%pylab inline
import pandas as pd
Populating the interactive namespace from numpy and matplotlib
#LOAD IN CREDIT CARD DATA
import pickle
CCdata = pickle.load(open("data/CCdata.p", "rb"))
X_train = CCdata['X_train']
y_train = CCdata['y_train']
X_test = CCdata['X_test']
y_test = CCdata['y_test']
hist(y_train,3)
show()
hist(y_test,3)
show()
http://srdas.github.io/MLBook/DiscriminantFactorAnalysis.html#discriminant-analysis
$$ D = a_1 x_1 + a_2 x_2 + ... + a_K x_K = \sum_{k=1}^K a_k x_k $$
$D$ is often replace by $Z$, which leads to the notion of "Z-score" or discriminant score.
#FIT THE LDA MODEL
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
model = LDA()
model.fit(X_train, y_train)
LinearDiscriminantAnalysis(n_components=None, priors=None, shrinkage=None, solver='svd', store_covariance=False, tol=0.0001)
#PREDICTION ON TEST DATA
from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report
from sklearn.metrics import roc_curve,auc
from sklearn.metrics import confusion_matrix
y_hat = model.predict(X_test)
#ACCURACY
#Out of sample
accuracy_score(y_test,y_hat)
0.98610446125528
#CLASSIFICATION REPORT
print(classification_report(y_test, y_hat))
precision recall f1-score support 0 1.00 0.99 0.99 93827 1 0.09 0.83 0.17 160 avg / total 1.00 0.99 0.99 93987
#ROC, AUC
y_score = model.predict_proba(X_test)[:,1]
fpr, tpr, _ = roc_curve(y_test, y_score)
title('ROC curve')
xlabel('FPR (Precision)')
ylabel('TPR (Recall)')
plot(fpr,tpr)
plot((0,1), ls='dashed',color='black')
plt.show()
print('Area under curve (AUC): ', auc(fpr,tpr))
Area under curve (AUC): 0.973067187483347
#CONFUSION MATRIX
cm = confusion_matrix(y_test, y_hat)
cm
array([[92548, 1279], [ 27, 133]])
ncaa = pd.read_table("data/ncaa.txt")
yy = append(list(ones(32)), list(zeros(32)))
ncaa["y"] = yy
ncaa.head()
No NAME | GMS | PTS | REB | AST | TO | A/T | STL | BLK | PF | FG | FT | 3P | y | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1. NorthCarolina | 6 | 84.2 | 41.5 | 17.8 | 12.8 | 1.39 | 6.7 | 3.8 | 16.7 | 0.514 | 0.664 | 0.417 | 1.0 |
1 | 2. Illinois | 6 | 74.5 | 34.0 | 19.0 | 10.2 | 1.87 | 8.0 | 1.7 | 16.5 | 0.457 | 0.753 | 0.361 | 1.0 |
2 | 3. Louisville | 5 | 77.4 | 35.4 | 13.6 | 11.0 | 1.24 | 5.4 | 4.2 | 16.6 | 0.479 | 0.702 | 0.376 | 1.0 |
3 | 4. MichiganState | 5 | 80.8 | 37.8 | 13.0 | 12.6 | 1.03 | 8.4 | 2.4 | 19.8 | 0.445 | 0.783 | 0.329 | 1.0 |
4 | 5. Arizona | 4 | 79.8 | 35.0 | 15.8 | 14.5 | 1.09 | 6.0 | 6.5 | 13.3 | 0.542 | 0.759 | 0.397 | 1.0 |
#CREATE FEATURES
y = ncaa['y']
X = ncaa.iloc[:,2:13]
X.head()
PTS | REB | AST | TO | A/T | STL | BLK | PF | FG | FT | 3P | |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 84.2 | 41.5 | 17.8 | 12.8 | 1.39 | 6.7 | 3.8 | 16.7 | 0.514 | 0.664 | 0.417 |
1 | 74.5 | 34.0 | 19.0 | 10.2 | 1.87 | 8.0 | 1.7 | 16.5 | 0.457 | 0.753 | 0.361 |
2 | 77.4 | 35.4 | 13.6 | 11.0 | 1.24 | 5.4 | 4.2 | 16.6 | 0.479 | 0.702 | 0.376 |
3 | 80.8 | 37.8 | 13.0 | 12.6 | 1.03 | 8.4 | 2.4 | 19.8 | 0.445 | 0.783 | 0.329 |
4 | 79.8 | 35.0 | 15.8 | 14.5 | 1.09 | 6.0 | 6.5 | 13.3 | 0.542 | 0.759 | 0.397 |
#FIT MODEL
model = LDA()
model.fit(X,y)
ypred = model.predict(X)
#CONFUSION MATRIX
cm = confusion_matrix(y, ypred)
cm
array([[27, 5], [ 5, 27]])
#ACCURACY
accuracy_score(y,ypred)
0.84375
#CLASSIFICATION REPORT
print(classification_report(y, ypred))
precision recall f1-score support 0.0 0.84 0.84 0.84 32 1.0 0.84 0.84 0.84 32 avg / total 0.84 0.84 0.84 64
#ROC, AUC
y_score = model.predict_proba(X)[:,1]
fpr, tpr, _ = roc_curve(y, y_score)
title('ROC curve')
xlabel('FPR (Precision)')
ylabel('TPR (Recall)')
plot(fpr,tpr)
plot((0,1), ls='dashed',color='black')
plt.show()
print('Area under curve (AUC): ', auc(fpr,tpr))
Area under curve (AUC): 0.92578125