a better sense of how modularity is com-
puted in different settings, we provide a simple example here, and dis-
cuss the different interpretations of modularity that are possible. The cal-
culations here are based on the measure developed in Newman (2006).
Since we used the igraph package in R, we will present the code that
may be used with the package to compute modularity.

Consider a network of five nodes {A, B, C, D, E}, where the edge
weights are as follows: A : B = 6, A : C = 5, B : C = 2, C : D = 2,
and D : E = 10. Assume that a community detection algorithm as-
signs {A, B, C} to one community and {D, E} to another, i.e., only two
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communities. The adjacency matrix for this graph is

{Aij} =


0 6 5 0 0
6 0 2 0 0
5 2 0 2 0
0 0 2 0 10
0 0 0 10 0


Let’s first detect the communities.

> l i b r a r y ( igraph )
> A = matrix ( c ( 0 , 6 , 5 , 0 , 0 , 6 , 0 , 2 , 0 , 0 , 5 , 2 , 0 , 2 , 0 , 0 , 0 , 2 , 0 , 1 0 , 0 , 0 , 0 , 1 0 , 0 ) , 5 , 5 )
> g = graph . adjacency (A, mode=" undirected " , diag=FALSE)
> wtc = walktrap . community ( g )
> re s=community . to . membership ( g , wtc$merges , s teps =3)
> print ( r es )
$membership
[ 1 ] 1 1 1 0 0

$ c s i z e
[ 1 ] 2 3

We can do the same thing with a different algorithm called the “fast-
greedy” approach.

> g = graph . adjacency (A, mode=" undirected " , weighted=TRUE, diag=FALSE)
> fgc = fas tgreedy . community ( g , merges=TRUE, modularity=TRUE,

weights=E ( g ) $ weight )
> re s = community . to . membership ( g , fgc $merges , s teps =3)
> re s
$membership
[ 1 ] 0 0 0 1 1

$ c s i z e
[ 1 ] 3 2

The Kronecker delta matrix that delineates the communities will be

{δij} =


1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
0 0 0 1 1
0 0 0 1 1
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The modularity score is

Q =
1

2m ∑
i,j

[
Aij −

di × dj

2m

]
· δij (13.4)

where m = 1
2 ∑ij Aij =

1
2 ∑i di is the sum of edge weights in the graph,

Aij is the (i, j)-th entry in the adjacency matrix, i.e., the weight of the
edge between nodes i and j, and di = ∑j Aij is the degree of node i.
The function δij is Kronecker’s delta and takes value 1 when the nodes
i and j are from the same community, else takes value zero. The core

of the formula comprises the modularity matrix
[

Aij −
di×dj

2m

]
which

gives a score that increases when the number of connections within a
community exceeds the expected proportion of connections if they are
assigned at random depending on the degree of each node. The score
takes a value ranging from −1 to +1 as it is normalized by dividing
by 2m. When Q > 0 it means that the number of connections within
communities exceeds that between communities. The program code that
takes in the adjacency matrix and delta matrix is as follows:

#MODULARITY
Amodularity = function (A, d e l t a ) {

n = length (A[ 1 , ] )
d = matrix ( 0 , n , 1 )
for ( j in 1 : n ) { d [ j ] = sum(A[ j , ] ) }

m = 0 . 5 *sum( d )
Q = 0

for ( i in 1 : n ) {
for ( j in 1 : n ) {

Q = Q + (A[ i , j ] − d [ i ] *d [ j ] / (2 *m) ) * d e l t a [ i , j ]
}

}
Q = Q/ (2 *m)

}

We use the R programming language to compute modularity using
a canned function, and we will show that we get the same result as the
formula provided in the function above. First, we enter the two matrices
and then call the function shown above:

> A = matrix ( c ( 0 , 6 , 5 , 0 , 0 , 6 , 0 , 2 , 0 , 0 , 5 , 2 , 0 , 2 , 0 , 0 , 0 , 2 , 0 , 1 0 , 0 , 0 , 0 , 1 0 , 0 ) , 5 , 5 )
> d e l t a = matrix ( c ( 1 , 1 , 1 , 0 , 0 , 1 , 1 , 1 , 0 , 0 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 1 , 1 , 0 , 0 , 0 , 1 , 1 ) , 5 , 5 )
> print ( Amodularity (A, d e l t a ) )
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[ 1 ] 0 .4128

We now repeat the same analysis using the R package. Our exposi-
tion here will also show how the walktrap algorithm is used to detect
communities, and then using these communities, how modularity is
computed. Our first step is to convert the adjacency matrix into a graph
for use by the community detection algorithm.

> g = graph . adjacency (A, mode=" undirected " , weighted=TRUE, diag=FALSE)

We then pass this graph to the walktrap algorithm:

> wtc=walktrap . community ( g , modularity=TRUE, weights=E ( g ) $ weight )
> re s=community . to . membership ( g , wtc$merges , s teps =3)
> print ( r es )
$membership
[ 1 ] 0 0 0 1 1

$ c s i z e
[ 1 ] 3 2

We see that the algorithm has assigned the first three nodes to one
community and the next two to another (look at the membership vari-
able above). The sizes of the communities are shown in the size variable
above. We now proceed to compute the modularity

> print ( modularity ( g , r es $membership , weights=E ( g ) $ weight ) )
[ 1 ] 0 .4128

This confirms the value we obtained from the calculation using our
implementation of the formula.

Modularity can also be computed using a graph where edge weights
are unweighted. In this case, we have the following adjacency matrix

> A
[ , 1 ] [ , 2 ] [ , 3 ] [ , 4 ] [ , 5 ]

[ 1 , ] 0 1 1 0 0

[ 2 , ] 1 0 1 0 0

[ 3 , ] 1 1 0 1 0

[ 4 , ] 0 0 1 0 1

[ 5 , ] 0 0 0 1 0

Using our function, we get

> print ( Amodularity (A, d e l t a ) )
[ 1 ] 0 . 2 2
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We can generate the same result using R:

> g = graph . adjacency (A, mode=" undirected " , diag=FALSE)
> wtc = walktrap . community ( g )
> re s=community . to . membership ( g , wtc$merges , s teps =3)
> print ( r es )
$membership
[ 1 ] 1 1 1 0 0

$ c s i z e
[ 1 ] 2 3

> print ( modularity ( g , r es $membership ) )
[ 1 ] 0 . 2 2

Community detection is an NP-hard problem for which there are no
known exact solutions beyond tiny systems (Fortunato, 2009). For larger
datasets, one approach is to impose numerical constraints. For example,
graph partitioning imposes a uniform community size, while partitional
clustering presets the number of communities. This is too restrictive.

The less restrictive methods for community detection are called hier-
archical partitioning methods, which are “divisive,” or “agglomerative.”
The former is a top-down approach that assumes that the entire graph is
one community and breaks it down into smaller units. It often produces
communities that are too large especially when there is not an extremely
strong community structure. Agglomerative algorithms, like the “walk-
trap” technique we use, begin by assuming all nodes are separate com-
munities and collect nodes into communities. The fast techniques are
dynamic methods based on random walks, whose intuition is that if a
random walk enters a strong community, it is likely to spend a long time
inside before finding a way out (Pons and Latapy (2006)).2 2 See Girvan and Newman (2002),

Leskovec, Kang and Mahoney (2010),
or Fortunato (2010) and the references
therein for a discussion.

Community detection forms part of the literature on social network
analysis. The starting point for this work is a set of pairwise connections
between individuals or firms, which has received much attention in the
recent finance literature. Cohen, Frazzini and Malloy (2008a); Cohen,
Frazzini and Malloy (2008b) analyze educational connections between
sell-side analysts and managers. Hwang and Kim (2009) and ChidKed-
Prabh (2010) analyze educational, employment, and other links between
CEOs and directors. Pairwise inter-firm relations are analyzed by Ishii
and Xuan (2009) and Cai and Sevilir (2012), while VC firm connections
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with founders and top executives are studied by Bengtsson and Hsu
(2010) and Hegde and Tumlinson (2011).

There is more finance work on the aggregate connectedness derived
from pairwise connections. These metrics are introduced to the finance
literature by Hochberg, Ljungqvist and Lu (2007), who study the aggre-
gate connections of venture capitalists derived through syndications.
They show that firms financed by well-connected VCs are more likely to
exit successfully. Engelberg, Gao and Parsons (2000) show that highly
connected CEOs are more highly compensated.

The simplest measure of aggregate connectedness, degree central-
ity, simply aggregates the number of partners that a person or node
has worked with. A more subtle measure, eigenvector centrality, aggre-
gates connections but puts more weight on the connections of nodes to
more connected nodes. Other related constructs are betweenness, which
reflects how many times a node is on the shortest path between two
other nodes, and closeness, which measures a nodes distance to all other
nodes. The important point is that each of these measures represents an
attempt to capture a node’s stature or influence as reflected in the num-
ber of its own connections or from being connected to well-connected
nodes.

Community membership, on the other hand, is a group attribute that
reflects whether a node belongs to a spatial cluster of nodes that tend to
communicate a lot together. Community membership is a variable in-
herited by all members of a spatial agglomerate. However, centrality is
an individual-centered variable that captures a node’s influence. Com-
munity membership does not measure the reach or influence of a node.
Rather, it is a measure focused on interactions between nodes, reflect-
ing whether a node deals with familiar partners. Neither community
membership nor centrality is a proper subset of the other.

The differences between community and centrality are visually de-
picted in Figure 13.13, which is reproduced from Burdick et al (2011).
The figure shows the high centrality of Citigroup, J. P. Morgan, and Bank
of America, well connected banks in co-lending networks. However,
none of these banks belong to communities, which are represented by
banks in the left and right nodes of the figure. In sum, community is
a group attribute that measures whether a node belongs to a tight knit
group. Centrality reflects the size and heft of a node’s connections.3 For 3 Newman (2010) brings out the distinc-

tions further. See his Sections 7.1/7.2 on
centrality and Section 11.6 on commu-
nity detection.

another schematic that shows the same idea, i.e., the difference between
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centrality and communities is in Figure 13.14.

Communities 
•  Group-focused concept 
•  Members learn-by-doing 

through social interactions.  

Centrality 
•  Hub focused concept 
•  Resources and skill of 

central players.  

Community v. Centrality 

41 

Figure 13.14: Community versus
centrality

See my paper titled “Venture Capital Communities” where I examine
how VCs form communities, and whether community-funded startups
do better than the others (we do find so). We also find evidence of some
aspects of homophily within VC communities, though there are also
aspects of heterogeneity in characteristics.

13.12 Word of Mouth

WOM has become an increasingly important avenue for viral marketing.
Here is a article on the growth of this medium. See ?. See also the really
interesting paper by Godes and Mayzlin (2009) titled “Firm-Created
Word-of-Mouth Communication: Evidence from a Field Test”. This is an
excellent example of how firms should go about creating buzz. See also
Godes and Mayzlin (2004): “Using Online Conversations to Study Word
of Mouth Communication” which looks at TV ratings and WOM.
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13.13 Network Models of Systemic Risk

In an earlier section, we saw pictures of banking networks (see Figure
13.13), i.e., the interbank loan network. In these graphs, the linkages be-
tween banks were considered, but two things were missing. First, we
assumed that all banks were similar in quality or financial health, and
nodes were therefore identical. Second, we did not develop a network
measure of overall system risk, though we did compute fragility and
diameter for the banking network. What we also computed was the rela-
tive position of each bank in the network, i.e., it’s eigenvalue centrality.

In the section, we augment network information of the graph with
additional information on the credit quality of each node in the network.
We then use this to compute a system-wide score of the overall risk of
the system, denoting this as systemic risk. This section is based on 4. 4

We make the following assumptions and define notation:

• Assume n nodes, i.e., firms, or “assets.”

• Let E ∈ Rn×n be a well-defined adjacency matrix. This quantifies the
influence of each node on another.

• E may be portrayed as a directed graph, i.e., Eij 6= Eji.
Ejj = 1; Eij ∈ {0, 1}.

• C is a (n× 1) risk vector that defines the risk score for each asset.

• We define the “systemic risk score” as

S =
√

C> E C

• S(C, E) is linear homogenous in C.

We note that this score captures two important features of systemic risk:
(a) The interconnectedness of the banks in the system, through adjacency
(or edge) matrix E, and (b) the financial quality of each bank in the sys-
tem, denoted by the vector C, a proxy for credit score, i.e., credit rating,
z-score, probability of default, etc.

13.13.1 Systemic Score, Fragility, Centrality, Diameter

We code up the systemic risk function as follows.

l i b r a r y ( igraph )
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#FUNCTION FOR RISK INCREMENT AND DECOMP
NetRisk = function ( Ri , X) {

S = sqr t ( t ( Ri ) %*% X %*% Ri )
RiskIncr = 0 . 5 * (X %*% Ri + t (X) %*% Ri ) / S [ 1 , 1 ]
RiskDecomp = RiskIncr * Ri
r e s u l t = l i s t ( S , RiskIncr , RiskDecomp )

}

To illustrate application, we generate a network of 15 banks by creat-
ing a random graph.

#CREATE ADJ MATRIX
e = f l o o r ( runif (15 * 15 ) * 2 )
X = matrix ( e , 1 5 , 1 5 )
diag (X) = 1

This creates the network adjacency matrix and network plot shown in
Figure 13.15. Note that the diagonal elements are 1, as this is needed for
the risk score.

The code for the plot is as follows:

#GRAPH NETWORK: p l o t o f t h e a s s e t s and t h e l i n k s wi th d i r e c t e d arrow
na = length ( diag (X ) )
Y = X ; diag (Y)=0

g = graph . adjacency (Y)
plot . igraph ( g , layout=layout . fruchterman . reingold ,

edge . arrow . s i z e = 0 . 5 , ver tex . s i z e =15 ,
ver tex . l a b e l =seq ( 1 , na ) )

We now randomly create credit scores for these banks. Let’s assume
we have four levels of credit, {0, 1, 2, 3}, where lower scores represent
higher credit quality.

#CREATE CREDIT SCORES
Ri = matrix ( f l o o r ( runif ( na ) * 4 ) , na , 1 )

> Ri
[ , 1 ]

[ 1 , ] 1

[ 2 , ] 3

[ 3 , ] 0

[ 4 , ] 3

[ 5 , ] 0
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Figure 13.15: Banking network
adjacency matrix and plot
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[ 6 , ] 0

[ 7 , ] 2

[ 8 , ] 0

[ 9 , ] 0

[ 1 0 , ] 2

[ 1 1 , ] 0

[ 1 2 , ] 2

[ 1 3 , ] 2

[ 1 4 , ] 1

[ 1 5 , ] 3

We may now use this generated data to compute the overall risk score
and risk increments, discussed later.

#COMPUTE OVERALL RISK SCORE AND RISK INCREMENT
r es = NetRisk ( Ri , X)
S = r es [ [ 1 ] ] ; print ( c ( " Risk Score " , S ) )
R iskIncr = r es [ [ 2 ] ]

[ 1 ] " Risk Score " " 14 .6287388383278 "

We compute the fragility of this network.

#NETWORK FRAGILITY
deg = rowSums (X)−1

f rag = mean ( deg ^2) / mean ( deg )
print ( c ( " F r a g i l i t y score = " , f rag ) )

[ 1 ] " F r a g i l i t y score = " " 8 .1551724137931 "

The centrality of the network is computed and plotted with the fol-
lowing code. See Figure 13.16.

#NODE EIGEN VALUE CENTRALITY
cent = evcent ( g ) $ vector
pr int ( " Normalized C e n t r a l i t y Scores " )
print ( cent )
sor ted _ cent = s o r t ( cent , decreas ing=TRUE, index . return=TRUE)
Scent = sor ted _ cent $x
idxScent = sor ted _ cent $ i x
barplot ( t ( Scent ) , col=" dark red " , xlab="Node Number" ,

names . arg=idxScent , cex . names = 0 . 7 5 )
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> print ( cent )
[ 1 ] 0 .7648332 1 .0000000 0 .7134844 0 .6848305 0 .7871945 0 .8721071

[ 7 ] 0 .7389360 0 .7788079 0 .5647471 0 .7336387 0 .9142595 0 .8857590

[ 1 3 ] 0 .7183145 0 .7907269 0 .8365532

Figure 13.16: Centrality for the 15

banks.

And finally, we compute diameter.

print ( diameter ( g ) )
[ 1 ] 2

13.13.2 Risk Decomposition

Because the function S(C, E) is homogenous of degree 1 in C, we may
use this property to decompose the overall systemic score into the contri-
bution from each bank. Applying Euler’s theorem, we write this decom-
position as:

S =
∂S

∂C1
C1 +

∂S
∂C2

C2 + . . . +
∂S

∂Cn
Cn (13.5)

The risk contribution of bank j is ∂S
∂Cj

Cj.
The code and output are shown here.

#COMPUTE RISK DECOMPOSITION
RiskDecomp = RiskIncr * Ri
sor ted _RiskDecomp = s o r t ( RiskDecomp , decreas ing=TRUE,

index . return=TRUE)
RD = sorted _RiskDecomp$x



360 data science: theories, models, algorithms, and analytics

idxRD = sorted _RiskDecomp$ i x
print ( " Risk Contr ibut ion " ) ;
print ( RiskDecomp ) ;
print (sum( RiskDecomp ) )
barplot ( t (RD) , col=" dark green " , xlab="Node Number" ,

names . arg=idxRD , cex . names = 0 . 7 5 )

The output is as follows:

> print ( RiskDecomp ) ;
[ , 1 ]

[ 1 , ] 0 .7861238

[ 2 , ] 2 .3583714

[ 3 , ] 0 .0000000

[ 4 , ] 1 .7431441

[ 5 , ] 0 .0000000

[ 6 , ] 0 .0000000

[ 7 , ] 1 .7089648

[ 8 , ] 0 .0000000

[ 9 , ] 0 .0000000

[ 1 0 , ] 1 .3671719

[ 1 1 , ] 0 .0000000

[ 1 2 , ] 1 .7089648

[ 1 3 , ] 1 .8456820

[ 1 4 , ] 0 .8544824

[ 1 5 , ] 2 .2558336

> print (sum( RiskDecomp ) )
[ 1 ] 14 .62874

We see that the total of the individual bank risk contributions does in-
deed add up to the aggregate systemic risk score of 14.63, computed
earlier.

The resulting sorted risk contributions of each node (bank) are shown
in Figure 13.17.

13.13.3 Normalized Risk Score

We may also normalize the risk score to isolate the network effect by
computing

S̄ =

√
C>E C
‖C‖ (13.6)
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Figure 13.17: Risk Decompositions
for the 15 banks.

where ‖C‖ =
√

C>C is the norm of vector C. When there are no network
effects, E = I, the identity matrix, and S̄ = 1, i.e., the normalized baseline
risk level with no network (system-wide) effects is unity. As S̄ increases
above 1, it implies greater network effects.

#Compute n o r m a l i z e d s c o r e SBar
Sbar = S / sqr t ( t ( Ri ) %*% Ri )
print ( " Sbar ( normalized r i s k score " ) ;

> print ( Sbar )
[ , 1 ]

[ 1 , ] 2 .180724

13.13.4 Risk Increments

We are also interested in the extent to which a bank may impact the
overall risk of the system if it begins to experience deterioration in credit
quality. Therefore, we may compute the sensitivity of S to C:

Risk increment = Ij =
∂S
∂Cj

, ∀j (13.7)

> RiskIncr
[ , 1 ]

[ 1 , ] 0 .7861238
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[ 2 , ] 0 .7861238

[ 3 , ] 0 .6835859

[ 4 , ] 0 .5810480

[ 5 , ] 0 .7177652

[ 6 , ] 0 .8544824

[ 7 , ] 0 .8544824

[ 8 , ] 0 .8203031

[ 9 , ] 0 .5810480

[ 1 0 , ] 0 .6835859

[ 1 1 , ] 0 .9228410

[ 1 2 , ] 0 .8544824

[ 1 3 , ] 0 .9228410

[ 1 4 , ] 0 .8544824

[ 1 5 , ] 0 .7519445

Note that risk increments were previously computed in the function for
the risk score. We also plot this in sorted order, as shown in Figure 13.18.
The code for this plot is shown here.

#PLOT RISK INCREMENTS
sor ted _ RiskIncr = s o r t ( RiskIncr , decreas ing=TRUE,

index . return=TRUE)
RI = sor ted _ RiskIncr $x
idxRI = sor ted _ RiskIncr $ i x
print ( " Risk Increment ( per uni t i n c r e a s e in any node r i s k " )
print ( R iskIncr )
barplot ( t ( RI ) , col=" dark blue " , x lab="Node Number" ,

names . arg=idxRI , cex . names = 0 . 7 5 )

13.13.5 Criticality

Criticality is compromise-weighted centrality. This new measure is de-
fined as y = C × x where x is the centrality vector for the network, and
y, C, x ∈ Rn. Note that this is an element-wise multiplication of vectors
C and x. Critical nodes need immediate attention, either because they
are heavily compromised or they are of high centrality, or both. It of-
fers a way for regulators to prioritize their attention to critical financial
institutions, and pre-empt systemic risk from blowing up.

#CRITICALITY
c r i t = Ri * cent
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Figure 13.18: Risk Increments for
the 15 banks.

print ( " C r i t i c a l i t y Vector " )
print ( c r i t )
sor ted _ c r i t = s o r t ( c r i t , decreas ing=TRUE, index . return=TRUE)
S c r i t = sor ted _ c r i t $x
i d x S c r i t = sor ted _ c r i t $ i x
barplot ( t ( S c r i t ) , col=" orange " , xlab="Node Number" ,

names . arg= i d x S c r i t , cex . names = 0 . 7 5 )

> print ( c r i t )
[ , 1 ]

[ 1 , ] 0 .7648332

[ 2 , ] 3 .0000000

[ 3 , ] 0 .0000000

[ 4 , ] 2 .0544914

[ 5 , ] 0 .0000000

[ 6 , ] 0 .0000000

[ 7 , ] 1 .4778721

[ 8 , ] 0 .0000000

[ 9 , ] 0 .0000000

[ 1 0 , ] 1 .4672773

[ 1 1 , ] 0 .0000000

[ 1 2 , ] 1 .7715180

[ 1 3 , ] 1 .4366291

[ 1 4 , ] 0 .7907269



364 data science: theories, models, algorithms, and analytics

[ 1 5 , ] 2 .5096595

The plot of criticality is shown in Figure 13.19.

Figure 13.19: Criticality for the 15

banks.

13.13.6 Cross Risk

Since the systemic risk score S is a composite of network effects and
credit quality, the risk contributions of all banks are impacted when
any single bank suffers credit deterioration. A bank has the power to
impose externalities on other banks, and we may assess how each bank’s
risk contribution is impacted by one bank’s C increasing. We do this by
simulating changes in a bank’s credit quality and assessing the increase
in risk contribution for the bank itself and other banks.

#CROSS IMPACT MATRIX
#CHECK FOR SPILLOVER EFFECTS FROM ONE NODE TO ALL OTHERS
d_RiskDecomp = NULL
n = length ( Ri )
for ( j in 1 : n ) {

Ri2 = Ri
Ri2 [ j ] = Ri [ j ]+1

r es = NetRisk ( Ri2 , X)
d_ Risk = as . matrix ( r es [ [ 3 ] ] ) − RiskDecomp
d_RiskDecomp = cbind ( d_RiskDecomp , d_ Risk )

}
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#3D p l o t s
l i b r a r y ( " RColorBrewer " ) ;
l i b r a r y ( " l a t t i c e " ) ;
l i b r a r y ( " l a t t i c e E x t r a " )
cloud ( d_RiskDecomp ,

panel . 3 d . cloud = panel . 3 dbars ,
xbase = 0 . 2 5 , ybase = 0 . 2 5 ,
zlim = c ( min ( d_RiskDecomp ) , max ( d_RiskDecomp ) ) ,
s c a l e s = l i s t ( arrows = FALSE , j u s t = " r i g h t " ) ,
x lab = "On" , ylab = "From" , z lab = NULL,
main=" Change in Risk Contr ibut ion " ,
col . f a c e t = l e v e l . co lo rs ( d_RiskDecomp ,

a t = do . breaks ( range ( d_RiskDecomp ) , 2 0 ) ,
col . reg ions = cm . colors , co lo rs = TRUE) ,

colorkey = l i s t ( col = cm . colors ,
a t = do . breaks ( range ( d_RiskDecomp ) , 2 0 ) ) ,

# s c r e e n = l i s t ( z = 40 , x = −30)
)
brewer . div <− colorRampPalette ( brewer . pal ( 1 1 , " S p e c t r a l " ) ,

i n t e r p o l a t e = " s p l i n e " )
l e v e l p l o t ( d_RiskDecomp , aspect = " i s o " ,

col . reg ions = brewer . div ( 2 0 ) ,
ylab=" Impact from " , xlab=" Impact on " ,
main=" Change in Risk Contr ibut ion " )

The plots are shown in Figure 13.20. We have used some advanced
plotting functions, so as to demonstrate the facile way in which R gener-
ates beautiful plots.

Here we see the effect of a single bank’s C value increasing by 1, and
plot the change in risk contribution of each bank as a consequence. We
notice that the effect on its own risk contribution is much higher than on
that of other banks.

13.13.7 Risk Scaling

This is the increase in normalized risk score S̄ as the number of con-
nections per node increases. We compute this to examine how fast the
score increases as the network becomes more connected. Is this growth
exponential, linear, or logarithmic? We randomly generate graphs with
increasing connectivity, and recompute the risk scores. The resulting
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Figure 13.20: Spillover effects.
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plots are shown in Figure 13.21. We see that the risk increases at a less
than linear rate. This is good news, as systemic risk does not blow up as
banks become more connected.

#RISK SCALING
#SIMULATION OF EFFECT OF INCREASED CONNECTIVITY
#RANDOM GRAPHS
n=50 ; k =100 ; pvec=seq ( 0 . 0 5 , 0 . 5 0 , 0 . 0 5 ) ;
svec=NULL; sbarvec=NULL
for ( p in pvec ) {

s _temp = NULL
sbar _temp = NULL
for ( j in 1 : k ) {

g = erdos . renyi . game ( n , p , d i r e c t e d =TRUE ) ;
A = get . adjacency ( g )
diag (A) = 1

c = as . matrix ( round ( runif ( n , 0 , 2 ) , 0 ) )
syscore = as . numeric ( sqr t ( t ( c ) %*% A %*% c ) )
sbarscore = syscore / n
s _temp = c ( s _temp , syscore )
sbar _temp = c ( sbar _temp , sbarscore )

}
svec = c ( svec , mean ( s _temp ) )
sbarvec = c ( sbarvec , mean ( sbar _temp ) )

}
plot ( pvec , svec , type=" l " ,

x lab=" Prob of connect ing to a node " ,
ylab=" S " , lwd=3 , col=" red " )

plot ( pvec , sbarvec , type=" l " ,
x lab=" Prob of connect ing to a node " ,
ylab=" S_Avg" , lwd=3 , col=" red " )

13.13.8 Too Big To Fail?

An often suggested remedy for systemic risk is to break up large banks,
i.e., directly mitigate the too-big-to-fail phenomenon. We calculate the
change in risk score S, and normalized risk score S̄ as the number of
nodes increases, while keeping the average number of connections be-
tween nodes constant. This is repeated 5000 times for each fixed number
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Figure 13.21: How risk increases
with connectivity of the network.



making connections: network theory 369

of nodes and the mean risk score across 5000 simulations is plotted on
the y-axis against the number of nodes on the x-axis. We see that sys-
temic risk increases when banks are broken up, but the normalized risk
score decreases. Despite the network effect S̄ declining, overall risk S in
fact increases. See Figure 13.22.

#TOO BIG TO FAIL
#SIMULATION OF EFFECT OF INCREASED NODES AND REDUCED CONNECTIVITY
nvec=seq ( 1 0 , 1 0 0 , 1 0 ) ; k =5000 ; svec=NULL; sbarvec=NULL
for ( n in nvec ) {

s _temp = NULL
sbar _temp = NULL
p = 5 / n
for ( j in 1 : k ) {

g = erdos . renyi . game ( n , p , d i r e c t e d =TRUE ) ;
A = get . adjacency ( g )
diag (A) = 1

c = as . matrix ( round ( runif ( n , 0 , 2 ) , 0 ) )
syscore = as . numeric ( sqr t ( t ( c ) %*% A %*% c ) )
sbarscore = syscore / n
s _temp = c ( s _temp , syscore )
sbar _temp = c ( sbar _temp , sbarscore )

}
svec = c ( svec , mean ( s _temp ) )
sbarvec = c ( sbarvec , mean ( sbar _temp ) )

}
plot ( nvec , svec , type=" l " ,

x lab="Number of nodes " , ylab=" S " ,
ylim=c ( 0 ,max ( svec ) ) , lwd=3 , col=" red " )

plot ( nvec , sbarvec , type=" l " ,
x lab="Number of nodes " , ylab=" S_Avg" ,
ylim=c ( 0 ,max ( sbarvec ) ) , lwd=3 , col=" red " )

13.13.9 Application of the model to the banking network in India

The program code for systemic risk networks was applied to real-world
data in India to produce daily maps of the Indian banking network,
as well as the corresponding risk scores. The credit risk vector C was
based on credit ratings for Indian financial institutions (FIs). The net-
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Figure 13.22: How risk increases
with connectivity of the network.
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work adjacency matrix was constructred using the ideas in a paper by
Billio, Getmansky, Lo, and Pelizzon (2012) who create a network using
Granger causality. This directed network comprises an adjacency matrix
of values (0, 1) where node i connects to node j if the returns of bank i
Granger cause those of bank j, i.e., edge Ei,j = 1. This was applied to
U.S. financial institution stock return data, and in a follow-up paper, to
CDS spread data from U.S., Europe, and Japan (see Billio, Getmansky,
Gray, Lo, Merton, and Pelizzon (2014)), where the global financial system
is also found to be highly interconnected. In the application of the Das
(2014) methodology to India, the network matrix is created using this
Granger causality method to Indian FI stock returns.

The system is available in real time and may be accessed directly
through a browser. To begin, different selections may be made of a sub-
set of FIs for analysis. See Figure 13.23 for the screenshots of this step.

Once these selections are made and the “Submit” button is hit, the
system generates the network and the various risk metrics, shown in
Figures 13.24 and 13.25, respectively.

13.14 Map of Science

It is appropriate to end this chapter by showcasing network science with
a wonderful image of the connection network between various scientific
disciplines. See Figure 13.26. Note that the social sciences are most con-
nected to medicine and engineering. But there is homophily here, i.e.,
likes tend to be in groups with likes.
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Figure 13.23: Screens for selecting
the relevant set of Indian FIs to
construct the banking network.
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Figure 13.24: Screens for the Indian
FIs banking network. The upper
plot shows the entire network.
The lower plot shows the network
when we mouse over the bank in
the middle of the plot. Red lines
show that the bank is impacted
by the other banks, and blue lines
depict that the bank impacts the
others, in a Granger causal manner.
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Figure 13.25: Screens for systemic
risk metrics of the Indian FIs bank-
ing network. The top plot shows
the current risk metrics, and the
bottom plot shows the history from
2008.
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Figure 13.26: The Map of Science.





14
Statistical Brains: Neural Networks

14.1 Overview

Neural Networks (NNs) are one form of nonlinear regression. You are
usually familiar with linear regressions, but nonlinear regressions are
just as easy to understand. In a linear regression, we have

Y = X′β + e

where X ∈ Rt×n and the regression solution is (as is known from before),
simply equal to β = (X′X)−1(X′Y).

To get this result we minimize the sum of squared errors.

min
β

e′e = (Y− X′β)′(Y− X′β)

= (Y− X′β)′Y− (Y− X′β)′(X′β)

= Y′Y− (X′β)′Y−Y′(X′β) + β2(X′X)

= Y′Y− 2(X′β)′Y + β2(X′X)

Differentiating w.r.t. β gives the following f.o.c:

2β(X′X)− 2(X′Y) = 0

=⇒
β = (X′X)−1(X′Y)

We can examine this by using the markowitzdata.txt data set.

> data = read . table ( " markowitzdata . t x t " , header=TRUE)
> dim ( data )
[ 1 ] 1507 10

> names ( data )
[ 1 ] "X .DATE" "SUNW" "MSFT" "IBM" "CSCO" "AMZN" " mktrf "
[ 8 ] "smb" " hml" " r f "

> amzn = as . matrix ( data [ , 6 ] )
> f3 = as . matrix ( data [ , 7 : 9 ] )
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> re s = lm (amzn ~ f3 )
> summary ( r es )

Call :
lm ( formula = amzn ~ f3 )

Residuals :
Min 1Q Median 3Q Max

−0.225716 −0.014029 −0.001142 0 .013335 0 .329627

C o e f f i c i e n t s :
Est imate Std . Error t value Pr(>| t |)

( I n t e r c e p t ) 0 .0015168 0 .0009284 1 . 634 0 .10249

f3mktrf 1 .4190809 0 .1014850 13 .983 < 2e−16 * * *
f3smb 0 .5228436 0 .1738084 3 . 008 0 .00267 * *
f3hml −1 .1502401 0 .2081942 −5.525 3 . 8 8 e−08 * * *
−−−
S i g n i f . codes : 0 ï £ ¡ * * * ï £ ¡ 0 . 001 ï £ ¡ * * ï £ ¡ 0 . 0 1 ï £ ¡ * ï £ ¡ 0 . 0 5 ï £ ¡ . ï £ ¡ 0 . 1 ï £ ¡ ï £ ¡ 1

Residual standard e r r o r : 0 .03581 on 1503 degrees of freedom
Mult iple R−squared : 0 . 2 2 3 3 , Adjusted R−squared : 0 .2218

F−s t a t i s t i c : 144 . 1 on 3 and 1503 DF, p−value : < 2 . 2 e−16

> wuns = matrix ( 1 , length (amzn ) , 1 )
> x = cbind ( wuns , f3 )
> b = solve ( t ( x ) %*% x ) %*% ( t ( x ) %*% amzn)
> b

[ , 1 ]
0 .001516848

mktrf 1 .419080894

smb 0 .522843591

hml −1 .150240145

We see at the end of the program listing that our formula for the co-
efficients of the minimized least squares problem β = (X′X)−1(X′Y)
exactly matches that from the regression command lm.

14.2 Nonlinear Regression

A nonlinear regression is of the form

Y = f (X; β) + e

where f (·) is a nonlinear function. Note that, for example, Y = β0 +

β1X + β2X2 + e is not a nonlinear regression, even though it contains
nonlinear terms like X2.

Computing the coefficients in a nonlinear regression again follows in
the same way as for a linear regression.

min
β

e′e = (Y− f (X; β))′(Y− f (X; β))

= Y′Y− 2 f (X; β)′Y + f (X; β)′ f (X; β)
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Differentiating w.r.t. β gives the following f.o.c:

−2
(

d f (X; β)

dβ

)′
Y + 2

(
d f (X; β)

dβ

)′
f (X; β) = 0(

d f (X; β)

dβ

)′
Y =

(
d f (X; β)

dβ

)′
f (X; β)

which is then solved numerically for β ∈ Rn. The approach taken usually
involves the Newton-Raphson method, see for example:

http://en.wikipedia.org/wiki/Newton’s method.

14.3 Perceptrons

Neural networks are special forms of nonlinear regressions where the
decision system for which the NN is built mimics the way the brain is
supposed to work (whether it works like a NN is up for grabs of course).

The basic building block of a neural network is a perceptron. A per-
ceptron is like a neuron in a human brain. It takes inputs (e.g. sensory in
a real brain) and then produces an output signal. An entire network of
perceptrons is called a neural net.

For example, if you make a credit card application, then the inputs
comprise a whole set of personal data such as age, sex, income, credit
score, employment status, etc, which are then passed to a series of per-
ceptrons in parallel. This is the first “layer” of assessment. Each of the
perceptrons then emits an output signal which may then be passed to
another layer of perceptrons, who again produce another signal. This
second layer is often known as the “hidden” perceptron layer. Finally,
after many hidden layers, the signals are all passed to a single percep-
tron which emits the decision signal to issue you a credit card or to deny
your application.

Perceptrons may emit continuous signals or binary (0, 1) signals. In
the case of the credit card application, the final perceptron is a binary
one. Such perceptrons are implemented by means of “squashing” func-
tions. For example, a really simple squashing function is one that issues
a 1 if the function value is positive and a 0 if it is negative. More gener-
ally,

S(x) =

{
1 if g(x) > T
0 if g(x) ≤ T

where g(x) is any function taking positive and negative values, for in-
stance, g(x) ∈ (−∞,+∞). T is a threshold level.
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A neural network with many layers is also known as a “multi-layered”
perceptron, i.e., all those perceptrons together may be thought of as one
single, big perceptron. See Figure 14.1 for an example of such a network

x1  x2  x3  x4 

y1  y2  y3 

z1 

f(x)  Figure 14.1: A feed-forward multi-
layer neural network.

Neural net models are related to Deep Learning, where the number of
hidden layers is vastly greater than was possible in the past when com-
putational power was limited. Now, deep learning nets cascade through
20-30 layers, resulting in a surprising ability of neural nets in mimicking
human learning processes. see: http://en.wikipedia.org/wiki/Deep_

learning. And also see: http://deeplearning.net/.
Binary NNs are also thought of as a category of classifier systems.

They are widely used to divide members of a population into classes.
But NNs with continuous output are also popular. As we will see later,
researchers have used NNs to learn the Black-Scholes option pricing
model.

Areas of application: credit cards, risk management, forecasting cor-
porate defaults, forecasting economic regimes, measuring the gains from
mass mailings by mapping demographics to success rates.

http://en.wikipedia.org/wiki/Deep_learning
http://en.wikipedia.org/wiki/Deep_learning
http://deeplearning.net/
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14.4 Squashing Functions

Squashing functions may be more general than just binary. They usually
squash the output signal into a narrow range, usually (0, 1). A common
choice is the logistic function (also known as the sigmoid function).

f (x) =
1

1 + e−w x

Think of w as the adjustable weight. Another common choice is the pro-
bit function

f (x) = Φ(w x)

where Φ(·) is the cumulative normal distribution function.

14.5 How does the NN work?

The easiest way to see how a NN works is to think of the simplest NN,
i.e. one with a single perceptron generating a binary output. The per-
ceptron has n inputs, with values xi, i = 1...n and current weights
wi, i = 1...n. It generates an output y.

The “net input” is defined as
n

∑
i=1

wixi

If the net input is greater than a threshold T, then the output signal is
y = 1, and if it is less than T, the output is y = 0. The actual output
is called the “desired” output and is denoted d = {0, 1}. Hence, the
“training” data provided to the NN comprises both the inputs xi and the
desired output d.

The output of our single perceptron model will be the sigmoid func-
tion of the net input, i.e.

y =
1

1 + exp (−∑n
i=1 wixi)

For a given input set, the error in the NN is

E =
1
2

m

∑
j=1

(yj − dj)
2

where m is the size of the training data set. The optimal NN for given
data is obtained by finding the weights wi that minimize this error func-
tion E. Once we have the optimal weights, we have a calibrated “feed-
forward” neural net.
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For a given squashing function f , and input x = [x1, x2, . . . , xn]′, the
multi-layer perceptron will given an output at the hidden layer of

y(x) = f

(
w0 +

n

∑
j=1

wjxj

)

and then at the final output level the node is

z(x) = f

(
w0 +

N

∑
i=1

wi · f

(
w0i +

n

∑
j=1

wjixj

))

where the nested structure of the neural net is quite apparent.

14.5.1 Logit/Probit Model

The special model above with a single perceptron is actually nothing
else than the logit regression model. If the squashing function is taken to
the cumulative normal distribution, then the model becomes the probit
regression model. In both cases though, the model is fitted by minimiz-
ing squared errors, not by maximum likelihood, which is how standard
logit/probit models are parameterized.

14.5.2 Connection to hyperplanes

Note that in binary squashing functions, the net input is passed through
a sigmoid function and then compared to the threshold level T. This
sigmoid function is a monotone one. Hence, this means that there must
be a level T′ at which the net input ∑n

i=1 wixi must be for the result to be
on the cusp. The following is the equation for a hyperplane

n

∑
i=1

wixi = T′

which also implies that observations in n-dimensional space of the in-
puts xi, must lie on one side or the other of this hyperplane. If above the
hyperplane, then y = 1, else y = 0. Hence, single perceptrons in neural
nets have a simple geometrical intuition.

14.6 Feedback/Backpropagation

What distinguishes neural nets from ordinary nonlinear regressions is
feedback. Neural nets learn from feedback as they are used. Feedback is
implemented using a technique called backpropagation.
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Suppose you have a calibrated NN. Now you obtain another observa-
tion of data and run it through the NN. Comparing the output value y
with the desired observation d gives you the error for this observation. If
the error is large, then it makes sense to update the weights in the NN,
so as to self-correct. This process of self-correction is known as “back-
propagation”.

The benefit of backpropagation is that a full re-fitting exercise is not
required. Using simple rules the correction to the weights can be applied
gradually in a learning manner.

Lets look at backpropagation with a simple example using a single
perceptron. Consider the j-th perceptron. The sigmoid of this is

yj =
1

1 + exp
(
−∑n

i=1 wixij
)

where yj is the output of the j-th perceptron, and xij is the i-th input to
the j-th perceptron. The error from this observation is (yj − dj). Recalling
that E = 1

2 ∑m
j=1(yj − dj)

2, we may compute the change in error with
respect to the j-th output, i.e.

∂E
∂yj

= yj − dj

Note also that
dyj

dxij
= yj(1− yj)wi

and
dyj

dwi
= yj(1− yj)xij

Next, we examine how the error changes with input values:

∂E
∂xij

=
∂E
∂yj
× dyj

dxij
= (yj − dj)yj(1− yj)wi

We can now get to the value of interest, which is the change in error
value with respect to the weights

∂E
∂wi

=
∂E
∂yj
× dyj

dwi
= (yj − dj)yj(1− yj)xij, ∀i

We thus have one equation for each weight wi and each observation j.
(Note that the wi apply across perceptrons. A more general case might
be where we have weights for each perceptron, i.e., wij.) Instead of up-
dating on just one observation, we might want to do this for many obser-
vations in which case the error derivative would be

∂E
∂wi

= ∑
j
(yj − dj)yj(1− yj)xij, ∀i
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Therefore, if ∂E
∂wi

> 0, then we would need to reduce wi to bring down
E. By how much? Here is where some art and judgment is imposed.
There is a tuning parameter 0 < γ < 1 which we apply to wi to shrink it
when the weight needs to be reduced. Likewise, if the derivative ∂E

∂wi
< 0,

then we would increase wi by dividing it by γ.

14.6.1 Extension to many perceptrons

Our notation now becomes extended to weights wik which stand for the
weight on the i-th input to the k-th perceptron. The derivative for the
error becomes

∂E
∂wik

= ∑
j
(yj − dj)yj(1− yj)xikj, ∀i, k

Hence all nodes in the network have their weights updated. In many
cases of course, we can just take the derivatives numerically. Change the
weight wik and see what happens to the error.

14.7 Research Applications

14.7.1 Discovering Black-Scholes

See the paper by Hutchinson, Lo, and Poggio (1994)), A Nonparametric
Approach to Pricing and Hedging Securities Via Learning Networks, The
Journal of Finance, Vol XLIX.

14.7.2 Forecasting

See the paper by Ghiassi, Saidane, and Zimbra (2005). “A dynamic arti-
ficial neural network model for forecasting time series events,” Interna-
tional Journal of Forecasting 21, 341–362.

14.8 Package neuralnet in R

The package focuses on multi-layer perceptrons (MLP), see Bishop
(1995), which are well applicable when modeling functional relation-
ships. The underlying structure of an MLP is a directed graph, i.e. it
consists of vertices and directed edges, in this context called neurons and
synapses. [See Bishop (1995), Neural networks for pattern recognition.
Oxford University Press, New York.]
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The data set used by this package as an example is the infert data set
that comes bundled with R.

> l i b r a r y ( neuralnet )
Loading required package : grid
Loading required package : MASS
> names ( i n f e r t )
[ 1 ] " education " " age " " p a r i t y " " induced "
[ 5 ] " case " " spontaneous " " stratum " " pooled . stratum "
> summary ( i n f e r t )

education age p a r i t y induced
0−5yrs : 12 Min . : 2 1 . 0 0 Min . : 1 . 0 0 0 Min . : 0 . 0 0 0 0

6−11yrs : 1 2 0 1 s t Qu. : 2 8 . 0 0 1 s t Qu. : 1 . 0 0 0 1 s t Qu. : 0 . 0 0 0 0

12+ yrs : 1 1 6 Median : 3 1 . 0 0 Median : 2 . 0 0 0 Median : 0 . 0 0 0 0

Mean : 3 1 . 5 0 Mean : 2 . 0 9 3 Mean : 0 . 5 7 2 6

3rd Qu. : 3 5 . 2 5 3rd Qu. : 3 . 0 0 0 3rd Qu. : 1 . 0 0 0 0

Max . : 4 4 . 0 0 Max . : 6 . 0 0 0 Max . : 2 . 0 0 0 0

case spontaneous stratum pooled . stratum
Min . : 0 . 0 0 0 0 Min . : 0 . 0 0 0 0 Min . : 1 . 0 0 Min . : 1 . 0 0

1 s t Qu. : 0 . 0 0 0 0 1 s t Qu. : 0 . 0 0 0 0 1 s t Qu. : 2 1 . 0 0 1 s t Qu. : 1 9 . 0 0

Median : 0 . 0 0 0 0 Median : 0 . 0 0 0 0 Median : 4 2 . 0 0 Median : 3 6 . 0 0

Mean : 0 . 3 3 4 7 Mean : 0 . 5 7 6 6 Mean : 4 1 . 8 7 Mean : 3 3 . 5 8

3rd Qu. : 1 . 0 0 0 0 3rd Qu. : 1 . 0 0 0 0 3rd Qu. : 6 2 . 2 5 3rd Qu. : 4 8 . 2 5

Max . : 1 . 0 0 0 0 Max . : 2 . 0 0 0 0 Max . : 8 3 . 0 0 Max . : 6 3 . 0 0

This data set examines infertility after induced and spontaneous abor-
tion. The variables induced and spontaneous take values in {0, 1, 2} in-
dicating the number of previous abortions. The variable parity denotes
the number of births. The variable case equals 1 if the woman is infertile
and 0 otherwise. The idea is to model infertility.

As a first step, let’s fit a logit model to the data.

> re s = glm ( case ~ age+ p a r i t y +induced+spontaneous ,
family=binomial ( l ink=" l o g i t " ) , data= i n f e r t )

> summary ( r es )

Call :
glm ( formula = case ~ age + p a r i t y + induced + spontaneous ,

family = binomial ( l ink = " l o g i t " ) ,
data = i n f e r t )

Deviance Residuals :
Min 1Q Median 3Q Max

−1.6281 −0.8055 −0.5298 0 .8668 2 .6141

C o e f f i c i e n t s :
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Est imate Std . Error z value Pr(>|z |)
( I n t e r c e p t ) −2.85239 1 .00428 −2.840 0 .00451 * *
age 0 .05318 0 .03014 1 .764 0 .07767 .
p a r i t y −0.70883 0 .18091 −3.918 8 . 9 2 e−05 * * *
induced 1 .18966 0 .28987 4 .104 4 . 0 6 e−05 * * *
spontaneous 1 .92534 0 .29863 6 .447 1 . 1 4 e−10 * * *
−−−
S i g n i f . codes : 0 ï £ ¡ * * * ï £ ¡ 0 . 001 ï £ ¡ * * ï £ ¡ 0 . 0 1 ï £ ¡ * ï £ ¡ 0 . 0 5 ï £ ¡ . ï £ ¡ 0 . 1 ï £ ¡ ï £ ¡ 1

( Dispersion parameter for binomial family taken to be 1 )

Null deviance : 316 .17 on 247 degrees of freedom
Residual deviance : 260 .94 on 243 degrees of freedom
AIC : 270 .94

Number of F i sher Scoring i t e r a t i o n s : 4

All explanatory variables are statistically significant. We now run this
data through a neural net, as follows.

> nn = neuralnet ( case~age+ p a r i t y +induced+spontaneous , hidden =2 , data= i n f e r t )
> nn
Call : neura lnet ( formula = case ~ age + p a r i t y + induced + spontaneous , data = i n f e r t , hidden = 2 )

1 r e p e t i t i o n was c a l c u l a t e d .

Error Reached Threshold Steps
1 19 .36463007 0 .008949536618 20111

> nn$ r e s u l t . matrix
1

e r r o r 19 .364630070610

reached . threshold 0 .008949536618

s teps 20111 .000000000000

I n t e r c e p t . to . 1 layhid1 9 .422192588834

age . to . 1 layhid1 −1 .293381222338

p a r i t y . to . 1 layhid1 −19 .489105822032

induced . to . 1 layhid1 37 .616977251411

spontaneous . to . 1 layhid1 32 .647955233030

I n t e r c e p t . to . 1 layhid2 5 .142357912661

age . to . 1 layhid2 −0 .077293384832

p a r i t y . to . 1 layhid2 2 .875918354167

induced . to . 1 layhid2 −4 .552792010965

spontaneous . to . 1 layhid2 −5 .558639450018

I n t e r c e p t . to . case 1 .155876751703

1 layhid . 1 . to . case −0 .545821730892

1 layhid . 2 . to . case −1 .022853550121

Now we can go ahead and visualize the neural net. See Figure 14.2.

We see the weights on the initial input variables that go into two hid-
den perceptrons, and then these are fed into the output perceptron, that
generates the result. We can look at the data and output as follows:

> head ( cbind ( nn$ covar ia te , nn$ net . r e s u l t [ [ 1 ] ] ) )
[ , 1 ] [ , 2 ] [ , 3 ] [ , 4 ] [ , 5 ]

1 26 6 1 2 0 .1420779618

2 42 1 1 0 0 .5886305435
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Figure 14.2: The neural net for the
infert data set with two percep-
trons in a single hidden layer.
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3 39 6 2 0 0 .1330583729

4 34 4 2 0 0 .1404906398

5 35 3 1 1 0 .4175799845

6 36 4 2 1 0 .8385294748

We can compare the output to that from the logit model, by looking at
the correlation of the fitted values from both models.

> cor ( cbind ( nn$ net . r e s u l t [ [ 1 ] ] , r e s $ f i t t e d . values ) )
[ , 1 ] [ , 2 ]

[ 1 , ] 1 .0000000000 0 .8814759106

[ 2 , ] 0 .8814759106 1 .0000000000

As we see, the models match up with 88% correlation. The output is a
probability of infertility.

We can add in an option for back propagation, and see how the results
change.

> nn2 = neuralnet ( case~age+ p a r i t y +induced+spontaneous ,
hidden =2 , a lgorithm=" rprop+" , data= i n f e r t )

> cor ( cbind ( nn2$ net . r e s u l t [ [ 1 ] ] , r e s $ f i t t e d . values ) )
[ , 1 ] [ , 2 ]

[ 1 , ] 1 .00000000 0 .88816742

[ 2 , ] 0 .88816742 1 .00000000

> cor ( cbind ( nn2$ net . r e s u l t [ [ 1 ] ] , nn$ f i t t e d . r e s u l t [ [ 1 ] ] ) )

There does not appear to be any major improvement.
Given a calibrated neural net, how do we use it to compute values for

a new observation? Here is an example.

> compute ( nn , c o v a r i a t e =matrix ( c ( 3 0 , 1 , 0 , 1 ) , 1 , 4 ) )
$neurons
$neurons [ [ 1 ] ]

[ , 1 ] [ , 2 ] [ , 3 ] [ , 4 ] [ , 5 ]
[ 1 , ] 1 30 1 0 1

$neurons [ [ 2 ] ]
[ , 1 ] [ , 2 ] [ , 3 ]

[ 1 , ] 1 0 .00000009027594872 0 .5351507372

$ net . r e s u l t
[ , 1 ]
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[ 1 , ] 0 .6084958711

We can assess statistical significance of the model as follows:

> confidence . i n t e r v a l ( nn , alpha = 0 . 1 0 )
$lower . c i
$lower . c i [ [ 1 ] ]
$lower . c i [ [ 1 ] ] [ [ 1 ] ]

[ , 1 ] [ , 2 ]
[ 1 , ] 1 .942871917 1 .0100502322

[ 2 , ] −2 .178214123 −0 .1677202246

[ 3 , ] −32 .411347153 −0 .6941528859

[ 4 , ] 12 .311139796 −9 .8846504753

[ 5 , ] 10 .339781603 −12 .1349900614

$lower . c i [ [ 1 ] ] [ [ 2 ] ]
[ , 1 ]

[ 1 , ] 0 .7352919387

[ 2 , ] −0 .7457112438

[ 3 , ] −1 .4851089618

$upper . c i
$upper . c i [ [ 1 ] ]
$upper . c i [ [ 1 ] ] [ [ 1 ] ]

[ , 1 ] [ , 2 ]
[ 1 , ] 16 .9015132608 9 .27466559308

[ 2 , ] −0 .4085483215 0 .01313345496

[ 3 , ] −6 .5668644910 6 .44598959422

[ 4 , ] 62 .9228147066 0 .77906645334

[ 5 , ] 54 .9561288631 1 .01771116133

$upper . c i [ [ 1 ] ] [ [ 2 ] ]
[ , 1 ]

[ 1 , ] 1 .5764615647

[ 2 , ] −0 .3459322180

[ 3 , ] −0 .5605981384

$ nic
[ 1 ] 21 .19262393

The confidence level is (1− α). This is at the 90% level, and at the 5%
level we get:

> confidence . i n t e r v a l ( nn , alpha = 0 . 9 5 )
$lower . c i
$lower . c i [ [ 1 ] ]
$lower . c i [ [ 1 ] ] [ [ 1 ] ]

[ , 1 ] [ , 2 ]
[ 1 , ] 9 .137058342 4 .98482188887

[ 2 , ] −1 .327113719 −0 .08074072852

[ 3 , ] −19 .981740610 2 .73981647809

[ 4 , ] 36 .652242454 −4 .75605852615

[ 5 , ] 31 .797500416 −5 .80934975682

$lower . c i [ [ 1 ] ] [ [ 2 ] ]
[ , 1 ]

[ 1 , ] 1 .1398427910

[ 2 , ] −0 .5534421216

[ 3 , ] −1 .0404761197

$upper . c i
$upper . c i [ [ 1 ] ]
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$upper . c i [ [ 1 ] ] [ [ 1 ] ]
[ , 1 ] [ , 2 ]

[ 1 , ] 9 .707326836 5 .29989393645

[ 2 , ] −1 .259648725 −0 .07384604115

[ 3 , ] −18 .996471034 3 .01202023024

[ 4 , ] 38 .581712048 −4 .34952549578

[ 5 , ] 33 .498410050 −5 .30792914321

$upper . c i [ [ 1 ] ] [ [ 2 ] ]
[ , 1 ]

[ 1 , ] 1 .1719107124

[ 2 , ] −0 .5382013402

[ 3 , ] −1 .0052309806

$ nic
[ 1 ] 21 .19262393

14.9 Package nnet in R

We repeat these calculations using this alternate package.

> nn3 = nnet ( case~age+ p a r i t y +induced+spontaneous , data= i n f e r t , s i z e =2)
# w e i g h t s : 13
i n i t i a l value 58 .675032

i t e r 10 value 47 .924314

i t e r 20 value 41 .032965

i t e r 30 value 40 .169634

i t e r 40 value 39 .548014

i t e r 50 value 39 .025079

i t e r 60 value 38 .657788

i t e r 70 value 38 .464035

i t e r 80 value 38 .273805

i t e r 90 value 38 .189795

i t e r 100 value 38 .116595

f i n a l value 38 .116595

stopped a f t e r 100 i t e r a t i o n s
> nn3

a 4−2−1 network with 13 weights
inputs : age p a r i t y induced spontaneous
output ( s ) : case
options were −
> nn3 . out = predic t ( nn3 )
> dim ( nn3 . out )
[ 1 ] 248 1

> cor ( cbind ( nn$ f i t t e d . r e s u l t [ [ 1 ] ] , nn3 . out ) )
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[ , 1 ]
[ 1 , ] 1

We see that package nnet gives the same result as that from package
neuralnet.

As another example of classification, rather than probability, we revisit
the IRIS data set we have used in the realm of Bayesian classifiers.

> data ( i r i s )
> # use h a l f t h e i r i s d a t a
> i r = rbind ( i r i s 3 [ , , 1 ] , i r i s 3 [ , , 2 ] , i r i s 3 [ , , 3 ] )
> t a r g e t s = c l a s s . ind ( c ( rep ( " s " , 5 0 ) , rep ( " c " , 5 0 ) , rep ( " v " , 5 0 ) ) )
> samp = c ( sample ( 1 : 5 0 , 2 5 ) , sample ( 5 1 : 1 0 0 , 2 5 ) , sample ( 1 0 1 : 1 5 0 , 2 5 ) )

> i r 1 = nnet ( i r [ samp , ] , t a r g e t s [ samp , ] , s i z e = 2 , rang = 0 . 1 ,
decay = 5e−4 , maxit = 200 )

# w e i g h t s : 19
i n i t i a l value 57 .017869

i t e r 10 value 43 .401134

i t e r 20 value 30 .331122

i t e r 30 value 27 .100909

i t e r 40 value 26 .459441

i t e r 50 value 18 .899712

i t e r 60 value 18 .082379

i t e r 70 value 17 .716302

i t e r 80 value 17 .574713

i t e r 90 value 17 .555689

i t e r 100 value 17 .528989

i t e r 110 value 17 .523788

i t e r 120 value 17 .521761

i t e r 130 value 17 .521578

i t e r 140 value 17 .520840

i t e r 150 value 17 .520649

i t e r 150 value 17 .520649

f i n a l value 17 .520649

converged

> or ig = max . col ( t a r g e t s [−samp , ] )
> or ig

[ 1 ] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1

[ 3 6 ] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

[ 7 1 ] 3 3 3 3 3

> pred = max . col ( predic t ( i r1 , i r [−samp , ] ) )
> pred

[ 1 ] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 3 3 1 1 1 1 1 1 1

[ 3 6 ] 3 3 1 1 1 1 1 1 1 1 3 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

[ 7 1 ] 3 3 3 3 3

> table ( orig , pred )
pred

or ig 1 2 3

1 20 0 5
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2 0 25 0

3 0 0 25



15
Zero or One: Optimal Digital Portfolios

Digital assets are investments with returns that are binary in nature, i.e.,
they either have a very large or very small payoff. We explore the fea-
tures of optimal portfolios of digital assets such as venture investments,
credit assets and lotteries. These portfolios comprise correlated assets
with joint Bernoulli distributions. Using a simple, standard, fast recur-
sion technique to generate the return distribution of the portfolio, we
derive guidelines on how investors in digital assets may think about con-
structing their portfolios. We find that digital portfolios are better when
they are homogeneous in the size of the assets, but heterogeneous in the
success probabilities of the asset components.

The return distributions of digital portfolios are highly skewed and
fat-tailed. A good example of such a portfolio is a venture fund. A sim-
ple representation of the payoff to a digital investment is Bernoulli with
a large payoff for a successful outcome and a very small (almost zero)
payoff for a failed one. The probability of success of digital investments
is typically small, in the region of 5–25% for new ventures (see Das, Ja-
gannathan and Sarin (2003)). Optimizing portfolios of such investments
is therefore not amenable to standard techniques used for mean-variance
optimization.

It is also not apparent that the intuitions obtained from the mean-
variance setting carry over to portfolios of Bernoulli assets. For instance,
it is interesting to ask, ceteris paribus, whether diversification by in-
creasing the number of assets in the digital portfolio is always a good
thing. Since Bernoulli portfolios involve higher moments, how diversi-
fication is achieved is by no means obvious. We may also ask whether
it is preferable to include assets with as little correlation as possible
or is there a sweet spot for the optimal correlation levels of the assets?
Should all the investments be of even size, or is it preferable to take a
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few large bets and several small ones? And finally, is a mixed portfolio
of safe and risky assets preferred to one where the probability of success
is more uniform across assets? These are all questions that are of interest
to investors in digital type portfolios, such as CDO investors, venture
capitalists and investors in venture funds.

We will use a method that is based on standard recursion for model-
ing of the exact return distribution of a Bernoulli portfolio. This method
on which we build was first developed by Andersen, Sidenius and Basu
(2003) for generating loss distributions of credit portfolios. We then ex-
amine the properties of these portfolios in a stochastic dominance frame-
work framework to provide guidelines to digital investors. These guide-
lines are found to be consistent with prescriptions from expected utility
optimization. The prescriptions are as follows:

1. Holding all else the same, more digital investments are preferred,
meaning for example, that a venture portfolio should seek to maxi-
mize market share.

2. As with mean-variance portfolios, lower asset correlation is better, un-
less the digital investor’s payoff depends on the upper tail of returns.

3. A strategy of a few large bets and many small ones is inferior to one
with bets being roughly the same size.

4. And finally, a mixed portfolio of low-success and high-success assets
is better than one with all assets of the same average success probabil-
ity level.

Section 15.1 explains the methodology used. Section 15.4 presents the
results. Conclusions and further discussion are in Section 15.5.

15.1 Modeling Digital Portfolios

Assume that the investor has a choice of n investments in digital assets
(e.g., start-up firms). The investments are indexed i = 1, 2, . . . , n. Each in-
vestment has a probability of success that is denoted qi, and if successful,
the payoff returned is Si dollars. With probability (1 − qi), the invest-
ment will not work out, the start-up will fail, and the money will be lost
in totality. Therefore, the payoff (cashflow) is

Payoff = Ci =

{
Si with prob qi

0 with prob (1− qi)
(15.1)
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The specification of the investment as a Bernoulli trial is a simple rep-
resentation of reality in the case of digital portfolios. This mimics well
for example, the case of the venture capital business. Two generaliza-
tions might be envisaged. First, we might extend the model to allowing
Si to be random, i.e., drawn from a range of values. This will complicate
the mathematics, but not add much in terms of enriching the model’s
results. Second, the failure payoff might be non-zero, say an amount ai.
Then we have a pair of Bernoulli payoffs {Si, ai}. Note that we can de-
compose these investment payoffs into a project with constant payoff ai

plus another project with payoffs {Si − ai, 0}, the latter being exactly the
original setting where the failure payoff is zero. Hence, the version of the
model we solve in this note, with zero failure payoffs, is without loss of
generality.

Unlike stock portfolios where the choice set of assets is assumed to
be multivariate normal, digital asset investments have a joint Bernoulli
distribution. Portfolio returns of these investments are unlikely to be
Gaussian, and hence higher-order moments are likely to matter more.
In order to generate the return distribution for the portfolio of digital
assets, we need to account for the correlations across digital investments.
We adopt the following simple model of correlation. Define yi to be the
performance proxy for the i-th asset. This proxy variable will be simu-
lated for comparison with a threshold level of performance to determine
whether the asset yielded a success or failure. It is defined by the follow-
ing function, widely used in the correlated default modeling literature,
see for example Andersen, Sidenius and Basu (2003):

yi = ρi X +
√

1− ρ2
i Zi, i = 1 . . . n (15.2)

where ρi ∈ [0, 1] is a coefficient that correlates threshold yi with a nor-
malized common factor X ∼ N(0, 1). The common factor drives the
correlations amongst the digital assets in the portfolio. We assume that
Zi ∼ N(0, 1) and Corr(X, Zi) = 0, ∀i. Hence, the correlation between
assets i and j is given by ρi × ρj. Note that the mean and variance of yi

are: E(yi) = 0, Var(yi) = 1, ∀i. Conditional on X, the values of yi are all
independent, as Corr(Zi, Zj) = 0.

We now formalize the probability model governing the success or
failure of the digital investment. We define a variable xi, with distribu-
tion function F(·), such that F(xi) = qi, the probability of success of the
digital investment. Conditional on a fixed value of X, the probability of
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success of the i-th investment is defined as

pX
i ≡ Pr[yi < xi|X] (15.3)

Assuming F to be the normal distribution function, we have

pX
i = Pr

[
ρiX +

√
1− ρ2

i Zi < xi|X
]

= Pr

Zi <
xi − ρiX√

1− ρ2
i

|X


= Φ

[
F−1(qi)− ρiX√

1− ρi

]
(15.4)

where Φ(.) is the cumulative normal density function. Therefore, given
the level of the common factor X, asset correlation ρ, and the uncondi-
tional success probabilities qi, we obtain the conditional success prob-
ability for each asset pX

i . As X varies, so does pX
i . For the numerical

examples here we choose the function F(xi) to the cumulative normal
probability function.

We use a fast technique for building up distributions for sums of
Bernoulli random variables. In finance, this recursion technique was in-
troduced in the credit portfolio modeling literature by Andersen, Side-
nius and Basu (2003).

We deem an investment in a digital asset as successful if it achieves
its high payoff Si. The cashflow from the portfolio is a random variable
C = ∑n

i=1 Ci. The maximum cashflow that may be generated by the
portfolio will be the sum of all digital asset cashflows, because each and
every outcome was a success, i.e.,

Cmax =
n

∑
i=1

Si (15.5)

To keep matters simple, we assume that each Si is an integer, and that
we round off the amounts to the nearest significant digit. So, if the
smallest unit we care about is a million dollars, then each Si will be in
units of integer millions.

Recall that, conditional on a value of X, the probability of success of
digital asset i is given as pX

i . The recursion technique will allow us to
generate the portfolio cashflow probability distribution for each level of
X. We will then simply compose these conditional (on X) distributions
using the marginal distribution for X, denoted g(X), into the uncon-
ditional distribution for the entire portfolio. Therefore, we define the
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probability of total cashflow from the portfolio, conditional on X, to be
f (C|X). Then, the unconditional cashflow distribution of the portfolio
becomes

f (C) =
∫

X
f (C|X) · g(X) dX (15.6)

The distribution f (C|X) is easily computed numerically as follows.
We index the assets with i = 1 . . . n. The cashflow from all assets

taken together will range from zero to Cmax. Suppose this range is bro-
ken into integer buckets, resulting in NB buckets in total, each one con-
taining an increasing level of total cashflow. We index these buckets by
j = 1 . . . NB, with the cashflow in each bucket equal to Bj. Bj represents
the total cashflow from all assets (some pay off and some do not), and
the buckets comprise the discrete support for the entire distribution of
total cashflow from the portfolio. For example, suppose we had 10 as-
sets, each with a payoff of Ci = 3. Then Cmax = 30. A plausible set of
buckets comprising the support of the cashflow distribution would be:
{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, Cmax}.

Define P(k, Bj) as the probability of bucket j’s cashflow level Bj if we
account for the first k assets. For example, if we had just 3 assets, with
payoffs of value 1,3,2 respectively, then we would have 7 buckets, i.e.
Bj = {0, 1, 2, 3, 4, 5, 6}. After accounting for the first asset, the only
possible buckets with positive probability would be Bj = 0, 1, and af-
ter the first two assets, the buckets with positive probability would be
Bj = 0, 1, 3, 4. We begin with the first asset, then the second and so on,
and compute the probability of seeing the returns in each bucket. Each
probability is given by the following recursion:

P(k + 1, Bj) = P(k, Bj) [1− pX
k+1] + P(k, Bj− Sk+1) pX

k+1, k = 1, . . . , n− 1.
(15.7)

Thus the probability of a total cashflow of Bj after considering the first
(k + 1) firms is equal to the sum of two probability terms. First, the
probability of the same cashflow Bj from the first k firms, given that
firm (k + 1) did not succeed. Second, the probability of a cashflow of
Bj − Sk+1 from the first k firms and the (k + 1)-st firm does succeed.

We start off this recursion from the first asset, after which the NB

buckets are all of probability zero, except for the bucket with zero cash-
flow (the first bucket) and the one with S1 cashflow, i.e.,

P(1, 0) = 1− pX
1 (15.8)

P(1, S1) = pX
1 (15.9)
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All the other buckets will have probability zero, i.e., P(1, Bj 6= {0, S1}) =
0. With these starting values, we can run the system up from the first
asset to the n-th one by repeated application of equation (15.7). Finally,
we will have the entire distribution P(n, Bj), conditional on a given value
of X. We then compose all these distributions that are conditional on X
into one single cashflow distribution using equation (15.6). This is done
by numerically integrating over all values of X.

15.2 Implementation in R

15.2.1 Basic recursion

Given a set of outcomes and conditional (on state X) probabilities. we
develop the recursion logic above in the following R function:

asbrec = function (w, p ) {
#w: p a y o f f s
#p : p r o b a b i l i t i e s
#BASIC SET UP
N = length (w)
maxloss = sum(w)
bucket = c ( 0 , seq ( maxloss ) )
LP = matrix ( 0 ,N, maxloss +1) # p r o b a b i l i t y g r i d o v e r l o s s e s

#DO FIRST FIRM
LP [ 1 , 1 ] = 1−p [ 1 ] ;
LP [ 1 ,w[ 1 ] + 1 ] = p [ 1 ] ;

#LOOP OVER REMAINING FIRMS
for ( i in seq ( 2 ,N) ) {

for ( j in seq ( maxloss + 1 ) ) {
LP [ i , j ] = LP [ i −1 , j ] * (1−p [ i ] )
i f ( bucket [ j ]−w[ i ] >= 0 ) {

LP [ i , j ] = LP [ i , j ] + LP [ i −1 , j−w[ i ] ] *p [ i ]
}

}
}

#FINISH UP
lossprobs = LP [N, ]
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print ( t ( LP ) )
r e s u l t = matrix ( c ( bucket , lossprobs ) , ( maxloss + 1 ) , 2 )
}

We use this function in the following example.

w = c ( 5 , 8 , 4 , 2 , 1 )
p = array (1 / length (w) , length (w) )
r es = asbrec (w, p )
print ( r es )
print (sum( re s [ , 2 ] ) )
barplot ( r es [ , 2 ] , names . arg=re s [ , 1 ] ,

x lab=" p o r t f o l i o value " , ylab=" p r o b a b i l i t y " )

The output of this run is as follows:

[ , 1 ] [ , 2 ] [ , 3 ] [ , 4 ] [ , 5 ] [ , 6 ]
[ 1 , ] 0 0 . 8 0 . 6 4 0 . 512 0 .4096 0 .32768

[ 2 , ] 1 0 . 0 0 . 0 0 0 . 000 0 .0000 0 .08192

[ 3 , ] 2 0 . 0 0 . 0 0 0 . 000 0 .1024 0 .08192

[ 4 , ] 3 0 . 0 0 . 0 0 0 . 000 0 .0000 0 .02048

[ 5 , ] 4 0 . 0 0 . 0 0 0 . 128 0 .1024 0 .08192

[ 6 , ] 5 0 . 2 0 . 1 6 0 . 128 0 .1024 0 .10240

[ 7 , ] 6 0 . 0 0 . 0 0 0 . 000 0 .0256 0 .04096

[ 8 , ] 7 0 . 0 0 . 0 0 0 . 000 0 .0256 0 .02560

[ 9 , ] 8 0 . 0 0 . 1 6 0 . 128 0 .1024 0 .08704

[ 1 0 , ] 9 0 . 0 0 . 0 0 0 . 032 0 .0256 0 .04096

[ 1 1 , ] 10 0 . 0 0 . 0 0 0 . 000 0 .0256 0 .02560

[ 1 2 , ] 11 0 . 0 0 . 0 0 0 . 000 0 .0064 0 .01024

[ 1 3 , ] 12 0 . 0 0 . 0 0 0 . 032 0 .0256 0 .02176

[ 1 4 , ] 13 0 . 0 0 . 0 4 0 . 032 0 .0256 0 .02560

[ 1 5 , ] 14 0 . 0 0 . 0 0 0 . 000 0 .0064 0 .01024

[ 1 6 , ] 15 0 . 0 0 . 0 0 0 . 000 0 .0064 0 .00640

[ 1 7 , ] 16 0 . 0 0 . 0 0 0 . 000 0 .0000 0 .00128

[ 1 8 , ] 17 0 . 0 0 . 0 0 0 . 008 0 .0064 0 .00512

[ 1 9 , ] 18 0 . 0 0 . 0 0 0 . 000 0 .0000 0 .00128

[ 2 0 , ] 19 0 . 0 0 . 0 0 0 . 000 0 .0016 0 .00128

[ 2 1 , ] 20 0 . 0 0 . 0 0 0 . 000 0 .0000 0 .00032

Here each column represents one pass through the recursion. Since there
are five assets, we get five passes, and the final column is the result we
are looking for. The plot of the outcome distribution is shown in Figure
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Figure 15.1: Plot of the final out-
come distribution for a digital
portfolio with five assets of out-
comes {5, 8, 4, 2, 1} all of equal
probability.

We can explore these recursion calculations in some detail as follows.
Note that in our example pi = 0.2, i = 1, 2, 3, 4, 5. We are interested
in computing P(k, B), where k denotes the k-th recursion pass, and B
denotes the return bucket. Recall that we have five assets with return
levels of {5, 8, 4, 2, 1}, respecitvely. After i = 1, we have

P(1, 0) = (1− p1) = 0.8

P(1, 5) = p1 = 0.2

P(1, j) = 0, j 6= {0, 5}

The completes the first recursion pass and the values can be verified
from the R output above by examining column 2 (column 1 contains the
values of the return buckets). We now move on the calculations needed
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for the second pass in the recursion.

P(2, 0) = P(1, 0)(1− p2) = 0.64

P(2, 5) = P(1, 5)(1− p2) + P(1, 5− 8)p2 = 0.2(0.8) + 0(0.2) = 0.16

P(2, 8) = P(1, 8)(1− p2) + P(1, 8− 8)p2 = 0(0.8) + 0.8(0.2) = 0.16

P(2, 13) = P(1, 13)(1− p2) + P(1, 13− 8)p2 = 0(0.8) + 0.2(0.2) = 0.04

P(2, j) = 0, j 6= {0, 5, 8, 13}

The third recursion pass is as follows:

P(3, 0) = P(2, 0)(1− p3) = 0.512

P(3, 4) = P(2, 4)(1− p3) + P(2, 4− 4) = 0(0.8) + 0.64(0.2) = 0.128

P(3, 5) = P(2, 5)(1− p3) + P(2, 5− 4)p3 = 0.16(0.8) + 0(0.2) = 0.128

P(3, 8) = P(2, 8)(1− p3) + P(2, 8− 4)p3 = 0.16(0.8) + 0(0.2) = 0.128

P(3, 9) = P(2, 9)(1− p3) + P(2, 9− 4)p3 = 0(0.8) + 0.16(0.2) = 0.032

P(3, 12) = P(2, 12)(1− p3) + P(2, 12− 4)p3 = 0(0.8) + 0.16(0.2) = 0.032

P(3, 13) = P(2, 13)(1− p3) + P(2, 13− 4)p3 = 0.04(0.8) + 0(0.2) = 0.032

P(3, 17) = P(2, 17)(1− p3) + P(2, 17− 4)p3 = 0(0.8) + 0.04(0.2) = 0.008

P(3, j) = 0, j 6= {0, 4, 5, 8, 9, 12, 13, 17}

Note that the same computation work even when the outcomes are not
of equal probability.

15.2.2 Combining conditional distributions

We now demonstrate how we will integrate the conditional probability
distributions pX into an unconditional probability distribution of out-
comes, denoted p =

∫
X pXg(X) dX, where g(X) is the density function

of the state variable X. We create a function to combine the conditional
distribution functions. This function calls the absrec function that we
had used earlier.

#FUNCTION TO COMPUTE FULL RETURN DISTRIBUTION
#INTEGRATES OVER X BY CALLING ASBREC
digiprob = function ( L , q , rho ) {

dx = 0 . 1

x = seq (−40 ,40) *dx
fx = dnorm ( x ) *dx
fx = fx / sum( fx )
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maxloss = sum( L )
bucket = c ( 0 , seq ( maxloss ) )
to tp = array ( 0 , ( maxloss + 1 ) )
for ( i in seq ( length ( x ) ) ) {

p = pnorm ( ( qnorm ( q)−rho *x [ i ] ) / sqr t (1−rho ^ 2 ) )
l d i s t = asbrec ( L , p )
to tp = totp + l d i s t [ , 2 ] * fx [ i ]

}
r e s u l t = matrix ( c ( bucket , to tp ) , ( maxloss + 1 ) , 2 )

}

Note that now we will use the unconditional probabilities of success for
each asset, and correlate them with a specified correlation level. We run
this with two correlation levels {−0.5,+0.5}.

#−−−−−−INTEGRATE OVER CONDITIONAL DISTRIBUTIONS−−−−
w = c ( 5 , 8 , 4 , 2 , 1 )
q = c ( 0 . 1 , 0 . 2 , 0 . 1 , 0 . 0 5 , 0 . 1 5 )
rho = 0 . 2 5

res1 = digiprob (w, q , rho )
rho = 0 . 7 5

res2 = digiprob (w, q , rho )
par ( mfrow=c ( 2 , 1 ) )
barplot ( res1 [ , 2 ] , names . arg=res1 [ , 1 ] , x lab=" p o r t f o l i o value " ,

ylab=" p r o b a b i l i t y " , main=" rho = 0 . 2 5 " )
barplot ( res2 [ , 2 ] , names . arg=res2 [ , 1 ] , x lab=" p o r t f o l i o value " ,

ylab=" p r o b a b i l i t y " , main=" rho = 0 . 7 5 " )

The output plots of the unconditional outcome distribution are shown in
Figure 15.2. We can see the data for the plots as follows.

> cbind ( res1 , r es2 )
[ , 1 ] [ , 2 ] [ , 3 ] [ , 4 ]

[ 1 , ] 0 0 .5391766174 0 0 .666318464

[ 2 , ] 1 0 .0863707325 1 0 .046624312

[ 3 , ] 2 0 .0246746918 2 0 .007074104

[ 4 , ] 3 0 .0049966420 3 0 .002885901

[ 5 , ] 4 0 .0534700675 4 0 .022765422

[ 6 , ] 5 0 .0640540228 5 0 .030785967

[ 7 , ] 6 0 .0137226107 6 0 .009556413

[ 8 , ] 7 0 .0039074039 7 0 .002895774
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Figure 15.2: Plot of the final out-
come distribution for a digital
portfolio with five assets of out-
comes {5, 8, 4, 2, 1} with uncon-
ditional probability of success of
{0.1, 0.2, 0.1, 0.05, 0.15}, respecitvely.
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[ 9 , ] 8 0 .1247287209 8 0 .081172499

[ 1 0 , ] 9 0 .0306776806 9 0 .029154885

[ 1 1 , ] 10 0 .0086979993 10 0 .008197488

[ 1 2 , ] 11 0 .0021989842 11 0 .004841742

[ 1 3 , ] 12 0 .0152035638 12 0 .014391319

[ 1 4 , ] 13 0 .0186144920 13 0 .023667222

[ 1 5 , ] 14 0 .0046389439 14 0 .012776165

[ 1 6 , ] 15 0 .0013978502 15 0 .006233366

[ 1 7 , ] 16 0 .0003123473 16 0 .004010559

[ 1 8 , ] 17 0 .0022521668 17 0 .005706283

[ 1 9 , ] 18 0 .0006364672 18 0 .010008267

[ 2 0 , ] 19 0 .0002001003 19 0 .002144265

[ 2 1 , ] 20 0 .0000678949 20 0 .008789582

The left column of probabilities has correlation of ρ = 0.25 and the right
one is the case when ρ = 0.75. We see that the probabilities on the right
are lower for low outcomes (except zero) and high for high outcomes.
Why? See the plot of the difference between the high correlation case
and low correlation case in Figure 15.3.

15.3 Stochastic Dominance (SD)

SD is an ordering over probabilistic bundles. We may want to know if
one VC’s portfolio dominates another in a risk-adjusted sense. Differ-
ent SD concepts apply to answer this question. For example if portfo-
lio A does better than portfolio B in every state of the world, it clearly
dominates. This is called “state-by-state” dominance, and is hardly ever
encountered. Hence, we briefly examine two more common types of SD.

1. First-order Stochastic Dominance (FSD): For cumulative distribution
function F(X) over states X, portfolio A dominates B if Prob(A ≥ k) ≥
Prob(B ≥ k) for all states k ∈ X, and Prob(A ≥ k) > Prob(B ≥ k)
for some k. It is the same as Prob(A ≤ k) ≤ Prob(B ≤ k) for all states
k ∈ X, and Prob(A ≤ k) < Prob(B ≤ k) for some k.This implies
that FA(k) ≤ FB(k). The mean outcome under A will be higher than
under B, and all increasing utility functions will give higher utility for
A. This is a weaker notion of dominance than state-wise, but also not
as often encountered in practice.

> x = seq ( −4 ,4 , 0 .1 )
> F_B = pnorm ( x , mean=0 , sd = 1 ) ;
> F_A = pnorm ( x , mean=0 .25 , sd = 1 ) ;
> F_A−F_B #FSD e x i s t s

[ 1 ] −2.098272e−05 −3.147258e−05 −4.673923e−05 −6.872414e−05 −1.000497e−04

[ 6 ] −1.442118e−04 −2.058091e−04 −2.908086e−04 −4.068447e−04 −5.635454e−04
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distribution for a digital portfolio
with five assets when ρ = 0.75
minus that when ρ = 0.25. We use
outcomes {5, 8, 4, 2, 1} with uncon-
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[ 1 1 ] −7.728730e−04 −1.049461e−03 −1.410923e−03 −1.878104e−03 −2.475227e−03

[ 1 6 ] −3.229902e−03 −4.172947e−03 −5.337964e−03 −6.760637e−03 −8.477715e−03

[ 2 1 ] −1.052566e−02 −1.293895e−02 −1.574810e−02 −1.897740e−02 −2.264252e−02

[ 2 6 ] −2.674804e−02 −3.128519e−02 −3.622973e−02 −4.154041e−02 −4.715807e−02

[ 3 1 ] −5.300548e−02 −5.898819e−02 −6.499634e−02 −7.090753e−02 −7.659057e−02

[ 3 6 ] −8.191019e−02 −8.673215e−02 −9.092889e−02 −9.438507e−02 −9.700281e−02

[ 4 1 ] −9.870633e−02 −9.944553e−02 −9.919852e−02 −9.797262e−02 −9.580405e−02

[ 4 6 ] −9.275614e−02 −8.891623e−02 −8.439157e−02 −7.930429e−02 −7.378599e−02

[ 5 1 ] −6.797210e−02 −6.199648e−02 −5.598646e−02 −5.005857e−02 −4.431528e−02

[ 5 6 ] −3.884257e−02 −3.370870e−02 −2.896380e−02 −2.464044e−02 −2.075491e−02

[ 6 1 ] −1.730902e−02 −1.429235e−02 −1.168461e−02 −9.458105e−03 −7.580071e−03

[ 6 6 ] −6.014807e−03 −4.725518e−03 −3.675837e−03 −2.831016e−03 −2.158775e−03

[ 7 1 ] −1.629865e−03 −1.218358e−03 −9.017317e−04 −6.607827e−04 −4.794230e−04

[ 7 6 ] −3.443960e−04 −2.449492e−04 −1.724935e−04 −1.202675e−04 −8.302381e−05

[ 8 1 ] −5.674604e−05

2. Second-order Stochastic Dominance (SSD): Here the portfolios have
the same mean but the risk is less for portfolio A. Then we say that
portfolio A has a “mean-preserving spread” over portfolio B. Techni-
cally this is the same as

∫ k
−∞[FA(k)− FB(k)] dX < 0, and

∫
X XdFA(X) =∫

X XdFB(X). Mean-variance models in which portfolios on the effi-
cient frontier dominate those below are a special case of SSD. See the
example below, there is no FSD, but there is SSD.

> x = seq ( −4 ,4 , 0 .1 )
> F_B = pnorm ( x , mean=0 , sd = 2 ) ;
> F_A = pnorm ( x , mean=0 , sd = 1 ) ;
> F_A−F_B #No FSD

[ 1 ] −0 .02271846 −0 .02553996 −0 .02864421 −0 .03204898 −0 .03577121 −0 .03982653

[ 7 ] −0 .04422853 −0 .04898804 −0 .05411215 −0 .05960315 −0 .06545730 −0 .07166345

[ 1 3 ] −0 .07820153 −0 .08504102 −0 .09213930 −0 .09944011 −0 .10687213 −0 .11434783

[ 1 9 ] −0 .12176261 −0 .12899464 −0 .13590512 −0 .14233957 −0 .14812981 −0 .15309708

[ 2 5 ] −0 .15705611 −0 .15982015 −0 .16120699 −0 .16104563 −0 .15918345 −0 .15549363

[ 3 1 ] −0 .14988228 −0 .14229509 −0 .13272286 −0 .12120570 −0 .10783546 −0 .09275614

[ 3 7 ] −0 .07616203 −0 .05829373 −0 .03943187 −0 .01988903 0 .00000000 0 .01988903

[ 4 3 ] 0 .03943187 0 .05829373 0 .07616203 0 .09275614 0 .10783546 0 .12120570

[ 4 9 ] 0 .13272286 0 .14229509 0 .14988228 0 .15549363 0 .15918345 0 .16104563

[ 5 5 ] 0 .16120699 0 .15982015 0 .15705611 0 .15309708 0 .14812981 0 .14233957

[ 6 1 ] 0 .13590512 0 .12899464 0 .12176261 0 .11434783 0 .10687213 0 .09944011

[ 6 7 ] 0 .09213930 0 .08504102 0 .07820153 0 .07166345 0 .06545730 0 .05960315

[ 7 3 ] 0 .05411215 0 .04898804 0 .04422853 0 .03982653 0 .03577121 0 .03204898

[ 7 9 ] 0 .02864421 0 .02553996 0 .02271846

> cumsum( F_A−F_B ) #But t h e r e i s SSD
[ 1 ] −2.271846e−02 −4.825842e−02 −7.690264e−02 −1.089516e−01 −1.447228e−01

[ 6 ] −1.845493e−01 −2.287779e−01 −2.777659e−01 −3.318781e−01 −3.914812e−01

[ 1 1 ] −4.569385e−01 −5.286020e−01 −6.068035e−01 −6.918445e−01 −7.839838e−01

[ 1 6 ] −8.834239e−01 −9.902961e−01 −1.104644 e+00 −1.226407 e+00 −1.355401 e+00

[ 2 1 ] −1.491306 e+00 −1.633646 e+00 −1.781776 e+00 −1.934873 e+00 −2.091929 e+00

[ 2 6 ] −2.251749 e+00 −2.412956 e+00 −2.574002 e+00 −2.733185 e+00 −2.888679 e+00

[ 3 1 ] −3.038561 e+00 −3.180856 e+00 −3.313579 e+00 −3.434785 e+00 −3.542620 e+00

[ 3 6 ] −3.635376 e+00 −3.711538 e+00 −3.769832 e+00 −3.809264 e+00 −3.829153 e+00

[ 4 1 ] −3.829153 e+00 −3.809264 e+00 −3.769832 e+00 −3.711538 e+00 −3.635376 e+00

[ 4 6 ] −3.542620 e+00 −3.434785 e+00 −3.313579 e+00 −3.180856 e+00 −3.038561 e+00

[ 5 1 ] −2.888679 e+00 −2.733185 e+00 −2.574002 e+00 −2.412956 e+00 −2.251749 e+00

[ 5 6 ] −2.091929 e+00 −1.934873 e+00 −1.781776 e+00 −1.633646 e+00 −1.491306 e+00

[ 6 1 ] −1.355401 e+00 −1.226407 e+00 −1.104644 e+00 −9.902961e−01 −8.834239e−01

[ 6 6 ] −7.839838e−01 −6.918445e−01 −6.068035e−01 −5.286020e−01 −4.569385e−01

[ 7 1 ] −3.914812e−01 −3.318781e−01 −2.777659e−01 −2.287779e−01 −1.845493e−01

[ 7 6 ] −1.447228e−01 −1.089516e−01 −7.690264e−02 −4.825842e−02 −2.271846e−02
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[ 8 1 ] −2.220446e−16

15.4 Portfolio Characteristics

Armed with this established machinery, there are several questions an
investor (e.g. a VC) in a digital portfolio may pose. First, is there an op-
timal number of assets, i.e., ceteris paribus, are more assets better than
fewer assets, assuming no span of control issues? Second, are Bernoulli
portfolios different from mean-variances ones, in that is it always better
to have less asset correlation than more correlation? Third, is it better
to have an even weighting of investment across the assets or might it
be better to take a few large bets amongst many smaller ones? Fourth,
is a high dispersion of probability of success better than a low disper-
sion? These questions are very different from the ones facing investors
in traditional mean-variance portfolios. We shall examine each of these
questions in turn.

15.4.1 How many assets?

With mean-variance portfolios, keeping the mean return of the portfolio
fixed, more securities in the portfolio is better, because diversification re-
duces the variance of the portfolio. Also, with mean-variance portfolios,
higher-order moments do not matter. But with portfolios of Bernoulli
assets, increasing the number of assets might exacerbate higher-order
moments, even though it will reduce variance. Therefore it may not be
worthwhile to increase the number of assets (n) beyond a point.

In order to assess this issue we conducted the following experiment.
We invested in n assets each with payoff of 1/n. Hence, if all assets suc-
ceed, the total (normalized) payoff is 1. This normalization is only to
make the results comparable across different n, and is without loss of
generality. We also assumed that the correlation parameter is ρi = 0.25,
for all i. To make it easy to interpret the results, we assumed each asset
to be identical with a success probability of qi = 0.05 for all i. Using
the recursion technique, we computed the probability distribution of the
portfolio payoff for four values of n = {25, 50, 75, 100}. The distribution
function is plotted in Figure 15.4, left panel. There are 4 plots, one for
each n, and if we look at the bottom left of the plot, the leftmost line is
for n = 100. The next line to the right is for n = 75, and so on.
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One approach to determining if greater n is better for a digital portfo-
lio is to investigate if a portfolio of n assets stochastically dominates one
with less than n assets. On examination of the shapes of the distribution
functions for different n, we see that it is likely that as n increases, we
obtain portfolios that exhibit second-order stochastic dominance (SSD)
over portfolios with smaller n. The return distribution when n = 100
(denoted G100) would dominate that for n = 25 (denoted G25) in the SSD
sense, if

∫
x x dG100(x) =

∫
x x dG25(x), and

∫ u
0 [G100(x)− G25(x)] dx ≤ 0

for all u ∈ (0, 1). That is, G25 has a mean-preserving spread over G100,
or G100 has the same mean as G25 but lower variance, i.e., implies su-
perior mean-variance efficiency. To show this we plotted the integral∫ u

0 [G100(x)− G25(x)] dx and checked the SSD condition. We found that
this condition is satisfied (see Figure 15.4). As is known, SSD implies
mean-variance efficiency as well.
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Figure 15.4: Distribution func-
tions for returns from Bernoulli
investments as the number of in-
vestments (n) increases. Using the
recursion technique we computed
the probability distribution of the
portfolio payoff for four values of
n = {25, 50, 75, 100}. The distri-
bution function is plotted in the
left panel. There are 4 plots, one
for each n, and if we look at the
bottom left of the plot, the leftmost
line is for n = 100. The next line
to the right is for n = 75, and so
on. The right panel plots the value
of
∫ u

0 [G100(x)− G25(x)] dx for all
u ∈ (0, 1), and confirms that it is
always negative. The correlation
parameter is ρ = 0.25.
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We also examine if higher n portfolios are better for a power utility

investor with utility function, U(C) = (0.1+C)1−γ

1−γ , where C is the normal-
ized total payoff of the Bernoulli portfolio. Expected utility is given by
∑C U(C) f (C). We set the risk aversion coefficient to γ = 3 which is in
the standard range in the asset-pricing literature. Table 15.1 reports the
results. We can see that the expected utility increases monotonically with
n. Hence, for a power utility investor, having more assets is better than
less, keeping the mean return of the portfolio constant. Economically,
in the specific case of VCs, this highlights the goal of trying to capture
a larger share of the number of available ventures. The results from the
SSD analysis are consistent with those of expected power utility.

n E(C) Pr[C > 0.03] Pr[C > 0.07] Pr[C > 0.10] Pr[C > 0.15] E[U(C)]
25 0.05 0.665 0.342 0.150 0.059 −29.259
50 0.05 0.633 0.259 0.084 0.024 −26.755
75 0.05 0.620 0.223 0.096 0.015 −25.876
100 0.05 0.612 0.202 0.073 0.011 −25.433

Table 15.1: Expected utility for
Bernoulli portfolios as the number
of investments (n) increases. The
table reports the portfolio statistics
for n = {25, 50, 75, 100}. Expected
utility is given in the last column.
The correlation parameter is ρ =

0.25. The utility function is U(C) =
(0.1 + C)1−γ/(1− γ), γ = 3.We have abstracted away from issues of the span of management by

investors. Given that investors actively play a role in their invested assets
in digital portfolios, increasing n beyond a point may of course become
costly, as modeled in Kanniainen and Keuschnigg (2003).

15.4.2 The impact of correlation

As with mean-variance portfolios, we expect that increases in payoff cor-
relation for Bernoulli assets will adversely impact portfolios. In order to
verify this intuition we analyzed portfolios keeping all other variables
the same, but changing correlation. In the previous subsection, we set
the parameter for correlation to be ρ = 0.25. Here, we examine four
levels of the correlation parameter: ρ = {0.09, 0.25, 0.49, 0.81}. For each
level of correlation, we computed the normalized total payoff distribu-
tion. The number of assets is kept fixed at n = 25 and the probability of
success of each digital asset is 0.05 as before.

The results are shown in Figure 15.5 where the probability distribution
function of payoffs is shown for all four correlation levels. We find that
the SSD condition is met, i.e., that lower correlation portfolios stochasti-
cally dominate (in the SSD sense) higher correlation portfolios. We also
examined changing correlation in the context of a power utility investor
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with the same utility function as in the previous subsection. The results
are shown in Table 15.2. We confirm that, as with mean-variance portfo-
lios, Bernoulli portfolios also improve if the assets have low correlation.
Hence, digital investors should also optimally attempt to diversify their
portfolios. Insurance companies are a good example—they diversify risk
across geographical and other demographic divisions.
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Figure 15.5: Distribution func-
tions for returns from Bernoulli
investments as the correlation pa-
rameter (ρ2) increases. Using the
recursion technique we computed
the probability distribution of the
portfolio payoff for four values of
ρ = {0.09, 0.25, 0.49, 0.81} shown
by the black, red, green and blue
lines respectively. The distribution
function is plotted in the left panel.
The right panel plots the value of∫ u

0 [Gρ=0.09(x)− Gρ=0.81(x)] dx for
all u ∈ (0, 1), and confirms that it is
always negative.

15.4.3 Uneven bets?

Digital asset investors are often faced with the question of whether to
bet even amounts across digital investments, or to invest with different
weights. We explore this question by considering two types of Bernoulli
portfolios. Both have n = 25 assets within them, each with a success
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ρ E(C) Pr[C > 0.03] Pr[C > 0.07] Pr[C > 0.10] Pr[C > 0.15] E[U(C)]
0.32

0.05 0.715 0.356 0.131 0.038 −28.112
0.52

0.05 0.665 0.342 0.150 0.059 −29.259
0.72

0.05 0.531 0.294 0.170 0.100 −32.668
0.92

0.05 0.283 0.186 0.139 0.110 −39.758

Table 15.2: Expected utility for
Bernoulli portfolios as the cor-
relation (ρ) increases. The table
reports the portfolio statistics for
ρ = {0.09, 0.25, 0.49, 0.81}. Expected
utility is given in the last column.
The utility function is U(C) =

(0.1 + C)1−γ/(1− γ), γ = 3.

probability of qi = 0.05. The first has equal payoffs, i.e., 1/25 each. The
second portfolio has payoffs that monotonically increase, i.e., the payoffs
are equal to j/325, j = 1, 2, . . . , 25. We note that the sum of the payoffs
in both cases is 1. Table 15.3 shows the utility of the investor, where the
utility function is the same as in the previous sections. We see that the
utility for the balanced portfolio is higher than that for the imbalanced
one. Also the balanced portfolio evidences SSD over the imbalanced
portfolio. However, the return distribution has fatter tails when the port-
folio investments are imbalanced. Hence, investors seeking to distin-
guish themselves by taking on greater risk in their early careers may be
better off with imbalanced portfolios.

E(C) Probability that C > x
Wts E[U(C)] x = 0.01 x = 0.02 x = 0.03 x = 0.07 x = 0.10 x = 0.15 x = 0.25

Balanced 0.05 0.490 0.490 0.490 0.278 0.169 0.107 0.031

−33.782

Imbalanced 0.05 0.464 0.437 0.408 0.257 0.176 0.103 0.037

−34.494

Table 15.3: Expected utility for
Bernoulli portfolios when the
portfolio comprises balanced in-
vesting in assets versus imbalanced
weights. Both the balanced and
imbalanced portfolio have n = 25
assets within them, each with a
success probability of qi = 0.05.
The first has equal payoffs, i.e.
1/25 each. The second portfolio
has payoffs that monotonically in-
crease, i.e. the payoffs are equal to
j/325, j = 1, 2, . . . , 25. We note that
the sum of the payoffs in both cases
is 1. The correlation parameter is
ρ = 0.55. The utility function is
U(C) = (0.1 + C)1−γ/(1− γ), γ =

3.

15.4.4 Mixing safe and risky assets

Is it better to have assets with a wide variation in probability of success
or with similar probabilities? To examine this, we look at two portfolios
of n = 26 assets. In the first portfolio, all the assets have a probability of
success equal to qi = 0.10. In the second portfolio, half the firms have a
success probability of 0.05 and the other half have a probability of 0.15.
The payoff of all investments is 1/26. The probability distribution of
payoffs and the expected utility for the same power utility investor (with
γ = 3) are given in Table 15.4. We see that mixing the portfolio between
investments with high and low probability of success results in higher
expected utility than keeping the investments similar. We also confirmed
that such imbalanced success probability portfolios also evidence SSD
over portfolios with similar investments in terms of success rates. This
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result does not have a natural analog in the mean-variance world with
non-digital assets. For empirical evidence on the efficacy of various di-
versification approaches, see Lossen (2006).

E(C) Probability that C > x
Wts E[U(C)] x = 0.01 x = 0.02 x = 0.03 x = 0.07 x = 0.10 x = 0.15 x = 0.25

Uniform 0.10 0.701 0.701 0.701 0.502 0.366 0.270 0.111

−24.625

Mixed 0.10 0.721 0.721 0.721 0.519 0.376 0.273 0.106

−23.945

Table 15.4: Expected utility for
Bernoulli portfolios when the port-
folio comprises balanced investing
in assets with identical success
probabilities versus investing in
assets with mixed success probabil-
ities. Both the uniform and mixed
portfolios have n = 26 assets within
them. In the first portfolio, all the
assets have a probability of success
equal to qi = 0.10. In the second
portfolio, half the firms have a
success probability of 0.05 and the
other half have a probability of
0.15. The payoff of all investments
is 1/26. The correlation parameter
is ρ = 0.55. The utility function is
U(C) = (0.1 + C)1−γ/(1− γ), γ =

3.

15.5 Conclusions

Digital asset portfolios are different from mean-variance ones because
the asset returns are Bernoulli with small success probabilities. We
used a recursion technique borrowed from the credit portfolio litera-
ture to construct the payoff distributions for Bernoulli portfolios. We find
that many intuitions for these portfolios are similar to those of mean-
variance ones: diversification by adding assets is useful, low correlations
amongst investments is good. However, we also find that uniform bet
size is preferred to some small and some large bets. Rather than con-
struct portfolios with assets having uniform success probabilities, it is
preferable to have some assets with low success rates and others with
high success probabilities, a feature that is noticed in the case of venture
funds. These insights augment the standard understanding obtained
from mean-variance portfolio optimization.

The approach taken here is simple to use. The only inputs needed are
the expected payoffs of the assets Ci, success probabilities qi, and the av-
erage correlation between assets, given by a parameter ρ. Broad statistics
on these inputs are available, say for venture investments, from papers
such as Das, Jagannathan and Sarin (2003). Therefore, using data, it is
easy to optimize the portfolio of a digital asset fund. The technical ap-
proach here is also easily extended to features including cost of effort by
investors as the number of projects grows (Kanniainen and Keuschnigg
(2003)), syndication, etc. The number of portfolios with digital assets ap-
pears to be increasing in the marketplace, and the results of this analysis
provide important intuition for asset managers.

The approach in Section 2 is just one way in which to model joint suc-
cess probabilities using a common factor. Undeniably, there are other



zero or one: optimal digital portfolios 413

ways too, such as modeling joint probabilities directly, making sure that
they are consistent with each other, which itself may be mathematically
tricky. It is indeed possible to envisage that, for some different system
of joint success probabilities, the qualitative nature of the results may
differ from the ones developed here. It is also possible that the system
we adopt here with a single common factor X may be extended to more
than one common factor, an approach often taken in the default litera-
ture.





16
Against the Odds: Mathematics of Gambling

16.1 Introduction

Most people hate mathematics but love gambling. Which of course, is
strange because gambling is driven mostly by math. Think of any type
of gambling and no doubt there will be maths involved: Horse-track
betting, sports betting, blackjack, poker, roulette, stocks, etc.

16.1.1 Odds

Oddly, bets are defined by their odds. If a bet on a horse is quoted at 4-
to-1 odds, it means that if you win, you receive 4 times your wager plus
the amount wagered. That is, if you bet $1, you get back $5.

The odds effectively define the probability of winning. Lets define this
to be p. If the odds are fair, then the expected gain is zero, i.e.

$4p + (1− p)(−$1) = $0

which implies that p = 1/5. Hence, if the odds are x : 1, then the proba-
bility of winning is p = 1

x+1 = 0.2.

16.1.2 Edge

Everyone bets because they think they have an advantage, or an edge
over the others. It might be that they just think they have better informa-
tion, better understanding, are using secret technology, or actually have
private information (which may be illegal).

The edge is the expected profit that will be made from repeated trials
relative to the bet size. You have an edge if you can win with higher
probability (p∗) than p = 1/(x + 1). In the above example, with bet size



416 data science: theories, models, algorithms, and analytics

$1 each time, suppose your probability of winning is not 1/5, but instead
it is 1/4. What is your edge? The expected profit is

(−1)× (3/4) + 4× (1/4) = 1/4

Dividing this by the bet size (i.e. $1) gives the edge equal to 1/4. No
edge means zero or negative value betting.

16.1.3 Bookmakers

These folks set the odds. Odds are dynamic of course. If the bookie
thinks the probability of a win is 1/5, then he will set the odds to be a
bit less than 4:1, maybe something like 3.5:1. In this way his expected
intake minus payout is positive. At 3.5:1 odds, if there are still a lot of
takers, then the bookie surely realizes that the probability of a win must
be higher than in his own estimation. He also infers that p > 1/(3.5 + 1),
and will then change the odds to say 3:1. Therefore, he acts as a market
maker in the bet.

16.2 Kelly Criterion

Suppose you have an edge. How should you bet over repeated plays of
the game to maximize your wealth. (Do you think this is the way that
hedge funds operate?) The Kelly (1956) criterion says that you should
invest only a fraction of your wealth in the bet. By keeping some aside
you are guaranteed to not end up in ruin.

What fraction should you bet? The answer is that you should bet

f =
Edge
Odds

=
p∗x− (1− p∗)

x

where the odds are expressed in the form x : 1. Recall that p∗ is your
privately known probability of winning.

16.2.1 Example

Using the same numbers as we had before, i.e., x = 4, p∗ = 1/4 = 0.25,
we get

f =
0.25(4)− (1− 0.25)

4
=

0.25
4

= 0.0625

which means we invest 6.25% of the current bankroll. Lets simulate this
strategy using R. Here is a simple program to simulate it, with optimal
Kelly betting, and over- and under-betting.
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# S i m u l a t i o n o f t h e K e l l y C r i t e r i o n
# B a s i c d a t a
p st a r = 0 . 2 5 # p r i v a t e prob o f winning
odds = 4 # a c t u a l odds
p = 1 / (1+ odds ) # house p r o b a b i l i t y o f winning
edge = ps t ar *odds − (1−p st a r )
f = edge / odds
print ( c ( "p=" ,p , " p s ta r=" , pstar , " edge=" , edge , " f " , f ) )

n = 1000

x = runif ( n )
f _ over = 1 . 5 * f
f _under = 0 . 5 * f
bankro l l = rep ( 0 , n ) ; bankro l l [1 ]=1

br _ overbet = bankro l l ; br _ overbet [1 ]=1

br _ underbet = bankro l l ; br _ underbet [1 ]=1

for ( i in 2 : n ) {
i f ( x [ i ]<= p s ta r ) {

bankro l l [ i ] = bankro l l [ i −1] + bankro l l [ i −1]* f *odds
br _ overbet [ i ] = br _ overbet [ i −1] + br _ overbet [ i −1]* f _ over *odds
br _ underbet [ i ] = br _ underbet [ i −1] + br _ underbet [ i −1]* f _under *odds
}

e lse {
bankro l l [ i ] = bankro l l [ i −1] − bankro l l [ i −1]* f
br _ overbet [ i ] = br _ overbet [ i −1] − br _ overbet [ i −1]* f _ over
br _ underbet [ i ] = br _ underbet [ i −1] − br _ underbet [ i −1]* f _under
}

}

par ( mfrow=c ( 3 , 1 ) )
plot ( bankrol l , type=" l " )
plot ( br _ overbet , type=" l " )
plot ( br _ underbet , type=" l " )
print ( c ( bankro l l [ n ] , br _ overbet [ n ] , br _ underbet [ n ] ) )
print ( c ( bankro l l [ n ] / br _ overbet [ n ] , bankro l l [ n ] / br _ underbet [ n ] ) )

Here is the run time listing.

> source ( " k e l l y . R" )
[ 1 ] "p=" " 0 . 2 " " p s ta r=" " 0 . 2 5 " " edge=" " 0 . 2 5 " " f "
[ 8 ] " 0 .0625 " "n=" " 1000 "
[ 1 ] 542 .29341 67 .64294 158 .83357

[ 1 ] 8 .016999 3 .414224

We repeat bets a thousand times. The initial pot is $1 only, but after a
thousand trials, the optimal strategy ends up at $542.29, the over-betting
one yields$67.64, and the under-betting one delivers $158.83. The ratio
of the optimal strategy to these two sub-optimal ones is 8.02 and 3.41,
respectively. This is conservative. Rerunning the model for another trial
with n = 1000 we get:

> source ( " k e l l y . R" )
[ 1 ] "p=" " 0 . 2 " " p s ta r=" " 0 . 2 5 " " edge=" " 0 . 2 5 " " f "
[ 8 ] " 0 .0625 " "n=" " 1000 "
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[ 1 ] 6 .426197 e+15 1 .734158 e+12 1 .313690 e+12

[ 1 ] 3705 .657 4891 .714

The ratios are huge in comparison in this case, i.e., 3705 and 4891, re-
spectively. And when we raise the trials to n = 5000, we have

> source ( " k e l l y . R" )
[ 1 ] "p=" " 0 . 2 " " p s ta r=" " 0 . 2 5 " " edge=" " 0 . 2 5 " " f "
[ 8 ] " 0 .0625 " "n=" " 5000 "

[ 1 ] 484145279169 1837741 9450314895

[ 1 ] 263445 .8383 51 .2306

Note here that over-betting is usually worse then under-betting the Kelly
optimal. Hence, many players employ what is known as the ‘Half-Kelly”
rule, i.e., they bet f /2.

Look at the resultant plot of the three strategies for the first example,
shown in Figure 16.1. The top plot follows the Kelly criterion, but the
other two deviate from it, by overbetting or underbetting the fraction
given by Kelly.

We can very clearly see that not betting Kelly leads to far worse out-
comes than sticking with the Kelly optimal plan. We ran this for 1000

periods, as if we went to the casino every day and placed one bet (or
we placed four bets every minute for about four hours straight). Even
within a few trials, the performance of the Kelly is remarkable. Note
though that this is only one of the simulated outcomes. The simulations
would result in different types of paths of the bankroll value, but gener-
ally, the outcomes are similar to what we see in the figure.

Over-betting leads to losses faster than under-betting as one would
naturally expect, because it is the more risky strategy.

In this model, under the optimal rule, the probability of dropping to
1/n of the bankroll is 1/n. So the probability of dropping to 90% of the
bankroll (n = 1.11) is 0.9. Or, there is a 90% chance of losing 10% of the
bankroll.

Alternate betting rules are: (a) fixed size bets, (b) double up bets. The
former is too slow, the latter ruins eventually.

16.2.2 Deriving the Kelly Criterion

First we define some notation. Let Bt be the bankroll at time t. We index
time as going from time t = 1, . . . , N.

The odds are denoted, as before x : 1, and the random variable denot-
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Figure 16.1: Bankroll evolution
under the Kelly rule. The top
plot follows the Kelly criterion,
but the other two deviate from
it, by overbetting or underbetting
the fraction given by Kelly. The
variables are: odds are 4 to 1,
implying a house probability
of p = 0.2, own probability of
winning is p∗ = 0.25.
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ing the outcome (i.e., gains) of the wager is written as

Zt =

{
x w/p p
−1 w/p (1− p)

We are said to have an edge when E(Zt) > 0. The edge will be equal to
px− (1− p) > 0.

We invest fraction f of our bankroll, where 0 < f < 1, and since f 6= 1,
there is no chance of being wiped out. Each wager is for an amount f Bt

and returns f BtZt. Hence, we may write

Bt = Bt−1 + f Bt−1Zt

= Bt−1[1 + f Zt]

= B0

t

∏
i=1

[1 + f Zt]

If we define the growth rate as

gt( f ) =
1
t

ln
(

Bt

B0

)
=

1
t

ln
t

∏
i=1

[1 + f Zt]

=
1
t

t

∑
i=1

ln[1 + f Zt]

Taking the limit by applying the law of large numbers, we get

g( f ) = lim
t→∞

gt( f ) = E[ln(1 + f Z)]

which is nothing but the time average of ln(1 + f Z). We need to find the
f that maximizes g( f ). We can write this more explicitly as

g( f ) = p ln(1 + f x) + (1− p) ln(1− f )

Differentiating to get the f.o.c,

∂g
∂ f

= p
x

1 + f x
+ (1− p)

−1
1− f

= 0

Soving this first-order condition for f gives

The Kelly criterion: f ∗ =
px− (1− p)

x
This is the optimal fraction of the bankroll that should be invested
in each wager. Note that we are back to the well-known formula of
Edge/Odds we saw before.
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16.3 Entropy

Entropy is defined by physicists as the extent of disorder in the universe.
Entropy in the universe keeps on increasing. Things get more and more
disorderly. The arrow of time moves on inexorably, and entropy keeps
on increasing.

It is intuitive that as the entropy of a communication channel in-
creases, its informativeness decreases. The connection between entropy
and informativeness was made by Claude Shannon, the father of infor-
mation theory. It was his PhD thesis at MIT. See Shannon (1948).

With respect to probability distributions, entropy of a discrete distri-
bution taking values {p1, p2, . . . , pK} is

H = −
K

∑
j=1

pj ln(pj)

For the simple wager we have been considering, entropy is

H = −[p ln p + (1− p) ln(1− p)]

This is called Shannon entropy after his seminal work in 1948. For p =

1/2, 1/5, 1/100 entropy is

> p = 0 . 5 ; −(p* log ( p)+(1−p ) * log (1−p ) )
[ 1 ] 0 .6931472

> p = 0 . 2 ; −(p* log ( p)+(1−p ) * log (1−p ) )
[ 1 ] 0 .5004024

> p = 0 . 0 1 ; −(p* log ( p)+(1−p ) * log (1−p ) )
[ 1 ] 0 .05600153

We see various probability distributions in decreasing order of entropy.
At p = 0.5 entropy is highest.

Note that the normal distribution is the one with the highest entropy
in its class of distributions.

16.3.1 Linking the Kelly Criterion to Entropy

For the particular case of a simple random walk, we have odds x = 1. In
this case,

f ∗ = p− (1− p) = 2p− 1
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where we see that p = 1/2, and the optimal average bet value is

g∗ = p ln(1 + f ) + (1− p) ln(1− f )

= p ln(2p) + (1− p) ln[2(1− p)]

= ln 2 + p ln p + (1− p) ln(1− p)

= ln 2− H

where H is the entropy of the distribution of Z. For p = 0.5, we have

g∗ = ln 2− 0.5 ln(0.5)− 0.5 ln(0.5) = 1.386294

We note that g∗ is decreasing in entropy, because informativeness
declines with entropy and so the portfolio earns less if we have less of an
edge, i.e. our winning information is less than perfect.

16.3.2 Linking the Kelly criterion to portfolio optimization

A small change in the mathematics above leads to an analogous concept
for portfolio policy. The value of a portfolio follows the dynamics below

Bt = Bt−1[1 + (1− f )r + f Zt] = B0

t

∏
i=1

[1 + r + f (Zt − r)]

Hence, the growth rate of the portfolio is given by

gt( f ) =
1
t

ln
(

Bt

B0

)
=

1
t

ln

(
t

∏
i=1

[1 + r + f (Zt − r)]

)

=
1
t

t

∑
i=1

ln ([1 + r + f (Zt − r)])

Taking the limit by applying the law of large numbers, we get

g( f ) = lim
t→∞

gt( f ) = E[ln(1 + r + f (Z− r))]

Hence, maximizing the growth rate of the portfolio is the same as max-
imizing expected log utility. For a much more detailed analysis, see
Browne and Whitt (1996).

16.3.3 Implementing day trading

We may choose any suitable distribution for the asset Z. Suppose Z is
normally distributed with mean µ and variance σ2. Then we just need to
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find f such that we have

f ∗ = argmax f E[ln(1 + r + f (Z− r))]

This may be done numerically. Note now that this does not guarantee
that 0 < f < 1, which does not preclude ruin.

How would a day-trader think about portfolio optimization? His
problem would be closer to that of a gambler’s because he is very much
like someone at the tables, making a series of bets, whose outcomes be-
come known in very short time frames. A day-trader can easily look at
his history of round-trip trades and see how many of them made money,
and how many lost money. He would then obtain an estimate of p, the
probability of winning, which is the fraction of total round-trip trades
that make money.

The Lavinio (2000) d-ratio is known as the ‘gain-loss” ratio and is as
follows:

d =
nd ×∑n

j=1 max(0,−Zj)

nu ×∑n
j=1 max(0, Zj)

where nd is the number of down (loss) trades, and nu is the number of
up (gain) trades and n = nd + nu, and Zj are the returns on the trades.
In our original example at the beginning of this chapter, we have odds
of 4:1, implying nd = 4 loss trades for each win (nu = 1) trade, and a
winning trade nets +4, and a losing trade nets −1. Hence, we have

d =
4× (1 + 1 + 1 + 1)

1× 4
= 4 = x

which is just equal to the odds. Once, these are computed, the day-
trader simply plugs them in to the formula we had before, i.e.,

f =
px− (1− p)

x
= p− (1− p)

x

Of course, here p = 0.2. A trader would also constantly re-assess the
values of p and x given that the markets change over time.

16.4 Casino Games

The statistics of various casino games are displayed in Figure 16.2. To
recap, note that the Kelly criterion maximizes the average bankroll and
also minimizes the risk of ruin, but is of no use if the house had an edge.
You need to have an edge before it works. But then it really works! It is
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not a short-term formula and works over a long sequence of bets. Nat-
urally it follows that it also minimizes the number of bets needed to
double the bankroll.

Figure 16.2: See
http://wizardofodds.com/gambling/house-edge/.
The House Edge for various games.
The edge is the same as − f in our
notation. The standard deviation is
that of the bankroll of $1 for one
bet.

In a neat paper, Thorp (1997) presents various Kelly rules for black-
jack, sports betting, and the stock market. Reading Thorp (1962) for
blackjack is highly recommended. And of course there is the great story
of the MIT Blackjack Team in Mezrich (2003). Here is an example from
Thorp (1997).

Suppose you have an edge where you can win +1 with probability
0.51, and lose −1 with probability 0.49 when the blackjack deck is “hot”
and when it is cold the probabilities are reversed. We will bet f on the
hot deck and a f , a < 1 on the cold deck. We have to bet on cold decks
just to prevent the dealer from getting suspicious. Hot and cold decks
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occur with equal probability. Then the Kelly growth rate is

g( f ) = 0.5[0.51 ln(1+ f )+ 0.49 ln(1− f )]+ 0.5[0.49 ln(1+ a f )+ 0.51 ln(1− a f )]

If we do not bet on cold decks, then a = 0 and f ∗ = 0.02 using the usual
formula. As a increases from 0 to 1, we see that f ∗ decreases. Hence, we
bet less of our pot to make up for losses from cold decks. We compute
this and get the following:

a = 0 → f ∗ = 0.020

a = 1/4 → f ∗ = 0.014

a = 1/2 → f ∗ = 0.008

a = 3/4 → f ∗ = 0.0032





17
In the Same Boat: Cluster Analysis and Prediction Trees

17.1 Introduction

There are many aspects of data analysis that call for grouping individ-
uals, firms, projects, etc. These fall under the rubric of what may be
termed as “classification” analysis. Cluster analysis comprises a group of
techniques that uses distance metrics to bunch data into categories.

There are two broad approaches to cluster analysis:

1. Agglomerative or Hierarchical or Bottom-up: In this case we begin
with all entities in the analysis being given their own cluster, so that
we start with n clusters. Then, entities are grouped into clusters based
on a given distance metric between each pair of entities. In this way
a hierarchy of clusters is built up and the researcher can choose which
grouping is preferred.

2. Partitioning or Top-down: In this approach, the entire set of n entities
is assumed to be a cluster. Then it is progressively partitioned into
smaller and smaller clusters.

We will employ both clustering approaches and examine their properties
with various data sets as examples.

17.2 Clustering using k-means

This approach is bottom-up. If we have a sample of n observations to be
allocated to k clusters, then we can initialize the clusters in many ways.
One approach is to assume that each observation is a cluster unto itself.
We proceed by taking each observation and allocating it to the nearest
cluster using a distance metric. At the outset, we would simply allocate
an observation to its nearest neighbor.
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How is nearness measured? We need a distance metric, and one com-
mon one is Euclidian distance. Suppose we have two observations xi

and xj. These may be represented by a vector of attributes. Suppose
our observations are people, and the attributes are {height, weight, IQ}
= xi = {hi, wi, Ii} for the i-th individual. Then the Euclidian distance
between two individuals i and j is

dij =
√
(hi − hj)2 + (wi − wj)2 + (Ii − Ij)2

In contrast, the “Manhattan” distance is given by (when is this more
appropriate?)

dij = |hi − hj|+ |wi − wj|+ |Ii − Ij|
We may use other metrics such as the cosine distance, or the Maha-
lanobis distance. A matrix of n × n values of all dijs is called the “dis-
tance matrix.” Using this distance metric we assign nodes to clusters or
attach them to nearest neighbors. After a few iterations, no longer are
clusters made up of singleton observations, and the number of clusters
reaches k, the preset number required, and then all nodes are assigned to
one of these k clusters. As we examine each observation we then assign
it (or re-assign it) to the nearest cluster, where the distance is measured
from the observation to some representative node of the cluster. Some
common choices of the representative node in a cluster of are:

1. Centroid of the cluster. This is the mean of the observations in the
cluster for each attribute. The centroid of the two observations above
is the average vector {(hi + hj)/2, (wi + wj)/2, (Ii + Ij)/2}. This is
often called the “center” of the cluster. If there are more nodes then
the centroid is the average of the same coordinate for all nodes.

2. Closest member of the cluster.

3. Furthest member of the cluster.

The algorithm converges when no re-assignments of observations to
clusters occurs. Note that k-means is a random algorithm, and may not
always return the same clusters every time the algorithm is run. Also,
one needs to specify the number of clusters to begin with and there may
be no a-priori way in which to ascertain the correct number. Hence, trial
and error and examination of the results is called for. Also, the algorithm
aims to have balanced clusters, but this may not always be appropriate.

In R, we may construct the distance matrix using the dist function.
Using the NCAA data we are already familiar with, we have:
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> ncaa = read . table ( " ncaa . t x t " , header=TRUE)
> names ( ncaa )

[ 1 ] "No" "NAME" "GMS" " PTS " "REB" "AST" "TO" "A. T" " STL " "BLK"
[ 1 1 ] " PF " "FG" "FT" "X3P"
> d = d i s t ( ncaa [ , 3 : 1 4 ] , method=" e u c l i d i a n " )

Examining this matrix will show that it contains n(n − 1)/2 elements,
i.e., the number of pairs of nodes. Only the lower triangular matrix of d
is populated.

It is important to note that since the size of the variables is very dif-
ferent, simply applying the dist function is not advised, as the larger
variables swamp the distance calculation. It is best to normalize the vari-
ables first, before calculating distances. The scale function in R is simple
to apply as follows.
> ncaa _ data = as . matrix ( ncaa [ , 3 : 1 4 ] )
> summary ( ncaa_ data )

GMS PTS REB AST TO
Min . : 1 . 0 0 0 Min . : 4 6 . 0 0 Min . : 1 9 . 0 0 Min . : 2 . 0 0 Min . : 5 . 0 0

1 s t Qu. : 1 . 0 0 0 1 s t Qu. : 6 1 . 7 5 1 s t Qu. : 3 1 . 7 5 1 s t Qu. : 1 0 . 0 0 1 s t Qu. : 1 1 . 0 0

Median : 2 . 0 0 0 Median : 6 7 . 0 0 Median : 3 4 . 3 5 Median : 1 3 . 0 0 Median : 1 3 . 5 0

Mean : 1 . 9 8 4 Mean : 6 7 . 1 0 Mean : 3 4 . 4 7 Mean : 1 2 . 7 5 Mean : 1 3 . 9 6

3rd Qu. : 2 . 2 5 0 3rd Qu. : 7 3 . 1 2 3rd Qu. : 3 7 . 2 0 3rd Qu. : 1 5 . 5 7 3rd Qu. : 1 7 . 0 0

Max . : 6 . 0 0 0 Max . : 8 8 . 0 0 Max . : 4 3 . 0 0 Max . : 2 0 . 0 0 Max . : 2 4 . 0 0

A. T STL BLK PF
Min . : 0 . 1 5 0 0 Min . : 2 .000 Min . : 0 . 0 0 0 Min . : 1 2 . 0 0

1 s t Qu. : 0 . 7 4 0 0 1 s t Qu . : 5 .000 1 s t Qu. : 1 . 2 2 5 1 s t Qu. : 1 6 . 0 0

Median : 0 . 9 7 0 0 Median : 7 .000 Median : 2 . 7 5 0 Median : 1 9 . 0 0

Mean : 0 . 9 7 7 8 Mean : 6 .823 Mean : 2 . 7 5 0 Mean : 1 8 . 6 6

3rd Qu. : 1 . 2 3 2 5 3rd Qu . : 8 .425 3rd Qu. : 4 . 0 0 0 3rd Qu. : 2 0 . 0 0

Max . : 1 . 8 7 0 0 Max . : 1 2 . 0 0 0 Max . : 6 . 5 0 0 Max . : 2 9 . 0 0

FG FT X3P
Min . : 0 . 2 9 8 0 Min . : 0 . 2 5 0 0 Min . : 0 . 0 9 1 0

1 s t Qu. : 0 . 3 8 5 5 1 s t Qu. : 0 . 6 4 5 2 1 s t Qu. : 0 . 2 8 2 0

Median : 0 . 4 2 2 0 Median : 0 . 7 0 1 0 Median : 0 . 3 3 3 0

Mean : 0 . 4 2 3 3 Mean : 0 . 6 9 1 5 Mean : 0 . 3 3 3 4

3rd Qu. : 0 . 4 6 3 2 3rd Qu. : 0 . 7 7 0 5 3rd Qu. : 0 . 3 9 4 0

Max . : 0 . 5 4 2 0 Max . : 0 . 8 8 9 0 Max . : 0 . 5 2 2 0

> ncaa _ data = s c a l e ( ncaa_ data )

The scale function above normalizes all columns of data. If you run
summary again, all variables will have mean zero and unit standard devi-
ation. Here is a check.

> round ( apply ( ncaa_ data , 2 , mean ) , 2 )
GMS PTS REB AST TO A. T STL BLK PF FG FT X3P

0 0 0 0 0 0 0 0 0 0 0 0

> apply ( ncaa_ data , 2 , sd )
GMS PTS REB AST TO A. T STL BLK PF FG FT X3P

1 1 1 1 1 1 1 1 1 1 1 1

Clustering takes many observations with their characteristics and
then allocates them into buckets or clusters based on their similarity.
In finance, we may use cluster analysis to determine groups of similar
firms. For example, see Figure 17.1, where I ran a cluster analysis on VC
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financing of startups to get a grouping of types of venture financing into
different styles.

Unlike regression analysis, cluster analysis uses only the right-hand
side variables, and there is no dependent variable required. We group
observations purely on their overall similarity across characteristics.
Hence, it is closely linked to the notion of “communities” that we stud-
ied earlier, though that concept lives in the domain of networks.

2:	  Exp	  stage—Computer	  	  

1:	  Early/Exp	  stage—Non	  US	  

3:	  Early	  stage—Computer	  

5:	  Early/Exp	  stage—Comm/Media	  

4:	  Early/Exp/Late	  stage—Non	  High-‐tech	  

6:	  Late	  stage—Comm/Media	  &	  Computer	  

7:	  Early/Exp/Late	  stage—Medical	  	  

8:	  Early/Exp/Late	  stage—Biotech	  	  

9:	  Early/Exp/Late	  stage—Semiconductors	  	  	  

10:	  Seed	  stage	  

11:	  Buyout	  stage	  <Large	  Inv>	  

12:	  Other	  stage	  

Figure 17.1: VC Style Clusters.

17.2.1 Example: Randomly generated data in kmeans

Here we use the example from the kmeans function to see how the clus-
ters appear. This function is standard issue, i.e., it comes with the stats
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package, which is included in the base R distribution and does not need
to be separately installed. The data is randomly generated but has two
bunches of items with different means, so we should be easily able to see
two separate clusters. You will need the graphics package which is also
in the base installation.
> require ( graphics )
>
> # a 2−d i m e n s i o n a l example
> x <− rbind ( matrix ( rnorm ( 1 0 0 , sd = 0 . 3 ) , ncol = 2 ) ,
+ matrix ( rnorm ( 1 0 0 , mean = 1 , sd = 0 . 3 ) , ncol = 2 ) )
> colnames ( x ) <− c ( " x " , " y " )
> ( c l <− kmeans ( x , 2 ) )
K−means c l u s t e r i n g with 2 c l u s t e r s of s i z e s 52 , 48

Cluster means :
x y

1 0 .98813364 1 .01967200

2 −0 .02752225 −0 .02651525

Cluster ing vector :
[ 1 ] 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2

[ 3 6 ] 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[ 7 1 ] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2

Within c l u s t e r sum of squares by c l u s t e r :
[ 1 ] 10 .509092 6 .445904

Avai lable components :
[ 1 ] " c l u s t e r " " c e n t e r s " " withinss " " s i z e "
> plot ( x , col = c l $ c l u s t e r )
> points ( c l $ centers , col = 1 : 2 , pch = 8 , cex =2)

The plotted clusters appear in Figure 17.2.
We can also examine the same example with 5 clusters. The output is

shown in Figure 17.3
> ## random s t a r t s do h e l p h e r e wi th t o o many c l u s t e r s
> ( c l <− kmeans ( x , 5 , n s t a r t = 2 5 ) )
K−means c l u s t e r i n g with 5 c l u s t e r s of s i z e s 25 , 22 , 16 , 20 , 17

Cluster means :
x y

1 −0 .1854632 0 .1129291

2 0 .1321432 −0 .2089422

3 0 .9217674 0 .6424407

4 0 .7404867 1 .2253548

5 1 .3078410 1 .1022096

Cluster ing vector :
[ 1 ] 1 2 1 1 2 2 2 4 2 1 2 1 1 1 1 2 2 1 2 1 1 1 1 2 2 1 1 2 2 3 1 2 2 1 2

[ 3 6 ] 2 3 2 2 1 1 2 1 1 1 1 1 2 1 2 5 5 4 4 4 4 4 4 5 4 5 4 5 5 5 5 3 4 3 3

[ 7 1 ] 3 3 3 5 5 5 5 5 4 5 4 4 3 4 5 3 5 4 3 5 4 4 3 3 4 3 4 3 4 3

Within c l u s t e r sum of squares by c l u s t e r :
[ 1 ] 2 .263606 1 .311527 1 .426708 2 .084694 1 .329643

Avai lable components :
[ 1 ] " c l u s t e r " " c e n t e r s " " withinss " " s i z e "
> plot ( x , col = c l $ c l u s t e r )
> points ( c l $ centers , col = 1 : 5 , pch = 8 )
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Figure 17.2: Two cluster example.

17.2.2 Example: Clustering of VC financing rounds

In this section we examine data on VC’s financing of startups from 2001–
2006, using data on individual financing rounds. The basic information
that we have is shown below.

> data = read . csv ( " vc_ c l u s t . csv " , header=TRUE, sep=" , " )
> dim ( data )
[ 1 ] 3697 47

> names ( data )
[ 1 ] " fund_name" " fund_ year " " fund_avg_rd_ i n v t "
[ 4 ] " fund_avg_co_ i n v t " " fund_num_co " " fund_num_ rds "
[ 7 ] " fund_ t o t _ i n v t " " s tage _num1" " s tage _num2"

[ 1 0 ] " s tage _num3" " s tage _num4" " s tage _num5"
[ 1 3 ] " s tage _num6" " s tage _num7" " s tage _num8"
[ 1 6 ] " s tage _num9" " s tage _num10" " s tage _num11"
[ 1 9 ] " s tage _num12" " s tage _num13" " s tage _num14"
[ 2 2 ] " s tage _num15" " s tage _num16" " s tage _num17"
[ 2 5 ] " i n v e s t _ type _num1" " i n v e s t _ type _num2" " i n v e s t _ type _num3"
[ 2 8 ] " i n v e s t _ type _num4" " i n v e s t _ type _num5" " i n v e s t _ type _num6"
[ 3 1 ] " fund_ nat ion _US" " fund_ s t a t e _CAMA" " fund_ type _num1"
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Figure 17.3: Five cluster example.

[ 3 4 ] " fund_ type _num2" " fund_ type _num3" " fund_ type _num4"
[ 3 7 ] " fund_ type _num5" " fund_ type _num6" " fund_ type _num7"
[ 4 0 ] " fund_ type _num8" " fund_ type _num9" " fund_ type _num10"
[ 4 3 ] " fund_ type _num11" " fund_ type _num12" " fund_ type _num13"
[ 4 6 ] " fund_ type _num14" " fund_ type _num15"

We clean out all rows that have missing values as follows:
> idx = which ( rowSums ( i s . na ( data ) ) = = 0 )
> length ( idx )
[ 1 ] 2975

> data = data [ idx , ]
> dim ( data )
[ 1 ] 2975 47

We run a first-cut k-means analysis using limited data.

> idx = c ( 3 , 6 , 3 1 , 3 2 )
> cdata = data [ , idx ]
> names ( cdata )
[ 1 ] " fund_avg_rd_ i n v t " " fund_num_ rds " " fund_ nat ion _US"
[ 4 ] " fund_ s t a t e _CAMA"
> f i t = kmeans ( cdata , 4 )
> f i t $ s i z e
[ 1 ] 2856 2 95 22

> f i t $ c e n t e r s
fund_avg_rd_ i n v t fund_num_ rds fund_ nat ion _US fund_ s t a t e _CAMA

1 4714 .894 8 .808824 0 .5560224 0 .2244398

2 1025853 .650 7 .500000 0 .0000000 0 .0000000

3 87489 .873 6 .400000 0 .4631579 0 .1368421

4 302948 .114 5 .318182 0 .7272727 0 .2727273
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We see that the clusters are hugely imbalanced, with one cluster ac-
counting for most of the investment rounds. Let’s try a different cut
now. Using investment type = {buyout, early, expansion, late, other, seed}
types of financing, we get the following, assuming 4 clusters.
> idx = c ( 2 5 , 2 6 , 2 7 , 2 8 , 2 9 , 3 0 , 3 1 , 3 2 )
> cdata = data [ , idx ]
> names ( cdata )
[ 1 ] " i n v e s t _ type _num1" " i n v e s t _ type _num2" " i n v e s t _ type _num3"
[ 4 ] " i n v e s t _ type _num4" " i n v e s t _ type _num5" " i n v e s t _ type _num6"
[ 7 ] " fund_ nat ion _US" " fund_ s t a t e _CAMA"
> f i t = kmeans ( cdata , 4 )
> f i t $ s i z e
[ 1 ] 2199 65 380 331

> f i t $ c e n t e r s
i n v e s t _ type _num1 i n v e s t _ type _num2 i n v e s t _ type _num3 i n v e s t _ type _num4

1 0 .0000000 0 .00000000 0 .00000000 0 .00000000

2 0 .0000000 0 .00000000 0 .00000000 0 .00000000

3 0 .6868421 0 .12631579 0 .06052632 0 .12631579

4 0 .4592145 0 .09969789 0 .39274924 0 .04833837

i n v e s t _ type _num5 i n v e s t _ type _num6 fund_ nat ion _US fund_ s t a t e _CAMA
1 0 1 0 .5366075 0 .2391996

2 1 0 0 .7538462 0 .1692308

3 0 0 1 .0000000 0 .3236842

4 0 0 0 .1178248 0 .0000000

Here we get a very different outcome. Now, assuming 6 clusters, we
have:
> idx = c ( 2 5 , 2 6 , 2 7 , 2 8 , 2 9 , 3 0 , 3 1 , 3 2 )
> cdata = data [ , idx ]
> f i t = kmeans ( cdata , 6 )
> f i t $ s i z e
[ 1 ] 34 526 176 153 1673 413

> f i t $ c e n t e r s
i n v e s t _ type _num1 i n v e s t _ type _num2 i n v e s t _ type _num3 i n v e s t _ type _num4

1 0 0 .3235294 0 0 .3529412

2 0 0 .0000000 0 0 .0000000

3 0 0 .3977273 0 0 .2954545

4 0 0 .0000000 1 0 .0000000

5 0 0 .0000000 0 0 .0000000

6 1 0 .0000000 0 0 .0000000

i n v e s t _ type _num5 i n v e s t _ type _num6 fund_ nat ion _US fund_ s t a t e _CAMA
1 0 .3235294 0 1 .0000000 1 .0000000

2 0 .0000000 1 1 .0000000 1 .0000000

3 0 .3068182 0 0 .6306818 0 .0000000

4 0 .0000000 0 0 .4052288 0 .1503268

5 0 .0000000 1 0 .3909145 0 .0000000

6 0 .0000000 0 0 .6319613 0 .1864407

17.2.3 NCAA teams

We revisit our NCAA data set, and form clusters there.

> ncaa = read . table ( " ncaa . t x t " , header=TRUE)
> names ( ncaa )

[ 1 ] "No" "NAME" "GMS" " PTS " "REB" "AST" "TO" "A. T" " STL " "BLK"
[ 1 1 ] " PF " "FG" "FT" "X3P"
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> f i t = kmeans ( ncaa [ , 3 : 1 4 ] , 4 )
> f i t $ s i z e
[ 1 ] 14 17 27 6

> f i t $ c e n t e r s
GMS PTS REB AST TO A. T STL

1 3 .357143 80 .12857 34 .15714 16 .357143 13 .70714 1 .2357143 6 .821429

2 1 .529412 60 .24118 38 .76471 9 .282353 16 .45882 0 .5817647 6 .882353

3 1 .777778 68 .39259 33 .17407 13 .596296 12 .83704 1 .1107407 6 .822222

4 1 .000000 50 .33333 28 .83333 10 .333333 12 .50000 0 .9000000 6 .666667

BLK PF FG FT X3P
1 2 .514286 18 .48571 0 .4837143 0 .7042143 0 .4035714

2 2 .882353 18 .51176 0 .3838824 0 .6683529 0 .3091765

3 2 .918519 18 .68519 0 .4256296 0 .7071852 0 .3263704

4 2 .166667 19 .33333 0 .3835000 0 .6565000 0 .2696667

> idx = c ( 4 , 6 ) ; plot ( ncaa [ , idx ] , col= f i t $ c l u s t e r )

See Figure 17.4. Since there are more than two attributes of each obser-
vation in the data, we picked two of them {AST, PTS} and plotted the
clusters against those.
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Figure 17.4: NCAA cluster example.
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17.3 Hierarchical Clustering

Hierarchical clustering is both, a top-down (divisive) approach and
bottom-up (agglomerative) approach. At the top level there is just one
cluster. A level below, this may be broken down into a few clusters,
which are then further broken down into more sub-clusters a level be-
low, and so on. This clustering approach is computationally expensive,
and the divisive approach is exponentially expensive in n, the number of
entities being clustered. In fact, the algorithm is O(2n).

The function for clustering is hclust and is included in the stats

package in the base R distribution.
We re-use the NCAA data set one more time.

> d = d i s t ( ncaa [ , 3 : 1 4 ] , method=" e u c l i d i a n " )
> f i t = h c l u s t ( d , method=" ward " )
> names ( f i t )
[ 1 ] " merge " " height " " order " " l a b e l s " " method "
[ 6 ] " c a l l " " d i s t . method "
> plot ( f i t , main="NCAA Teams " )
> groups = cutree ( f i t , k=4)
> r e c t . h c l u s t ( f i t , k=4 , border=" blue " )

We begin by first computing the distance matrix. Then we call the hclust

function and the plot function applied to object fit gives what is known
as a “dendrogram” plot, showing the cluster hierarchy. We may pick
clusters at any level. In this case, we chose a “cut” level such that we get
four clusters, and the rect.hclust function allows us to superimpose
boxes on the clusters so we can see the grouping more clearly. The result
is plotted in Figure 17.5.

We can also visualize the clusters loaded on to the top two principal
components as follows, using the clusplot function that resides in pack-
age cluster. The result is plotted in Figure 17.6.

> groups
[ 1 ] 1 1 1 1 1 2 1 1 3 2 1 3 3 1 1 1 2 3 3 2 3 2 1 1 3 3 1 3 2 3 3 3 1 2 2

[ 3 6 ] 3 3 4 1 2 4 4 4 3 3 2 4 3 1 3 3 4 1 2 4 3 3 3 3 4 4 4 4 3

> l i b r a r y ( c l u s t e r )
> c l u s p l o t ( ncaa [ , 3 : 1 4 ] , groups , c o l o r =TRUE, shade=TRUE, l ab el s =2 , l i n e s =0)

17.4 Prediction Trees

Prediction trees are a natural outcome of recursive partitioning of the
data. Hence, they are a particular form of clustering at different levels.



in the same boat: cluster analysis and prediction trees 437

14 23 1 24
2 7 16 33
5 4 3 27
49

39 53
8

11 15
43 47 6
2

38 41
61 63 52 60 4
2 55 35 10 40 5
4 6 17 34 46 2
9

20 22
37 19 44 59 36 45 58 64 1
3

50 56 1
8 51 3
0
31 25 28
48

26 32 2
1

57 9 12

0
50

10
0

15
0

NCAA Teams

hclust (*, "ward")
d

H
ei
gh
t

Figure 17.5: NCAA data, hierarchi-
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438 data science: theories, models, algorithms, and analytics

-4 -2 0 2 4

-3
-2

-1
0

1
2

3

CLUSPLOT( ncaa[, 3:14] )

Component 1

C
om

po
ne

nt
 2

These two components explain 42.57 % of the point variability.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24
25

26

2728

29

30

31

32 33

34

35

36

37

38

39

40

41

42

43

44
45 46

47

48

49

50

51

52

53

54

55

56
57 58

59

60

61

62

63

64

1

2

34

Figure 17.6: NCAA data, hierarchi-
cal cluster example with clusters on
the top two principal components.

Usual cluster analysis results in a “flat” partition, but prediction trees
develop a multi-level cluster of trees. The term used here is CART, which
stands for classification analysis and regression trees. But prediction
trees are different from vanilla clustering in an important way – there is
a dependent variable, i.e., a category or a range of values (e.g., a score)
that one is attempting to predict.

Prediction trees are of two types: (a) Classification trees, where the
leaves of the trees are different categories of discrete outcomes. and (b)
Regression trees, where the leaves are continuous outcomes. We may
think of the former as a generalized form of limited dependent variables,
and the latter as a generalized form of regression analysis.

To set ideas, suppose we want to predict the credit score of an individ-
ual using age, income, and education as explanatory variables. Assume
that income is the best explanatory variable of the three. Then, at the
top of the tree, there will be income as the branching variable, i.e., if in-
come is less than some threshold, then we go down the left branch of the
tree, else we go down the right. At the next level, it may be that we use
education to make the next bifurcation, and then at the third level we
use age. A variable may even be repeatedly used at more than one level.
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This leads us to several leaves at the bottom of the tree that contain the
average values of the credit scores that may be reached. For example if
we get an individual of young age, low income, and no education, it is
very likely that this path down the tree will lead to a low credit score on
average. Instead of credit score (an example of a regression tree), con-
sider credit ratings of companies (an example of a classification tree).
These ideas will become clearer once we present some examples.

Recursive partitioning is the main algorithmic construct behind pre-
diction trees. We take the data and using a single explanatory variable,
we try and bifurcate the data into two categories such that the additional
information from categorization results in better “information” than be-
fore the binary split. For example, suppose we are trying to predict who
will make donations and who will not using a single variable – income.
If we have a sample of people and have not yet analyzed their incomes,
we only have the raw frequency p of how many people made donations,
i.e., and number between 0 and 1. The “information” of the predicted
likelihood p is inversely related to the sum of squared errors (SSE) be-
tween this value p and the 0 values and 1 values of the observations.

SSE1 =
n

∑
i=1

(xi − p)2

where xi = {0, 1}, depending on whether person i made a donation
or not. Now, if we bifurcate the sample based on income, say to the left
we have people with income less than K, and to the right, people with
incomes greater than or equal to K. If we find that the proportion of
people on the left making donations is pL < p and on the right is pR >

p, our new information is:

SSE2 = ∑
i,Income<K

(xi − pL)
2 + ∑

i,Income≥K
(xi − pR)

2

By choosing K correctly, our recursive partitioning algorithm will maxi-
mize the gain, i.e., δ = (SSE1 − SSE2). We stop branching further when
at a given tree level δ is less than a pre-specified threshold.

We note that as n gets large, the computation of binary splits on any
variable is expensive, i.e., of order O(2n). But as we go down the tree,
and use smaller subsamples, the algorithm becomes faster and faster. In
general, this is quite an efficient algorithm to implement.

The motivation of prediction trees is to emulate a decision tree. It also
helps make sense of complicated regression scenarios where there are
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lots of variable interactions over many variables, when it becomes dif-
ficult to interpret the meaning and importance of explanatory variables
in a prediction scenario. By proceeding in a hierarchical manner on a
tree, the decision analysis becomes transparent, and can also be used in
practical settings to make decisions.

17.4.1 Classification Trees

To demonstrate this, let’s use a data set that is already in R. We use the
kyphosis data set which contains data on children who have had spinal
surgery. The model we wish to fit is to predict whether a child has a
post-operative deformity or not (variable: Kyphosis = {absent, present}).
The variables we use are Age in months, number of vertebrae operated
on (Number), and the beginning of the range of vertebrae operated on
(Start). The package used is called rpart which stands for “recursive
partitioning”.

> l i b r a r y ( r p a r t )
> data ( kyphosis )
> head ( kyphosis )

Kyphosis Age Number S t a r t
1 absent 71 3 5

2 absent 158 3 14

3 present 128 4 5

4 absent 2 5 1

5 absent 1 4 15

6 absent 1 2 16

> f i t = r p a r t ( Kyphosis~Age+Number+ S t a r t , method=" c l a s s " , data=kyphosis )
>
> pr intcp ( f i t )

C l a s s i f i c a t i o n t r e e :
r p a r t ( formula = Kyphosis ~ Age + Number + S t a r t , data = kyphosis ,

method = " c l a s s " )

Var iab les a c t u a l l y used in t r e e c o n s t r u c t i o n :
[ 1 ] Age S t a r t

Root node e r r o r : 17 / 81 = 0 .20988

n= 81

CP n s p l i t r e l e r r o r xer ror xstd
1 0 .176471 0 1 .00000 1 .0000 0 .21559

2 0 .019608 1 0 .82353 1 .1765 0 .22829

3 0 .010000 4 0 .76471 1 .1765 0 .22829

We can now get a detailed summary of the analysis as follows:

> summary ( f i t )
Call :
r p a r t ( formula = Kyphosis ~ Age + Number + S t a r t , data = kyphosis ,

method = " c l a s s " )
n= 81
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CP n s p l i t r e l e r r o r xer ror xstd
1 0 .17647059 0 1 .0000000 1 .000000 0 .2155872

2 0 .01960784 1 0 .8235294 1 .176471 0 .2282908

3 0 .01000000 4 0 .7647059 1 .176471 0 .2282908

Node number 1 : 81 observat ions , complexity param=0 .1764706

predic ted c l a s s =absent expected l o s s =0 .2098765

c l a s s counts : 64 17

p r o b a b i l i t i e s : 0 . 790 0 . 210

l e f t son=2 (62 obs ) r i g h t son=3 (19 obs )
Primary s p l i t s :

S t a r t < 8 . 5 to the r ight , improve =6 .762330 , (0 missing )
Number < 5 . 5 to the l e f t , improve =2 .866795 , (0 missing )
Age < 3 9 . 5 to the l e f t , improve =2 .250212 , (0 missing )

Surrogate s p l i t s :
Number < 6 . 5 to the l e f t , agree =0 .802 , ad j =0 .158 , (0 s p l i t )

Node number 2 : 62 observat ions , complexity param=0 .01960784

predic ted c l a s s =absent expected l o s s =0 .09677419

c l a s s counts : 56 6

p r o b a b i l i t i e s : 0 . 903 0 . 097

l e f t son=4 (29 obs ) r i g h t son=5 (33 obs )
Primary s p l i t s :

S t a r t < 1 4 . 5 to the r ight , improve =1 .0205280 , (0 missing )
Age < 55 to the l e f t , improve =0 .6848635 , (0 missing )
Number < 4 . 5 to the l e f t , improve =0 .2975332 , (0 missing )

Surrogate s p l i t s :
Number < 3 . 5 to the l e f t , agree =0 .645 , ad j =0 .241 , (0 s p l i t )
Age < 16 to the l e f t , agree =0 .597 , ad j =0 .138 , (0 s p l i t )

Node number 3 : 19 observat ions
predic ted c l a s s =present expected l o s s =0 .4210526

c l a s s counts : 8 11

p r o b a b i l i t i e s : 0 . 421 0 . 579

Node number 4 : 29 observat ions
predic ted c l a s s =absent expected l o s s =0

c l a s s counts : 29 0

p r o b a b i l i t i e s : 1 . 000 0 . 000

Node number 5 : 33 observat ions , complexity param=0 .01960784

predic ted c l a s s =absent expected l o s s =0 .1818182

c l a s s counts : 27 6

p r o b a b i l i t i e s : 0 . 818 0 . 182

l e f t son=10 (12 obs ) r i g h t son=11 (21 obs )
Primary s p l i t s :

Age < 55 to the l e f t , improve =1 .2467530 , (0 missing )
S t a r t < 1 2 . 5 to the r ight , improve =0 .2887701 , (0 missing )
Number < 3 . 5 to the r ight , improve =0 .1753247 , (0 missing )

Surrogate s p l i t s :
S t a r t < 9 . 5 to the l e f t , agree =0 .758 , ad j =0 .333 , (0 s p l i t )
Number < 5 . 5 to the r ight , agree =0 .697 , ad j =0 .167 , (0 s p l i t )

Node number 1 0 : 12 observat ions
predic ted c l a s s =absent expected l o s s =0

c l a s s counts : 12 0

p r o b a b i l i t i e s : 1 . 000 0 . 000

Node number 1 1 : 21 observat ions , complexity param=0 .01960784

predic ted c l a s s =absent expected l o s s =0 .2857143
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c l a s s counts : 15 6

p r o b a b i l i t i e s : 0 . 714 0 . 286

l e f t son=22 (14 obs ) r i g h t son=23 (7 obs )
Primary s p l i t s :

Age < 111 to the r ight , improve =1 .71428600 , (0 missing )
S t a r t < 1 2 . 5 to the r ight , improve =0 .79365080 , (0 missing )
Number < 3 . 5 to the r ight , improve =0 .07142857 , (0 missing )

Node number 2 2 : 14 observat ions
predic ted c l a s s =absent expected l o s s =0 .1428571

c l a s s counts : 12 2

p r o b a b i l i t i e s : 0 . 857 0 . 143

Node number 2 3 : 7 observat ions
predic ted c l a s s =present expected l o s s =0 .4285714

c l a s s counts : 3 4

p r o b a b i l i t i e s : 0 . 429 0 . 571

We can plot the tree as well using the plot command. See Figure 17.7.
The dendrogram like tree shows the allocation of the n = 81 cases to
various branches of the tree.

> plot ( f i t , uniform=TRUE)
> t e x t ( f i t , use . n=TRUE, a l l =TRUE, cex = 0 . 8 )

17.4.2 The C4.5 Classifier

This is one of the top algorithms of data science. This classifier also fol-
lows recursive partitioning as in the previous case, but instead of min-
imizing the sum of squared errors between the sample data x and the
true value p at each level, here the goal is to minimize entropy. This im-
proves the information gain. Natural entropy (H) of the data x is defined
as

H = −∑
x

f (x) · ln f (x) (17.1)

where f (x) is the probability density of x. This is intuitive because
after the optimal split in recursing down the tree, the distribution of x
becomes narrower, lowering entropy. This measure is also often known
as “differential entropy.”

To see this let’s do a quick example. We compute entropy for two
distributions of varying spread (standard deviation).

dx = 0 . 001

x = seq (−5 ,5 ,dx )
H2 = −sum(dnorm ( x , sd =2) * log (dnorm ( x , sd = 2 ) ) *dx )
print (H2)
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Figure 17.7: Classification tree for
the kyphosis data set.
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H3 = −sum(dnorm ( x , sd =3) * log (dnorm ( x , sd = 3 ) ) *dx )
print (H3)

[ 1 ] 2 .042076

[ 1 ] 2 .111239

Therefore, we see that entropy increases as the normal distribution be-
comes wider. Now, let’s use the C4.5 classifier on the iris data set. The
classifier resides in the RWeka package.

l i b r a r y (RWeka)
data ( i r i s )
print ( head ( i r i s ) )
r es = J48 ( Spec ies~ . , data= i r i s )
print ( r es )
summary ( r es )

The output is as follows:

Sepal . Length Sepal . Width P e t a l . Length P e t a l . Width Spec ies
1 5 . 1 3 . 5 1 . 4 0 . 2 s e t o s a
2 4 . 9 3 . 0 1 . 4 0 . 2 s e t o s a
3 4 . 7 3 . 2 1 . 3 0 . 2 s e t o s a
4 4 . 6 3 . 1 1 . 5 0 . 2 s e t o s a
5 5 . 0 3 . 6 1 . 4 0 . 2 s e t o s a
6 5 . 4 3 . 9 1 . 7 0 . 4 s e t o s a
J48 pruned t r e e
−−−−−−−−−−−−−−−−−−

P e t a l . Width <= 0 . 6 : s e t o s a ( 5 0 . 0 )
P e t a l . Width > 0 . 6

| P e t a l . Width <= 1 . 7

| | P e t a l . Length <= 4 . 9 : v e r s i c o l o r ( 4 8 . 0 / 1 . 0 )
| | P e t a l . Length > 4 . 9

| | | P e t a l . Width <= 1 . 5 : v i r g i n i c a ( 3 . 0 )
| | | P e t a l . Width > 1 . 5 : v e r s i c o l o r ( 3 . 0 / 1 . 0 )
| P e t a l . Width > 1 . 7 : v i r g i n i c a ( 4 6 . 0 / 1 . 0 )

Number of Leaves : 5

Size of the t r e e : 9
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=== Summary ===

C o r r e c t l y C l a s s i f i e d I n s t a n c e s 147 98 %
I n c o r r e c t l y C l a s s i f i e d I n s t a n c e s 3 2 %
Kappa s t a t i s t i c 0 . 9 7

Mean absolute e r r o r 0 .0233

Root mean squared e r r o r 0 . 108

R e l a t i v e abso lute e r r o r 5 .2482 %
Root r e l a t i v e squared e r r o r 22 .9089 %
Coverage of cases ( 0 . 9 5 l e v e l ) 98 .6667 %
Mean r e l . region s i z e ( 0 . 9 5 l e v e l ) 34 %
Tota l Number of I n s t a n c e s 150

=== Confusion Matrix ===

a b c <−− c l a s s i f i e d as
50 0 0 | a = s e t o s a

0 49 1 | b = v e r s i c o l o r
0 2 48 | c = v i r g i n i c a

17.5 Regression Trees

We move from classification trees (discrete outcomes) to regression trees
(scored or continuous outcomes). Again, we use an example that already
exists in R, i.e., the cars dataset in the cu.summary data frame. Let’s load
it up.

> data ( cu . summary )
> names ( cu . summary )
[ 1 ] " P r i c e " " Country " " R e l i a b i l i t y " " Mileage " " Type "
> head ( cu . summary )

P r i c e Country R e l i a b i l i t y Mileage Type
Acura I n t e g r a 4 11950 Japan Much b e t t e r NA Small
Dodge Colt 4 6851 Japan <NA> NA Small
Dodge Omni 4 6995 USA Much worse NA Small
Eagle Summit 4 8895 USA b e t t e r 33 Small
Ford Escor t 4 7402 USA worse 33 Small
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Ford F e s t i v a 4 6319 Korea b e t t e r 37 Small
> dim ( cu . summary )
[ 1 ] 117 5

We see that the variables are self-explanatory. See that in some cases,
there are missing (< NA >) values in the Reliability variable. We will
try and predict Mileage using the other variables. (Note: if we tried to
predict Reliability, then we would be back in the realm of classification
trees, here we are looking at regression trees.)
> l i b r a r y ( r p a r t )
> f i t <− r p a r t ( Mileage~ P r i c e + Country + R e l i a b i l i t y + Type ,

method=" anova " , data=cu . summary )
> summary ( f i t )
Call :
r p a r t ( formula = Mileage ~ P r i c e + Country + R e l i a b i l i t y + Type ,

data = cu . summary , method = " anova " )
n=60 (57 observat ions dele ted due to missingness )

CP n s p l i t r e l e r r o r xer ror xstd
1 0 .62288527 0 1 .0000000 1 .0322810 0 .17522180

2 0 .13206061 1 0 .3771147 0 .5305328 0 .10329174

3 0 .02544094 2 0 .2450541 0 .3790878 0 .08392992

4 0 .01160389 3 0 .2196132 0 .3738624 0 .08489026

5 0 .01000000 4 0 .2080093 0 .3985025 0 .08895493

Node number 1 : 60 observat ions , complexity param=0 .6228853

mean=24 .58333 , MSE=22 .57639

l e f t son=2 (48 obs ) r i g h t son=3 (12 obs )
Primary s p l i t s :

P r i c e < 9446 .5 to the r ight , improve =0 .6228853 , (0 missing )
Type s p l i t s as LLLRLL , improve =0 .5044405 , (0 missing )
R e l i a b i l i t y s p l i t s as LLLRR , improve =0 .1263005 , (11 missing )
Country s p l i t s as −−LRLRRRLL, improve =0 .1243525 , (0 missing )

Surrogate s p l i t s :
Type s p l i t s as LLLRLL , agree =0 .950 , ad j =0 .750 , (0 s p l i t )
Country s p l i t s as −−LLLLRRLL , agree =0 .833 , ad j =0 .167 , (0 s p l i t )

Node number 2 : 48 observat ions , complexity param=0 .1320606

mean=22 .70833 , MSE=8 .498264

l e f t son=4 (23 obs ) r i g h t son=5 (25 obs )
Primary s p l i t s :

Type s p l i t s as RLLRRL, improve =0 .43853830 , (0 missing )
P r i c e < 12154 .5 to the r ight , improve =0 .25748500 , (0 missing )
Country s p l i t s as −−RRLRL−LL , improve =0 .13345700 , (0 missing )
R e l i a b i l i t y s p l i t s as LLLRR , improve =0 .01637086 , (10 missing )

Surrogate s p l i t s :
P r i c e < 12215 .5 to the r ight , agree =0 .812 , ad j =0 .609 , (0 s p l i t )
Country s p l i t s as −−RRLRL−RL , agree =0 .646 , ad j =0 .261 , (0 s p l i t )

Node number 3 : 12 observat ions
mean=32 .08333 , MSE=8 .576389

Node number 4 : 23 observat ions , complexity param=0 .02544094

mean=20 .69565 , MSE=2 .907372

l e f t son=8 (10 obs ) r i g h t son=9 (13 obs )
Primary s p l i t s :

Type s p l i t s as −LR−−L , improve =0 .515359600 , (0 missing )
P r i c e < 14962 to the l e f t , improve =0 .131259400 , (0 missing )
Country s p l i t s as −−−−L−R−−R , improve =0 .007022107 , (0 missing )
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Surrogate s p l i t s :
P r i c e < 13572 to the r ight , agree =0 .609 , ad j = 0 . 1 , (0 s p l i t )

Node number 5 : 25 observat ions , complexity param=0 .01160389

mean=24 .56 , MSE=6 .4864

l e f t son=10 (14 obs ) r i g h t son=11 (11 obs )
Primary s p l i t s :

P r i c e < 11484 .5 to the r ight , improve =0 .09693168 , (0 missing )
R e l i a b i l i t y s p l i t s as LLRRR, improve =0 .07767167 , (4 missing )
Type s p l i t s as L−−RR−, improve =0 .04209834 , (0 missing )
Country s p l i t s as −−LRRR−−LL , improve =0 .02201687 , (0 missing )

Surrogate s p l i t s :
Country s p l i t s as −−LLLL−−LR , agree =0 .80 , ad j =0 .545 , (0 s p l i t )
Type s p l i t s as L−−RL−, agree =0 .64 , ad j =0 .182 , (0 s p l i t )

Node number 8 : 10 observat ions
mean=19 .3 , MSE=2 .21

Node number 9 : 13 observat ions
mean=21 .76923 , MSE=0 .7928994

Node number 1 0 : 14 observat ions
mean=23 .85714 , MSE=7 .693878

Node number 1 1 : 11 observat ions
mean=25 .45455 , MSE=3 .520661

We may then plot the results, as follows:

> plot ( f i t , uniform=TRUE)
> t e x t ( f i t , use . n=TRUE, a l l =TRUE, cex = . 8 )

The result is shown in Figure 17.8.

17.5.1 Example: Califonia Home Data

This example is taken from a data set posted by Cosmo Shalizi at CMU.
We use a different package here, called tree, though this has been sub-
sumed in most of its functionality by rpart used earlier. The analysis is
as follows:
> l i b r a r y ( t r e e )
> cahomes = read . table ( " cahomedata . t x t " , header=TRUE)
> f i t = t r e e ( log ( MedianHouseValue ) ~Longitude+Lati tude , data=cahomes )
> plot ( f i t )
> t e x t ( f i t , cex = 0 . 8 )

This predicts housing values from just latitude and longitude coordi-
nates. The prediction tree is shown in Figure 17.9.

Further analysis goes as follows:

> p r i c e . d e c i l e s = quantile ( cahomes$MedianHouseValue , 0 : 1 0 / 10 )
> cut . p r i c e s = cut ( cahomes$MedianHouseValue , p r i c e . d e c i l e s , inc lude . lowest=TRUE)
> plot ( cahomes$Longitude , cahomes$ Lati tude ,

col=grey ( 1 0 : 2 / 1 1 ) [ cut . p r i c e s ] , pch =20 , x lab=" Longitude " , ylab=" Lat i tude " )
> p a r t i t i o n . t r e e ( f i t , ordvars=c ( " Longitude " , " Lat i tude " ) , add=TRUE)

The plot of the output and the partitions is given in Figure 17.10.
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