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ABSTRACT
The productivity of a workforce is very hard to measure
for non-routine types of work. This paper develops a new
formula for measuring productivity based on non-social net-
works using unique data on file-sharing activities within a
company. This formula integrates individual productivity
with a measure of teamwork, using a rich set of graph-
theoretic constructs. The resultant formula has many at-
tractive properties and is easy to compute across time and
companies, and may be used for a large-scale study of work-
place productivity. We present results for a sample of 525
companies, followed for 16 weeks. An example application
shows that the percent of weekly active users can be pre-
dicted with high levels of accuracy.
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1. INTRODUCTION
Measuring productivity in the workplace has been a focus

of companies since the industrial revolution. Whereas it is
easy to measure work that is based on measurable individual
outcomes, as in (physical) factory production tasks, or pa-
per processing tasks such as (cognitive) paralegal work, etc.,
much of the output of today’s workforce is team-based and
not individual. Many modern workplace tools are designed
to make coordinated work easier and efficient, yet the ability
to measure the effect of coordinated work versus individual
work is poor. A McKinsey Consulting report [5] highlights
the role of collaboration in organizational productivity.

Organizations have many systems that measure individ-
ual productivity and performance, but determining the pro-
ductivity of a company as a whole is hard to do, though
aggregate financial measures based on accounting and stock
price performance are commonly used. Another aspect of
productivity that is not measured is how much an individual
in a company contributes to the company’s overall produc-
tivity. In this paper, we develop a novel productivity score
based on a mathematical framework that employs unique

data to generate (i) a score for both individual and company
productivity, (ii) a decomposition of company productivity
into that contributed by each employee, and (iii) a break-
down of company productivity into that which comes from
individual versus collaborative effort.

The productivity score can help managers evaluate their
company’s historic performance. It is normalized and there-
fore, it answers questions such as “How is my company per-
forming compared to other companies in the same indus-
try?” or “How can we compare productivity across different
companies or industries and across time?”. Our standard-
ized productivity score is measured using the same variables
for all companies using data from a unique dataset of work-
place interactions.

Our new metrics of company, individual, and collabora-
tive productivity will provide companies a picture of their
growth patterns, and enable them to measure the “physics”
of their growth, see [9]. External measures of productiv-
ity, mostly financial, are used to assess growth, and non-
financial measures such as innovation productivity measured
by patent counts [4] abound as well. In contrast, we offer
an internal measure of companies’ growth and productiv-
ity. Also, there are many approaches [8],[7] for measuring
collaboration1, but the effect of collaboration on company
productivity is hard to measure. Our framework offers an
objective way to do so.

While there is some evidence that social networks en-
hance workplace productivity [12] (and also hamper it)2,
we examine non-social workplace networks using file sharing
data. This enables us to capture the effect of collaboration
in a graph-theoretic manner. File-sharing networks embody
complex, nested input-output structures that feed on each
other in enhancing productivity and our data enables us to
quantify these effects, very much as input-output structures
have been used to characterize economic productivity, see
[10], [11],[1].

1http://broadleafconsulting.ca/uploads/3/4/0/8/
3408103/tools_for_measuring_collaboration.pdf.
2https://sloanreview.mit.edu/article/
does-social-media-enhance-employee-productivity/.

http://broadleafconsulting.ca/uploads/3/4/0/8/3408103/tools_for_measuring_collaboration.pdf
http://broadleafconsulting.ca/uploads/3/4/0/8/3408103/tools_for_measuring_collaboration.pdf
https://sloanreview.mit.edu/article/does-social-media-enhance-employee-productivity/
https://sloanreview.mit.edu/article/does-social-media-enhance-employee-productivity/


The paper proceeds as follows. Section 2 describes the
data we use. Section 3 explains our mathematical approach
to construction of the network of file-sharing interactions.
Section 4 introduces our novel productivity metric, and its
decomposition by employee and by individual versus collab-
orative quantities is explained in Section 5. A large-scale
data analysis is undertaken in Section 6, and we offer some
concluding discussion in Section 7.

2. DATA
The data comes from an online file sharing and content

management service, hosted by a major provider in this in-
dustry. The company provides cloud storage and file host-
ing for personal accounts and businesses. A useful aspect of
this data is that file sharing activity amongst users within
an organization and with external users is recorded. These
data-sharing relationships offer a useful lens through which
productivity may be measured.

Productivity may be defined as a function of data pro-
duction and collaborative sharing. The structure of inter-
actions is an additional facet of the data that may be used
to measure productivity. This structure is uncovered from
the network of interactions. Networks foster the spread of
productive information and some network structures offer
greater flow than others. Quantifying this flow will generate
an additional aspect of productivity.

File sharing data is extensive, running into exabytes.
This paper focuses on an extensive and anonymized subset
of companies for which this data is extracted. The data set
contains ∼ 30 million rows of data, covering ∼ 525 unique
companies, over 16 weeks. The dates covered in this study
run from 03/04/2018 through 07/14/2018.

3. NETWORK CONSTRUCTION
For each company on the file sharing platform, the daily

interactions among users for a given company are used to
construct the network. For each week we use the original
data to create several metrics from the network of interac-
tions. Alternatively, other granularities can be chosen, such
as daily or monthly data.

The networks we construct are directed, weighted, pos-
sibly cyclic graphs. The network may be thought of as a
weighted “edge list”, i.e., links between sender and receiver,
where a pair (i, j) will have value greater than zero if i shared
files with j, else the value would be 0. As we will make pre-
cise in ensuing sections, this is easily developed from the
data, and offers some choices in the construction of network
weights, such as: (i) Frequency of interaction; (ii) The num-
ber of files shared in the interaction; (iii) The size (bytes)
in the interaction; and (iv) an indicator variable if a sender
and receiver interacted in a given period (usually a day).
This graph is normalized so that all edge weights are in
(0, 1). Our metrics below produce a composite measure for
the file-sharing network.

The directed network graph G for a given company c at
time (week) t can be defined as:

G(c, t) = {V (c, t), E(c, t)} (1)

where V (c, t) is the set of vertices for company c at time t
and E(c, t) the set of ordered pairs of vertices i.e. edges.

Figure 1: Example of a directed graph of user interactions.

We show an example of such a graph network of users for a
company using Figure 1.

4. THE PRODUCTIVITY METRIC
A good measure of productivity should incorporate the

quality, quantity, and transmission of information through
the network. We propose the following novel metric, a sin-
gle number P that describes the average productivity per
person of a company derived from file-sharing data. This
number is based on a flexible metric of file production under-
taken by each person in the company, denoted by a vector Q,
and the linkages between persons in the company given by
a network matrix N , derived from file-sharing activity. The
dimension of vector Q is n, the number of people (nodes)
in the network, i.e., Qi, i = 1, 2, ..., n. Correspondingly, the
dimension of matrix N will be n × n. In the next two sec-
tions we will describe the exact manner in which these two
quantities, Q and N , are computed from the data.

We quantify the productivity per person in the company
over time. The metric we use is defined as follows:

P =
1

n
·
√
Q> ·N ·Q

=

√
Q>

n
·N · Q

n
(2)

=
√
Q∗> ·N ·Q∗

where Q∗ = Q/n ∈ Rn.

In our implementation, we compute Q and N weekly, for
each company. So we may write

P (c, t) =
1

n
·
√
Q(c, t)> ·N(c, t) ·Q(c, t), ∀c, t (3)

where c indexes the company, and t indexes time. This equa-
tion implies that productivity, as denoted by scalar quantity
P , increases if the elements of Q (individual productivity) in-
crease, holding n and N constant. Likewise, ceteris paribus,
if the elements of N (collaboration connectivity) increase, the
metric also increases. This is intuitive, given that all values
in Q and N are non-negative. We normalize the metric by
dividing it by n, so that we measure productivity per person.



Figure 2: The specialized logistic function for quantity
of information for any employee i, for two value of k. See
equation 5.

The values in vector Q and matrix N are bounded in the
range (0, 1). Hence, P is a positive real number in (0, 1). Be-
cause P ≥ 0, cumulative P is a monotone increasing function
over time.

In order to compare productivity over time, or across
different entities, we make sure that P is normalized to the
same scale. This is done by normalizing Q using the map-
ping function described in the next section.

4.1 Quantifying Individual Productivity
We compute the vector Q to quantify individual pro-

ductivity of every employee (i.e., a node i in the file-sharing
graph), by generalizing the standard logistic function, i.e.,
Qi = f(qi) = 1/(1 + e−qi), where qi is the number of files
generated by node i. This is a well understood and doc-
umented function that maps an unbounded qi onto (0, 1),
with f(0) = 0.5. Our generalized form is

f(qi) = a+m/(1 + c e−(qi−q0/k)) (4)

where a is the y-intercept, m is the curve’s maximum value,
k the steepness of the curve, c the asymmetry of the curve,
and q0 the value of the sigmoid’s mid-point. Clearly, setting
a = 0, m = 1, k = 1, c = 1, and q0 = 0 produces the
standard logistic function as a special case. Since we require
positive numbers only and f(0) = 0, setting a = −0.5, m =
1.5, c = 2, and q0 = 0 defines the functional form we use for
any employee’s entry in the Q vector as follows

f(qi) = −0.5 + 1.5/(1 + 2e−(qi/k)) (5)

Figure 2 shows the behavior of the plot for varying values of
k. Clearly, varying the value of k controls how quickly f(qi)
converges to 1.

Having defined our quantum of information mapping
function, we have complete flexibility to adjust the shape
of its curve to reflect different information profiles, in par-
ticular, differing magnitudes of information. The parameter
k in equation can be estimated empirically from the data

to achieve a specific shape for f(qi), or it may be set to a
pre-determined value to meet certain characteristics. For
example, in our data, if we desire f(qi) to approximately
span as much of [0, 1] as possible in a quasi-linear fashion,
then we choose k as:

k = Q99/5 (6)

where Q99 represents the 99th percentile of the q values in
the data. We used the 99th percentile (as opposed to the
95th percentile, for example) because we wanted to differ-
entiate better the big companies from each other. This also
ensures that the maximum remains the same for a long time
period. Similar results are obtained if we use a simple map-
ping function, such as f(q) = ln(q).

4.2 Network matrix N
The matrix N quantifies file sharing. Given qi is the

total number of files generated by employee i and we let qij
represent the number of files shared from node i to node j.
We define the matrix N as follows:

Nii = 1

Nij =
f(qij)

f(qi)
∈ [0, 1]

Therefore, Nij is the normalized fraction of files generated
by i that are shared with j. The values in matrix N are all
positive and are less than or equal to one.

5. PRODUCTIVITY DECOMPOSITION

5.1 By Employee
The matrix N quantifies the standardized file-sharing

metric f(q), and defines the employee work flow network.
We can break down the productivity measure for a company
by employee. This decomposition of the scalar function P is
possible because the function is linear homogenous in vector
Q∗>. Euler’s theorem3 applies and we have that

P =
∂P

∂Q∗>1
Q∗1 +

∂P

∂Q∗>2
Q∗2 + . . .+

∂P

∂Q∗>n
Q∗n (7)

Each derivative ∂P

∂Q∗>i
multiplied by Q∗i is the productiv-

ity contribution Pi of node i. We can calculate all contribu-
tions Pi in closed form using the following vector derivative
calculation:

Pi =
∂P

∂Q∗>i
=

1

2P
(N ·Q∗> +N> ·Q∗>) ·Q∗j (8)

which gives an (n×1) vector of derivatives Pi. Once we know
the amount of productivity that is contributed by each node,
we can pinpoint the most productive users in the network.

5.2 Individual vs Group Productivity
We can also break down the productivity measure for

a company by individual versus collaborative contribution.
The diagonal of the Network Adjacency matrix represents
the individual node’s productivity when there is no collab-
oration between the nodes. Any productivity that occurs

3http://mathworld.wolfram.com/
EulersHomogeneousFunctionTheorem.html

http://mathworld.wolfram.com/EulersHomogeneousFunctionTheorem.html
http://mathworld.wolfram.com/EulersHomogeneousFunctionTheorem.html


Figure 3: Network described by matrix N .

from collaboration will get captured in the non-diagonal el-
ements of the matrix. Thus, productivity can be divided
into two components as:

P = PC + PI (9)

where P is total productivity, PC is productivity due to
collaboration, and PI is productivity due to individual con-
tribution. PI is computed using

PI =
1

n
·

√√√√ n∑
i=1

Q2
i (10)

This is the result of using equation (2) where the network
matrix contains no collaboration, i.e., is the identity matrix.
Then, we can calculate productivity due to collaboration as
a residual from equation (10), i.e., PC = P − PI .

5.3 Numerical Examples
A few examples will make the model clear. We start

with the following base case. We set the number of nodes
to be 6, the links between nodes are shown in Figure 3. The
vector q is shown below and has nodes that are ordered in
increasing order of number of files generated. (Even though
we used an ordered set of integers from 1 through 6, this is
not an index vector, but just the count of the number of files
produced.) The network matrix N is also shown. Note that
the diagonal of N is equal to 1, as we do need to capture
the individual productivity of each node.

q =


1
2
3
4
5
6



N =


1 0 1 0 0 0

0.50 1 1 0 0 0.50
0.33 0.67 1 0.67 0 0

0 0 1 1 1 1
0 0.20 0.40 0.60 1 0.80
0 1 0 0 0.67 1


We will now bound Q in [0, 1], set constant k equal to

the 99-th percentile of q, i.e., k = 5.95. Using the quantum
of information mapping function f(q), our bounded Q is

Q = f(q) =


0.06
0.12
0.18
0.24
0.31
0.37


We compute the productivity metric as follows.

P =
1

n
·
√
Q> ·N ·Q = 0.1615 (11)

Now, if there is no collaboration, then all we get is individual
productivity, as follows.

PI = 1/n ·

√√√√ n∑
i=1

Q2 = 0.0973 (12)

PC = 0.0642 (13)

We may therefore define the percentage of “network” effect
on productivity as

PC

P
= 0.3975 = 39.75% (14)

Finally, we may also calculate the productivity decom-
position by node, calculated using equation (8), shown here:

Node Decomposition %age Decomposition

1 0.0022 1.34
2 0.0122 7.58
3 0.0180 11.15
4 0.0340 21.03
5 0.0438 27.10
6 0.0514 31.80

TOTAL 0.1615 100.00

5.4 Additional Properties
Here, we highlight some additional properties and intu-

ition of the metrics we described in the previous subsection.

1. If we scale Q by α > 1, then the value of P will also
scale accordingly. That is if we increase file produc-
tion by 20%, productivity will become αP . To see



this, suppose we assume a scaling factor α = 1.20, and
multiply Q by α. Then the new productivity value
becomes:

P =
1

n
·
√

(αQ)> ·N · (αQ) = 0.1938 (15)

which is exactly 0.1615× α.

2. We also check that productivity per node is insensitive
to the changes in the number of nodes, provided the
structure of the system remains the same. We measure
this by simulating many networks and see how the P
measure varies. To begin, we randomly generate a
network of 6 nodes a 100 times and compute P , and
then look at the mean P and the summary statistics for
the 100 trials. For this experiment, we use a different
set of values so as to run a controlled experiment. We
set all values in the Q vector to be equal to 0.35. We
also assume that the probability of a directed link is
0.5. We then randomly generate the N matrix 100
times and compute P each time.

We then executed the same experiment with network
size increased from n = 6 to n = {10, 20, 100, 500, 1000}
nodes. We see that the productivity metric remains in
the same ballpark as before, though it tends to decline
mildly, and asymptote eventually. And as n grows the
standard deviation reduces sharply, increasing the ac-
curacy of this property as networks become larger.

Number of nodes n
10 20 100 500 1000

Mean P 0.2601 0.2519 0.2488 0.2477 0.2476
Median P 0.2596 0.2542 0.2489 0.2478 0.2476
Std dev P 0.0101 0.0058 0.0011 0.0003 0.0001

6. LARGE DATA ANALYSIS

6.1 Data Structure
We begin by describing the features of productivity across

all companies in the sample. The sample we consider covers
about 525 companies over the period early March to mid
July 2018 (16 weeks), where daily file-sharing interactions
between users are recorded, amounting to a total of 30 mil-
lion records of data. If two users interacted on a file during
the day it is counted as an “action” regardless of how many
times the two users engaged that day on that file. An action
requires that a user i sends a file to user j who then opens,
previews, or downloads this file, else it does not count as an
action. Interactions are captured in the network matrix N
and the individual productivity vector Q. This is shown in
Figure 4.

File sharing between any two users on a given day is
denoted as a “transaction” and may involve any number of
files and actions, though the most common number of files
shared on a transaction are 1 or 2 files. Since the number of
actions per file may be very large when a single file is sent to
all users (such as with blast emails sent by human resources),
the maximum number of actions is set to the 95th percentile
value of the actions in order to trim such egregious outliers.
(For example, in the case of one large company, the number
of users who uploaded files in the sample period was 2,856,
and the 99th percentile of the number of actions is 26.)

Figure 4: How are links determined?

Since a user may send a file to more than one receiver,
the number of actions may be greater than the number of
files. The data file also contains details of the Sender and
Receiver IDs, their company IDs, file type, file count and the
number of actions. File sharing for a given company involves
users who are part of the same company (i.e., internal) and
those who are not, i.e., external users.

6.2 Network Metrics
We use the data to construct the network adjacency ma-

trix N and productivity vector Q as discussed in Sections 4
and 5. We may choose any granularity for network construc-
tion, such as daily, weekly, monthly. We chose to present all
metrics using non-overlapping weekly blocks of data, where
a week is defined as Monday through Sunday.

For each week we construct the following measures for
each user in the network (vectors of size n, the number of
users): (i) A vector of eigenvalue centrality [3] scores, which
quantifies the importance of user position in the network.
(ii) A vector of betweenness centralities [6], denoting how
many shortest paths in the network go through a user node.
This signifies the importance of a user as being a broker
or middleman in the file sharing network. (iii) A vector of
node degrees, i.e., how many other users a node is connected
to. (iv) A vector of individual contributions to productivity
based on equation (8). (v) A flag for internal versus external
user.

We also calculate aggregate weekly measures for the en-
tire company, i.e., the following scalar values: (i) The pro-
ductivity score P in each week, and the breakdown of this
score into individual contribution PI and collaborative con-
tribution PC . (ii) The amount of productivity contributed
by internal versus external users. (iii) The number of links in
the network, and the average degree. (iv) Density of the net-
work, i.e., the number of links in the network divided by the
total possible links, n(n−1)/2. (v) The average size of com-
munities in the network. Communities are detected using a
standard community detection algorithm, the greedy algo-
rithm of [2]. (vi) The percentage productivity contributed
by the top 5% of users. (vii) Fragility (or virality), which
is a measure of how fast information can spread on the net-
work. This is a function of the concentration in links in a few
nodes, and is measured as E(d2)/E(d), where d is the degree
of each node. The numerator of this measure is analogous to
the standard measure of concentration used by economists,
the Herfindahl index.4 (viii) We also gather data on weekly

4https://en.wikipedia.org/wiki/Herfindahl_index

https://en.wikipedia.org/wiki/Herfindahl_index


Figure 5: Productivity plots for two sample companies. In each
plot the top plot shows daily productivity, total, individual, and
collaborative. The middle plot shows the percentage of produc-
tivity contributed by the top 5 contributors. The bottom plot
shows cumulative productivity. The top company has an almost
linear growth in cumulative productivity, whereas the lower one
has differing slope as it evidences growth spurts.

active users (WAU) in terms of the percentage of total users.
“Active” users are the users who logged into the file-sharing
platform at any point in time during the week. For graphing
purposes, our data is smoothed to report the rolling weekly
average each day.

6.3 Empirical Examples
Figure 5 shows the productivity per employee for two

sample companies over time. company productivity, average
collaborative productivity, and individual productivity all
follow each other closely. Collaborative productivity is much
lower than individual productivity across all weeks. Cumu-
lative productivity is almost linear for the first company, i.e.,
productivity remains steady week over week, though in the
bottom plot we see a slight kink where productivity ramps
up. In the first company, productivity tracks those of the
top 5 contributors, meaning that they are key players. But,
this relationship is less marked in the case of the second
company. Overall, we see that company productivity does
correlate with that of the top few users.

We may also examine metrics within a week, for exam-

Figure 6: Productivity contribution by user as a function of
degree of a node, for a single week.

Figure 7: Top 10 productivity contributors. We see that higher
individual contribution to total productivity does not necessarily
mean a higher EV centrality.

ple, in Figure 6 we plot the user’s productivity contribu-
tion versus degree of the user, i.e., how many connections
they have. Users on the lower right are those with many
connections but not too much individual file production,
whereas those at the top left have few connections, but gen-
erate many files. The user on the extreme right has many
connections and also a reasonable level of contribution and
may be a good example of a connector, yet, the user at the
topmost point in the plot is contributing a lot to the total.
The former is more of a connector, but the latter is more of
a producer.

Similar analyses of users are shown in Figures 7 and
8. In Figure 7 we note that top productive users may not
necessarily be the most central in the network. In Figure 8
we see that the most connected users (in terms of degree)
may not be the highest contributors to productivity.

6.4 Analyzing key users
We define key contributors to be the top 5% of total

productivity based on the sorted productivity decomposition
(D) vector generated using equation (7). We call the vector
Dct for company c in week t.

Do the top producers change a lot or remain stable? We



Figure 8: Top 30 users by degree. Higher degrees (ie, having
more connections) doesn’t mean higher individual contribution.
User IDs have been anonymized.

Figure 9: Distribution of Jaccard similarity across consecu-
tive weeks averaged for each company. The histogram shows the
distribution for 122 sample companies. Frequency is normalized
such that area under the curve is 1.

compute Jaccard similarity between sets of key users in two
consecutive weeks to answer this question. For every pair of
consecutive weeks in a company, we calculate the similarity
between the top contributors as follows.

Jaccard similarityct =
|Dc,t−1 ∩Dc,t|
|Dc,t−1 ∪Dc,t|

∈ (0, 1) (16)

We calculate for each company the average Jaccard simi-
larity across all weeks to determine how much consistency
there is in top contributors. We show the histogram of sam-
ple companies’ productivity similarity to examine the distri-
bution of stability in top contributors. See Figure 9. Mean
and modal similarity is around 0.2, suggesting that for many
companies, top producers change from week to week. There
is a long right tail, which indicates that for a small frac-
tion of companies, there is stability across time in the top
productivity employees.

6.5 External versus internal users
Each company on the file-sharing platform has users who

are employees of the company (internal) and also users who
are not employees or contractors (external). We examine
productivity decomposition by user type: Are users who col-
laborate with external users more productive? We consider
three types of users: (i) internal users who only connect to
internal users; (ii) internal users who connect to external
users; (iii) external users. For each company, each week,
we compute and store the percentage of productivity con-

Figure 10: Percentage of productivity attributed to internal
users who worked only with internal users. The histogram shows
the distribution of this for 124 sample companies. Frequency is
normalized such that area under the curve is 1.

Figure 11: Comparison of per user productivity across low
and high productivity weeks (top panel). These measures are
described in Section 6.2. The metrics are normalized to make
comparisons easier. Correlations are shown in the lower panel,
and are consistent with the comparison across high and low pro-
ductivity weeks.

tributed by each of these three groups. We compute the
average share of productivity in each type as well for each
company, and display the histogram. We see that most of
the productivity comes from internal users who connect with
other internal users, see Figure 10. (The share of produc-
tivity from external users turns out to be minimal, which
is understandable because external users comprise a small
fraction of the total user base in a company.)

6.6 Comparing low and high productivity weeks
We also try to get an understanding of the drivers of

productivity from a comparison of metrics between the min-
imum and maximum productivity weeks. This is shown in
Figure 11.

We see that network density, average degree, concentra-
tion of productivity in the top 5% users, and average com-
munity size are correlated with higher productivity per user.
Therefore, denser networks with key users drives productiv-
ity. On the other hand, too many nodes, skewed degree of
nodes, a large number of communities, and higher fragility



Figure 12: Schematic showing how the model is trained (top)
and tested (bottom), with some applications for models trained
on this schema. The graphic depicts the three rolling experiments
to predict the WAU across all companies in weeks 14, 15, and 16.

are associated with lower productivity per user. This is be-
cause too many users are segmented into communities, lead-
ing to lower transmission of productivity across the com-
pany. In our cross-sectional analysis, these insights will be
useful in determining which network metrics explain (i) pro-
ductivity across companies, and (ii) predict weekly active
users. These statistics are corroborated by the correlation
of productivity with the network measures, also shown in
Figure 11.

6.7 Predicting client activity
In this section we assess whether our Productivity mea-

sure P has predictive power to determine WAU (the ratio of
weekly active users to all users). We fit a model to predict
WAU in week t using a feature set constructed from data in
weeks t− 12 through t− 1, i.e., we use the past 12 weeks of
data for prediction. We fit one model to the cross-section of
client companies and use rolling experiments. Our dataset is
short and supports three rolling of out of sample prediction
periods.

For example, we will use a feature set constructed from
weeks 1–12 to fit WAU in week 13. This trains the prediction
model in-sample. We then take this fitted model and use
data from weeks 2-13 to predict week 14 out-of-sample as
a test of the model. Since we have 16 weeks of data, we
are able to run three experiments, predicting out-of-sample
WAU for weeks 14, 15, and 16. The schematic is shown in
Figure 12.

We have two analytics objectives for the model. One,
predict WAU for a client in the following week (this is a
“regression” exercise). Two, predict the direction of WAU
next week, i.e., the sign of the change in WAU (a “classifi-
cation” experiment). The naive model for prediction would
be to assume that the prediction of WAU for any week is
based on the average WAU for the past 12 weeks, which is
one variable in the feature set. To this naive variable, we
also add the various network measures that were described

Figure 13: Feature set used for predicting clients’ user activity.
These features are at the client level. Features that are user level
are aggregated by averaging up to the client level across all users.

Metric Week 14 Week 15 Week 16

MSE (out-of-sample) 0.0026 0.0038 0.0032
MSE (naive) 0.0033 0.0044 0.0045
% Error reduction 21.4% 15.3% 28.6%

Coefficient 0.9306 0.9031 0.9296
Adjusted R2 0.92 0.89 0.91

Table 1: Metrics of the classification model. In the top half
of the table we present the mean squared prediction error (MSE)
for both the naive model (only using past 12 week average WAU)
versus the full model that also uses network variables. In the
bottom half we present the coefficient of a regression of the ac-
tual WAU on predicted WAU from the full model and we see that
these coefficients are statistically very close to 1 suggesting a good
predictive model. The R2 is also reported to see how much vari-
ation is captured, and these are above 90% meaning that most
of the variation in the actual WAU is captured by the predicted
WAU. All coefficients are highly significant at the 99.99% level
(t-stats not reported).

in Section 6.2. If any variables are highly correlated with
each other (collinear) we eliminate one of these variables.
This leaves us with an abridged but clean dataset which we
then use for prediction. The features used fall into both
categories described in Section 6.2, and are shown in Figure
13.

First, we detail the results of the WAU prediction model.
Different machine learning models were tried for prediction,
but the most successful ones were random forest, gradient
boosting, xgboost, and a MLP regression model. Of these,
we report the results from xgboost, which gave the best
results. The results are shown in Table 1. We see that the
prediction model does very well in matching actual WAU in
level terms. This can be seen from the fact that the slope
coefficient in the regressions lies between 0.9 and 1.0, and
the slope is statistically close to 1, though it is always less
than 1, suggesting that the model marginally overestimates
the next week’s WAU. It also improves on the prediction
error over the naive model by approximately 15-30%.

Second, we assess how well the model is able to predict
the direction of change in WAU for each client. This is of
interest because attention may be directed to clients whose
WAU is predicted to drop. The confusion matrices for the
prediction of the three experiments are shown in Table 2.
The diagonals are heavy indicating that the models perform



Week 14 Actual Metric Value
Predicted 0 1 Accuracy 0.72

0 132 58 Precision 0.74
1 89 248 Recall 0.81

F1 0.77

Week 15 Actual Metric Value
Predicted 0 1 Accuracy 0.68

0 144 82 Precision 0.71
1 89 214 Recall 0.72

F1 0.71

Week 16 Actual Metric Value
Predicted 0 1 Accuracy 0.69

0 176 96 Precision 0.73
1 68 188 Recall 0.66

F1 0.70

Table 2: Confusion matrices for the three experiments. In
these cases 0 stands for the case where the WAU declined and
1 for when it increased versus the average WAU of the past 12
weeks. We also report accuracy, precision, recall, and F1 score.

well. Accuracy is about 70%, as are precision, recall, and
the F1 score. Model performance is stable across time. In
sum, a model supported by graph-theoretic features is able
to measure productivity and use it to forecast the usage of
a file-sharing platform.

7. CONCLUDING DISCUSSION
This paper presents a new productivity metric P based

on a novel network model of file-sharing amongst users within
a client company. The metric P may be decomposed into
productivity coming from individual effort and from collab-
orative effort. A decomposition of total productivity is also
possible by user so as to identify the most productive em-
ployees. This network approach generates several metrics
at both, user and company level, enabling the creation of a
rich feature set for predicting platform metrics.

Using a sample of ∼ 525 client companies, over 16 weeks,
comprising about 30 million file-sharing records, we find that
predicting client usage of the file-sharing platform is im-
proved over a model where the past 12-week average is used
as the prediction. Accuracy levels are high when predicting
the level of the percentage of active users on the platform,
and also when predicting the sign of change in percentage
of active users.

The feature set supports many other analyses as well.
With longer time-series of data, predicting churn, i.e., client
dropout, becomes feasible. Clustering and classification of
companies and users by productivity is supported. User en-
gagement can be predicted. And of course, analyses may
be provided to clients to enable them to make their compa-
nies more productive, while also offering a weekly measure
of productivity to track improvements in collaboration.
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